1
|
Wang L, Nie F, Lu Z, Chong Y. Mechanism underlying the involvement of CXCR4/CXCL12 in diabetic wound healing and prospects for responsive hydrogel-loaded CXCR4 formulations. Front Pharmacol 2025; 16:1561112. [PMID: 40308758 PMCID: PMC12040920 DOI: 10.3389/fphar.2025.1561112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Accepted: 04/07/2025] [Indexed: 05/02/2025] Open
Abstract
Diabetes mellitus is a prevalent chronic disease, often leading to complications, with chronic wounds being among the most challenging. Impairment of the CXCR4/CXCL12 signaling pathway, which plays a key role in cell mobilization, migration, and angiogenesis, significantly hampers the wound healing process in diabetic patients. Modulation of this pathway using CXCR4-targeted agents has shown promise in restoring wound repair capabilities. Additionally, the development of responsive hydrogels capable of adapting to external stimuli offers a powerful platform for drug delivery in chronic wound management. These hydrogels, when loaded with CXCR4 agonists or antagonists, enable controlled drug release and real-time therapeutic modulation. Integrating such hydrogels with existing wound healing strategies may provide an innovative and effective solution for overcoming the challenges associated with diabetic wound treatment.
Collapse
Affiliation(s)
- Lingli Wang
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, Jiangsu, China
| | - Fengsong Nie
- Department of General Surgery, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, Jiangsu, China
| | - Zhaoyu Lu
- Department of General Surgery, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, Jiangsu, China
| | - Yang Chong
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, Jiangsu, China
- Department of General Surgery, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, Jiangsu, China
| |
Collapse
|
2
|
Xue X, Wu D, Yao H, Wang K, Liu Z, Qu H. Mechanisms underlying the promotion of papillary thyroid carcinoma occurrence and progression by Hashimoto's thyroiditis. Front Endocrinol (Lausanne) 2025; 16:1551271. [PMID: 40230479 PMCID: PMC11994412 DOI: 10.3389/fendo.2025.1551271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/25/2024] [Accepted: 03/04/2025] [Indexed: 04/16/2025] Open
Abstract
Hashimoto's thyroiditis (HT) and papillary thyroid carcinoma (PTC) co-occurrence raises significant questions regarding the immune microenvironment and molecular mechanisms in thyroid tumor development. This review synthesizes recent literature to explore the immune microenvironment and molecular characteristics of PTC patients with HT, and to analyze how these characteristics influence disease onset, progression, and treatment. We focused on the immunological and molecular biological mechanisms underlying the interaction between HT and PTC, particularly the recruitment and activation of immune cells and alterations in key signaling pathways. Studies indicate that PTC with HT exhibits distinctive immune microenvironmental features, such as the role of regulatory T cells (Tregs), activation of the IFN-γ-mediated CXCR3A-CXCL10 signaling axis, and NF-κB pathway activation. Additionally, thyroid-stimulating hormone (TSH) stimulation, RET/PTC gene rearrangements, and changes in STAT6 and DMBT1 gene expression levels also play significant roles in PTC development. Notably, while HT may increase the risk of PTC, patients with concurrent HT tend to have better prognoses. Future research should further elucidate the complex interplay between these two diseases to prevent the transformation of HT into PTC and offer more personalized treatment plans for PTC patients, including considerations for preoperative thyroidectomy and lymph node dissection strategies, as well as postoperative TSH suppression therapy risk assessment. This review underscores the importance of a deeper understanding of HT and PTC interactions and offers new perspectives for future research directions and therapeutic strategies.
Collapse
Affiliation(s)
- Xiaohui Xue
- School of Medicine, Zhejiang Chinese Medical University, Hangzhou, China
- Department of Thyroid and Breast Diagnosis and Treatment Center, Shulan (Hangzhou) Hospital, Shulan International Medical College, Zhejiang Shuren University, Hangzhou, China
- Key Laboratory of Artificial Organs and Computational Medicine in Zhejiang Province, Shulan International Medical College, Zhejiang Shuren University, Hangzhou, China
| | - Deqi Wu
- Department of Thyroid and Breast Diagnosis and Treatment Center, Shulan (Hangzhou) Hospital, Shulan International Medical College, Zhejiang Shuren University, Hangzhou, China
| | - Hangyu Yao
- Department of Thyroid and Breast Diagnosis and Treatment Center, Shulan (Hangzhou) Hospital, Shulan International Medical College, Zhejiang Shuren University, Hangzhou, China
| | - Kainan Wang
- School of Medicine, Zhejiang Chinese Medical University, Hangzhou, China
- Department of Thyroid and Breast Diagnosis and Treatment Center, Shulan (Hangzhou) Hospital, Shulan International Medical College, Zhejiang Shuren University, Hangzhou, China
- Key Laboratory of Artificial Organs and Computational Medicine in Zhejiang Province, Shulan International Medical College, Zhejiang Shuren University, Hangzhou, China
| | - Zhengtao Liu
- Key Laboratory of Artificial Organs and Computational Medicine in Zhejiang Province, Shulan International Medical College, Zhejiang Shuren University, Hangzhou, China
- Department of Hepatobiliary Surgery, Shulan (Hangzhou) Hospital, Shulan International Medical College, Zhejiang Shuren University, Hangzhou, China
- NHC Key Laboratory of Combined Multi-Organ Transplantation, Key Laboratory of the Diagnosis and Treatment of Organ Transplantation, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Key Laboratory of Organ Transplantation, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Haijiang Qu
- Department of Thyroid and Breast Diagnosis and Treatment Center, Shulan (Hangzhou) Hospital, Shulan International Medical College, Zhejiang Shuren University, Hangzhou, China
- Key Laboratory of Artificial Organs and Computational Medicine in Zhejiang Province, Shulan International Medical College, Zhejiang Shuren University, Hangzhou, China
| |
Collapse
|
3
|
Safaie T, Trinh KR, Vasuthasawat A, Morrison SL, Stover DR. An Anti-CD138-Targeted Interferon-Alpha Has Broad Efficacy in Solid Tumors Through Direct Tumor Cell Killing and Intratumoral Immune Modulation. J Interferon Cytokine Res 2024; 44:414-423. [PMID: 38949948 DOI: 10.1089/jir.2024.0099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/03/2024] Open
Affiliation(s)
| | - Kham R Trinh
- Nammi Therapeutics, Los Angeles, California, USA
| | | | - Sherie L Morrison
- Department of Microbiology, Immunology and Molecular Genetics, University of California Los Angeles, Los Angeles, California, USA
| | | |
Collapse
|
4
|
Wu X, Qian L, Zhao H, Lei W, Liu Y, Xu X, Li J, Yang Z, Wang D, Zhang Y, Zhang Y, Tang R, Yang Y, Tian Y. CXCL12/CXCR4: An amazing challenge and opportunity in the fight against fibrosis. Ageing Res Rev 2023; 83:101809. [PMID: 36442720 DOI: 10.1016/j.arr.2022.101809] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 11/24/2022] [Accepted: 11/24/2022] [Indexed: 11/26/2022]
Abstract
Fibrosis is a pathological process caused by abnormal wound healing response, which often leads to excessive deposition of extracellular matrix, distortion of organ architecture, and loss of organ function. Aging is an important risk factor for the development of organ fibrosis. C-X-C receptor 4 (CXCR4) is the predominant chemokine receptor on fibrocytes, C-X-C motif ligand 12 (CXCL12) is the only ligand of CXCR4. Accumulated evidence have confirmed that CXCL12/CXCR4 can be involved in multiple pathological mechanisms in fibrosis, such as inflammation, immunity, epithelial-mesenchymal transition, and angiogenesis. In addition, CXCL12/CXCR4 have also been shown to improve fibrosis levels in many organs including the heart, liver, lung and kidney; thus, they are promising targets for anti-fibrotic therapy. Notably, inhibitors of CXCL12 or CXCR4 also play an important role in various fibrosis-related diseases. In summary, this review systematically summarizes the role of CXCL12/CXCR4 in fibrosis, and this information is of great significance for understanding CXCL12/CXCR4. This will also contribute to the design of further studies related to CXCL12/CXCR4 and fibrosis, and shed light on potential therapies for fibrosis.
Collapse
Affiliation(s)
- Xue Wu
- Deparment of Neurology, Xi'an No.3 Hospital, Affiliated Hospital of Northwest University, Faculty of Life Sciences and Medicine, Northwest University, Xi'an, China; Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education. Faculty of Life Sciences and Medicine, Northwest University, Xi'an, China
| | - Lu Qian
- Deparment of Neurology, Xi'an No.3 Hospital, Affiliated Hospital of Northwest University, Faculty of Life Sciences and Medicine, Northwest University, Xi'an, China; Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education. Faculty of Life Sciences and Medicine, Northwest University, Xi'an, China
| | - Huadong Zhao
- Department of General Surgery, Tangdu Hospital, The Airforce Medical University, Xi'an, China
| | - Wangrui Lei
- Deparment of Neurology, Xi'an No.3 Hospital, Affiliated Hospital of Northwest University, Faculty of Life Sciences and Medicine, Northwest University, Xi'an, China; Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education. Faculty of Life Sciences and Medicine, Northwest University, Xi'an, China
| | - Yanqing Liu
- Deparment of Neurology, Xi'an No.3 Hospital, Affiliated Hospital of Northwest University, Faculty of Life Sciences and Medicine, Northwest University, Xi'an, China; Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education. Faculty of Life Sciences and Medicine, Northwest University, Xi'an, China
| | - Xiaoling Xu
- Deparment of Neurology, Xi'an No.3 Hospital, Affiliated Hospital of Northwest University, Faculty of Life Sciences and Medicine, Northwest University, Xi'an, China; Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education. Faculty of Life Sciences and Medicine, Northwest University, Xi'an, China
| | - Jiawen Li
- Deparment of Neurology, Xi'an No.3 Hospital, Affiliated Hospital of Northwest University, Faculty of Life Sciences and Medicine, Northwest University, Xi'an, China; Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education. Faculty of Life Sciences and Medicine, Northwest University, Xi'an, China
| | - Zhi Yang
- Department of General Surgery, Tangdu Hospital, The Airforce Medical University, Xi'an, China
| | - Du Wang
- Deparment of Neurology, Xi'an No.3 Hospital, Affiliated Hospital of Northwest University, Faculty of Life Sciences and Medicine, Northwest University, Xi'an, China; Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education. Faculty of Life Sciences and Medicine, Northwest University, Xi'an, China
| | - Yuchen Zhang
- Deparment of Neurology, Xi'an No.3 Hospital, Affiliated Hospital of Northwest University, Faculty of Life Sciences and Medicine, Northwest University, Xi'an, China; Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education. Faculty of Life Sciences and Medicine, Northwest University, Xi'an, China
| | - Yan Zhang
- Deparment of Neurology, Xi'an No.3 Hospital, Affiliated Hospital of Northwest University, Faculty of Life Sciences and Medicine, Northwest University, Xi'an, China; Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education. Faculty of Life Sciences and Medicine, Northwest University, Xi'an, China
| | - Ran Tang
- Deparment of Neurology, Xi'an No.3 Hospital, Affiliated Hospital of Northwest University, Faculty of Life Sciences and Medicine, Northwest University, Xi'an, China; Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education. Faculty of Life Sciences and Medicine, Northwest University, Xi'an, China
| | - Yang Yang
- Deparment of Neurology, Xi'an No.3 Hospital, Affiliated Hospital of Northwest University, Faculty of Life Sciences and Medicine, Northwest University, Xi'an, China; Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education. Faculty of Life Sciences and Medicine, Northwest University, Xi'an, China.
