1
|
Che J, Sun Y, Deng Y, Zhang J. Blood-brain barrier disruption: a culprit of cognitive decline? Fluids Barriers CNS 2024; 21:63. [PMID: 39113115 PMCID: PMC11305076 DOI: 10.1186/s12987-024-00563-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Accepted: 07/31/2024] [Indexed: 08/10/2024] Open
Abstract
Cognitive decline covers a broad spectrum of disorders, not only resulting from brain diseases but also from systemic diseases, which seriously influence the quality of life and life expectancy of patients. As a highly selective anatomical and functional interface between the brain and systemic circulation, the blood-brain barrier (BBB) plays a pivotal role in maintaining brain homeostasis and normal function. The pathogenesis underlying cognitive decline may vary, nevertheless, accumulating evidences support the role of BBB disruption as the most prevalent contributing factor. This may mainly be attributed to inflammation, metabolic dysfunction, cell senescence, oxidative/nitrosative stress and excitotoxicity. However, direct evidence showing that BBB disruption causes cognitive decline is scarce, and interestingly, manipulation of the BBB opening alone may exert beneficial or detrimental neurological effects. A broad overview of the present literature shows a close relationship between BBB disruption and cognitive decline, the risk factors of BBB disruption, as well as the cellular and molecular mechanisms underlying BBB disruption. Additionally, we discussed the possible causes leading to cognitive decline by BBB disruption and potential therapeutic strategies to prevent BBB disruption or enhance BBB repair. This review aims to foster more investigations on early diagnosis, effective therapeutics, and rapid restoration against BBB disruption, which would yield better cognitive outcomes in patients with dysregulated BBB function, although their causative relationship has not yet been completely established.
Collapse
Affiliation(s)
- Ji Che
- Department of Anesthesiology, Fudan University Shanghai Cancer Center, No.270 Dong'An Road, Xuhui District, Shanghai, 200032, P. R. China
| | - Yinying Sun
- Department of Anesthesiology, Fudan University Shanghai Cancer Center, No.270 Dong'An Road, Xuhui District, Shanghai, 200032, P. R. China
| | - Yixu Deng
- Department of Anesthesiology, Fudan University Shanghai Cancer Center, No.270 Dong'An Road, Xuhui District, Shanghai, 200032, P. R. China
| | - Jun Zhang
- Department of Anesthesiology, Fudan University Shanghai Cancer Center, No.270 Dong'An Road, Xuhui District, Shanghai, 200032, P. R. China.
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, P. R. China.
| |
Collapse
|
2
|
Pasella M, Pisano F, Cannas B, Fanni A, Cocco E, Frau J, Lai F, Mocci S, Littera R, Giglio SR. Decision trees to evaluate the risk of developing multiple sclerosis. Front Neuroinform 2023; 17:1248632. [PMID: 37649987 PMCID: PMC10465164 DOI: 10.3389/fninf.2023.1248632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 07/28/2023] [Indexed: 09/01/2023] Open
Abstract
Introduction Multiple sclerosis (MS) is a persistent neurological condition impacting the central nervous system (CNS). The precise cause of multiple sclerosis is still uncertain; however, it is thought to arise from a blend of genetic and environmental factors. MS diagnosis includes assessing medical history, conducting neurological exams, performing magnetic resonance imaging (MRI) scans, and analyzing cerebrospinal fluid. While there is currently no cure for MS, numerous treatments exist to address symptoms, decelerate disease progression, and enhance the quality of life for individuals with MS. Methods This paper introduces a novel machine learning (ML) algorithm utilizing decision trees to address a key objective: creating a predictive tool for assessing the likelihood of MS development. It achieves this by combining prevalent demographic risk factors, specifically gender, with crucial immunogenetic risk markers, such as the alleles responsible for human leukocyte antigen (HLA) class I molecules and the killer immunoglobulin-like receptors (KIR) genes responsible for natural killer lymphocyte receptors. Results The study included 619 healthy controls and 299 patients affected by MS, all of whom originated from Sardinia. The gender feature has been disregarded due to its substantial bias in influencing the classification outcomes. By solely considering immunogenetic risk markers, the algorithm demonstrates an ability to accurately identify 73.24% of MS patients and 66.07% of individuals without the disease. Discussion Given its notable performance, this system has the potential to support clinicians in monitoring the relatives of MS patients and identifying individuals who are at an increased risk of developing the disease.
Collapse
Affiliation(s)
- Manuela Pasella
- Department of Electrical and Electronic Engineering, University of Cagliari, Cagliari, Italy
| | - Fabio Pisano
- Department of Electrical and Electronic Engineering, University of Cagliari, Cagliari, Italy
| | - Barbara Cannas
- Department of Electrical and Electronic Engineering, University of Cagliari, Cagliari, Italy
| | - Alessandra Fanni
- Department of Electrical and Electronic Engineering, University of Cagliari, Cagliari, Italy
| | - Eleonora Cocco
- Department of Medical Science and Public Health, Centro Sclerosi Multipla, University of Cagliari, Cagliari, Italy
| | - Jessica Frau
- Department of Medical Science and Public Health, Centro Sclerosi Multipla, University of Cagliari, Cagliari, Italy
| | - Francesco Lai
- Unit of Oncology and Molecular Pathology, Department of Biomedical Sciences, University of Cagliari, Cagliari, Italy
| | - Stefano Mocci
- Medical Genetics, Department of Medical Sciences and Public Health, University of Cagliari, Cagliari, Italy
- Centre for Research University Services, University of Cagliari, Monserrato, Italy
| | - Roberto Littera
- AART-ODV (Association for the Advancement of Research on Transplantation), Cagliari, Italy
- Medical Genetics, R. Binaghi Hospital, ASSL Cagliari, ATS Sardegna, Cagliari, Italy
| | - Sabrina Rita Giglio
- Medical Genetics, Department of Medical Sciences and Public Health, University of Cagliari, Cagliari, Italy
- Centre for Research University Services, University of Cagliari, Monserrato, Italy
- AART-ODV (Association for the Advancement of Research on Transplantation), Cagliari, Italy
- Medical Genetics, R. Binaghi Hospital, ASSL Cagliari, ATS Sardegna, Cagliari, Italy
| |
Collapse
|
3
|
Fan M, Shi H, Yao H, Wang W, Zhang Y, Jiang C, Lin R. BMSCs Promote Differentiation of Enteric Neural Precursor Cells to Maintain Neuronal Homeostasis in Mice With Enteric Nerve Injury. Cell Mol Gastroenterol Hepatol 2022; 15:511-531. [PMID: 36343901 PMCID: PMC9880979 DOI: 10.1016/j.jcmgh.2022.10.018] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 10/26/2022] [Accepted: 10/26/2022] [Indexed: 11/06/2022]
Abstract
BACKGROUND & AIMS Our previous study showed that transplantation of bone marrow-derived mesenchymal stem cells (BMSCs) promoted functional enteric nerve regeneration in denervated mice but not through direct transdifferentiation. Homeostasis of the adult enteric nervous system (ENS) is maintained by enteric neural precursor cells (ENPCs). Whether ENPCs are a source of regenerated nerves in denervated mice remains unknown. METHODS Genetically engineered mice were used as recipients, and ENPCs were traced during enteric nerve regeneration. The mice were treated with benzalkonium chloride to establish a denervation model and then transplanted with BMSCs 3 days later. After 28 days, the gastric motility and ENS regeneration were analyzed. The interaction between BMSCs and ENPCs in vitro was further assessed. RESULTS Twenty-eight days after transplantation, gastric motility recovery (gastric emptying capacity, P < .01; gastric contractility, P < .01) and ENS regeneration (neurons, P < .01; glial cells, P < .001) were promoted in BMSCs transplantation groups compared with non-transplanted groups in denervated mice. More importantly, we found that ENPCs could differentiate into enteric neurons and glial cells in denervated mice after BMSCs transplantation, and the proportion of Nestin+/Ngfr+ cells differentiated into neurons was significantly higher than that of Nestin+ cells. A small number of BMSCs located in the myenteric plexus differentiated into glial cells. In vitro, glial cell-derived neurotrophic factor (GDNF) from BMSCs promotes the migration, proliferation, and differentiation of ENPCs. CONCLUSIONS In the case of enteric nerve injury, ENPCs can differentiate into enteric neurons and glial cells to promote ENS repair and gastric motility recovery after BMSCs transplantation. BMSCs expressing GDNF enhance the migration, proliferation, and differentiation of ENPCs.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Rong Lin
- Correspondence Address correspondence to: Rong Lin, MD, PhD, Department of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| |
Collapse
|
4
|
Appelt PA, Comella K, de Souza LAPS, Luvizutto GJ. Effect of stem cell treatment on functional recovery of spinocerebellar ataxia: systematic review and meta-analysis. CEREBELLUM & ATAXIAS 2021; 8:8. [PMID: 33632326 PMCID: PMC7905903 DOI: 10.1186/s40673-021-00130-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 02/11/2021] [Indexed: 12/17/2022]
Abstract
BACKGROUND Spinocerebellar ataxia is a hereditary neurodegenerative disease characterized by changes in balance, locomotion and motor coordination. Stem cell therapies are currently being investigated as an alternative to delay the evolution of the disease, and some experimental studies have investigated the effect of stem cell treatment on spinocerebellar ataxia. OBJECTIVES The aim of this review was to investigate whether the application of stem cells produced an effect on functional recovery in individuals with spinocerebellar ataxia. METHODS The studies included in this review investigated the efficacy and safety of a protocol for the application of mesenchymal stem cells extracted from umbilical cord and adipose tissue. Two studies used intrathecal route for application and one study used intravenous route. RESULTS Studies have shown clinical improvement in the scores of the ICARS (International Cooperative Ataxia Rating Scale), ADL (Activities of Daily Living Scale), BBS (Berg Balance Scale) and SARA (Scale for the Assessment and Rating of Ataxia), but lacked statistical significance. CONCLUSIONS There was low evidence for recommending stem cell therapy in individuals with spinocerebellar ataxia, and no statistical difference was observed for improving functional recovery of patients. Further studies are needed with different designs, largest sample sizes and placebo control, to fully understand anticipated outcomes of cellular therapy for spinocerebellar ataxia.
