1
|
Yourdkhani A, Esfandyari-Manesh M, Ranjbaran P, Amani M, Dinarvand R. Recent progress in topical and transdermal approaches for melanoma treatment. Drug Deliv Transl Res 2025; 15:1457-1495. [PMID: 39653958 DOI: 10.1007/s13346-024-01738-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/27/2024] [Indexed: 04/04/2025]
Abstract
The global incidence of melanoma, the most lethal form of skin cancer, continues to escalate, emphasizing the urgent need for more effective therapeutic strategies. This review assesses the latest advancements in topical and transdermal drug delivery systems, positioning them as promising alternatives. These systems allow for the direct application of therapeutic agents to tumor sites, enhancing drug effectiveness, improving patient compliance, and reducing systemic toxicity. Specifically, innovations such as nanoparticles, microneedles, and vesicular systems are explored for their potential to optimize topical and localized drug delivery. By incorporating a graphical overview of these drug delivery vehicles, we visually underscore their roles in enhancing therapeutic outcomes across various treatment categories such as chemotherapy, immunotherapy, phototherapy, phytotherapy, and targeted therapy. This article critically evaluates recent breakthroughs, addresses the current challenges faced by researchers, and explores the future directions of topical and transdermal approaches in melanoma management. By presenting a summary of the latest research and predicting future trends, this review aims to inform ongoing developments and encourage further innovation in strategies for treating melanoma.
Collapse
Affiliation(s)
- Alaleh Yourdkhani
- Department of Pharmaceutics, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Mehdi Esfandyari-Manesh
- Nanotechnology Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran.
| | - Paniz Ranjbaran
- Department of Pharmaceutics, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahdiyar Amani
- Department of Pharmaceutics, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Rassoul Dinarvand
- Department of Pharmaceutics, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran.
- Nanotechnology Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran.
- Leicester School of Pharmacy, De Montfort University, Leicester, UK.
| |
Collapse
|
2
|
Bucarey SA, Maldonado LD, Duarte F, Hidalgo AA, Sáenz L. Oral Vaccine Formulation for Immunocastration Using a Live-Attenuated Salmonella ΔSPI2 Strain as an Antigenic Vector. Vaccines (Basel) 2024; 12:1400. [PMID: 39772060 PMCID: PMC11728726 DOI: 10.3390/vaccines12121400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 12/03/2024] [Accepted: 12/07/2024] [Indexed: 01/16/2025] Open
Abstract
Immunization against Gonadotropin-Releasing Hormone (GnRH) has been successfully explored and developed for the parenteral inoculation of animals, aimed at controlling fertility, reducing male aggressiveness, and preventing boar taint. Although effective, these vaccines may cause adverse reactions at the injection site, including immunosuppression and inflammation, as well as the involvement of laborious and time-consuming procedures. Oral vaccines represent an advancement in antigen delivery technology in the vaccine industry. In this study, a Salmonella enterica serovar Typhimurium (S. Typhimurium) mutant lacking the pathogenicity island 2 (S. Typhimurium ΔSPI2) was used as a vehicle and mucosal adjuvant to deliver two genetic constructs in an attempt to develop an oral immunological preparation against gonadotropin hormone-releasing hormone (GnRH). S. Typhimurium ΔSPI2 was transformed to carry two plasmids containing a modified GnRH gene repeated in tandem (GnRXG/Q), one under eukaryotic expression control (pDNA::GnRXG/Q) and another under prokaryotic expression control (pJexpress::GnRXG/Q). A group of three male BALB/c mice were orally immunized and vaccination-boosted 30 days later. The oral administration of S. Typhimurium ΔSPI2 transformed with both plasmids was effective in producing antibodies against GnRXG/Q, leading to a decrease in serum testosterone levels and testicular tissue atrophy, evidenced by a reduction in the transverse tubular diameter of the seminiferous tubules and a decrease in the number of layers of the seminiferous epithelium in the testes of the inoculated mice. These results suggest that S. Typhimurium ΔSPI2 can be used as a safe and simple system to produce an oral formulation against GnRH and that Salmonella-mediated oral antigen delivery is a novel, yet effective, alternative to induce an immune response against GnRH in a murine model, warranting further research in other animal species.