| | - Ye Tian
- Deparment of Neurology, Xi'an No.3 Hospital, Affiliated Hospital of Northwest University, Faculty of Life Sciences and Medicine, Northwest University, Xi'an, China; Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education. Faculty of Life Sciences and Medicine, Northwest University, Xi'an, China.
| |
Collapse
|
5
|
Egwuagu CE, Alhakeem SA, Mbanefo EC. Uveitis: Molecular Pathogenesis and Emerging Therapies. Front Immunol 2021; 12:623725. [PMID: 33995347 PMCID: PMC8119754 DOI: 10.3389/fimmu.2021.623725] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 03/30/2021] [Indexed: 12/28/2022] Open
Abstract
The profound impact that vision loss has on human activities and quality of life necessitates understanding the etiology of potentially blinding diseases and their clinical management. The unique anatomic features of the eye and its sequestration from peripheral immune system also provides a framework for studying other diseases in immune privileged sites and validating basic immunological principles. Thus, early studies of intraocular inflammatory diseases (uveitis) were at the forefront of research on organ transplantation. These studies laid the groundwork for foundational discoveries on how immune system distinguishes self from non-self and established current concepts of acquired immune tolerance and autoimmunity. Our charge in this review is to examine how advances in molecular cell biology and immunology over the past 3 decades have contributed to the understanding of mechanisms that underlie immunopathogenesis of uveitis. Particular emphasis is on how advances in biotechnology have been leveraged in developing biologics and cell-based immunotherapies for uveitis and other neuroinflammatory diseases.
Collapse
Affiliation(s)
- Charles E Egwuagu
- Molecular Immunology Section, Laboratory of Immunology, National Eye Institute (NEI), National Institutes of Health, Bethesda, MD, United States
| | - Sahar A Alhakeem
- Molecular Immunology Section, Laboratory of Immunology, National Eye Institute (NEI), National Institutes of Health, Bethesda, MD, United States.,Department of Biomedical Sciences, College of Health Sciences, University of Wisconsin-Milwaukee, Milwaukee, WI, United States
| | - Evaristus C Mbanefo
- Molecular Immunology Section, Laboratory of Immunology, National Eye Institute (NEI), National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
6
|
Interferon-γ inhibits retinal neovascularization in a mouse model of ischemic retinopathy. Cytokine 2021; 143:155542. [PMID: 33926775 DOI: 10.1016/j.cyto.2021.155542] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 04/12/2021] [Accepted: 04/13/2021] [Indexed: 11/20/2022]
Abstract
Interferon-γ (IFNG) is one of the key cytokines that regulates both innate and adaptive immune responses in the body. However, the role of IFNG in the regulation of vascularization, especially in the context of Vascular endothelial growth factor A (VEGFa)-induced angiogenesis is not clarified. Here, we report that IFNG shows potent anti-angiogenic potential against VEGFa-induced angiogenesis. IFNG significantly inhibited proliferation, migration, and tube formation of Human umbilical vein endothelial cells (HUVECs) both under basal and VEGFa-treated conditions. Intriguingly, Knockdown (KD) of STAT1 abolished the inhibitory effect of IFNG on VEGFa-induced angiogenic processes in HUVECs. Furthermore, IFNG exhibited potent anti-angiogenic efficacy in the mouse model of oxygen-induced retinopathy (OIR), an in vivo model for hypoxia-induced retinal neovascularization, without induction of functional side effects. Taken together, these results show that IFNG plays a crucial role in the regulation of VEGFa-dependent angiogenesis, suggesting its potential therapeutic applicability in neovascular diseases.
Collapse
|
7
|
Jiang L, Jung S, Zhao J, Kasinath V, Ichimura T, Joseph J, Fiorina P, Liss AS, Shah K, Annabi N, Joshi N, Akama TO, Bromberg JS, Kobayashi M, Uchimura K, Abdi R. Simultaneous targeting of primary tumor, draining lymph node, and distant metastases through high endothelial venule-targeted delivery. NANO TODAY 2021; 36:101045. [PMID: 33391389 PMCID: PMC7774643 DOI: 10.1016/j.nantod.2020.101045] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Cancer patients with malignant involvement of tumor-draining lymph nodes (TDLNs) and distant metastases have the poorest prognosis. A drug delivery platform that targets the primary tumor, TDLNs, and metastatic niches simultaneously, remains to be developed. Here, we generated a novel monoclonal antibody (MHA112) against peripheral node addressin (PNAd), a family of glycoproteins expressed on high endothelial venules (HEVs), which are present constitutively in the lymph nodes (LNs) and formed ectopically in the tumor stroma. MHA112 was endocytosed by PNAd-expressing cells, where it passed through the lysosomes. MHA112 conjugated antineoplastic drug Paclitaxel (Taxol) (MHA112-Taxol) delivered Taxol effectively to the HEV-containing tumors, TDLNs, and metastatic lesions. MHA112-Taxol treatment significantly reduced primary tumor size as well as metastatic lesions in a number of mouse and human tumor xenografts tested. These data, for the first time, indicate that human metastatic lesions contain HEVs and provide a platform that permits simultaneous targeted delivery of antineoplastic drugs to the three key sites of primary tumor, TDLNs, and metastases.
Collapse
Affiliation(s)
- Liwei Jiang
- Transplantation Research Center, Renal Division, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Sungwook Jung
- Transplantation Research Center, Renal Division, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Jing Zhao
- Transplantation Research Center, Renal Division, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Vivek Kasinath
- Transplantation Research Center, Renal Division, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Takaharu Ichimura
- Renal Division, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - John Joseph
- Center for Nanomedicine, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Paolo Fiorina
- Division of Nephrology, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Andrew S. Liss
- Department of Surgery and the Andrew L. Warshaw, MD Institute for Pancreatic Cancer Research, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Khalid Shah
- Center for Stem Cell Therapeutics and Imaging, Department of Neurosurgery, Brigham and Women’s Hospital, Harvard medical School, Boston, MA, 02115, USA
| | - Nasim Annabi
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, CA, 90095, USA
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Nitin Joshi
- Center for Nanomedicine, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Tomoya O. Akama
- Department of Pharmacology, Kansai Medical University, Osaka, 570-8506, Japan
| | - Jonathan S. Bromberg
- Departments of Surgery and Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Motohiro Kobayashi
- Department of Tumor Pathology, Faculty of Medical Sciences, University of Fukui, Fukui 910-1193, Japan
| | - Kenji Uchimura
- Department of Biochemistry, Nagoya University Graduate School of Medicine, Nagoya, 466-8550, Japan
- CNRS, UMR 8576, Unit of Glycobiology Structures and Functions, University of Lille, F-59000 Lille, France
| | - Reza Abdi
- Transplantation Research Center, Renal Division, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
8
|
Mock J, Stringhini M, Villa A, Weller M, Weiss T, Neri D. An engineered 4-1BBL fusion protein with "activity on demand". Proc Natl Acad Sci U S A 2020; 117:31780-31788. [PMID: 33239441 PMCID: PMC7749310 DOI: 10.1073/pnas.2013615117] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Engineered cytokines are gaining importance in cancer therapy, but these products are often limited by toxicity, especially at early time points after intravenous administration. 4-1BB is a member of the tumor necrosis factor receptor superfamily, which has been considered as a target for therapeutic strategies with agonistic antibodies or using its cognate cytokine ligand, 4-1BBL. Here we describe the engineering of an antibody fusion protein, termed F8-4-1BBL, that does not exhibit cytokine activity in solution but regains biological activity on antigen binding. F8-4-1BBL bound specifically to its cognate antigen, the alternatively spliced EDA domain of fibronectin, and selectively localized to tumors in vivo, as evidenced by quantitative biodistribution experiments. The product promoted a potent antitumor activity in various mouse models of cancer without apparent toxicity at the doses used. F8-4-1BBL represents a prototype for antibody-cytokine fusion proteins, which conditionally display "activity on demand" properties at the site of disease on antigen binding and reduce toxicity to normal tissues.
Collapse
Affiliation(s)
- Jacqueline Mock
- Department of Chemistry and Applied Biosciences, Swiss Federal Institute of Technology (ETH Zürich), CH-8093 Zürich, Switzerland
| | - Marco Stringhini
- Department of Chemistry and Applied Biosciences, Swiss Federal Institute of Technology (ETH Zürich), CH-8093 Zürich, Switzerland
| | - Alessandra Villa
- Antibody Research, Philochem AG, CH-8112 Otelfingen, Switzerland
| | - Michael Weller
- Department of Neurology, University Hospital Zurich, University of Zurich, CH-8091 Zürich, Switzerland
| | - Tobias Weiss
- Department of Neurology, University Hospital Zurich, University of Zurich, CH-8091 Zürich, Switzerland
| | - Dario Neri
- Department of Chemistry and Applied Biosciences, Swiss Federal Institute of Technology (ETH Zürich), CH-8093 Zürich, Switzerland;
| |
Collapse
|
9
|
Chen W, Xie Y, Wang M, Li C. Recent Advances on Rare Earth Upconversion Nanomaterials for Combined Tumor Near-Infrared Photoimmunotherapy. Front Chem 2020; 8:596658. [PMID: 33240857 PMCID: PMC7677576 DOI: 10.3389/fchem.2020.596658] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Accepted: 10/07/2020] [Indexed: 01/23/2023] Open
Abstract
Cancer has been threatening the safety of human life. In order to treat cancer, many methods have been developed to treat tumor, such as traditional therapies like surgery, chemotherapy, radiotherapy, as well as new strategies like photodynamic therapy, photothermal therapy, sonodynamic therapy, and other emerging therapies. Although there are so many ways to treat tumors, these methods all face the dilemma that they are incapable to cope with metastasis and recurrence of tumors. The emergence of immunotherapy has given the hope to conquer the challenge. Immunotherapy is to use the body's own immune system to stimulate and maintain a systemic immune response to form immunological memory, resist the metastasis and recurrence of tumors. At the same time, immunotherapy can combine with other treatments to exhibit excellent antitumor effects. Upconversion nanoparticles (UCNPs) can convert near-infrared (NIR) light into ultraviolet and visible light, thus have good performance in bioimaging and NIR triggered phototherapy. In this review paper, we summarize the design, fabrication, and application of UCNPs-based NIR photoimmunotherapy for combined cancer treatment, as well as put forward the prospect of future development.