Collapse
Affiliation(s)
- Pablo Andrei Appelt
- Master student in Physical Therapy of Federal University of Triângulo Mineiro (UFTM), Uberaba, Minas Gerais, Brazil
| | - Kristin Comella
- Chief Scientific Officer of US Stem Cell Clinic, Weston, Florida, USA
| | | | - Gustavo José Luvizutto
- Professor of Applied Physical Therapy Department of Federal University of Triângulo Mineiro (UFTM), Uberaba, Minas Gerais, Brazil.
| |
Collapse
|
5
|
Beigi Boroujeni F, Pasbakhsh P, Mortezaee K, Pirhajati V, Alizadeh R, Aryanpour R, Madadi S, Ragerdi Kashani I. Intranasal delivery of SDF-1α-preconditioned bone marrow mesenchymal cells improves remyelination in the cuprizone-induced mouse model of multiple sclerosis. Cell Biol Int 2019; 44:499-511. [PMID: 31631484 DOI: 10.1002/cbin.11250] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Accepted: 10/15/2019] [Indexed: 12/13/2022]
Abstract
Multiple sclerosis (MS) is an inflammatory and demyelinating disease of the central nervous system (CNS) that leads to disability in middle-aged individuals. High rates of apoptosis and inappropriate homing are limitations for the application of stem cells in cell therapy. Preconditioning of bone marrow mesenchymal stem cells (BMSCs) with stromal cell-derived factor 1α (SDF-1α), also called C-X-C motif chemokine 12 (CXCL12), is an approach for improving the functional features of the cells. The aim of this study was to investigate the therapeutic efficacy of intranasal delivery of SDF-1α preconditioned BMSCs in the cuprizone-induced chronically demyelinated mice model. BMSCs were isolated, cultured, and preconditioned with SDF-1α. Then, intranasal delivery of the preconditioned cells was performed in the C57BL/6 mice receiving cuprizone for 12 weeks. Animals were killed at 30 days after cell delivery. SDF-1α preconditioning increased C-X-C chemokine receptor type 4 (CXCR4) expression on the surface of BMSCs, improved survival of the cells, and decreased their apoptosis in vitro. SDF-1α preconditioning also improved CXCL12 level within the brain, and enhanced spatial learning and memory (assessed by Morris water maze [MWM]), and myelination (assessed by Luxol fast blue [LFB] and transmission electron microscopy [TEM]). In addition, preconditioning of BMSCs with SDF-1α reduced the protein expressions of glial fibrillary acidic protein and ionized calcium-binding adapter molecule (Iba-1) and increased the expressions of oligodendrocyte lineage transcription factor-2 (Olig-2) and adenomatous polyposis coli (APC), evaluated by immunofluorescence. The results showed the efficacy of intranasal delivery of SDF-1α-preconditioned BMSCs for improving remyelination in the cuprizone model of MS.
Collapse
Affiliation(s)
- Fatemeh Beigi Boroujeni
- Department of Anatomy, Faculty of Medicine, Tehran University of Medical Science, Tehran, 1417653761, Iran
| | - Parichehr Pasbakhsh
- Department of Anatomy, Faculty of Medicine, Tehran University of Medical Science, Tehran, 1417653761, Iran
| | - Keywan Mortezaee
- Department of Anatomy, School of Medicine, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Vahid Pirhajati
- Neuroscience Research Center, Vice-Chancellor for Research and Technology, Iran University of Medical Science, Tehran, 1449614535, Iran
| | - Rafieh Alizadeh
- ENT and Head & Neck Research Center and Department, Hazrat Rasoul Akram Hospital, Tehran, 1445613131, Iran
| | - Roya Aryanpour
- Department of Anatomy, Faculty of Medicine, Yasuj University of Medical Sciences, Yasuj, 7591741417, Iran
| | - Soheila Madadi
- Department of Anatomy, Faculty of Medicine, Tehran University of Medical Science, Tehran, 1417653761, Iran
| | - Iraj Ragerdi Kashani
- Department of Anatomy, Faculty of Medicine, Tehran University of Medical Science, Tehran, 1417653761, Iran
| |
Collapse
|
6
|
Guryanov I, Naumenko E, Konnova S, Lagarkova M, Kiselev S, Fakhrullin R. Spatial manipulation of magnetically-responsive nanoparticle engineered human neuronal progenitor cells. NANOMEDICINE : NANOTECHNOLOGY, BIOLOGY, AND MEDICINE 2019; 20:102038. [PMID: 31220595 DOI: 10.1016/j.nano.2019.102038] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2019] [Revised: 04/18/2019] [Accepted: 06/05/2019] [Indexed: 02/07/2023]
Abstract
Here we report a detailed investigation of the interaction of neuronal progenitor cells and neurons with polyelectrolyte-stabilized magnetic iron oxide nanoparticles. Human neuronal progenitor and neurons were differentiated in vitro from fibroblast-derived induced pluripotent stem cells. The cytotoxic effects of poly(allylamine hydrochloride) were determined on human skin fibroblasts and neuronal progenitor cells. Immunocytochemical staining of lamins A/C and B in cells treated separately with poly(allylamine hydrochloride) and magnetic nanoparticles allowed to exclude these nuclear components as targets of toxic effects. We demonstrate that magnetic nanoparticles accumulated in cytoplasm and on the surface of neuronal progenitor cells neither interacted with the nuclear envelope nor penetrated into the nuclei of neuronal cells. The possibility of guidance of magnetically functionalized neuronal progenitor cells under magnetic field was demonstrated. Magnetization of progenitor cells using poly(allylaminehydrochloride)-stabilized magnetic nanoparticles allows for successful managing their in vitro localization in a monolayer.
Collapse
Affiliation(s)
- Ivan Guryanov
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Republic of Tatarstan, Russian Federation
| | - Ekaterina Naumenko
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Republic of Tatarstan, Russian Federation
| | - Svetlana Konnova
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Republic of Tatarstan, Russian Federation
| | - Maria Lagarkova
- Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow, Russian Federation; Scientific-Research Institute of Physical-Chemical Medicine, Moscow, Russian Federation
| | - Sergey Kiselev
- Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow, Russian Federation
| | - Rawil Fakhrullin
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Republic of Tatarstan, Russian Federation.
| |
Collapse
|
7
|
Ge S, Jiang X, Paul D, Song L, Wang X, Pachter JS. Human ES-derived MSCs correct TNF-α-mediated alterations in a blood-brain barrier model. Fluids Barriers CNS 2019; 16:18. [PMID: 31256757 PMCID: PMC6600885 DOI: 10.1186/s12987-019-0138-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2018] [Accepted: 05/27/2019] [Indexed: 02/07/2023] Open
Abstract
Background Immune cell trafficking into the CNS is considered to contribute to pathogenesis in MS and its animal model, EAE. Disruption of the blood–brain barrier (BBB) is a hallmark of these pathologies and a potential target of therapeutics. Human embryonic stem cell-derived mesenchymal stem/stromal cells (hES-MSCs) have shown superior therapeutic efficacy, compared to bone marrow-derived MSCs, in reducing clinical symptoms and neuropathology of EAE. However, it has not yet been reported whether hES-MSCs inhibit and/or repair the BBB damage associated with neuroinflammation that accompanies EAE. Methods BMECs were cultured on Transwell inserts as a BBB model for all the experiments. Disruption of BBB models was induced by TNF-α, a pro-inflammatory cytokine that is a hallmark of acute and chronic neuroinflammation. Results Results indicated that hES-MSCs reversed the TNF-α-induced changes in tight junction proteins, permeability, transendothelial electrical resistance, and expression of adhesion molecules, especially when these cells were placed in direct contact with BMEC. Conclusions hES-MSCs and/or products derived from them could potentially serve as novel therapeutics to repair BBB disturbances in MS. Electronic supplementary material The online version of this article (10.1186/s12987-019-0138-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Shujun Ge
- Blood-Brain Barrier Laboratory, Dept. of Immunology, UConn Health, 263 Farmington Ave, Farmington, CT, 06030, USA.
| | - Xi Jiang
- Blood-Brain Barrier Laboratory, Dept. of Immunology, UConn Health, 263 Farmington Ave, Farmington, CT, 06030, USA.,Perelman School of Medicine at University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Debayon Paul
- Blood-Brain Barrier Laboratory, Dept. of Immunology, UConn Health, 263 Farmington Ave, Farmington, CT, 06030, USA
| | - Li Song
- ImStem Biotechnology, Inc., 400 Farmington Ave., Farmington, CT, 06030, USA
| | - Xiaofang Wang
- ImStem Biotechnology, Inc., 400 Farmington Ave., Farmington, CT, 06030, USA
| | - Joel S Pachter
- Blood-Brain Barrier Laboratory, Dept. of Immunology, UConn Health, 263 Farmington Ave, Farmington, CT, 06030, USA
| |
Collapse
|
8
|
Pinheiro LL, de Lima AR, Martins DM, de Oliveira EHC, Souza MPC, de Carvalho Miranda CMF, Baleeiro Beltrão-Braga PC, Russo FB, Pignatari GC, da Silva Filho E, Branco É. Mesenchymal stem cells in dogs with demyelinating leukoencephalitis as an experimental model of multiple sclerosis. Heliyon 2019; 5:e01857. [PMID: 31198874 PMCID: PMC6556833 DOI: 10.1016/j.heliyon.2019.e01857] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Revised: 04/07/2019] [Accepted: 05/28/2019] [Indexed: 12/13/2022] Open
Abstract
Researchers have used dogs with neurological sequelae caused by distemper as an experimental model for multiple sclerosis, owing to the similarities of the neuropathological changes between distemper virus-induced demyelinating leukoencephalitis and multiple sclerosis in humans. However, little is known about the role of mesenchymal stem cells in treating such clinical conditions. Therefore, we investigated the use of mesenchymal stem cells in four dogs with neurological lesions caused by the distemper virus. During the first year after cellular therapy, the animals did not demonstrate significant changes in their locomotive abilities. However, the intense (Grade V) myoclonus in three animals was reduced to a moderate (Grade IV) level. At one year after the mesenchymal stem cell infusions, three animals regained functional ambulation (Grade I), and all four dogs started to move independently (Grades I and II). In two animals, the myoclonic severity had become mild (Grade III). It was concluded that the use of mesenchymal stem cells could improve the quality of life of dogs with neurological sequelae caused by canine distemper, thus presenting hope for similar positive results in human patients with multiple sclerosis.