Collapse
Affiliation(s)
- Sergio A. Bucarey
- Centro Biotecnológico Veterinario, Biovetec, Departamento de Ciencias Biológicas Animales, Facultad de Ciencias Veterinarias y Pecuarias, Universidad de Chile, Santa Rosa 11735, La Pintana, Santiago 8820808, Chile; (L.D.M.)
| | - Lucy D. Maldonado
- Centro Biotecnológico Veterinario, Biovetec, Departamento de Ciencias Biológicas Animales, Facultad de Ciencias Veterinarias y Pecuarias, Universidad de Chile, Santa Rosa 11735, La Pintana, Santiago 8820808, Chile; (L.D.M.)
| | - Francisco Duarte
- Centro Biotecnológico Veterinario, Biovetec, Departamento de Ciencias Biológicas Animales, Facultad de Ciencias Veterinarias y Pecuarias, Universidad de Chile, Santa Rosa 11735, La Pintana, Santiago 8820808, Chile; (L.D.M.)
| | - Alejandro A. Hidalgo
- Escuela de Química y Farmacia, Facultad de Medicina, Universidad Andres Bello, Sazié 2320, Santiago 8370134, Chile
| | - Leonardo Sáenz
- Laboratorio de Vacunas Veterinarias, Departamento de Ciencias Biológicas Animales, Facultad de Ciencias Veterinarias y Pecuarias, Universidad de Chile, Santa Rosa 11735, La Pintana, Santiago 8820808, Chile;
| |
Collapse
|
3
|
Lara-Vega I. Upgrading Melanoma Treatment: Promising Immunotherapies Combinations
in the Preclinical Mouse Model. CURRENT CANCER THERAPY REVIEWS 2024; 20:489-509. [DOI: 10.2174/0115733947263244231002042219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 07/27/2023] [Accepted: 08/25/2023] [Indexed: 01/03/2025]
Abstract
Background:
Melanoma, known for its high metastatic potential, does not respond well to
existing treatments in advanced stages. As a solution, immunotherapy-based treatments, including
anti-PD-1/L1 and anti-CTLA-4, have been developed and evaluated in preclinical mouse models to
overcome resistance. Although these treatments display the potential to suppress tumor growth, there
remains a crucial requirement for a thorough assessment of long-term efficacy in preventing metastasis
or recurrence and improving survival rates.
Methods:
From 2016 onwards, a thorough examination of combined immunotherapies for the treatment
of cutaneous melanoma in preclinical mouse models was conducted. The search was conducted
using MeSH Terms algorithms in PubMed®, resulting in the identification of forty-five studies that
met the rigorous inclusion criteria for screening.
Results:
The C57 mouse model bearing B16-melanoma has been widely utilized to assess the efficacy
of immunotherapies. The combination of therapies has demonstrated a synergistic impact, leading
to potent antitumor activity. One extensively studied method for establishing metastatic models involves
the intravenous administration of malignant cells, with several combined therapies under investigation.
The primary focus of evaluation has been on combined immunotherapies utilizing PD-
1/L1 and CTLA-4 blockade, although alternative immunotherapies not involving PD-1/L1 and
CTLA-4 blockade have also been identified. Additionally, the review provides detailed treatment regimens
for each combined approach.
Conclusion:
The identification of techniques for generating simulated models of metastatic melanoma
and investigating various therapeutic combinations will greatly aid in evaluating the overall systemic
efficacy of immunotherapy. This will be especially valuable for conducting short-term preclinical
experiments that have the potential for clinical studies.
Collapse
Affiliation(s)
- Israel Lara-Vega
- National School of Biological Sciences, IPN. Av. Wilfrido Massieu s/n, Professional Unit Adolfo Lopez Mateos, Mexico
City, CP 07738, Mexico
| |
Collapse
|
4
|
Li S, Yue H, Wang S, Li X, Wang X, Guo P, Ma G, Wei W. Advances of bacteria-based delivery systems for modulating tumor microenvironment. Adv Drug Deliv Rev 2022; 188:114444. [PMID: 35817215 DOI: 10.1016/j.addr.2022.114444] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 06/27/2022] [Accepted: 07/06/2022] [Indexed: 12/13/2022]
Abstract
The components and hospitable properties of tumor microenvironment (TME) are associated with tumor progression. Recently, TME modulating vectors and strategies have garnished significant attention in cancer therapy. Although a pilot work has reviewed TME regulation via nanoparticle-based delivery systems, there is no systematical review that summarizes the natural bacteria-based anti-tumor system to modulate TME. In this review, we conclude the strategies of bacterial carriers (including whole bacteria, bacterial skeleton and bacterial components) to regulate TME from the perspective of TME components and hospitable properties, and the clinical trials of bacteria-mediated cancer therapy. Current challenges and future prospects for the design of bacteria-based carriers are also proposed that provide critical insights into this natural delivery system and related translation from the bench to the clinic.