Collapse
Affiliation(s)
- Weilin Chen
- Institute of Frontier and Interdisciplinarity Science, Institute of Molecular Sciences and Engineering, Shandong University, Qingdao, China
| | - Yulin Xie
- Institute of Frontier and Interdisciplinarity Science, Institute of Molecular Sciences and Engineering, Shandong University, Qingdao, China
| | - Man Wang
- Institute of Frontier and Interdisciplinarity Science, Institute of Molecular Sciences and Engineering, Shandong University, Qingdao, China
| | - Chunxia Li
- Institute of Frontier and Interdisciplinarity Science, Institute of Molecular Sciences and Engineering, Shandong University, Qingdao, China
| |
Collapse
|
10
|
Hu JQ, Lei BW, Wen D, Ma B, Zhang TT, Lu ZW, Wei WJ, Wang YL, Wang Y, Li DS, Ji QH, Liao T. IL-2 enhanced MHC class I expression in papillary thyroid cancer with Hashimoto's thyroiditis overcomes immune escape in vitro. J Cancer 2020; 11:4250-4260. [PMID: 32368308 PMCID: PMC7196247 DOI: 10.7150/jca.38330] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Accepted: 04/01/2020] [Indexed: 02/06/2023] Open
Abstract
The impact of Hashimoto's thyroiditis (HT) on the progression of papillary thyroid cancer (PTC) is still unclear. Interleukin-2 (IL-2) is a growth factor and crucial for HT development. This study aimed at investigating the effect of IL-2 on MHC class I expression in PTC cells and immune activation with experimental treatment for PTC using PTC cell lines. We assessed the expression of IL-2, HLA class I, PD-L1, CD3, CD8 and CD16 molecules in paired PTC tissues and HLA-ABC and PD-L1 expression in IL-2 pre-treated K1, TPC-1 and BCPAP cells by immunohistochemistry, qPCR, flow cytometry and Western blotting. The effect of IL-2 on immunogenicity of PTC cells to stimulate activated human T cells was determined for the percentages of activated CD8+ T cells and their cytokine production as well as PD-1 and PD-L1 expression. Compared with non-tumor tissues, we found that IL-2 expression was up-regulated in PTC tissues, particularly in PTC+HT tissues and correlated positively with HLA-class I, CD3 and CD8 expression in PTC+HT tissues. Conversely, PD-L1 expression decreased in PTC+HT tissues. Treatment with IL-2 significantly up-regulated HLA-class I expression, but down-regulated PD-L1 expression in PTC cells. Co-culture with IL-2-pre-treated PTC cells significantly promoted the proliferation of activated CD8+ T cells and their IL-2 secretion, but decreased their PD-1 expression, accompanied by decreased PD-L1 expression in IL-2-treated PTC cells in vitro. In conclusion, IL-2 up-regulated HLA-class I expression and enhanced anti-tumor T cell immunity during the development of PTC and HT. IL-2 may be a promising immunotherapy for PTC.
Collapse
Affiliation(s)
- Jia-Qian Hu
- Department of Head and Neck Surgery, Fudan University Shanghai Cancer Center; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Bo-Wen Lei
- Department of Head and Neck Surgery, Fudan University Shanghai Cancer Center; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Duo Wen
- Department of Head and Neck Surgery, Fudan University Shanghai Cancer Center; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Ben Ma
- Department of Head and Neck Surgery, Fudan University Shanghai Cancer Center; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Ting-Ting Zhang
- Department of Head and Neck Surgery, Fudan University Shanghai Cancer Center; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Zhong-Wu Lu
- Department of Head and Neck Surgery, Fudan University Shanghai Cancer Center; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Wen-Jun Wei
- Department of Head and Neck Surgery, Fudan University Shanghai Cancer Center; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Yu-Long Wang
- Department of Head and Neck Surgery, Fudan University Shanghai Cancer Center; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Yu Wang
- Department of Head and Neck Surgery, Fudan University Shanghai Cancer Center; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Duan-Shu Li
- Department of Head and Neck Surgery, Fudan University Shanghai Cancer Center; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Qing-Hai Ji
- Department of Head and Neck Surgery, Fudan University Shanghai Cancer Center; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Tian Liao
- Department of Head and Neck Surgery, Fudan University Shanghai Cancer Center; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| |
Collapse
|
11
|
Liu T, Guo Z, Song X, Liu L, Dong W, Wang S, Xu M, Yang C, Wang B, Cao H. High-fat diet-induced dysbiosis mediates MCP-1/CCR2 axis-dependent M2 macrophage polarization and promotes intestinal adenoma-adenocarcinoma sequence. J Cell Mol Med 2020; 24:2648-2662. [PMID: 31957197 PMCID: PMC7028862 DOI: 10.1111/jcmm.14984] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 12/05/2019] [Accepted: 12/16/2019] [Indexed: 12/17/2022] Open
Abstract
High‐fat diet (HFD) is a well‐known risk factor for gut microbiota dysbiosis and colorectal cancer (CRC). However, evidence relating HFD, gut microbiota and carcinogenesis is limited. Our study aimed to demonstrate that HFD‐induced gut dysbiosis promoted intestinal adenoma‐adenocarcinoma sequence. In clinical study, we found that HFD increased the incidence of advanced colorectal neoplasia (AN). The expression of monocyte chemoattractant protein 1 (MCP‐1), CC chemokine receptor 2 (CCR2) and CD163 in CRC patients with HFD was significantly higher than that in CRC patients with normal diet. When it comes to the Apcmin/+ mice, HFD consumption could induce gut dysbiosis and promote intestinal carcinogenesis, accompanying with activation of MCP‐1/CCR2 axis that recruited and polarized M2 tumour‐associated macrophages. Interestingly, transfer of faecal microbiota from HFD‐fed mice to another batch of Apcmin/+ mice in the absence of HFD could also enhance carcinogenesis without significant body weight gain and induced MCP‐1/CCR2 axis activation. HFD‐induced dysbiosis could also be transmitted. Meanwhile, antibiotics cocktail treatment was sufficient to inhibit HFD‐induced carcinogenesis, indicating the vital role of dysbiosis in cancer development. Conclusively, these data indicated that HFD‐induced dysbiosis accelerated intestinal adenoma‐adenocarcinoma sequence through activation of MCP‐1/CCR2 axis, which would provide new insight into better understanding of the mechanisms and prevention for HFD‐related CRC.
Collapse
Affiliation(s)
- Tianyu Liu
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, Tianjin Institute of Digestive Disease, Tianjin, China
| | - Zixuan Guo
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, Tianjin Institute of Digestive Disease, Tianjin, China
| | - Xueli Song
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, Tianjin Institute of Digestive Disease, Tianjin, China
| | - Li Liu
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, Tianjin Institute of Digestive Disease, Tianjin, China
| | - Wenxiao Dong
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, Tianjin Institute of Digestive Disease, Tianjin, China
| | - Sinan Wang
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, Tianjin Institute of Digestive Disease, Tianjin, China
| | - Mengque Xu
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, Tianjin Institute of Digestive Disease, Tianjin, China.,Department of Gastroenterology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Cheng Yang
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin, China.,Tianjin International Joint Academy of Biomedicine, Tianjin, China
| | - Bangmao Wang
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, Tianjin Institute of Digestive Disease, Tianjin, China
| | - Hailong Cao
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, Tianjin Institute of Digestive Disease, Tianjin, China.,Tianjin International Joint Academy of Biomedicine, Tianjin, China
| |
Collapse
|
12
|
He P, Zhou W, Liu M, Chen Y. Recent Advances of Small Molecular Regulators Targeting G Protein- Coupled Receptors Family for Oncology Immunotherapy. Curr Top Med Chem 2019; 19:1464-1483. [PMID: 31264549 DOI: 10.2174/1568026619666190628115644] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Revised: 12/18/2018] [Accepted: 01/02/2019] [Indexed: 12/21/2022]
Abstract
The great clinical success of chimeric antigen receptor T cell (CAR-T) and PD-1/PDL-1 inhibitor therapies suggests the drawing of a cancer immunotherapy age. However, a considerable proportion of cancer patients currently receive little benefit from these treatment modalities, indicating that multiple immunosuppressive mechanisms exist in the tumor microenvironment. In this review, we mainly discuss recent advances in small molecular regulators targeting G Protein-Coupled Receptors (GPCRs) that are associated with oncology immunomodulation, including chemokine receptors, purinergic receptors, prostaglandin E receptor EP4 and opioid receptors. Moreover, we outline how they affect tumor immunity and neoplasia by regulating immune cell recruitment and modulating tumor stromal cell biology. We also summarize the data from recent clinical advances in small molecular regulators targeting these GPCRs, in combination with immune checkpoints blockers, such as PD-1/PDL-1 and CTLA4 inhibitors, for cancer treatments.