Collapse
Affiliation(s)
- Luane Lopes Pinheiro
- Institute of Animal Health and Production, Faculty of Veterinary Medicine, Federal Rural University of Amazonia, Belém, PA, Brazil
| | - Ana Rita de Lima
- Institute of Animal Health and Production, Faculty of Veterinary Medicine, Federal Rural University of Amazonia, Belém, PA, Brazil
| | - Danielli Martinelli Martins
- Institute of Animal Health and Production, Faculty of Veterinary Medicine, Federal Rural University of Amazonia, Belém, PA, Brazil
| | | | - Michel Platini C Souza
- Tissue Culture and Cytogenetics Laboratory of the Environment Sector, Instituto Evandro Chagas, Ananindeua, PA, Brazil
| | | | | | - Fabiele Baldino Russo
- Institute of Biomedical Sciences, Department of Microbiology, University of São Paulo, São Paulo, SP, Brazil
| | | | - Ednaldo da Silva Filho
- Institute of Animal Health and Production, Faculty of Veterinary Medicine, Federal Rural University of Amazonia, Belém, PA, Brazil
| | - Érika Branco
- Institute of Animal Health and Production, Faculty of Veterinary Medicine, Federal Rural University of Amazonia, Belém, PA, Brazil
| |
Collapse
|
9
|
Wilson A, Webster A, Genever P. Nomenclature and heterogeneity: consequences for the use of mesenchymal stem cells in regenerative medicine. Regen Med 2019; 14:595-611. [PMID: 31115266 PMCID: PMC7132560 DOI: 10.2217/rme-2018-0145] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Mesenchymal stem cells (MSCs) are in development for many clinical indications, based both on ‘stem’ properties (tissue repair or regeneration) and on signaling repertoire (immunomodulatory and anti-inflammatory effects). Potential conflation of MSC properties with those of tissue-derived stromal cells presents difficulties in comparing study outcomes and represents a source of confusion in cell therapy development. Cultured MSCs demonstrate significant heterogeneity in clonogenicity and multi-lineage differentiation potential. However in vivo biology of MSCs includes native functions unrelated to regenerative medicine applications, so do nomenclature and heterogeneity matter? In this perspective we examine some consequences of the nomenclature debate and heterogeneity of MSCs. Regulatory expectations are considered, emphasizing that product development should prioritize detailed characterization of therapeutic cell populations for specific indications.
Collapse
Affiliation(s)
- Alison Wilson
- Department of Biology, University of York, York YO10 5DD, UK
| | - Andrew Webster
- Science & Technology Studies Unit, Department of Sociology, University of York, York YO10 5DD, UK
| | - Paul Genever
- Department of Biology, University of York, York YO10 5DD, UK
| |
Collapse
|
10
|
Yousefi F, Lavi Arab F, Saeidi K, Amiri H, Mahmoudi M. Various strategies to improve efficacy of stem cell transplantation in multiple sclerosis: Focus on mesenchymal stem cells and neuroprotection. J Neuroimmunol 2018; 328:20-34. [PMID: 30557687 DOI: 10.1016/j.jneuroim.2018.11.015] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2018] [Accepted: 11/30/2018] [Indexed: 02/09/2023]
Abstract
Multiple sclerosis (MS) is an inflammatory demyelinating disease of the central nervous system (CNS) which predominantly affect young adults and undergo heavy socioeconomic burdens. Conventional therapeutic modalities for MS mostly downregulate aggressive immune responses and are almost insufficient for management of progressive course of the disease. Mesenchymal stem cells (MSCs), due to both immunomodulatory and neuroprotective properties have been known as practical cells for treatment of neurodegenerative diseases like MS. However, clinical translation of MSCs is associated with some limitations such as short-life engraftment duration, little in vivo trans-differentiation and restricted accessibility into damaged sites. Therefore, laboratory manipulation of MSCs can improve efficacy of MSCs transplantation in MS patients. In this review, we discuss several novel approaches, which can potentially enhance MSCs capabilities for treating MS.
Collapse
Affiliation(s)
- Forouzan Yousefi
- Immunology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Fahimeh Lavi Arab
- Immunology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Kolsoum Saeidi
- Physiology Research Center, Institute of Basic and Clinical Physiology Sciences, Kerman University of Medical Sciences, Kerman, Iran
| | - Houshang Amiri
- Neurology Research Center, Kerman University of Medical Sciences, Kerman, Iran; Department of Radiology and Nuclear Medicine, VU University Medical Center, Amsterdam, The Netherlands
| | - Mahmoud Mahmoudi
- Immunology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Immunology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
11
|
Sargent A, Shano G, Karl M, Garrison E, Miller C, Miller RH. Transcriptional Profiling of Mesenchymal Stem Cells Identifies Distinct Neuroimmune Pathways Altered by CNS Disease. Int J Stem Cells 2018; 11:48-60. [PMID: 29699382 PMCID: PMC5984058 DOI: 10.15283/ijsc17062] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Revised: 01/25/2018] [Accepted: 02/26/2018] [Indexed: 02/06/2023] Open
Abstract
Background and Objectives Bone marrow mesenchymal stem cells (BM-MSCs) are an attractive cell based therapy in the treatment of CNS demyelinating diseases such as multiple sclerosis (MS). Preclinical studies demonstrate that BM-MSCs can effectively reduce clinical burden and enhance recovery in experimental autoimmune encephalomyelitis (EAE), a commonly used animal model of MS. However, a number of recent clinical trials have not shown significant functional benefit following BM-MSC infusion into MS patients. One possibility for the discrepancy between animal and human studies is the source of the cells, as recent studies suggest BM-MSCs from MS patients or animals with EAE lack reparative efficacy compared to naïve cells. We sought to define important transcriptional and functional differences between diseased and naïve MSCs. Methods and Results We utilized RNA Sequencing (RNA-Seq) to assess changes in gene expression between BM-MSCs derived from EAE animals and those derived from healthy controls. We show that EAE alters the expression of a large number of genes in BM-MSCs and changes in gene expression are more pronounced in chronic versus acute disease. Bioinformatic analysis revealed extensive perturbations in BM-MSCs in pathways related to inflammation and the regulation of neural cell development. These changes suggest that signals from EAE derived BM-MSCs inhibit rather than enhance remyelination, and in-vitro studies showed that conditioned medium from EAE MSCs fails to support the development of mature oligodendrocytes, the myelinating cells of the CNS. Conclusions These data provide insight into the failure of autologous BM-MSCs to promote recovery in MS and support the concept of utilizing non-autologous MSCs in future clinical trials.
Collapse
Affiliation(s)
- Alex Sargent
- Department of Neurosciences, Case Western Reserve University School of Medicine, Cleveland, USA
| | - Genevieve Shano
- Department of Neurosciences, Case Western Reserve University School of Medicine, Cleveland, USA
| | - Molly Karl
- Department of Anatomy and Regenerative Biology, George Washington University School of Medicine and Health Sciences, Washington DC, USA
| | - Eric Garrison
- Department of Anatomy and Regenerative Biology, George Washington University School of Medicine and Health Sciences, Washington DC, USA
| | - Christian Miller
- Department of Pharmacology, George Washington University School of Medicine and Health Sciences, Washington DC, USA
| | - Robert H Miller
- Department of Neurosciences, Case Western Reserve University School of Medicine, Cleveland, USA.,Department of Anatomy and Regenerative Biology, George Washington University School of Medicine and Health Sciences, Washington DC, USA
| |
Collapse
|
12
|
Planchon SM, Lingas KT, Reese Koç J, Hooper BM, Maitra B, Fox RM, Imrey PB, Drake KM, Aldred MA, Lazarus HM, Cohen JA. Feasibility of mesenchymal stem cell culture expansion for a phase I clinical trial in multiple sclerosis. Mult Scler J Exp Transl Clin 2018; 4:2055217318765288. [PMID: 29623216 PMCID: PMC5881997 DOI: 10.1177/2055217318765288] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Accepted: 02/22/2018] [Indexed: 12/17/2022] Open
Abstract
Background Multiple sclerosis is an inflammatory, neurodegenerative disease of the central nervous system for which therapeutic mesenchymal stem cell transplantation is under study. Published experience of culture-expanding multiple sclerosis patients' mesenchymal stem cells for clinical trials is limited. Objective To determine the feasibility of culture-expanding multiple sclerosis patients' mesenchymal stem cells for clinical use. Methods In a phase I trial, autologous, bone marrow-derived mesenchymal stem cells were isolated from 25 trial participants with multiple sclerosis and eight matched controls, and culture-expanded to a target single dose of 1-2 × 106 cells/kg. Viability, cell product identity and sterility were assessed prior to infusion. Cytogenetic stability was assessed by single nucleotide polymorphism analysis of mesenchymal stem cells from 18 multiple sclerosis patients and five controls. Results One patient failed screening. Mesenchymal stem cell culture expansion was successful for 24 of 25 multiple sclerosis patients and six of eight controls. The target dose was achieved in 16-62 days, requiring two to three cell passages. Growth rate and culture success did not correlate with demographic or multiple sclerosis disease characteristics. Cytogenetic studies identified changes on one chromosome of one control (4.3%) after extended time in culture. Conclusion Culture expansion of mesenchymal stem cells from multiple sclerosis patients as donors is feasible. However, culture time should be minimized for cell products designated for therapeutic administration.