Collapse
Affiliation(s)
- Shuping Li
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, PR China; Key Laboratory of Carbohydrate Chemistry and Biotechnology Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu 214122, PR China
| | - Hua Yue
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, PR China; School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Shuang Wang
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, PR China
| | - Xin Li
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, PR China
| | - Xiaojun Wang
- Department of Ophthalmology, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100020, PR China
| | - Peilin Guo
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, PR China; School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Guanghui Ma
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, PR China; School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100049, PR China.
| | - Wei Wei
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, PR China; School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100049, PR China.
| |
Collapse
|
5
|
Mónaco A, Chilibroste S, Yim L, Chabalgoity JA, Moreno M. Inflammasome activation, NLRP3 engagement and macrophage recruitment to tumor microenvironment are all required for Salmonella antitumor effect. Cancer Immunol Immunother 2022; 71:2141-2150. [PMID: 35061085 DOI: 10.1007/s00262-022-03148-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 01/07/2022] [Indexed: 12/13/2022]
Abstract
Salmonella-based cancer therapies show great potential in preclinical models, but for most cases the observed antitumor effect is transient. Understanding the basis of the antitumor efficacy might guide the design of improved strains that elicit long-lasting effects, paving the wave for clinical use. Here, we deepened into the role of macrophages and inflammasome activation in the context of Salmonella anti-melanoma effect. We showed inflammasome activation in melanoma cells upon infection, which correlated with cell surface exposure of gasdermin-D (GSDM-D) and calreticulin (CRT) and High mobility group box 1 protein (HMGB-1) release, suggesting immunogenic cell death, particularly pyroptosis. Salmonella infection upregulated levels of Caspase-11 (Casp11) mRNA, but not Nlrp3 or Nlrc4 mRNA, the only described inflammasome receptors engaged by Salmonella, suggesting that non-canonical inflammasome activation could be occurring in melanoma cells. Intratumoral administration of Salmonella to melanoma-bearing mice elicited local inflammasome activation and interleukin-1β (IL-1β) production together with tumor growth retardation and extended survival in wild type but not Caspase-1/11 (Casp1/11) knockout mice despite similar levels of intratumoral IL-1β in the later. Salmonella antitumor activity was also suppressed in melanoma bearing Nlrp3 knockout mice. Salmonella induced macrophage recruitment to the tumor site and infiltrating cells exhibited inflammasome activation. Depletion experiments confirmed that macrophages are also essential for Salmonella anti-melanoma effect. Intratumoral macrophages showed a marked M2/M1 shift soon after treatment but this inflammatory profile is then lost, which could explain the transient effect of therapy. All in all, our results highlight CASP-1/11 axis and macrophages as essential players in Salmonella-based cancer immunotherapy and suggest a possible target for future interventions.
Collapse
Affiliation(s)
- Amy Mónaco
- Departamento de Desarrollo Biotecnológico, Instituto de Higiene, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Sofía Chilibroste
- Departamento de Desarrollo Biotecnológico, Instituto de Higiene, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Lucía Yim
- Departamento de Desarrollo Biotecnológico, Instituto de Higiene, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Jose Alejandro Chabalgoity
- Departamento de Desarrollo Biotecnológico, Instituto de Higiene, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay.
| | - María Moreno
- Departamento de Desarrollo Biotecnológico, Instituto de Higiene, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay.
| |
Collapse
|
6
|
Mónaco A, Plata MC, Chilibroste S, Vola M, Chabalgoity JA, Moreno M. Salmonella-induced immune response reduces recurrence and tumor dissemination in preclinical melanoma model. CURRENT RESEARCH IN IMMUNOLOGY 2022; 3:159-166. [PMID: 36032415 PMCID: PMC9403904 DOI: 10.1016/j.crimmu.2022.08.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 06/20/2022] [Accepted: 08/01/2022] [Indexed: 11/19/2022] Open
Affiliation(s)
- Amy Mónaco
- Departamento de Desarrollo Biotecnológico, Instituto de Higiene, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - María C. Plata
- Departamento de Desarrollo Biotecnológico, Instituto de Higiene, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Sofía Chilibroste
- Departamento de Desarrollo Biotecnológico, Instituto de Higiene, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Magdalena Vola
- Cátedra de Dermatología, Hospital de Clínicas, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Jose A. Chabalgoity
- Departamento de Desarrollo Biotecnológico, Instituto de Higiene, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - María Moreno
- Departamento de Desarrollo Biotecnológico, Instituto de Higiene, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
- Corresponding author.