Collapse
Affiliation(s)
- Peng He
- Shanghai Key Laboratory of Regulatory Biology, The Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Wenbo Zhou
- Shanghai Key Laboratory of Regulatory Biology, The Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Mingyao Liu
- Shanghai Key Laboratory of Regulatory Biology, The Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Yihua Chen
- Shanghai Key Laboratory of Regulatory Biology, The Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, 200241, China
| |
Collapse
|
13
|
Marchan J. In silico identification of epitopes present in human heat shock proteins (HSPs) overexpressed by tumour cells. J Immunol Methods 2019; 471:34-45. [PMID: 31129262 DOI: 10.1016/j.jim.2019.05.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 04/03/2019] [Accepted: 05/22/2019] [Indexed: 11/26/2022]
Abstract
Although many of heat shock proteins (HSPs) are crucial in homeostasis due to their role in maintaining cellular proteostasis by the integration of two pivotal processes-folding and degradation, several decades of cancer proteomics suggest that HSPs may improve cancer establishment and progression. Therefore, it is imperative to explore how these molecules impact patient outcomes and whether their interaction with the immune systems improves the protumour or antitumour environment. Here, using an immunoinformatics approach were investigated the best probable epitopes from ten HSPs (HSP90α, HSP90β, HSPA1A, HSPA1L, HSPA2, HSPA5, HSPA6, HSPB1, HSPB5 and HSP60/HSP10). To achieve this aim, antigenicity, immunogenicity (prediction of continuous and discontinuous B cell epitopes, binding peptides to HLA class I and HLA class II, and overlapping epitopes), analysis of conservancy and population coverage, and prediction of IgE epitopes were evaluated. According to the physicochemical properties used for their prediction (hydrophilicity, flexibility, accessibility and antigenicity propensity), ten continuous epitopes (one per HSPs) were considered as the best and also several regions of each molecule were identified as B discontinuous epitopes. Interestingly, peptides of HSP90β, HSPA2, HSPB1, and HSPB5 were predicted as both continuous and discontinuous B cell epitopes. For all the HSPs evaluated were identified potential overlapping epitopes ("NTFYSNKEI", "TTYSCVGVF", "TADRWRVSL", "VKHFSPEEL" and "CEFQDAYVL"). Moreover, these peptides were negative for IgE epitopes and showed a large coverage in the human population (HLA-A*02, HLA-B*15, HLA-C*03, and HLA-C*12). Taken together, these data indicate that such epitopes may activate both the humoral and cell-mediated response, and thus serve as therapeutic targets for cancer. However, it must be assessed their efficacy and safety in vitro and in vivo before their translation in clinical trials.
Collapse
Affiliation(s)
- Jose Marchan
- Centro de Medicina Experimental, Instituto Venezolano de Investigaciones Científicas, Caracas, Venezuela.
| |
Collapse
|
14
|
Hao X, Li C, Zhang Y, Wang H, Chen G, Wang M, Wang Q. Programmable Chemotherapy and Immunotherapy against Breast Cancer Guided by Multiplexed Fluorescence Imaging in the Second Near-Infrared Window. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2018; 30:e1804437. [PMID: 30357938 DOI: 10.1002/adma.201804437] [Citation(s) in RCA: 99] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Revised: 10/02/2018] [Indexed: 05/21/2023]
Abstract
Combined chemotherapy and immunotherapy have demonstrated great potential in cancer treatment. However, it is difficult to provide clear information of the pharmacokinetics and pharmacodynamics of chemodrugs and transplanted immune cells in vivo by traditional approaches, resulting in inadequate therapy. Here, a multiplexed intravital imaging strategy by using fluorescence in the second near-infrared window (NIR-II) is first developed to visualize the two events of chemotherapy and immunotherapy in vivo, so that a combinational administration is programed to improve the therapeutical effects against a mouse model of human breast cancer. In detail, Ag2 Se quantum dots (QDs) (λEm = 1350 nm) loaded with stromal-cell-derived factor-1α (SDF-1α) and chemodrug doxorubicin (DOX) are first administrated to deliver the SDF-1α and DOX to the tumor site. After their arrival, monitored by Ag2 Se QD fluorescence, natural killer (NK)-92 cells labeled with Ag2 S QDs (λEm = 1050 nm) are intravenously injected so that the cells are recruited to the tumor by the chemotaxis of SDF-1α, which is visualized by Ag2 S QD fluorescence. Such an imaging approach allows simultaneous evaluation of the behaviors of individual injections in vivo, and facilitates optimized administration regimens, resulting in enhanced tumor inhibition.
Collapse
Affiliation(s)
- Xiaoxia Hao
- CAS Key Laboratory of Nano-Bio Interface, Division of Nanobiomedicine and i-Lab, CAS Center for Excellence in Brain Science, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China
| | - Chunyan Li
- CAS Key Laboratory of Nano-Bio Interface, Division of Nanobiomedicine and i-Lab, CAS Center for Excellence in Brain Science, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China
| | - Yejun Zhang
- CAS Key Laboratory of Nano-Bio Interface, Division of Nanobiomedicine and i-Lab, CAS Center for Excellence in Brain Science, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China
| | - Haozhi Wang
- CAS Key Laboratory of Nano-Bio Interface, Division of Nanobiomedicine and i-Lab, CAS Center for Excellence in Brain Science, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China
| | - Guangcun Chen
- CAS Key Laboratory of Nano-Bio Interface, Division of Nanobiomedicine and i-Lab, CAS Center for Excellence in Brain Science, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China
| | - Mao Wang
- CAS Key Laboratory of Nano-Bio Interface, Division of Nanobiomedicine and i-Lab, CAS Center for Excellence in Brain Science, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China
| | - Qiangbin Wang
- CAS Key Laboratory of Nano-Bio Interface, Division of Nanobiomedicine and i-Lab, CAS Center for Excellence in Brain Science, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China
| |
Collapse
|
15
|
Nadeem T, Khan MA, Ijaz B, Ahmed N, Rahman ZU, Latif MS, Ali Q, Rana MA. Glycosylation of Recombinant Anticancer Therapeutics in Different Expression Systems with Emerging Technologies. Cancer Res 2018; 78:2787-2798. [DOI: 10.1158/0008-5472.can-18-0032] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Revised: 03/22/2018] [Accepted: 04/03/2018] [Indexed: 11/16/2022]
|
16
|
Sustained release of anti-PD-1 peptide for perdurable immunotherapy together with photothermal ablation against primary and distant tumors. J Control Release 2018; 278:87-99. [DOI: 10.1016/j.jconrel.2018.04.002] [Citation(s) in RCA: 81] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Revised: 03/30/2018] [Accepted: 04/03/2018] [Indexed: 02/07/2023]
|
17
|
Schaller TH, Batich KA, Suryadevara CM, Desai R, Sampson JH. Chemokines as adjuvants for immunotherapy: implications for immune activation with CCL3. Expert Rev Clin Immunol 2017; 13:1049-1060. [PMID: 28965431 DOI: 10.1080/1744666x.2017.1384313] [Citation(s) in RCA: 101] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
INTRODUCTION Immunotherapy embodies any approach that manipulates the immune system for therapeutic benefit. In this regard, various clinical trials have employed direct vaccination with patient-specific dendritic cells or adoptive T cell therapy to target highly aggressive tumors. Both modalities have demonstrated great specificity, an advantage that is unmatched by other treatment strategies. However, their full potential has yet to be realized. Areas covered: In this review, we provide an overview of chemokines in pathogen and anti-tumor immune responses and discuss further improving immunotherapies by arming particular chemokine axes. Expert commentary: The chemokine macrophage inflammatory protein-1 alpha (MIP-1α, CCL3) has emerged as a potent activator of both innate and adaptive responses. Specifically, CCL3 plays a critical role in recruiting distinct immune phenotypes to intratumoral sites, is a pivotal player in regulating lymph node homing of dendritic cell subsets, and induces antigen-specific T cell responses. The recent breadth of literature outlines the various interactions of CCL3 with these cellular subsets, which have now served as a basis for immunotherapeutic translation.
Collapse
Affiliation(s)
- Teilo H Schaller
- a Duke Brain Tumor Immunotherapy Program, Department of Neurosurgery , Duke University Medical Center , Durham , NC , USA.,b Department of Pathology , Duke University Medical Center , Durham , NC , USA
| | - Kristen A Batich
- a Duke Brain Tumor Immunotherapy Program, Department of Neurosurgery , Duke University Medical Center , Durham , NC , USA.,b Department of Pathology , Duke University Medical Center , Durham , NC , USA
| | - Carter M Suryadevara
- a Duke Brain Tumor Immunotherapy Program, Department of Neurosurgery , Duke University Medical Center , Durham , NC , USA.,b Department of Pathology , Duke University Medical Center , Durham , NC , USA
| | - Rupen Desai
- a Duke Brain Tumor Immunotherapy Program, Department of Neurosurgery , Duke University Medical Center , Durham , NC , USA
| | - John H Sampson
- a Duke Brain Tumor Immunotherapy Program, Department of Neurosurgery , Duke University Medical Center , Durham , NC , USA.,b Department of Pathology , Duke University Medical Center , Durham , NC , USA.,c Department of Radiation Oncology , Duke University Medical Center , Durham , NC , USA.,d Department of Immunology , Duke University Medical Center , Durham , NC , USA
| |
Collapse
|
18
|
Tada H, Kishida T, Fujiwara H, Kosuga T, Konishi H, Komatsu S, Shiozaki A, Ichikawa D, Okamoto K, Otsuji E, Mazda O. Reprogrammed chondrocytes engineered to produce IL-12 provide novel ex vivo immune-gene therapy for cancer. Immunotherapy 2017; 9:239-248. [PMID: 28231722 DOI: 10.2217/imt-2016-0004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
AIM The somatic cell reprogramming technology was applied to a novel and promising ex vivo immune-gene therapy strategy for cancer. To establish a novel ex vivo cytokine gene therapy of cancer using the somatic cell reprogramming procedures. METHODS Mouse fibroblasts were converted into chondrocytes and subsequently transduced with IL-12 gene. The resultant IL-12 induced chondrogenic cells were irradiated with x-ray and inoculated into mice bearing CT26 colon cancer. RESULTS The irradiation at 20 Gy or higher totally eliminated the proliferative potential of the cells, while less significantly influencing the IL-12 production from the cells. An inoculation of the irradiated IL-12 induced chondrogenic cells significantly suppressed tumor by inducing tumor-specific cytotoxic T lymphocytes, enhancing natural killer tumoricidal activity and inhibiting tumor neoangiogenesis in the mice. CONCLUSION The somatic cell reprogramming procedures may provide a novel and effective means to treat malignancies.