Collapse
Affiliation(s)
| | - Karen T Lingas
- Case Comprehensive Cancer Center and National Center for Regenerative Medicine, Case Western Reserve University and Seidman Cancer Center, USA
| | - Jane Reese Koç
- Case Comprehensive Cancer Center and National Center for Regenerative Medicine, Case Western Reserve University and Seidman Cancer Center, USA
| | - Brittney M Hooper
- Case Comprehensive Cancer Center and National Center for Regenerative Medicine, Case Western Reserve University and Seidman Cancer Center, USA
| | - Basabi Maitra
- Case Comprehensive Cancer Center and National Center for Regenerative Medicine, Case Western Reserve University and Seidman Cancer Center, USA
| | - Robert M Fox
- Case Comprehensive Cancer Center and National Center for Regenerative Medicine, Case Western Reserve University and Seidman Cancer Center, USA
| | - Peter B Imrey
- Mellen Center, Neurological Institute, USA.,Quantitative Health Sciences, Lerner Research Institute, USA
| | - Kylie M Drake
- Genomic Medicine Institute, Lerner Research Institute, USA
| | | | - Hillard M Lazarus
- Case Comprehensive Cancer Center and National Center for Regenerative Medicine, Case Western Reserve University and Seidman Cancer Center, USA
| | | |
Collapse
|
13
|
Strategies to enhance paracrine potency of transplanted mesenchymal stem cells in intractable neonatal disorders. Pediatr Res 2018; 83:214-222. [PMID: 28972960 DOI: 10.1038/pr.2017.249] [Citation(s) in RCA: 83] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Accepted: 09/21/2017] [Indexed: 12/12/2022]
Abstract
Mesenchymal stem cell (MSC) transplantation represents the next breakthrough in the treatment of currently intractable and devastating neonatal disorders with complex multifactorial etiologies, including bronchopulmonary dysplasia, hypoxic ischemic encephalopathy, and intraventricular hemorrhage. Absent engraftment and direct differentiation of transplanted MSCs, and the "hit-and-run" therapeutic effects of these MSCs suggest that their pleiotropic protection might be attributable to paracrine activity via the secretion of various biologic factors rather than to regenerative activity. The transplanted MSCs, therefore, exert their therapeutic effects not by acting as "stem cells," but rather by acting as "paracrine factors factory." The MSCs sense the microenvironment of the injury site and secrete various paracrine factors that serve several reparative functions, including antiapoptotic, anti-inflammatory, antioxidative, antifibrotic, and/or antibacterial effects in response to environmental cues to enhance regeneration of the damaged tissue. Therefore, the therapeutic efficacy of MSCs might be dependent on their paracrine potency. In this review, we focus on recent investigations that elucidate the specifically regulated paracrine mechanisms of MSCs by injury type and discuss potential strategies to enhance paracrine potency, and thus therapeutic efficacy, of transplanted MSCs, including determining the appropriate source and preconditioning strategy for MSCs and the route and timing of their administration.
Collapse
|
14
|
Doussau F, Dupont JL, Neel D, Schneider A, Poulain B, Bossu JL. Organotypic cultures of cerebellar slices as a model to investigate demyelinating disorders. Expert Opin Drug Discov 2017; 12:1011-1022. [PMID: 28712329 DOI: 10.1080/17460441.2017.1356285] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
INTRODUCTION Demyelinating disorders, characterized by a chronic or episodic destruction of the myelin sheath, are a leading cause of neurological disability in young adults in western countries. Studying the complex mechanisms involved in axon myelination, demyelination and remyelination requires an experimental model preserving the neuronal networks and neuro-glial interactions. Organotypic cerebellar slice cultures appear to be the best alternative to in vivo experiments and the most commonly used model for investigating etiology or novel therapeutic strategies in multiple sclerosis. Areas covered: This review gives an overview of slice culture techniques and focuses on the use of organotypic cerebellar slice cultures on semi-permeable membranes for studying many aspects of axon myelination and cerebellar functions. Expert opinion: Cerebellar slice cultures are probably the easiest way to faithfully reproduce all stages of axon myelination/demyelination/remyelination in a three-dimensional neuronal network. However, in the cerebellum, neurological disability in multiple sclerosis also results from channelopathies which induce changes in Purkinje cell excitability. Cerebellar cultures offer easy access to electrophysiological approaches which are largely untapped and we believe that these cultures might be of great interest when studying changes in neuronal excitability, axonal conduction or synaptic properties that likely occur during multiple sclerosis.
Collapse
Affiliation(s)
- Frédéric Doussau
- a Institut des Neurosciences Cellulaires et Intégratives, CNRS UPR 3212 , Université de Strasbourg , Strasbourg , France
| | - Jean-Luc Dupont
- a Institut des Neurosciences Cellulaires et Intégratives, CNRS UPR 3212 , Université de Strasbourg , Strasbourg , France
| | - Dorine Neel
- a Institut des Neurosciences Cellulaires et Intégratives, CNRS UPR 3212 , Université de Strasbourg , Strasbourg , France
| | - Aline Schneider
- a Institut des Neurosciences Cellulaires et Intégratives, CNRS UPR 3212 , Université de Strasbourg , Strasbourg , France
| | - Bernard Poulain
- a Institut des Neurosciences Cellulaires et Intégratives, CNRS UPR 3212 , Université de Strasbourg , Strasbourg , France
| | - Jean Louis Bossu
- a Institut des Neurosciences Cellulaires et Intégratives, CNRS UPR 3212 , Université de Strasbourg , Strasbourg , France
| |
Collapse
|
15
|
Robinson AM, Rahman AA, Miller S, Stavely R, Sakkal S, Nurgali K. The neuroprotective effects of human bone marrow mesenchymal stem cells are dose-dependent in TNBS colitis. Stem Cell Res Ther 2017; 8:87. [PMID: 28420434 PMCID: PMC5395912 DOI: 10.1186/s13287-017-0540-3] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Revised: 03/14/2017] [Accepted: 03/17/2017] [Indexed: 02/08/2023] Open
Abstract
Background The incidence of inflammatory bowel diseases (IBD) is increasing worldwide with patients experiencing severe impacts on their quality of life. It is well accepted that intestinal inflammation associates with extensive damage to the enteric nervous system (ENS), which intrinsically innervates the gastrointestinal tract and regulates all gut functions. Hence, treatments targeting the enteric neurons are plausible for alleviating IBD and associated complications. Mesenchymal stem cells (MSCs) are gaining wide recognition as a potential therapy for many diseases due to their immunomodulatory and neuroprotective qualities. However, there is a large discrepancy regarding appropriate cell doses used in both clinical trials and experimental models of disease. We have previously demonstrated that human bone marrow MSCs exhibit neuroprotective and anti-inflammatory effects in a guinea-pig model of 2,4,6-trinitrobenzene-sulfonate (TNBS)-induced colitis; but an investigation into whether this response is dose-dependent has not been conducted. Methods Hartley guinea-pigs were administered TNBS or sham treatment intra-rectally. Animals in the MSC treatment groups received either 1 × 105, 1 × 106 or 3 × 106 MSCs by enema 3 hours after induction of colitis. Colon tissues were collected 72 hours after TNBS administration to assess the effects of MSC treatments on the level of inflammation and damage to the ENS by immunohistochemical and histological analyses. Results MSCs administered at a low dose, 1 × 105 cells, had little or no effect on the level of immune cell infiltrate and damage to the colonic innervation was similar to the TNBS group. Treatment with 1 × 106 MSCs decreased the quantity of immune infiltrate and damage to nerve processes in the colonic wall, prevented myenteric neuronal loss and changes in neuronal subpopulations. Treatment with 3 × 106 MSCs had similar effects to 1 × 106 MSC treatments. Conclusions The neuroprotective effect of MSCs in TNBS colitis is dose-dependent. Increasing doses higher than 1 × 106 MSCs demonstrates no further therapeutic benefit than 1 × 106 MSCs in preventing enteric neuropathy associated with intestinal inflammation. Furthermore, we have established an optimal dose of MSCs for future studies investigating intestinal inflammation, the enteric neurons and stem cell therapy in this model.
Collapse
Affiliation(s)
- Ainsley M Robinson
- College of Health and Biomedicine, Victoria University, Melbourne, VIC, Australia
| | - Ahmed A Rahman
- College of Health and Biomedicine, Victoria University, Melbourne, VIC, Australia
| | - Sarah Miller
- College of Health and Biomedicine, Victoria University, Melbourne, VIC, Australia
| | - Rhian Stavely
- College of Health and Biomedicine, Victoria University, Melbourne, VIC, Australia
| | - Samy Sakkal
- College of Health and Biomedicine, Victoria University, Melbourne, VIC, Australia
| | - Kulmira Nurgali
- College of Health and Biomedicine, Victoria University, Melbourne, VIC, Australia.