| |
Collapse
|
7
|
Current status of intratumour microbiome in cancer and engineered exogenous microbiota as a promising therapeutic strategy. Biomed Pharmacother 2021; 145:112443. [PMID: 34847476 DOI: 10.1016/j.biopha.2021.112443] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 11/15/2021] [Accepted: 11/16/2021] [Indexed: 02/06/2023] Open
Abstract
Research on the relationship between microbiome and cancer has made significant progress in the past few decades. It is now known that the gut microbiome has multiple effects on tumour biology. However, the relationship between intratumoral bacteria and cancers remains unclear. Growing evidence suggests that intratumoral bacteria are important components of the microenvironment in several types of cancers. Furthermore, several studies have demonstrated that intratumoral bacteria may directly influence tumorigenesis, progression and responses to treatment. Limited studies have been conducted on intratumoral bacteria, and using intratumoral bacteria to treat tumours remains a challenge. Bacteria have been studied as anticancer therapeutics since the 19th century when William B. Coley successfully treated patients with inoperable sarcomas using Streptococcus pyogenes. With the development of synthetic biological approaches, several bacterial species have been genetically engineered to increase their applicability for cancer treatment. Genetically engineered bacteria for cancer therapy have unique properties compared to other treatment methods. They can specifically accumulate within tumours and inhibit cancer growth. In addition, genetically engineered bacteria may be used as a vector to deliver antitumour agents or combined with radiation and chemotherapy to synergise the effectiveness of cancer treatment. However, various problems in treating tumours with genetically engineered bacteria need to be addressed. In this review, we focus on the role of intratumoral bacteria on tumour initiation, progression and responses to chemotherapy or immunotherapy. Moreover, we summarised the recent progress in the treatment of tumours with genetically engineered bacteria.
Collapse
|
8
|
Preclinical Evaluation of LVR01 Attenuated Salmonella as Neoadjuvant Intralesional Therapy in Combination with Chemotherapy for Melanoma Treatment. J Invest Dermatol 2021; 142:1435-1443.e2. [PMID: 34662563 DOI: 10.1016/j.jid.2021.08.442] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 08/16/2021] [Accepted: 08/27/2021] [Indexed: 11/22/2022]
Abstract
Treatment of malignant melanoma has improved in the last few years owing to early detection and new therapeutic options. Still, management of advanced disease remains a challenge because it requires systemic treatment. In such cases, dacarbazine-based chemotherapy has been widely used, despite low efficacy. Neoadjuvant therapies emerge as alternative options that could help chemotherapy to achieve increased benefit. In this work, we evaluate LVR01, an attenuated Salmonella enterica serovar typhimurium, as neoadjuvant intralesional therapy in combination with dacarbazine in a preclinical melanoma model. B16F1 melanoma‒bearing mice received intraperitoneal administration of dacarbazine for 3 consecutive days. LVR01 treatment, consisting of one single intratumoral injection, was applied 1 day before chemotherapy began. This therapeutic approach retarded tumor growth and prolonged overall survival, revealing a strong synergistic antitumor effect. Dacarbazine induced a drastic reduction of secondary lymphoid organ cellularity, which was partially restored by Salmonella, particularly potentiating activated cytotoxic cell compartments. Systemic immune reactivation could be a consequence of the intense inflammatory tumor microenvironment induced by LVR01. We propose that the use of LVR01 as neoadjuvant intralesional therapy could be considered as an interesting strategy with close clinical application to boost chemotherapy effect in patients with melanoma.