Collapse
Affiliation(s)
- Hiroyuki Tada
- Department of Immunology, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan.,Division of Digestive Surgery, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan
| | - Tsunao Kishida
- Department of Immunology, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan
| | - Hitoshi Fujiwara
- Division of Digestive Surgery, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan
| | - Toshiyuki Kosuga
- Division of Digestive Surgery, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan
| | - Hirotaka Konishi
- Division of Digestive Surgery, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan
| | - Shuhei Komatsu
- Division of Digestive Surgery, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan
| | - Atsushi Shiozaki
- Division of Digestive Surgery, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan
| | - Daisuke Ichikawa
- Division of Digestive Surgery, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan
| | - Kazuma Okamoto
- Division of Digestive Surgery, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan
| | - Eigo Otsuji
- Division of Digestive Surgery, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan
| | - Osam Mazda
- Department of Immunology, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan
| |
Collapse
|
19
|
3D Microfluidic model for evaluating immunotherapy efficacy by tracking dendritic cell behaviour toward tumor cells. Sci Rep 2017; 7:1093. [PMID: 28439087 PMCID: PMC5430848 DOI: 10.1038/s41598-017-01013-x] [Citation(s) in RCA: 123] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Accepted: 03/24/2017] [Indexed: 12/19/2022] Open
Abstract
Immunotherapy efficacy relies on the crosstalk within the tumor microenvironment between cancer and dendritic cells (DCs) resulting in the induction of a potent and effective antitumor response. DCs have the specific role of recognizing cancer cells, taking up tumor antigens (Ags) and then migrating to lymph nodes for Ag (cross)-presentation to naïve T cells. Interferon-α-conditioned DCs (IFN-DCs) exhibit marked phagocytic activity and the special ability of inducing Ag-specific T-cell response. Here, we have developed a novel microfluidic platform recreating tightly interconnected cancer and immune systems with specific 3D environmental properties, for tracking human DC behaviour toward tumor cells. By combining our microfluidic platform with advanced microscopy and a revised cell tracking analysis algorithm, it was possible to evaluate the guided efficient motion of IFN-DCs toward drug-treated cancer cells and the succeeding phagocytosis events. Overall, this platform allowed the dissection of IFN-DC-cancer cell interactions within 3D tumor spaces, with the discovery of major underlying factors such as CXCR4 involvement and underscored its potential as an innovative tool to assess the efficacy of immunotherapeutic approaches.
Collapse
|
20
|
Brown RE, Hunter RL, Hwang SA. Morphoproteomic-Guided Host-Directed Therapy for Tuberculosis. Front Immunol 2017; 8:78. [PMID: 28210262 PMCID: PMC5288338 DOI: 10.3389/fimmu.2017.00078] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Accepted: 01/17/2017] [Indexed: 01/08/2023] Open
Abstract
In an effort to develop more effective therapy for tuberculosis (TB), research efforts are looking toward host-directed therapy, reprograming the body's natural defenses to better control the infection. While significant progress is being made, the efforts are limited by lack of understanding of the pathology and pathogenesis of adult type TB disease. We have recently published evidence that the developing lesions in human lungs are focal endogenous lipid pneumonia that constitutes a region of local susceptibility in a person with strong systemic immunity. Since most such lesions regress spontaneously, the ability to study them directly with immunohistochemistry provides means to investigate why some progress to clinical disease while others asymptomatically regress. Furthermore, this should enable us to develop more effective host-directed therapies. Morphoproteomics has proven to be an effective means of characterizing protein expression that can be used to identify metabolic pathways, which can lead to more effective therapies. The purpose of this perspective will argue that using morphoproteomics on human TB lung tissue is a particularly promising method to direct selection of host-directed therapeutics.
Collapse
Affiliation(s)
- Robert E Brown
- Department of Pathology and Laboratory Medicine, McGovern Medical School, University of Texas Health Science Center at Houston , Houston, TX , USA
| | - Robert L Hunter
- Department of Pathology and Laboratory Medicine, McGovern Medical School, University of Texas Health Science Center at Houston , Houston, TX , USA
| | - Shen-An Hwang
- Department of Pathology and Laboratory Medicine, McGovern Medical School, University of Texas Health Science Center at Houston , Houston, TX , USA
| |
Collapse
|
21
|
Anani W, Shurin MR. Targeting Myeloid-Derived Suppressor Cells in Cancer. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 1036:105-128. [PMID: 29275468 DOI: 10.1007/978-3-319-67577-0_8] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Myeloid derived suppressor cells (MDSC) represent only a minor fraction of circulating blood cells but play an important role in tumor formation and progression. They are a heterogeneous group of cells that influence the tumor microenvironment by depletion of amino acids, oxidative stress, decreased trafficking of antitumor effector cells, and increased regulatory T and regulatory dendritic cell responses. Investigational treatment strategies targeting MDSCs have attempted to inhibit MDSC development and expansion (stem cell factor blockade, modulate of cell signaling, and target MDSC migration and recruitment), inhibit MDSC function (nitric oxide inhibition and reactive oxygen and nitrogen species inhibition), differentiate MDSCs into more mature cells (Vitamins A and D, all-trans retinoic acid, interleukin-2, toll-like receptor 9 inhibitors, taxanes, beta-glucan particles, tumor-derived exosome inhibition, and very small size proteoliposomes), and destroy MDSCs (cytotoxic agents, ephrin A2 degradation, anti-interleukin 13, and histamine blockers). To date, there are no Food and Drug Administration approved therapies selectively targeting MDSCs, but such therapies are likely to be implemented in the future, due to the key role of MDSCs in antitumor immunity.
Collapse
Affiliation(s)
- Waseem Anani
- Department of Pathology, University of Pittsburgh Medical Center, Pittsburgh, PA, USA.
| | - Michael R Shurin
- Department of Pathology, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| |
Collapse
|
22
|
Li JH, Zhang SQ, Qiu XG, Zhang SJ, Zheng SH, Zhang DH. Long non-coding RNA NEAT1 promotes malignant progression of thyroid carcinoma by regulating miRNA-214. Int J Oncol 2016; 50:708-716. [DOI: 10.3892/ijo.2016.3803] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Accepted: 11/11/2016] [Indexed: 01/17/2023] Open
|
23
|
Jang JK, Khawli LA, Canter DC, Hu P, Zhu TH, Wu BW, Angell TE, Li Z, Epstein AL. Systemic delivery of chTNT-3/CpG immunoconjugates for immunotherapy in murine solid tumor models. Cancer Immunol Immunother 2016; 65:511-23. [PMID: 26960932 DOI: 10.1007/s00262-016-1813-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Accepted: 02/19/2016] [Indexed: 12/25/2022]
Abstract
CpG oligodeoxynucleotides (CpG) potently activate the immune system by mimicking microbial DNA. Conjugation of CpG to chTNT-3, an antibody targeting the necrotic centers of tumors, enabled CpG to accumulate in tumors after systemic delivery, where it can activate the immune system in the presence of tumor antigens. CpG chemically conjugated to chTNT-3 (chTNT-3/CpG) were compared to free CpG in their ability to stimulate the immune system in vitro and reduce tumor burden in vivo. In subcutaneous Colon 26 adenocarcinoma and B16-F10 melanoma models in BALB/c and C57BL/6 mice, respectively, chTNT-3/CpG, free CpG, or several different control constructs were administered systemically. Intraperitoneal injections of chTNT-3/CpG delayed tumor growth and improved survival and were comparable to intratumorally administered CpG. Compared to saline-treated mice, chTNT-3/CpG-treated mice had smaller average tumor volumes by as much as 72% in Colon 26-bearing mice and 79% in B16-bearing mice. Systemically delivered free CpG and CpG conjugated to an isotype control antibody did not reduce tumor burden or improve survival. In this study, chTNT-3/CpG retained immunostimulatory activity of the CpG moiety and enabled delivery to tumors. Because systemically administered CpG rapidly clear the body and do not accumulate into tumors, chTNT-3/CpG provide a solution to the limitations observed in preclinical and clinical trials.
Collapse
Affiliation(s)
- Julie K Jang
- Department of Pathology, Keck School of Medicine, University of Southern California, 2011 Zonal Avenue, HMR 205, Los Angeles, CA, 90033, USA
| | - Leslie A Khawli
- Department of Pathology, Keck School of Medicine, University of Southern California, 2011 Zonal Avenue, HMR 205, Los Angeles, CA, 90033, USA
| | - David C Canter
- Department of Pathology, Keck School of Medicine, University of Southern California, 2011 Zonal Avenue, HMR 205, Los Angeles, CA, 90033, USA
| | - Peisheng Hu
- Department of Pathology, Keck School of Medicine, University of Southern California, 2011 Zonal Avenue, HMR 205, Los Angeles, CA, 90033, USA
| | - Tian H Zhu
- Department of Pathology, Keck School of Medicine, University of Southern California, 2011 Zonal Avenue, HMR 205, Los Angeles, CA, 90033, USA
| | - Brian W Wu
- Department of Pathology, Keck School of Medicine, University of Southern California, 2011 Zonal Avenue, HMR 205, Los Angeles, CA, 90033, USA
| | - Trevor E Angell
- Department of Endocrinology, Metabolism, and Hypertension, Thyroid Section, Brigham and Women's Hospital, Boston, MA, USA
| | - Zhongjun Li
- Department of Blood Transfusion, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| | - Alan L Epstein
- Department of Pathology, Keck School of Medicine, University of Southern California, 2011 Zonal Avenue, HMR 205, Los Angeles, CA, 90033, USA.
| |
Collapse
|
24
|
Jiang Z, Zhang H, Wang Y, Yu B, Wang C, Liu C, Lu J, Chen F, Wang M, Yu X, Lin J, Pan X, Wang P, Zhu H. Altered Hepa1-6 cells by dimethyl sulfoxide (DMSO)-treatment induce anti-tumor immunity in vivo. Oncotarget 2016; 7:9340-52. [PMID: 26824185 PMCID: PMC4891044 DOI: 10.18632/oncotarget.7009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Accepted: 01/01/2016] [Indexed: 12/30/2022] Open
Abstract
Cancer immunotherapy is the use of the immune system to treat cancer. Our current research proposed an optional strategy of activating immune system involving in cancer immunotherapy. When being treated with 2% DMSO in culture medium, Hepa1-6 cells showed depressed proliferation with no significant apoptosis or decreased viability. D-hep cells, Hepa1-6 cells treated with DMSO for 7 days, could restore to the higher proliferation rate in DMSO-free medium, but alteration of gene expression profile was irreversible. Interestingly, tumors from D-hep cells, not Hepa1-6 cells, regressed in wild-type C57BL/6 mice whereas D-hep cells exhibited similar tumorigenesis as Hep1–6 cells in immunodeficient mice. As expected, additional Hepa1-6 cells failed to form tumors in the D-hep-C57 mice in which D-hep cells were eliminated. Further research confirmed that D-hep-C57 mice established anti-tumor immunity against Hepa1-6 cells. Our research proposed viable tumor cells with altered biological features by DMSO-treatment could induce anti-tumor immunity in vivo.