| |
Collapse
|
16
|
Overcoming the bottleneck of platelet lysate supply in large-scale clinical expansion of adipose-derived stem cells: A comparison of fresh versus three types of platelet lysates from outdated buffy coat–derived platelet concentrates. Cytotherapy 2017; 19:222-234. [DOI: 10.1016/j.jcyt.2016.10.014] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Revised: 09/30/2016] [Accepted: 10/26/2016] [Indexed: 12/23/2022]
|
17
|
Hong GH, Kwon HS, Lee KY, Ha EH, Moon KA, Kim SW, Oh W, Kim TB, Moon HB, Cho YS. hMSCs suppress neutrophil-dominant airway inflammation in a murine model of asthma. Exp Mol Med 2017; 49:e288. [PMID: 28127050 PMCID: PMC5291839 DOI: 10.1038/emm.2016.135] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Revised: 09/07/2016] [Accepted: 09/20/2016] [Indexed: 12/13/2022] Open
Abstract
Although chronic eosinophilic inflammation is a common feature in patients with asthma, some patients have neutrophil-dominant inflammation, which is known to be associated with severe asthma.Human mesenchymal stem cells (hMSCs) have shown promise in treating various refractory immunological diseases. Thus, hMSCs may represent an alternative therapeutic option for asthma patients with neutrophil-dominant inflammation, in whom current treatments are ineffective. BALB/c mice exposed to ovalbumin and polyinosinic:polycytidylic acid (Poly I:C) to induce neutrophilic airway inflammation were systemically treated with hMSCs to examine whether the hMSCs can modulate neutrophilic airway inflammation. In addition, cytokine production was evaluated in co-cultures of hMSCs with either anti-CD3/CD28-stimulated peripheral blood mononuclear cells (PBMCs) obtained from asthmatic patients or cells of the human bronchial epithelial cell line BEAS-2B to assess the response to hMSC treatment. The total number of immune cells in bronchoalveolar lavage fluid (BALF) showed a dramatic decrease in hMSC-treated asthmatic mice, and, in particular, neutrophilic infiltration was significantly attenuated. This phenomenon was accompanied by reduced CXCL15 production in the BALF. BEAS-2B cells co-cultured with hMSCs showed reduced secretion of IL-8. Moreover, decreased secretion of IL-4, IL-13 and IFN-γ was observed when human PBMCs were cultured with hMSCs, whereas IL-10 production was greatly enhanced. Our data imply that hMSCs may have a role in reducing neutrophilic airway inflammation by downregulating neutrophil chemokine production and modulating T-cell responses.
Collapse
Affiliation(s)
- Gyong Hwa Hong
- Division of Allergy and Clinical Immunology, Department of Internal Medicine, ASAN Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Hyouk-Soo Kwon
- Division of Allergy and Clinical Immunology, Department of Internal Medicine, ASAN Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Kyoung Young Lee
- Division of Allergy and Clinical Immunology, Department of Internal Medicine, ASAN Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Eun Hee Ha
- Division of Allergy and Clinical Immunology, Department of Internal Medicine, ASAN Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Keun-Ai Moon
- Division of Allergy and Clinical Immunology, Department of Internal Medicine, ASAN Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Seong Who Kim
- Department of Biochemistry and Molecular Biology, ASAN Medical Center, University of Ulsan Collage of Medicine, Seoul, Korea
| | - Wonil Oh
- Biomedical Research Institute, MEDIPOST Co. Ltd, Gyeonggi-do, Korea
| | - Tae-Bum Kim
- Division of Allergy and Clinical Immunology, Department of Internal Medicine, ASAN Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Hee-Bom Moon
- Division of Allergy and Clinical Immunology, Department of Internal Medicine, ASAN Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - You Sook Cho
- Division of Allergy and Clinical Immunology, Department of Internal Medicine, ASAN Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| |
Collapse
|
18
|
Volpe G, Bernstock JD, Peruzzotti-Jametti L, Pluchino S. Modulation of host immune responses following non-hematopoietic stem cell transplantation: Translational implications in progressive multiple sclerosis. J Neuroimmunol 2016; 331:11-27. [PMID: 28034466 DOI: 10.1016/j.jneuroim.2016.12.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Revised: 12/05/2016] [Accepted: 12/12/2016] [Indexed: 12/12/2022]
Abstract
There exists an urgent need for effective treatments for those patients suffering from chronic/progressive multiple sclerosis (MS). Accordingly, it has become readily apparent that different classes of stem cell-based therapies must be explored at both the basic science and clinical levels. Herein, we provide an overview of the basic mechanisms underlying the pre-clinical benefits of exogenously delivered non-hematopoietic stem cells (nHSCs) in animal models of MS. Further, we highlight a number of early clinical trials in which nHSCs have been used to treat MS. Finally, we identify a series of challenges that must be met and ultimately overcome if such promising therapeutics are to be advanced from the bench to the bedside.
Collapse
Affiliation(s)
- Giulio Volpe
- Department of Clinical Neurosciences, John van Geest Centre for Brain Repair, Wellcome Trust-MRC Stem Cell Institute, NIHR Biomedical Research Centre, University of Cambridge, Cambridge, UK; University of Cambridge, Clifford Allbutt Building - Cambridge Biosciences Campus, Hills Road, CB2 0AH Cambridge, UK.
| | - Joshua D Bernstock
- Department of Clinical Neurosciences, John van Geest Centre for Brain Repair, Wellcome Trust-MRC Stem Cell Institute, NIHR Biomedical Research Centre, University of Cambridge, Cambridge, UK; Stroke Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health (NINDS/NIH), Bethesda, MD, USA.
| | - Luca Peruzzotti-Jametti
- Department of Clinical Neurosciences, John van Geest Centre for Brain Repair, Wellcome Trust-MRC Stem Cell Institute, NIHR Biomedical Research Centre, University of Cambridge, Cambridge, UK; University of Cambridge, Clifford Allbutt Building - Cambridge Biosciences Campus, Hills Road, CB2 0AH Cambridge, UK.
| | - Stefano Pluchino
- Department of Clinical Neurosciences, John van Geest Centre for Brain Repair, Wellcome Trust-MRC Stem Cell Institute, NIHR Biomedical Research Centre, University of Cambridge, Cambridge, UK.
| |
Collapse
|
19
|
Yuan J, Yu JX. Gender difference in the neuroprotective effect of rat bone marrow mesenchymal cells against hypoxia-induced apoptosis of retinal ganglion cells. Neural Regen Res 2016; 11:846-53. [PMID: 27335573 PMCID: PMC4904480 DOI: 10.4103/1673-5374.182764] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Bone marrow mesenchymal stem cells can reduce retinal ganglion cell death and effectively prevent vision loss. Previously, we found that during differentiation, female rhesus monkey bone marrow mesenchymal stem cells acquire a higher neurogenic potential compared with male rhesus monkey bone marrow mesenchymal stem cells. This suggests that female bone marrow mesenchymal stem cells have a stronger neuroprotective effect than male bone marrow mesenchymal stem cells. Here, we first isolated and cultured bone marrow mesenchymal stem cells from female and male rats by density gradient centrifugation. Retinal tissue from newborn rats was prepared by enzymatic digestion to obtain primary retinal ganglion cells. Using the transwell system, retinal ganglion cells were co-cultured with bone marrow mesenchymal stem cells under hypoxia. Cell apoptosis was detected by flow cytometry and caspase-3 activity assay. We found a marked increase in apoptotic rate and caspase-3 activity of retinal ganglion cells after 24 hours of hypoxia compared with normoxia. Moreover, apoptotic rate and caspase-3 activity of retinal ganglion cells significantly decreased with both female and male bone marrow mesenchymal stem cell co-culture under hypoxia compared with culture alone, with more significant effects from female bone marrow mesenchymal stem cells. Our results indicate that bone marrow mesenchymal stem cells exert a neuroprotective effect against hypoxia-induced apoptosis of retinal ganglion cells, and also that female cells have greater neuroprotective ability compared with male cells.
Collapse
Affiliation(s)
- Jing Yuan
- Eye Center, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China
| | - Jian-Xiong Yu
- Department of Gastrointestinal Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China
| |
Collapse
|
20
|
Bravo B, Gallego MI, Flores AI, Bornstein R, Puente-Bedia A, Hernández J, de la Torre P, García-Zaragoza E, Perez-Tavarez R, Grande J, Ballester A, Ballester S. Restrained Th17 response and myeloid cell infiltration into the central nervous system by human decidua-derived mesenchymal stem cells during experimental autoimmune encephalomyelitis. Stem Cell Res Ther 2016; 7:43. [PMID: 26987803 PMCID: PMC4797118 DOI: 10.1186/s13287-016-0304-5] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Revised: 02/29/2016] [Accepted: 03/02/2016] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Multiple sclerosis is a widespread inflammatory demyelinating disease. Several immunomodulatory therapies are available, including interferon-β, glatiramer acetate, natalizumab, fingolimod, and mitoxantrone. Although useful to delay disease progression, they do not provide a definitive cure and are associated with some undesirable side-effects. Accordingly, the search for new therapeutic methods constitutes an active investigation field. The use of mesenchymal stem cells (MSCs) to modify the disease course is currently the subject of intense interest. Decidua-derived MSCs (DMSCs) are a cell population obtained from human placental extraembryonic membranes able to differentiate into the three germ layers. This study explores the therapeutic potential of DMSCs. METHODS We used the experimental autoimmune encephalomyelitis (EAE) animal model to evaluate the effect of DMSCs on clinical signs of the disease and on the presence of inflammatory infiltrates in the central nervous system. We also compared the inflammatory profile of spleen T cells from DMSC-treated mice with that of EAE control animals, and the influence of DMSCs on the in vitro definition of the Th17 phenotype. Furthermore, we analyzed the effects on the presence of some critical cell types in central nervous system infiltrates. RESULTS Preventive intraperitoneal injection of DMSCs resulted in a significant delay of external signs of EAE. In addition, treatment of animals already presenting with moderate symptoms resulted in mild EAE with reduced disease scores. Besides decreased inflammatory infiltration, diminished percentages of CD4(+)IL17(+), CD11b(+)Ly6G(+) and CD11b(+)Ly6C(+) cells were found in infiltrates of treated animals. Early immune response was mitigated, with spleen cells of DMSC-treated mice displaying low proliferative response to antigen, decreased production of interleukin (IL)-17, and increased production of the anti-inflammatory cytokines IL-4 and IL-10. Moreover, lower RORγT and higher GATA-3 expression levels were detected in DMSC-treated mice. DMSCs also showed a detrimental influence on the in vitro definition of the Th17 phenotype. CONCLUSIONS DMSCs modulated the clinical course of EAE, modified the frequency and cell composition of the central nervous system infiltrates during the disease, and mediated an impairment of Th17 phenotype establishment in favor of the Th2 subtype. These results suggest that DMSCs might provide a new cell-based therapy for the control of multiple sclerosis.