Collapse
|
9
|
Badie F, Ghandali M, Tabatabaei SA, Safari M, Khorshidi A, Shayestehpour M, Mahjoubin-Tehran M, Morshedi K, Jalili A, Tajiknia V, Hamblin MR, Mirzaei H. Use of Salmonella Bacteria in Cancer Therapy: Direct, Drug Delivery and Combination Approaches. Front Oncol 2021; 11:624759. [PMID: 33738260 PMCID: PMC7960920 DOI: 10.3389/fonc.2021.624759] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Accepted: 01/11/2021] [Indexed: 12/12/2022] Open
Abstract
Over the years, conventional cancer treatments, such as chemotherapy with only a limited specificity for tumors, have undergone significant improvement. Moreover, newer therapies such as immunotherapy have undergone a revolution to stimulate the innate as well as adaptive immune responses against the tumor. However, it has been found that tumors can be selectively colonized by certain bacteria, where they can proliferate, and exert direct oncolytic effects as well as stimulating the immune system. Bacterial-mediated cancer therapy (BMCT) is now one example of a hot topic in the antitumor field. Salmonella typhimurium is a Gram-negative species that generally causes self-limiting gastroenteritis in humans. This species has been designed and engineered in order to be used in cancer-targeted therapeutics. S. typhimurium can be used in combination with other treatments such as chemotherapy or radiotherapy for synergistic modification of the tumor microenvironment. Considerable benefits have been shown by using engineered attenuated strains for the diagnosis and treatment of tumors. Some of these treatment approaches have received FDA approval for early-phase clinical trials. This review summarizes the use of Salmonella bacteria for cancer therapy, which could pave the way towards routine clinical application. The benefits of this therapy include an automatic self-targeting ability, and the possibility of genetic manipulation to produce newly engineered attenuated strains. Nevertheless, Salmonella-mediated anticancer therapy has not yet been clinically established, and requires more research before its use in cancer treatment.
Collapse
Affiliation(s)
- Fereshteh Badie
- Department of Microbiology, Faculty of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Maryam Ghandali
- School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Seyed Alireza Tabatabaei
- Department of Internal Medicine, School of Medicine, Shahid Beheshti University of Medical Science, Tehran, Iran
| | - Mahmood Safari
- Department of Microbiology, Faculty of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Ahmad Khorshidi
- Department of Microbiology, Faculty of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Mohammad Shayestehpour
- Department of Microbiology, Faculty of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Maryam Mahjoubin-Tehran
- Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Medical Biotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Korosh Morshedi
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Amin Jalili
- Department of Medical Biotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Vida Tajiknia
- Department of Surgery, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Michael R. Hamblin
- Laser Research Centre, Faculty of Health Science, University of Johannesburg, Doornfontein, South Africa
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| |
Collapse
|
10
|
Wilski NA, Stotesbury C, Del Casale C, Montoya B, Wong E, Sigal LJ, Snyder CM. STING Sensing of Murine Cytomegalovirus Alters the Tumor Microenvironment to Promote Antitumor Immunity. THE JOURNAL OF IMMUNOLOGY 2020; 204:2961-2972. [PMID: 32284333 DOI: 10.4049/jimmunol.1901136] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Accepted: 03/18/2020] [Indexed: 01/04/2023]
Abstract
CMV has been proposed to play a role in cancer progression and invasiveness. However, CMV has been increasingly studied as a cancer vaccine vector, and multiple groups, including ours, have reported that the virus can drive antitumor immunity in certain models. Our previous work revealed that intratumoral injections of wild-type murine CMV (MCMV) into B16-F0 melanomas caused tumor growth delay in part by using a viral chemokine to recruit macrophages that were subsequently infected. We now show that MCMV acts as a STING agonist in the tumor. MCMV infection of tumors in STING-deficient mice resulted in normal recruitment of macrophages to the tumor, but poor recruitment of CD8+ T cells, reduced production of inflammatory cytokines and chemokines, and no delay in tumor growth. In vitro, expression of type I IFN was dependent on both STING and the type I IFNR. Moreover, type I IFN alone was sufficient to induce cytokine and chemokine production by macrophages and B16 tumor cells, suggesting that the major role for STING activation was to produce type I IFN. Critically, viral infection of wild-type macrophages alone was sufficient to restore tumor growth delay in STING-deficient animals. Overall, these data show that MCMV infection and sensing in tumor-associated macrophages through STING signaling is sufficient to promote antitumor immune responses in the B16-F0 melanoma model.