Collapse
Affiliation(s)
- Zhengyu Jiang
- Department of Cell Biology, Second Military Medical University, Shanghai, P.R. China.,Center for Stem Cell and Medicine, The Graduate School, Second Military Medical University, Shanghai, P.R. China.,Department of Anesthesiology, Second Military Medical University, Shanghai, P.R. China
| | - Hongxia Zhang
- Department of Cell Biology, Second Military Medical University, Shanghai, P.R. China.,Center for Stem Cell and Medicine, The Graduate School, Second Military Medical University, Shanghai, P.R. China
| | - Ye Wang
- Department of Cell Biology, Second Military Medical University, Shanghai, P.R. China.,Center for Stem Cell and Medicine, The Graduate School, Second Military Medical University, Shanghai, P.R. China
| | - Bin Yu
- Department of Cell Biology, Second Military Medical University, Shanghai, P.R. China.,Center for Stem Cell and Medicine, The Graduate School, Second Military Medical University, Shanghai, P.R. China
| | - Chen Wang
- Department of Cell Biology, Second Military Medical University, Shanghai, P.R. China.,Center for Stem Cell and Medicine, The Graduate School, Second Military Medical University, Shanghai, P.R. China
| | - Changcheng Liu
- Department of Cell Biology, Second Military Medical University, Shanghai, P.R. China.,Center for Stem Cell and Medicine, The Graduate School, Second Military Medical University, Shanghai, P.R. China
| | - Juan Lu
- Training Department, Second Military Medical University, Shanghai, P.R. China
| | - Fei Chen
- Department of Cell Biology, Second Military Medical University, Shanghai, P.R. China.,Center for Stem Cell and Medicine, The Graduate School, Second Military Medical University, Shanghai, P.R. China
| | - Minjun Wang
- Department of Cell Biology, Second Military Medical University, Shanghai, P.R. China.,Center for Stem Cell and Medicine, The Graduate School, Second Military Medical University, Shanghai, P.R. China
| | - Xinlu Yu
- Department of Cell Biology, Second Military Medical University, Shanghai, P.R. China.,Center for Stem Cell and Medicine, The Graduate School, Second Military Medical University, Shanghai, P.R. China
| | - Jiahao Lin
- School of Clinic Medicine, Second Military Medical University, Shanghai, P.R. China
| | - Xinghua Pan
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
| | - Pin Wang
- National Key Laboratory of Medical Immunology and Institute of Immunology, Second Military Medical University, Shanghai, P.R. China
| | - Haiying Zhu
- Department of Cell Biology, Second Military Medical University, Shanghai, P.R. China.,Center for Stem Cell and Medicine, The Graduate School, Second Military Medical University, Shanghai, P.R. China
| |
Collapse
|
25
|
Jang JK, Chretin J, Bruyette D, Hu P, Epstein AL. Phase 1 Dose-Escalation Study with LEC/chTNT-3 and Toceranib Phosphate (Palladia ®) in Dogs with Spontaneous Malignancies. ACTA ACUST UNITED AC 2015; 7:167-174. [PMID: 26635918 DOI: 10.4172/1948-5956.1000343] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
OBJECTIVES LEC chemokine promotes TH1 responses and recruits immune cells to inflammatory sites. By linking LEC to an antibody targeting tumor necrosis, LEC/chTNT-3 can be used for the immunotherapeutic treatment of tumors. The primary objective of this study was to determine the safety profile of LEC/chTNT-3 and toceranib phosphate (Palladia®) combination therapy in dogs with spontaneous malignancies. Secondary purpose was to determine objective responses to treatment. METHODS Twenty-three dogs with cancer were enrolled, covering nine different malignancies. In this dose escalation study, dogs received LEC/chTNT-3 for five days, and toceranib every 48 hours for the remainder of the study. Dogs received physical exams, chemistry panel, urinalysis, and complete blood counts on days 0, 10, 28 of the study, and every 6-8 weeks thereafter. RESULTS Lethargy was noted in 13% dogs. There were no statistical differences in the prevalence of anorexia, diarrhea, thrombocytopenia, renal toxicity, or hepatic toxicity before or during the study. There were trends in increases in the prevalence of vomiting, lymphopenia, and neutropenia (all grade 2 or lower, p=0.07) over the initial 28 days of the study. By day 28, 10% of dogs had partial responses, 58% had stable disease, and 32% had progressive disease. CONCLUSIONS LEC/chTNT-3 and toceranib were well tolerated. This combination therapy showed some biological activity against a variety of cancers at a low dose and short duration of LEC/chTNT-3 administration.
Collapse
Affiliation(s)
- Julie K Jang
- Department of Pathology, Keck School of Medicine of University of Southern California, Los Angeles, CA, USA
| | - John Chretin
- Veterinary Centers of America West Los Angeles Animal Hospital, Los Angeles, CA, USA
| | - David Bruyette
- Veterinary Centers of America West Los Angeles Animal Hospital, Los Angeles, CA, USA
| | - Peisheng Hu
- Department of Pathology, Keck School of Medicine of University of Southern California, Los Angeles, CA, USA
| | - Alan L Epstein
- Department of Pathology, Keck School of Medicine of University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
26
|
Müller D. Antibody fusions with immunomodulatory proteins for cancer therapy. Pharmacol Ther 2015; 154:57-66. [PMID: 26145167 DOI: 10.1016/j.pharmthera.2015.07.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Accepted: 06/29/2015] [Indexed: 01/02/2023]
Abstract
The potential of immunomodulatory proteins, in particular cytokines, for cancer therapy is well recognized, but hampered by the toxicity associated with their systemic application. In order to address this problem, targeted delivery by antibody fusion proteins has been early proposed and their development intensively pursued over the last decade. Here, factors influencing the selection and modification of cytokines and antibody formats for this approach are being discussed, indicating current developments and translational advances in the field.
Collapse
Affiliation(s)
- Dafne Müller
- Institute of Cell Biology and Immunology, University of Stuttgart, Allmandring 31, 70569 Stuttgart, Germany.
| |
Collapse
|
27
|
Egwuagu CE, Sun L, Kim SH, Dambuza IM. Ocular Inflammatory Diseases: Molecular Pathogenesis and Immunotherapy. Curr Mol Med 2015; 15:517-28. [PMID: 26238372 PMCID: PMC11305125 DOI: 10.2174/1566524015666150731095426] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2014] [Revised: 07/03/2015] [Accepted: 07/28/2015] [Indexed: 01/03/2023]
Abstract
Uveitis is a diverse group of potentially sight-threatening intraocular inflammatory diseases of infectious or autoimmune etiology and accounts for more than 10% of severe visual handicaps in the United States. Pathology derives from the presence of inflammatory cells in the optical axis and sustained production of cytotoxic cytokines and other immuneregulatory proteins in the eye. The main therapeutic goals are to down-regulate the immune response, preserve the integrity of the ocular architecture and eventually eliminate the inciting uveitogenic stimuli. Current therapy is based on topical or systemic corticosteroid with or without second line agents and serious adverse effects of these drugs are the impetus for development of less toxic and more specific therapies for uveitis. This review summarizes the pathophysiology of uveitis, molecular mechanisms that regulate the initiation and progression of uveitis and concludes with emerging strategies for the treatment of this group of potentially blinding diseases.
Collapse
Affiliation(s)
- C E Egwuagu
- Molecular Immunology Section, National Eye Institute, National Institutes of Health, Building 10, Room 10N109A, 10 Center Drive, Bethesda, MD 20892-1857, USA.
| | | | | | | |
Collapse
|
28
|
Angell TE, Lechner MG, Jang JK, LoPresti JS, Epstein AL. MHC class I loss is a frequent mechanism of immune escape in papillary thyroid cancer that is reversed by interferon and selumetinib treatment in vitro. Clin Cancer Res 2014; 20:6034-44. [PMID: 25294906 DOI: 10.1158/1078-0432.ccr-14-0879] [Citation(s) in RCA: 114] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
PURPOSE To evaluate MHC class I expression on papillary thyroid cancer (PTC) and analyze changes in MHC expression and associated immune activation with current and experimental treatments for thyroid cancer using in vitro PTC cell lines. EXPERIMENTAL DESIGN MHC class I expression and assessment of tumor-infiltrating leukocyte populations were evaluated by immunohistochemistry. PTC cell lines were analyzed for HLA-ABC expression by flow cytometry following tyrosine kinase inhibitor, IFNα or IFNγ, or radiation treatment. Functional changes in antigenicity were assessed by coculture of allogeneic donor peripheral blood leukocytes (PBL) with pretreated or untreated PTC cell lines and measurement of T-cell activation and cytokine production. RESULTS Both MHC class I and β2-microglobulin expression was reduced or absent in 76% of PTC specimens and was associated with reduced tumor-infiltrating immune cells, including effector (CD3(+), CD8(+), CD16(+)) and suppressor (FoxP3(+)) populations. Treatment of PTC cell lines with the MEK1/2 inhibitor selumetinib or IFN increased HLA-ABC expression. This phenotypic change was associated with increased T-cell activation (%CD25(+) of CD3(+)) and IL2 production by PBL cocultured with treated PTC cell lines. Additive effects were seen with combination selumetinib and IFN treatment. CONCLUSIONS MHC class I expression loss is frequent in human PTC specimens and represents a significant mechanism of immune escape. Increased antigenicity following selumetinib and IFN treatment warrants further study for immunotherapy of progressive PTC.
Collapse
Affiliation(s)
- Trevor E Angell
- Division of Endocrinology and Diabetes, Keck Medical Center, University of Southern California, Los Angeles, California. Department of Pathology, Keck Medical Center, University of Southern California, Los Angeles, California. Division of Endocrinology, Diabetes, and Hypertension, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Melissa G Lechner
- Department of Pathology, Keck Medical Center, University of Southern California, Los Angeles, California. Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Julie K Jang
- Department of Pathology, Keck Medical Center, University of Southern California, Los Angeles, California
| | - Jonathan S LoPresti
- Division of Endocrinology and Diabetes, Keck Medical Center, University of Southern California, Los Angeles, California
| | - Alan L Epstein
- Department of Pathology, Keck Medical Center, University of Southern California, Los Angeles, California.
| |
Collapse
|
29
|
Young PA, Morrison SL, Timmerman JM. Antibody-cytokine fusion proteins for treatment of cancer: engineering cytokines for improved efficacy and safety. Semin Oncol 2014; 41:623-36. [PMID: 25440607 DOI: 10.1053/j.seminoncol.2014.08.002] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The true potential of cytokine therapies in cancer treatment is limited by the inability to deliver optimal concentrations into tumor sites due to dose-limiting systemic toxicities. To maximize the efficacy of cytokine therapy, recombinant antibody-cytokine fusion proteins have been constructed by a number of groups to harness the tumor-targeting ability of monoclonal antibodies. The aim is to guide cytokines specifically to tumor sites where they might stimulate more optimal anti-tumor immune responses while avoiding the systemic toxicities of free cytokine therapy. Antibody-cytokine fusion proteins containing interleukin (IL)-2, IL-12, IL-21, tumor necrosis factor (TNF)α, and interferons (IFNs) α, β, and γ have been constructed and have shown anti-tumor activity in preclinical and early-phase clinical studies. Future priorities for development of this technology include optimization of tumor targeting, bioactivity of the fused cytokine, and choice of appropriate agents for combination therapies. This review is intended to serve as a framework for engineering an ideal antibody-cytokine fusion protein, focusing on previously developed constructs and their clinical trial results.