Collapse
Affiliation(s)
- Beatriz Bravo
- />Instituto de Salud Carlos III, Unidad Funcional de Investigación en Enfermedades Crónicas, Laboratory of Gene Regulation, Carretera de Majadahonda-Pozuelo Km 2, 28220 Madrid, Spain
| | - Marta I. Gallego
- />Instituto de Salud Carlos III, Unidad Funcional de Investigación en Enfermedades Crónicas, Laboratory of Mammary Gland Pathology, Carretera de Majadahonda-Pozuelo Km 2, 28220 Madrid, Spain
| | - Ana I. Flores
- />Grupo de Medicina Regenerativa, Instituto de Investigación Hospital 12 de Octubre, Avda. Córdoba s/n, 28041 Madrid, Spain
| | - Rafael Bornstein
- />Hospital Central de Cruz Roja, Servicio de Hematología y Hemoterapia, Avenida de Reina Victoria 24, 28003 Madrid, Spain
| | - Alba Puente-Bedia
- />Instituto de Salud Carlos III, Unidad Funcional de Investigación en Enfermedades Crónicas, Laboratory of Gene Regulation, Carretera de Majadahonda-Pozuelo Km 2, 28220 Madrid, Spain
| | - Javier Hernández
- />Instituto de Salud Carlos III, Unidad Funcional de Investigación en Enfermedades Crónicas, Laboratory of Gene Regulation, Carretera de Majadahonda-Pozuelo Km 2, 28220 Madrid, Spain
| | - Paz de la Torre
- />Grupo de Medicina Regenerativa, Instituto de Investigación Hospital 12 de Octubre, Avda. Córdoba s/n, 28041 Madrid, Spain
| | - Elena García-Zaragoza
- />Instituto de Salud Carlos III, Unidad Funcional de Investigación en Enfermedades Crónicas, Laboratory of Mammary Gland Pathology, Carretera de Majadahonda-Pozuelo Km 2, 28220 Madrid, Spain
| | - Raquel Perez-Tavarez
- />Instituto de Salud Carlos III, Unidad Funcional de Investigación en Enfermedades Crónicas, Histology Core Unit, Carretera de Majadahonda-Pozuelo Km 2, 28220 Madrid, Spain
| | - Jesús Grande
- />Grupo de Medicina Regenerativa, Instituto de Investigación Hospital 12 de Octubre, Avda. Córdoba s/n, 28041 Madrid, Spain
| | - Alicia Ballester
- />Instituto de Salud Carlos III, Unidad Funcional de Investigación en Enfermedades Crónicas, Laboratory of Gene Regulation, Carretera de Majadahonda-Pozuelo Km 2, 28220 Madrid, Spain
| | - Sara Ballester
- />Instituto de Salud Carlos III, Unidad Funcional de Investigación en Enfermedades Crónicas, Laboratory of Gene Regulation, Carretera de Majadahonda-Pozuelo Km 2, 28220 Madrid, Spain
| |
Collapse
|
21
|
Meamar R, Nematollahi S, Dehghani L, Mirmosayyeb O, Shayegannejad V, Basiri K, Tanhaei AP. The role of stem cell therapy in multiple sclerosis: An overview of the current status of the clinical studies. Adv Biomed Res 2016; 5:46. [PMID: 27110543 PMCID: PMC4817403 DOI: 10.4103/2277-9175.178791] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2014] [Accepted: 08/19/2014] [Indexed: 01/01/2023] Open
Abstract
The complexity of multiple sclerosis (MS) and the incompetence of a large number of promised treatments for MS urge us to plan new and more effective therapeutic approaches that aim to suppress ongoing autoimmune responses and induction of local endogenous regeneration. Emerging data propose that hematopoietic, mesenchymal, and neural stem cells have the potential to restore self-tolerance, provide in situ immunomodulation and neuroprotection, as well as promote regeneration. Thus, in this article, we will first provide an overview of the cell sources for proposed mechanisms that contribute to the beneficial effects of stem cell transplantation, the ideal route and/or timing of stem cell-based therapies for each main stem cell group, and finally, an overview of the current status of stem cell research in clinical trial stages in MS by comparable and healthy therapeutic effects of different stem cell therapies for MS patients.
Collapse
Affiliation(s)
- Rokhsareh Meamar
- Department of Medical Sciences, Islamic Azad University, Najafabad Branch, Tehran, Iran
- Isfahan Neurosciences Research Center, Al Zahra Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Shahrzad Nematollahi
- PhD Candidate in Epidemiology, School of Public Health and Institute of Public Health Research, Tehran University of Medical Sciences, Tehran, Iran
| | - Leila Dehghani
- Department of Medical Sciences, Islamic Azad University, Najafabad Branch, Tehran, Iran
- Isfahan Neurosciences Research Center, Al Zahra Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Omid Mirmosayyeb
- Isfahan Neurosciences Research Center, Al Zahra Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Vahid Shayegannejad
- Isfahan Neurosciences Research Center, Al Zahra Hospital, Tehran University of Medical Sciences, Tehran, Iran
- Department of Neurology, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Keivan Basiri
- Isfahan Neurosciences Research Center, Al Zahra Hospital, Tehran University of Medical Sciences, Tehran, Iran
- Department of Neurology, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Amir Pouya Tanhaei
- Isfahan Neurosciences Research Center, Al Zahra Hospital, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
22
|
Shalaby SM, Sabbah NA, Saber T, Abdel Hamid RA. Adipose-derived mesenchymal stem cells modulate the immune response in chronic experimental autoimmune encephalomyelitis model. IUBMB Life 2016; 68:106-15. [DOI: 10.1002/iub.1469] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Accepted: 12/16/2015] [Indexed: 12/25/2022]
Affiliation(s)
- Sally M. Shalaby
- Medical Biochemistry Department; Faculty of Medicine, Zagazig University; Zagazig Egypt
| | - Norhan A. Sabbah
- Medical Biochemistry Department; Faculty of Medicine, Zagazig University; Zagazig Egypt
| | - Taisir Saber
- Medical Microbiology & Immunology; Faculty of Medicine, Zagazig University; Zagazig Egypt
- Medical Laboratories Department; Faculty of Applied Medical Sciences, Taif University; Taif Saudi Arabia
| | - Reda A. Abdel Hamid
- Anatomy & Embryology Department, Faculty of Medicine; Zagazig University; Zagazig Egypt
| |
Collapse
|
23
|
Abstract
In autoimmune neurologic disorders, the blood-brain barrier (BBB) plays a central role in immunopathogenesis, since this vascular interface is an entry path for cells and effector molecules of the peripheral immune system to reach the target organ, the central nervous system (CNS). The BBB's unique anatomic structure and the tightly regulated interplay of its cellular and acellular components allow for maintenance of brain homeostasis, regulation of influx and efflux, and protection from harm; these ensure an optimal environment for the neuronal network to function properly. In both health and disease, the BBB acts as mediator between the periphery and the CNS. For example, immune cell trafficking through the cerebral vasculature is essential to clear microbes or cell debris from neural tissues, while poorly regulated cellular transmigration can underlie or worsen CNS pathology. In this chapter, we focus on the specialized multicellular structure and function of the BBB/neurovascular unit and discuss how BBB breakdown can precede or be a consequence of neuroinflammation. We introduce the blood-cerebrospinal fluid barrier and include a brief aside about evolutionary aspects of barrier formation and refinements. Lastly, since restoration of barrier function is considered key to ameliorate neurologic disease, we speculate about new therapeutic avenues to repair a damaged BBB.
Collapse
Affiliation(s)
| | - Ajay Verma
- Biomarkers and Experimental Medicine, Biogen, Cambridge, MA, USA
| | | |
Collapse
|
24
|
Hao F, Li A, Yu H, Liu M, Wang Y, Liu J, Liang Z. Enhanced Neuroprotective Effects of Combination Therapy with Bone Marrow-Derived Mesenchymal Stem Cells and Ginkgo biloba Extract (EGb761) in a Rat Model of Experimental Autoimmune Encephalomyelitis. Neuroimmunomodulation 2016; 23:41-57. [PMID: 26468875 DOI: 10.1159/000437429] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Accepted: 07/02/2015] [Indexed: 11/19/2022] Open
Abstract
OBJECTIVES We investigated whether Ginkgo biloba extract (EGb761) can provide neuroprotective effects and enhance the efficacy of bone marrow-derived mesenchymal stem cells (BMSCs) in a rat model of experimental autoimmune encephalomyelitis (EAE). METHODS We examined the synergistic action of BMSCs combined with EGb761 treatment in EAE rats. The immunized rats received an intravenous injection of BMSCs or intraperitoneal administration of EGb761 or both on the day of the onset of clinical symptoms and for the following 21 days. Clinical severity scores were recorded daily and histopathological examination of the spinal cord and cytokine concentrations in the serum were studied on days 14 and 31 postimmunization. RESULTS Our results showed that combined treatment with BMSCs and EGb761 further decreased the disease severity, maximal clinical score and number of infiltrated mononuclear cells, especially CD3-positive T cells. We observed that the demyelination score and the density of axonal loss in the spinal cord were significantly reduced in mice receiving the combination therapy. The serum concentrations of the phosphorylated neurofilament heavy chain, tumor necrosis factor-α and interferon-γ were reduced in the combination-treatment group. CONCLUSION Our results suggest that combined treatment with BMSCs and EGb761 have a synergistic effect in rats with EAE by inhibiting the secretion of proinflammatory cytokines, demyelination and protecting axons and neurons.