Collapse
Affiliation(s)
- Nicole A Wilski
- Department of Microbiology and Immunology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107
| | - Colby Stotesbury
- Department of Microbiology and Immunology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107
| | - Christina Del Casale
- Department of Microbiology and Immunology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107
| | - Brian Montoya
- Department of Microbiology and Immunology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107
| | - Eric Wong
- Department of Microbiology and Immunology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107
| | - Luis J Sigal
- Department of Microbiology and Immunology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107
| | - Christopher M Snyder
- Department of Microbiology and Immunology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107
| |
Collapse
|
11
|
Wu Y, Feng Z, Jiang S, Chen J, Zhan Y, Chen J. Secreting-lux/pT-ClyA engineered bacteria suppresses tumor growth via interleukin-1β in two pathways. AMB Express 2019; 9:189. [PMID: 31754923 PMCID: PMC6872689 DOI: 10.1186/s13568-019-0910-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Accepted: 11/04/2019] [Indexed: 01/21/2023] Open
Abstract
Engineered Salmonella typhimurium (S.t-ΔpGlux/pT-ClyA) and attenuated Salmonella typhimurium (SL: Salmonella typhimurium with a defect in the synthesis of guanine 5′-diphosphate-3′-diphosphate) exhibit similar tumor targeting capabilities (Kim et al. in Theranostics 5:1328–1342, 2015; Jiang et al. in Mol Ther 18:635–642, 2013), but S.t-ΔpGlux/pT-ClyA exerts superior tumor suppressive effects. The aim of this study was to investigate whether S.t-ΔpGlux/pT-ClyA inhibits colon cancer growth and recurrence by promoting increased IL-1β production. The CT26 tumor mouse model was used, and mice were treated in the following ways: PBS, S.t-ΔpGlux/pT-ClyA(+) + IL-1βAb, SL, S.t-ΔpGlux/pT-ClyA(−), and S.t-ΔpGlux/pT-ClyA(+). Dynamic evaluation of the efficacy of S.t-ΔpGlux/pT-ClyA in the treatment of colon cancer was assessed by MRI. Western blot, immunofluorescence and flow cytometry analysis were used to investigate IL-1β-derived cells and IL-1β expression on tumor cells and immune cells to analyze the regulatory mechanism. IL-1β levels in tumors colonized by S.t-ΔpGlux/pT-ClyA were significantly increased and maintained at high levels compared to control treatments. This increase caused tumors to subside without recurrence. We examined the immune cells mediating S.t-ΔpGlux/pT-ClyA-induced tumor suppression and examined the major cell types producing IL-1β. We found that macrophages and dendritic cells were the primary IL-1β producers. Inhibition of IL-1β in mice treated with S.t-ΔpGlux/pT-ClyA using an IL-1β antibody caused tumor growth to resume. This suggests that IL-1β plays an important role in the treatment of cancer by S.t-ΔpGlux/pT-ClyA. We found that in St-ΔpGlux/pT-ClyA-treated tumors, expression of molecules involved in signaling pathways, such as NLRP3, ASC, Caspase1, TLR4, MyD88, NF-kB and IL-1β, were upregulated, while in ΔppGpp S. typhimurium treated animals, TLR4, MyD88, NF-kB and IL-1β were upregulated with NLRP3, ASC, and Caspase1 being rarely expressed or not expressed at all. Using S.t-ΔpGlux/pT-ClyA may simultaneously activate TLR4 and NLRP3 signaling pathways, which increase IL-1β expression and enhance inhibition of colon cancer growth without tumor recurrence. This study provides a novel platform for treating colon cancer.