Collapse
Affiliation(s)
- Patricia A Young
- Division of Hematology & Oncology, Department of Medicine, University of California, Los Angeles, Los Angeles, CA
| | - Sherie L Morrison
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA
| | - John M Timmerman
- Division of Hematology & Oncology, Department of Medicine, University of California, Los Angeles, Los Angeles, CA.
| |
Collapse
|
30
|
Immunogenicity of murine solid tumor models as a defining feature of in vivo behavior and response to immunotherapy. J Immunother 2014; 36:477-89. [PMID: 24145359 DOI: 10.1097/01.cji.0000436722.46675.4a] [Citation(s) in RCA: 266] [Impact Index Per Article: 24.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Immune profiling has been widely used to probe mechanisms of immune escape in cancer and identify novel targets for therapy. Two emerging uses of immune signatures are to identify likely responders to immunotherapy regimens among individuals with cancer and to understand the variable responses seen among subjects with cancer in immunotherapy trials. Here, the immune profiles of 6 murine solid tumor models (CT26, 4T1, MAD109, RENCA, LLC, and B16) were correlated to tumor regression and survival in response to 2 immunotherapy regimens. Comprehensive profiles for each model were generated using quantitative reverse transcriptase polymerase chain reaction, immunohistochemistry, and flow cytometry techniques, as well as functional studies of suppressor cell populations (regulatory T cells and myeloid-derived suppressor cells), to analyze intratumoral and draining lymphoid tissues. Tumors were stratified as highly or poorly immunogenic, with highly immunogenic tumors showing a significantly greater presence of T-cell costimulatory molecules and immune suppression in the tumor microenvironment. An absence of tumor-infiltrating cytotoxic T lymphocytes and mature dendritic cells was seen across all models. Delayed tumor growth and increased survival with suppressor cell inhibition and tumor-targeted chemokine+/-dendritic cells vaccine immunotherapy were associated with high tumor immunogenicity in these models. Tumor MHC class I expression correlated with the overall tumor immunogenicity level and was a singular marker to predict immunotherapy response with these regimens. By using experimental tumor models as surrogates for human cancers, these studies demonstrate how select features of an immune profile may be utilized to identify patients most likely to respond to immunotherapy regimens.
Collapse
|
31
|
Evaluation of antibody–chemokine fusion proteins for tumor-targeting applications. Exp Biol Med (Maywood) 2014; 239:842-852. [DOI: 10.1177/1535370214536667] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
There is an increasing biotechnological interest in the ‘arming’ of therapeutic antibodies with bioactive payloads. While many antibody–cytokine fusion proteins have been extensively investigated in preclinical and clinical studies, there are only few reports related to antibody–chemokine fusion proteins (‘immunochemokines’). Here, we describe the cloning, expression, and characterization of 10 immunochemokines based on the monoclonal antibody F8, specific to the alternatively spliced extra domain A (EDA) of fibronectin, a marker of angiogenesis. Among the 10 murine chemokines tested in our study, only CCL19, CCL20, CCL21, and CXCL10 could be expressed and isolated at acceptable purity levels as F8-based fusion proteins. The immunochemokines retained the binding characteristics of the parental antibody, but could not be characterized by gel-filtration analysis, an analytical limitation which had previously been observed in our laboratory for the unconjugated chemokines. When radioiodinated preparations of CCL19-F8, CCL20-F8, CCL21-F8, and CXCL10-F8 were tested in quantitative biodistribution studies in tumor-bearing mice, the four fusion proteins failed to preferentially accumulate at the tumor site, while the unconjugated parental antibody displayed a tumor:blood ratio >20:1, 24 h after intravenous (i.v.) administration. The tumor-targeting ability of CCL19-F8 could be rescued only in part by preadministration of unlabeled CCL19-F8, indicating that a chemokine trapping mechanism may hinder pharmacodelivery strategies. While this article highlights expression, analytical, and biodistribution challenges associated with the antibody-based in vivo delivery of chemokines at sites of disease, it provides the first comprehensive report in this field and may facilitate future studies with immunochemokines.
Collapse
|
32
|
Bobanga ID, Petrosiute A, Huang AY. Chemokines as Cancer Vaccine Adjuvants. Vaccines (Basel) 2013; 1:444-62. [PMID: 24967094 PMCID: PMC4067044 DOI: 10.3390/vaccines1040444] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2013] [Revised: 08/31/2013] [Accepted: 09/26/2013] [Indexed: 02/07/2023] Open
Abstract
We are witnessing a new era of immune-mediated cancer therapies and vaccine development. As the field of cancer vaccines advances into clinical trials, overcoming low immunogenicity is a limiting step in achieving full success of this therapeutic approach. Recent discoveries in the many biological roles of chemokines in tumor immunology allow their exploitation in enhancing recruitment of antigen presenting cells (APCs) and effector cells to appropriate anatomical sites. This knowledge, combined with advances in gene therapy and virology, allows researchers to employ chemokines as potential vaccine adjuvants. This review will focus on recent murine and human studies that use chemokines as therapeutic anti-cancer vaccine adjuvants.
Collapse
Affiliation(s)
- Iuliana D. Bobanga
- Departments of General Surgery, School of Medicine, University Hospital Case Medical Center/Case Western Reserve University, Cleveland, OH 44106, USA
| | - Agne Petrosiute
- Departments of Pediatrics, School of Medicine, University Hospital Case Medical Center/Case Western Reserve University, Cleveland, OH 44106, USA
| | - Alex Y. Huang
- Departments of Pediatrics, School of Medicine, University Hospital Case Medical Center/Case Western Reserve University, Cleveland, OH 44106, USA
| |
Collapse
|
33
|
Müller D. Antibody–Cytokine Fusion Proteins for Cancer Immunotherapy: An Update on Recent Developments. BioDrugs 2013; 28:123-31. [DOI: 10.1007/s40259-013-0069-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
34
|
Hornig N, Reinhardt K, Kermer V, Kontermann RE, Müller D. Evaluating combinations of costimulatory antibody-ligand fusion proteins for targeted cancer immunotherapy. Cancer Immunol Immunother 2013; 62:1369-80. [PMID: 23715927 PMCID: PMC11029554 DOI: 10.1007/s00262-013-1441-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2013] [Accepted: 05/17/2013] [Indexed: 12/19/2022]
Abstract
Combinatory strategies are becoming of increasing interest in cancer immunotherapy. Costimulation by individual members of the immunoglobulin-like (Ig)- and TNF superfamily have already shown promising antitumor potential, thus prompting the exploration of their synergistic abilities in combinatorial approaches. Here, we pursued a targeted strategy with antibody-fusion proteins composed of a tumor-directed antibody and the extracellular domain of the costimulatory ligand B7.1, 4-1BBL, OX40L, GITRL or LIGHT, respectively. Costimulatory activity was assessed in an experimental setting where initial T cell activation was induced by a bispecific antibody (tumor-related antigen × CD3). Advantage of combined targeted costimulation was shown for either B7.1 or 4-1BBL with OX40L, GITRL, LIGHT and 4-1BBL in terms of T cell proliferation and IFN-γ release. Since encouraging results were obtained by the combination of B7.1 and 4-1BBL, we adapted the model system for a time-shift setting. Here, enhanced proliferation and granzyme B expression as well as reduced PD-1 expression on the T cell population demonstrated the benefit of costimulation-assisted restimulation. Finally, the antitumor potential of this combinatorial setting was confirmed in vivo in a lung metastasis mouse model. Thus, combinatorial approaches with costimulatory antibody-ligand fusion proteins seem a promising strategy to be further investigated for cancer immunotherapy.
Collapse
Affiliation(s)
- Nora Hornig
- Institute of Cell Biology and Immunology, University of Stuttgart, Allmandring 31, 70569 Stuttgart, Germany
| | - Katharina Reinhardt
- Institute of Cell Biology and Immunology, University of Stuttgart, Allmandring 31, 70569 Stuttgart, Germany
| | - Vanessa Kermer
- Institute of Cell Biology and Immunology, University of Stuttgart, Allmandring 31, 70569 Stuttgart, Germany
| | - Roland E. Kontermann
- Institute of Cell Biology and Immunology, University of Stuttgart, Allmandring 31, 70569 Stuttgart, Germany
| | - Dafne Müller
- Institute of Cell Biology and Immunology, University of Stuttgart, Allmandring 31, 70569 Stuttgart, Germany
| |
Collapse
|
35
|
Chiang S, Ubogu EE. The role of chemokines in Guillain-Barré syndrome. Muscle Nerve 2013; 48:320-30. [PMID: 23447114 DOI: 10.1002/mus.23829] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/22/2013] [Indexed: 01/26/2023]
Abstract
INTRODUCTION Chemokines and their receptors are important mediators of inflammation. Guillain-Barré syndrome (GBS) is the most common cause of acute paralysis worldwide. Despite current treatments, outcomes are suboptimal. Specific chemokine receptor antagonists have the potential to be efficacious against pathogenic leukocyte trafficking in GBS. METHODS A 36-year literature review was performed to summarize available data on chemokine expression in GBS and its representative animal model, experimental autoimmune neuritis (EAN). RESULTS Although there were a few observational human and animal studies demonstrating chemokine ligand/receptor expression in GBS and EAN, in vitro and in vivo functional studies using gene knockouts, neutralizing antibodies, or small molecular antagonists were limited. CCL2-CCR2, CCL5-CCR5, and CXCL10-CXCR3 have been most strongly implicated in EAN and GBS pathogenesis, providing targets for molecular blockade. CONCLUSIONS Preclinical human in vitro and in vivo EAN studies are needed to evaluate the potential efficacy of chemokine signaling inhibition in GBS.