Collapse
Affiliation(s)
- Fei Hao
- Department of Neurology, The First Affiliated Hospital of Dalian Medical University, Dalian, PR China
| | | | | | | | | | | | | |
Collapse
|
25
|
Spagnol ST, Lin WC, Booth EA, Ladoux B, Lazarus HM, Dahl KN. Early Passage Dependence of Mesenchymal Stem Cell Mechanics Influences Cellular Invasion and Migration. Ann Biomed Eng 2015; 44:2123-31. [PMID: 26581348 DOI: 10.1007/s10439-015-1508-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Accepted: 11/11/2015] [Indexed: 02/06/2023]
Abstract
The cellular structures and mechanical properties of human mesenchymal stem cells (hMSCs) vary significantly during culture and with differentiation. Previously, studies to measure mechanics have provided divergent results using different quantitative parameters and mechanical models of deformation. Here, we examine hMSCs prepared for clinical use and subject them to mechanical testing conducive to the relevant deformability associated with clinical injection procedures. Micropipette aspiration of hMSCs shows deformation as a viscoelastic fluid, with little variation from cell to cell within a population. After two passages, hMSCs deform as viscoelastic solids. Further, for clinical applicability during stem cell migration in vivo, we investigated the ability of hMSCs to invade into micropillar arrays of increasing confinement from 12 to 8 μm spacing between adjacent micropillars. We find that hMSC samples with reduced deformability and cells that are more solid-like with passage are more easily able to enter the micropillar arrays. Increased cell fluidity is an advantage for injection procedures and optimization of cell selection based on mechanical properties may enhance efficacy of injected hMSC populations. However, the ability to invade and migrate within tight interstitial spaces appears to be increased with a more solidified cytoskeleton, likely from increased force generation and contractility. Thus, there may be a balance between optimal injection survival and in situ tissue invasion.
Collapse
Affiliation(s)
- Stephen T Spagnol
- Department of Chemical Engineering, Carnegie Mellon University, 5000 Forbes Ave., Pittsburgh, PA, 15213, USA
| | - Wei-Chun Lin
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Elizabeth A Booth
- Department of Chemical Engineering, Carnegie Mellon University, 5000 Forbes Ave., Pittsburgh, PA, 15213, USA
| | - Benoit Ladoux
- Institut Jacques Monod (IJM), CNRS UMR 7592 & Université Paris Diderot, Paris, France
- Mechanobiology Institute, National University of Singapore, Singapore, Singapore
| | - Hillard M Lazarus
- Division of Hematology and Oncology, Department of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Kris Noel Dahl
- Department of Chemical Engineering, Carnegie Mellon University, 5000 Forbes Ave., Pittsburgh, PA, 15213, USA.
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA, USA.
| |
Collapse
|
26
|
Abstract
In the last year, the promising features of mesenchymal stem cells (MSCs), including their regenerative properties and ability to differentiate into diverse cell lineages, have generated great interest among researchers whose work has offered intriguing perspectives on cell-based therapies for various diseases. Currently the most commonly used adult stem cells in regenerative medicine, MSCs, can be isolated from several tissues, exhibit a strong capacity for replication in vitro, and can differentiate into osteoblasts, chondrocytes, and adipocytes. However, heterogeneous procedures for isolating and cultivating MSCs among laboratories have prompted the International Society for Cellular Therapy (ISCT) to issue criteria for identifying unique populations of these cells. Consequently, the isolation of MSCs according to ISCT criteria has produced heterogeneous, nonclonal cultures of stromal cells containing stem cells with different multipotent properties, committed progenitors, and differentiated cells. Though the nature and functions of MSCs remain unclear, nonclonal stromal cultures obtained from bone marrow and other tissues currently serve as sources of putative MSCs for therapeutic purposes, and several findings underscore their effectiveness in treating different diseases. To date, 493 MSC-based clinical trials, either complete or ongoing, appear in the database of the US National Institutes of Health. In the present article, we provide a comprehensive review of MSC-based clinical trials conducted worldwide that scrutinizes biological properties of MSCs, elucidates recent clinical findings and clinical trial phases of investigation, highlights therapeutic effects of MSCs, and identifies principal criticisms of the use of these cells. In particular, we analyze clinical trials using MSCs for representative diseases, including hematological disease, graft-versus-host disease, organ transplantation, diabetes, inflammatory diseases, and diseases in the liver, kidney, and lung, as well as cardiovascular, bone and cartilage, neurological, and autoimmune diseases.
Collapse
Affiliation(s)
- Tiziana Squillaro
- Department of Experimental Medicine, Biotechnology and Molecular Biology Section, Second University of Naples, Naples, Italy
| | | | | |
Collapse
|
27
|
El-Akabawy G, Rashed LA. Beneficial effects of bone marrow-derived mesenchymal stem cell transplantation in a non-immune model of demyelination. Ann Anat 2015; 198:11-20. [PMID: 25660362 DOI: 10.1016/j.aanat.2014.12.002] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2014] [Revised: 12/13/2014] [Accepted: 12/15/2014] [Indexed: 12/18/2022]
Abstract
Multiple sclerosis (MS) is an autoimmune disease characterized by demyelination and axonal loss throughout the central nervous system. Most of the previous studies that have been conducted to evaluate the efficacy of mesenchymal stem cells (MSCs) have utilized immune models such as experimental autoimmune encephalomyelitis (EAE). However, with this experimental setting, it is not clear whether the MSCs exert the functional improvement via an indirect consequence of MSC-mediated immunomodulation or via a direct replacement of the lost cells, paracrine actions, and/or an enhancement of endogenous repair. This study is the first to demonstrate the capability of intravenously injected bone marrow-derived MSCs (BM-MSCs) to migrate, engraft, and improve the demyelination in the non-immune cuprizone model of MS. The ultrastructural analysis conducted in this study revealed that the observed histological improvement was due to both reduced demyelination and enhanced remyelination. However, the detected remyelination was not graft-derived as no differentiation of the transplanted cells towards the oligodendroglial phenotype was detected. In addition, the transplanted cells modulated the glial response and reduced apoptosis. These results suggest that the therapeutic potential of BM-MSCs for MS is not only dependent on their immunosuppressive and immunomodulatory nature but also on their ability to enhance endogenous repair and induce oligo/neuroprotection. Proving the efficacy of BM-MSCs in a non-immune model of MS and evaluating the underlying mechanisms should enrich our knowledge of how these cells exert their beneficial effects and may eventually help us to enhance and maintain an efficacious and sustainable cell therapy for MS.
Collapse
Affiliation(s)
- Gehan El-Akabawy
- Menoufia University, Department of Anatomy and Embryology, Faculty of Medicine, Shebeen El Kom, Egypt.
| | - Laila Ahmed Rashed
- Cairo University, Department of Medical Biochemistry, Faculty of Medicine, Cairo, Egypt
| |
Collapse
|
28
|
Gharibi T, Ahmadi M, Seyfizadeh N, Jadidi-Niaragh F, Yousefi M. Immunomodulatory characteristics of mesenchymal stem cells and their role in the treatment of multiple sclerosis. Cell Immunol 2015; 293:113-21. [PMID: 25596473 DOI: 10.1016/j.cellimm.2015.01.002] [Citation(s) in RCA: 74] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2014] [Revised: 12/31/2014] [Accepted: 01/02/2015] [Indexed: 12/12/2022]
Abstract
Multiple Sclerosis (MS) is a chronic inflammatory neurodegenerative disease of central nervous system (CNS). Although the main cause of MS is not clear, studies suggest that MS is an autoimmune disease which attacks myelin sheath of neurons. There are different therapeutic regimens for MS patients including interferon (IFN)-β, glatiramer acetate (GA), and natalizumab. However, such therapies are not quite effective and are associated with some side effects. So which, there is no complete therapeutic method for MS patients. Regarding the potent immunomodulatory effects of mesenchymal stem cells (MSCs) and their ameliorative effects in experimental autoimmune encephalopathy (EAE), it seems that MSCs may be a new therapeutic method in MS therapy. MSC transplantation is an approach to regulate the immune system in the region of CNS lesions. In this review, we have tried to discuss about the immunomodulatory properties of MSCs and their therapeutic mechanisms in MS patients.
Collapse
Affiliation(s)
- Tohid Gharibi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Immunology, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Majid Ahmadi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Immunology, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Narges Seyfizadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Immunology, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Farhad Jadidi-Niaragh
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Mehdi Yousefi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Immunology, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
29
|
Aryani A, Denecke B. Exosomes as a Nanodelivery System: a Key to the Future of Neuromedicine? Mol Neurobiol 2014; 53:818-834. [PMID: 25502465 PMCID: PMC4752585 DOI: 10.1007/s12035-014-9054-5] [Citation(s) in RCA: 181] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2014] [Accepted: 12/05/2014] [Indexed: 01/04/2023]
Abstract
Since the beginning of the last decade, exosomes have been of increased interest in the science community. Exosomes represent a new kind of long distance transfer of biological molecules among cells. This review provides a comprehensive overview about the construction of exosomes, their targeting and their fusion mechanisms to the recipient cells. Complementarily, the current state of research regarding the cargo of exosomes is discussed. A particular focus was placed on the role of exosomes in the central nervous system. An increasing number of physiological processes in the brain could be associated with exosomes. In this context, it is becoming more apparent that exosomes are involved in several neurological and specifically neurodegenerative diseases. The treatment of these kinds of diseases is often difficult not least because of the blood-brain barrier. Exosomes are very stable, can pass the blood-brain barrier and, therefore, reveal bright perspectives towards diagnosis and therapeutic treatments. A prerequisite for clinical applications is a standardised approach. Features necessary for a standardised diagnosis using exosomes are discussed. In therapeutic terms, exosomes represent a promising drug delivery system able to pass the blood-brain barrier. One option to overcome the disadvantages potentially associated with the use of endogenous exosomes is the design of artificial exosomes. The artificial exosomes with a clearly defined therapeutic active cargo and surface marker ensuring the specific targeting to the recipient cells is proposed as a promising approach.