Collapse
|
12
|
Murine Cytomegalovirus Infection of Melanoma Lesions Delays Tumor Growth by Recruiting and Repolarizing Monocytic Phagocytes in the Tumor. J Virol 2019; 93:JVI.00533-19. [PMID: 31375579 DOI: 10.1128/jvi.00533-19] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Accepted: 07/18/2019] [Indexed: 02/06/2023] Open
Abstract
Cytomegalovirus (CMV) is a ubiquitous betaherpesvirus that infects many different cell types. Human CMV (HCMV) has been found in several solid tumors, and it has been hypothesized that it may promote cellular transformation or exacerbate tumor growth. Paradoxically, in some experimental situations, murine CMV (MCMV) infection delays tumor growth. We previously showed that wild-type MCMV delayed the growth of poorly immunogenic B16 melanomas via an undefined mechanism. Here, we show that MCMV delayed the growth of these immunologically "cold" tumors by recruiting and modulating tumor-associated macrophages. Depletion of monocytic phagocytes with clodronate completely prevented MCMV from delaying tumor growth. Mechanistically, our data suggest that MCMV recruits new macrophages to the tumor via the virus-encoded chemokine MCK2, and viruses lacking this chemokine were unable to delay tumor growth. Moreover, MCMV infection of macrophages drove them toward a proinflammatory (M1)-like state. Importantly, adaptive immune responses were also necessary for MCMV to delay tumor growth as the effect was substantially blunted in Rag-deficient animals. However, viral spread was not needed and a spread-defective MCMV strain was equally effective. In most mice, the antitumor effect of MCMV was transient. Although the recruited macrophages persisted, tumor regrowth correlated with a loss of viral activity in the tumor. However, an additional round of MCMV infection further delayed tumor growth, suggesting that tumor growth delay was dependent on active viral infection. Together, our results suggest that MCMV infection delayed the growth of an immunologically cold tumor by recruiting and modulating macrophages in order to promote anti-tumor immune responses.IMPORTANCE Cytomegalovirus (CMV) is an exciting new platform for vaccines and cancer therapy. Although CMV may delay tumor growth in some settings, there is also evidence that CMV may promote cancer development and progression. Thus, defining the impact of CMV on tumors is critical. Using a mouse model of melanoma, we previously found that murine CMV (MCMV) delayed tumor growth and activated tumor-specific immunity although the mechanism was unclear. We now show that MCMV delayed tumor growth through a mechanism that required monocytic phagocytes and a viral chemokine that recruited macrophages to the tumor. Furthermore, MCMV infection altered the functional state of macrophages. Although the effects of MCMV on tumor growth were transient, we found that repeated MCMV injections sustained the antitumor effect, suggesting that active viral infection was needed. Thus, MCMV altered tumor growth by actively recruiting macrophages to the tumor, where they were modulated to promote antitumor immunity.
Collapse
|
13
|
Miyake K, Murata T, Murakami T, Zhao M, Kiyuna T, Kawaguchi K, Igarashi K, Miyake M, Lwin TM, Hozumi C, Komatsu S, Kikuchi T, Bouvet M, Shimoya K, Singh SR, Endo I, Hoffman RM. Tumor-targeting Salmonella typhimurium A1-R overcomes nab-paclitaxel resistance in a cervical cancer PDOX mouse model. Arch Gynecol Obstet 2019; 299:1683-1690. [PMID: 30953192 PMCID: PMC11066583 DOI: 10.1007/s00404-019-05147-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Accepted: 03/04/2019] [Indexed: 01/26/2023]
Abstract
PURPOSE Cervical cancer is a recalcitrant disease. To help overcome this problem, we previously established a patient-derived orthotopic xenograft (PDOX) model of cervical cancer. In the previous study, we found the tumor to be resistant to nab-paclitaxal (nab-PTX). We also previously developed the tumor-targeting bacteria Salmonella typhimurium A1-R (S. typhimurium A1-R). The aim of the present study was to investigate the efficacy of S. typhimurium A1-R to overcome nab-PTX resistance in the cervical cancer PDOX model. METHODS Cervical-cancer tumor fragments were implanted orthotopically into the neck of the uterus of nude mice. The cervical-cancer PDOX models were randomized into the following four groups after the tumor volume reached 60 mm3: G1: untreated group; G2: nab-PTX (i.v., 10 mg/kg, biweekly, 3 weeks); G3: Salmonella typhimurium A1-R (i.v., 5 × 107 CFU/body, weekly, 3 weeks); G4: nab-PTX combined with Salmonella typhimurium A1-R (nab-PTX, 10 mg/kg, i.v., biweekly, 3 weeks; S. typhimurium A1-R, 5 × 107 CFU/body, i.v., weekly, 3 weeks). Each group comprised eight mice. All mice were sacrificed on day 22. Tumor volume was measured on day 0 and day 22. Body weight was measured twice a week. RESULTS Nab-PTX and Salmonella typhimurium A1-R did not show significant efficacy as monotherapy compared to the control group (P = 0.564 and P = 0.120, respectively). In contrast, nab-PTX combined with Salmonella typhimurium A1-R significantly suppressed tumor growth compared to the untreated control group and nab-PTX group (P < 0.001 and P = 0.026, respectively). CONCLUSIONS Salmonella typhimurium A1-R has potential future clinical application to overcome drug resistance in cervical cancer.