Collapse
Affiliation(s)
- Sharon Chiang
- Department of Statistics, Rice University, Houston, Texas, USA
| | | |
Collapse
|
36
|
Chang DH, Rutledge JR, Patel AA, Heerdt BG, Augenlicht LH, Korst RJ. The effect of lung cancer on cytokine expression in peripheral blood mononuclear cells. PLoS One 2013; 8:e64456. [PMID: 23762239 PMCID: PMC3675097 DOI: 10.1371/journal.pone.0064456] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2012] [Accepted: 04/15/2013] [Indexed: 01/04/2023] Open
Abstract
The purpose of this study is to evaluate cytokine expression by peripheral blood mononuclear cells (PBMC) from stage I lung cancer patients and to confirm these expression patterns by exposing PBMCs to lung cancer cells in vitro. Five altered cytokines in stage I lung cancer patients (CCL3, IL8, IL1β, CXCL10, sIL2Rα) were identified in plasma from subjects (n = 15) before and after resection using a 30-plex panel protein assay. Gene expression studies using quantitative RT-qPCR were performed on PBMCs from stage I lung cancer patients (n = 62) before and after resection, and compared to non-cancer patients (n = 32) before and after surgery for benign disease. Co-culture experiments that exposed healthy donor PBMCs to lung cancer cells in vitro were performed to evaluate the effect on PBMC cytokine expression. PBMC gene expression of CCL3, IL8 and IL1β was higher in lung cancer patients compared to the same patients at each of four sequential timepoints after removal of their tumors, while CXCL10 and IL2Rα were essentially unchanged. This pattern was also detected when lung cancer patients were compared to non-cancer patients. When non-cancer patients underwent surgery for benign diseases, these cytokine expression changes were not demonstrable. Lung cancer cell lines, but not benign bronchial epithelial cells, induced similar changes in cytokine gene and protein expression by healthy donor PBMCs in an in vitro co-culture system. We conclude that PBMCs from stage I lung cancer patients possess distinct cytokine expression patterns compared to both non-cancer patients, and lung cancer patients following tumor removal. These expression patterns are replicated by healthy donor PBMCs exposed to lung cancer cell lines, but not benign bronchial epithelial cells in vitro. These findings have implications for understanding the immune response to lung cancer.
Collapse
Affiliation(s)
- David H. Chang
- Center for Cancer Research and Genomic Medicine, The Daniel and Gloria Blumenthal Cancer Center, Paramus, New Jersey, United States of America
| | - John R. Rutledge
- Center for Cancer Research and Genomic Medicine, The Daniel and Gloria Blumenthal Cancer Center, Paramus, New Jersey, United States of America
| | - Ankur A. Patel
- Center for Cancer Research and Genomic Medicine, The Daniel and Gloria Blumenthal Cancer Center, Paramus, New Jersey, United States of America
| | - Barbara G. Heerdt
- Center for Cancer Research and Genomic Medicine, The Daniel and Gloria Blumenthal Cancer Center, Paramus, New Jersey, United States of America
| | - Leonard H. Augenlicht
- Albert Einstein Cancer Center, Montefiore Medical Center, Bronx, New York, New York, United States of America
| | - Robert J. Korst
- Center for Cancer Research and Genomic Medicine, The Daniel and Gloria Blumenthal Cancer Center, Paramus, New Jersey, United States of America
- Division of Thoracic Surgery, Department of Surgery, The Valley Hospital, Ridgewood, New Jersey, United States of America
| |
Collapse
|
37
|
Pranchevicius MCS, Vieira TR. Production of recombinant immunotherapeutics for anticancer treatment: the role of bioengineering. Bioengineered 2013; 4:305-12. [PMID: 23644447 DOI: 10.4161/bioe.24666] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Cancer is one of the most important health problems because many cases are difficult to prevent. Cancer still has unknown mechanisms of pathogenesis, and its capacity to produce temporary or permanent damage, besides death, is very high. Although many anticancer therapies are available, finding a cure for cancer continues to be a difficult task. Thus, many efforts have been made to develop more effective treatments, such as immunotherapy based on a new class of tumor-specific products that are produced using recombinant DNA technology. These recombinant products are used with the main objectives of killing the tumor and stimulating immune cells to respond to the cancer cells. The principal recombinant products in anticancer therapy are immunostimulants, vaccines, antibodies, immunotoxins and fusion proteins. This review focuses on the general aspects of these genetically engineered products, their clinical performance, current advances and future prospects for this type of anticancer therapy.
Collapse
|
38
|
Lee KY, Seow E, Zhang Y, Lim YC. Targeting CCL21-folic acid-upconversion nanoparticles conjugates to folate receptor-α expressing tumor cells in an endothelial-tumor cell bilayer model. Biomaterials 2013; 34:4860-71. [PMID: 23562047 DOI: 10.1016/j.biomaterials.2013.03.029] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2013] [Accepted: 03/11/2013] [Indexed: 11/27/2022]
Abstract
The ability of some malignant cells to evade immunosurveillance has been a major contribution to the inability of the host's immune system to eradicate the neoplastic cells. This has led to the development of various immunological strategies to augment the host immune response as part of cancer treatment. In this study, we developed folic acid (FA)/secondary lymphoid tissue chemokine (CCL21)/upconversion fluorescent nanoparticles (UCNs) conjugates as a targeting and delivery system to attract immune cells to folate receptor (FR) expressing tumor cells. Our data show that FA-conjugated UCNs@mesoporous silica specifically target FR expressing ovarian carcinoma cell line, OVCAR-3, compared to the unconjugated mesoporous silica coated UCNs. Furthermore, the FA-UCNs@mesoporous silica can efficiently cross the endothelial cell monolayer and accumulate in the clusters of OVCAR-3 cells in our endothelial-tumor cell bilayer model. Our migration assay data suggest that the CCL21 loaded into the mesoporous layer is biologically active and can efficiently induce T cells migration in-vitro. No significant cytotoxic effect was observed throughout the study indicating good biocompatibility of the nanoconjugates. As proof-of-concept, we have shown that it is feasible to load biologically active chemokines onto UCNs to modulate T cell migration.
Collapse
Affiliation(s)
- Kim Yee Lee
- Department of Bioengineering, National University of Singapore, Singapore 117574, Singapore
| | | | | | | |
Collapse
|
39
|
Schmidt SR. Fusion Proteins with Toxic Activity. FUSION PROTEIN TECHNOLOGIES FOR BIOPHARMACEUTICALS 2013:253-269. [DOI: 10.1002/9781118354599.ch17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
40
|
Li Z, Jang JK, Lechner MG, Hu P, Khawli L, Scannell CA, Epstein AL. Generation of tumor-targeted antibody-CpG conjugates. J Immunol Methods 2012; 389:45-51. [PMID: 23279945 DOI: 10.1016/j.jim.2012.12.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2012] [Revised: 12/20/2012] [Accepted: 12/21/2012] [Indexed: 11/19/2022]
Abstract
A number of monoclonal antibodies against tumor-associated antigens have been developed for the treatment of cancer. The anti-tumor effects of such antibodies can be enhanced by conjugation to immune stimulatory ligands, such as the toll-like receptor 9 agonist CpG oligodeoxynucleotides (CpG). The present study describes methods for the conjugation of CpG to two clinically approved monoclonal antibodies (rituximab and trastuzumab) via a Sulfo-EMCS maleimide linker. This conjugation method yielded stable joining of CpG and antibody (molar range 2.2-4.3:1). Immunofluorescence studies showed intact antigen-specific antibody binding of the immunoconjugates, that were comparable to unmodified antibody. Furthermore, antibody-CpG conjugates demonstrated improved (rituximab) or equivalent (trastuzumab) immune stimulatory activity compared to free CpG in vitro. These studies demonstrate the feasibility of antibody-CpG immunoconjugates and provide the foundation for future in vivo immunotherapy evaluation.
Collapse
Affiliation(s)
- Zhongjun Li
- Department of Pathology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | | | | | | | | | | | | |
Collapse
|
41
|
Franciszkiewicz K, Boissonnas A, Boutet M, Combadière C, Mami-Chouaib F. Role of chemokines and chemokine receptors in shaping the effector phase of the antitumor immune response. Cancer Res 2012; 72:6325-32. [PMID: 23222302 DOI: 10.1158/0008-5472.can-12-2027] [Citation(s) in RCA: 180] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Immune system-mediated eradication of neoplastic cells requires induction of a strong long-lasting antitumor T-cell response. However, generation of tumor-specific effector T cells does not necessarily result in tumor clearance. CTL must first be able to migrate to the tumor site, infiltrate the tumor tissue, and interact with the target to finally trigger effector functions indispensable for tumor destruction. Chemokines are involved in circulation, homing, retention, and activation of immunocompetent cells. Although some of them are known to contribute to tumor growth and metastasis, others are responsible for changes in the tumor microenvironment that lead to extensive infiltration of lymphocytes, resulting in tumor eradication. Given their chemoattractive and activating properties, a role for chemokines in the development of the effector phase of the antitumor immune response has been suggested. Here, we emphasize the role of the chemokine-chemokine receptor network at multiple levels of the T-cell-mediated antitumor immune response. The identification of chemokine-dependent molecular mechanisms implicated in tumor-specific CTL trafficking, retention, and regulation of their in situ effector functions may offer new perspectives for development of innovative immunotherapeutic approaches to cancer treatment.
Collapse
Affiliation(s)
- Katarzyna Franciszkiewicz
- Institut National de la Santé et de la Recherche Medicale U753, Team 1: Tumor Antigens and T-cell Reactivity, Integrated Research Cancer Institute in Villejuif, Institut de Cancérologie Gustave Roussy, Villejuif, France
| | | | | | | | | |
Collapse
|
42
|
How do cytokines trigger genomic instability? J Biomed Biotechnol 2012; 2012:536761. [PMID: 22754280 PMCID: PMC3382994 DOI: 10.1155/2012/536761] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2012] [Accepted: 04/08/2012] [Indexed: 01/05/2023] Open
Abstract
Inflammation is a double-edged sword presenting a dual effect on cancer development, from one hand promoting tumor initiation and progression and from the other hand protecting against cancer through immunosurveillance mechanisms. Cytokines are crucial components of inflammation, participating in the interaction between the cells of tumor microenvironment. A comprehensive study of the role of cytokines in the context of the inflammation-tumorigenesis interplay helps us to shed light in the pathogenesis of cancer. In this paper we focus on the role of cytokines in the development of genomic instability, an evolving hallmark of cancer.
Collapse
|