Collapse
Affiliation(s)
- Kentaro Miyake
- AntiCancer Inc., San Diego, CA, USA
- Department of Surgery, University of California, San Diego, CA, USA
- Department of Gastroenterological Surgery, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Takuya Murata
- Department of Obstetrics and Gynecology, Kawasaki Medical School, Okayama, Japan.
| | - Takashi Murakami
- Department of Gastroenterological Surgery, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | | | - Tasuku Kiyuna
- AntiCancer Inc., San Diego, CA, USA
- Department of Surgery, University of California, San Diego, CA, USA
| | - Kei Kawaguchi
- AntiCancer Inc., San Diego, CA, USA
- Department of Surgery, University of California, San Diego, CA, USA
| | - Kentaro Igarashi
- AntiCancer Inc., San Diego, CA, USA
- Department of Surgery, University of California, San Diego, CA, USA
| | - Masuyo Miyake
- AntiCancer Inc., San Diego, CA, USA
- Department of Surgery, University of California, San Diego, CA, USA
- Department of Gastroenterological Surgery, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Thinzar M Lwin
- Department of Surgery, University of California, San Diego, CA, USA
| | | | | | | | - Michael Bouvet
- Department of Surgery, University of California, San Diego, CA, USA.
| | - Koichiro Shimoya
- Department of Obstetrics and Gynecology, Kawasaki Medical School, Okayama, Japan
| | - Shree Ram Singh
- Basic Research Laboratory, National Cancer Institute, Frederick, MD, USA.
| | - Itaru Endo
- Department of Gastroenterological Surgery, Yokohama City University Graduate School of Medicine, Yokohama, Japan.
| | - Robert M Hoffman
- AntiCancer Inc., San Diego, CA, USA.
- Department of Surgery, University of California, San Diego, CA, USA.
| |
Collapse
|
14
|
Liang K, Liu Q, Li P, Luo H, Wang H, Kong Q. Genetically engineered Salmonella Typhimurium: Recent advances in cancer therapy. Cancer Lett 2019; 448:168-181. [PMID: 30753837 DOI: 10.1016/j.canlet.2019.01.037] [Citation(s) in RCA: 88] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Revised: 01/27/2019] [Accepted: 01/30/2019] [Indexed: 12/13/2022]
Abstract
Bacteria have been investigated as anti-tumor therapeutic agents for more than a century, since Coley first observed successful curing of a patient with inoperable cancer by injection of streptococcal organisms. Previous studies have demonstrated that some obligate or facultative anaerobes can selectively accumulate and proliferate within tumors and suppress their growth. Developments in molecular biology as well as the complete genome sequencing of many bacterial species have increased the applicability of bacterial organisms for cancer treatment. In particular, the facultative anaerobe Salmonella Typhimurium has been widely studied and genetically engineered to improve its tumor-targeting ability as well as to reduce bacterial virulence. Moreover, the effectiveness of engineered attenuated S. Typhimurium strains employed as live delivery vectors of various anti-tumor therapeutic agents or combined with other therapies has been evaluated in a large number of animal experiments. The well-known S. Typhimurium mutant VNP20009 and its derivative strain TAPET-CD have even been applied in human clinical trials. However, Salmonella-mediated cancer therapies have not achieved the expected success, except in animal experiments. Many problems remain to be solved to exploit more promising strategies for combatting cancer with Salmonella bacteria. Here, we summarize the promising studies regarding cancer therapy mediated by Salmonella bacteria and highlight the main mechanisms of Salmonella anti-tumor activities.
Collapse
Affiliation(s)
- Kang Liang
- College of Animal Science and Technology, Southwest University, Chongqing, 400715, China
| | - Qing Liu
- College of Animal Science and Technology, Southwest University, Chongqing, 400715, China
| | - Pei Li
- College of Animal Science and Technology, Southwest University, Chongqing, 400715, China
| | - Hongyan Luo
- College of Animal Science and Technology, Southwest University, Chongqing, 400715, China
| | - Haoju Wang
- College of Animal Science and Technology, Southwest University, Chongqing, 400715, China
| | - Qingke Kong
- College of Animal Science and Technology, Southwest University, Chongqing, 400715, China; Department of Infectious Diseases and Immunology, University of Florida, Gainesville, FL, 32608, USA.
| |
Collapse
|