Collapse
Affiliation(s)
- Arian Aryani
- Interdisciplinary Center for Clinical Research Aachen (IZKF Aachen), RWTH Aachen University, Pauwelsstrasse 30, 52074, Aachen, Germany
| | - Bernd Denecke
- Interdisciplinary Center for Clinical Research Aachen (IZKF Aachen), RWTH Aachen University, Pauwelsstrasse 30, 52074, Aachen, Germany.
| |
Collapse
|
30
|
Zhang XM, Lund H, Mia S, Parsa R, Harris RA. Adoptive transfer of cytokine-induced immunomodulatory adult microglia attenuates experimental autoimmune encephalomyelitis in DBA/1 mice. Glia 2014; 62:804-17. [PMID: 24677019 PMCID: PMC4237117 DOI: 10.1002/glia.22643] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2014] [Accepted: 01/20/2014] [Indexed: 12/19/2022]
Abstract
Microglia are resident antigen-presenting cells in the central nervous system (CNS) that either suppress or promote disease depending on their activation phenotype and the microenvironment. Multiple sclerosis (MS) is a chronic inflammatory disease causing demyelination and nerve loss in the CNS, and experimental autoimmune encephalomyelitis (EAE) is an animal model of MS that is widely used to investigate pathogenic mechanisms and therapeutic effects. We isolated and cultured microglia from adult mouse brains and exposed them to specific combinations of stimulatory molecules and cytokines, the combination of IL-4, IL-10, and TGF-β yielding the optimal regime for induction of an immunosuppressive phenotype (M2). M2 microglia were characterized by decreased expression or production of CD86, PD-L1, nitric oxide, and IL-6, increased expression of PD-L2, and having a potent capacity to retain their phenotype on secondary proinflammatory stimulation. M2 microglia induced regulatory T cells, suppressed T-cell proliferation, and downmodulated M1-associated receptor expression in M1 macrophages. Myelin oligodendrocyte glycoprotein (MOG)-induced EAE was induced in DBA/1 mice and at different time points (0, 5, 12, or 15 days postimmunization) 3 × 105 M2 microglia were transferred intranasally. A single transfer of M2 microglia attenuated the severity of established EAE, which was particularly obvious when the cells were injected at 15 days postimmunization. M2 microglia-treated mice had reduced inflammatory responses and less demyelination in the CNS. Our findings demonstrate that adult M2 microglia therapy represents a novel intervention that alleviated established EAE and that this therapeutic principle may have relevance for treatment of MS patients.
Collapse
|
31
|
Li JF, Zhang DJ, Geng T, Chen L, Huang H, Yin HL, Zhang YZ, Lou JY, Cao B, Wang YL. The potential of human umbilical cord-derived mesenchymal stem cells as a novel cellular therapy for multiple sclerosis. Cell Transplant 2014; 23 Suppl 1:S113-22. [PMID: 25385295 DOI: 10.3727/096368914x685005] [Citation(s) in RCA: 92] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Multiple sclerosis (MS) is a complex disease of neurological disability, affecting more than 300 out of every 1 million people in the world. The purpose of the study was to evaluate the therapeutic effects of human umbilical cord-derived mesenchymal stem cell (hUC-MSC) transplantation in MS patients. Twenty-three patients were enrolled in this study, and 13 of them were given hUC-MSC therapy at the same time as anti-inflammatory treatment, whereas the control patients received the anti-inflammatory treatment only. Treatment schedule included 1,000 mg/kg of methylprednisolone intravenously (IV) daily for 3 days and then 500 mg/kg for 2 days, followed by oral prednisone 1 mg/kg/day for 10 days. The dosage of prednisone was then reduced by 5 mg every 2 weeks until reaching a 5-mg/day maintenance dosage. Intravenous infusion of hUC-MSCs was applied three times in a 6-week period for each patient. The overall symptoms of the hUC-MSC-treated patients improved compared to patients in the control group. Both the EDSS scores and relapse occurrence were significantly lower than those of the control patients. Inflammatory cytokines were assessed, and the data demonstrated a shift from Th1 to Th2 immunity in hUC-MSC-treated patients. Our data demonstrated a high potential for hUC-MSC treatment of MS. This manuscript is published as part of the International Association of Neurorestoratology (IANR) special issue of Cell Transplantation.
Collapse
Affiliation(s)
- Jin-Feng Li
- The Neurology Department of the 148th Hospital, Zibo, P. R. China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Wang X, Kimbrel EA, Ijichi K, Paul D, Lazorchak AS, Chu J, Kouris NA, Yavanian GJ, Lu SJ, Pachter JS, Crocker SJ, Lanza R, Xu RH. Human ESC-derived MSCs outperform bone marrow MSCs in the treatment of an EAE model of multiple sclerosis. Stem Cell Reports 2014; 3:115-30. [PMID: 25068126 PMCID: PMC4110787 DOI: 10.1016/j.stemcr.2014.04.020] [Citation(s) in RCA: 121] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2014] [Revised: 04/24/2014] [Accepted: 04/29/2014] [Indexed: 02/09/2023] Open
Abstract
Current therapies for multiple sclerosis (MS) are largely palliative, not curative. Mesenchymal stem cells (MSCs) harbor regenerative and immunosuppressive functions, indicating a potential therapy for MS, yet the variability and low potency of MSCs from adult sources hinder their therapeutic potential. MSCs derived from human embryonic stem cells (hES-MSCs) may be better suited for clinical treatment of MS because of their unlimited and stable supply. Here, we show that hES-MSCs significantly reduce clinical symptoms and prevent neuronal demyelination in a mouse experimental autoimmune encephalitis (EAE) model of MS, and that the EAE disease-modifying effect of hES-MSCs is significantly greater than that of human bone-marrow-derived MSCs (BM-MSCs). Our evidence also suggests that increased IL-6 expression by BM-MSCs contributes to the reduced anti-EAE therapeutic activity of these cells. A distinct ability to extravasate and migrate into inflamed CNS tissues may also be associated with the robust therapeutic effects of hES-MSCs on EAE. hES-MSCs show increased anti-EAE effects relative to adult human BM-MSCs hES-MSCs express fewer proinflammatory cytokines than BM-MSCs hES-MSCs enter the CNS more efficiently than BM-MSCs in EAE
Collapse
Affiliation(s)
- Xiaofang Wang
- Department of Genetics and Developmental Biology, University of Connecticut Health Center, Farmington, CT 06030, USA ; ImStem Biotechnology, Inc., 400 Farmington Avenue, Farmington, CT 06030, USA
| | - Erin A Kimbrel
- Advanced Cell Technology, 33 Locke Drive, Marlborough, MA 01752, USA
| | - Kumiko Ijichi
- Department of Neuroscience, University of Connecticut Health Center, Farmington, CT 06030, USA
| | - Debayon Paul
- Department of Cell Biology, University of Connecticut Health Center, Farmington, CT 06030, USA
| | - Adam S Lazorchak
- ImStem Biotechnology, Inc., 400 Farmington Avenue, Farmington, CT 06030, USA
| | - Jianlin Chu
- Advanced Cell Technology, 33 Locke Drive, Marlborough, MA 01752, USA
| | - Nicholas A Kouris
- Advanced Cell Technology, 33 Locke Drive, Marlborough, MA 01752, USA
| | | | - Shi-Jiang Lu
- Advanced Cell Technology, 33 Locke Drive, Marlborough, MA 01752, USA
| | - Joel S Pachter
- Department of Cell Biology, University of Connecticut Health Center, Farmington, CT 06030, USA
| | - Stephen J Crocker
- Department of Neuroscience, University of Connecticut Health Center, Farmington, CT 06030, USA
| | - Robert Lanza
- Advanced Cell Technology, 33 Locke Drive, Marlborough, MA 01752, USA
| | - Ren-He Xu
- Department of Genetics and Developmental Biology, University of Connecticut Health Center, Farmington, CT 06030, USA ; ImStem Biotechnology, Inc., 400 Farmington Avenue, Farmington, CT 06030, USA ; Faculty of Health Sciences, University of Macau, Taipa, Macau, China
| |
Collapse
|
33
|
Liu Z, He B, Zhang RY, Zhang K, Ding Y, Ruan JW, Ling EA, Wu JL, Zeng YS. Electroacupuncture Promotes the Differentiation of Transplanted Bone Marrow Mesenchymal Stem Cells Preinduced With Neurotrophin-3 and Retinoic Acid Into Oligodendrocyte-Like Cells in Demyelinated Spinal Cord of Rats. Cell Transplant 2014; 24:1265-81. [PMID: 24856958 DOI: 10.3727/096368914x682099] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Transplantation of bone marrow mesenchymal stem cells (MSCs) promotes functional recovery in multiple sclerosis (MS) patients and in a murine model of MS. However, there is only a modicum of information on differentiation of grafted MSCs into oligodendrocyte-like cells in MS. The purpose of this study was to transplant neurotrophin-3 (NT-3) and retinoic acid (RA) preinduced MSCs (NR-MSCs) into a demyelinated spinal cord induced by ethidium bromide and to investigate whether EA treatment could promote NT-3 secretion in the demyelinated spinal cord. We also sought to determine whether increased NT-3 could further enhance NR-MSCs overexpressing the tyrosine receptor kinase C (TrkC) to differentiate into more oligodendrocyte-like cells, resulting in increased remyelination and nerve conduction in the spinal cord. Our results showed that NT-3 and RA increased transcription of TrkC mRNA in cultured MSCs. EA increased NT-3 levels and promoted differentiation of oligodendrocyte-like cells from grafted NR-MSCs in the demyelinated spinal cord. There was evidence of myelin formation by grafted NR-MSCs. In addition, NR-MSC transplantation combined with EA treatment (the NR-MSCs + EA group) reduced demyelination and promoted remyelination. Furthermore, the conduction of cortical motor-evoked potentials has improved compared to controls. Together, our data suggest that preinduced MSC transplantation combined with EA treatment not only increased MSC differentiation into oligodendrocyte-like cells forming myelin sheaths, but also promoted remyelination and functional improvement of nerve conduction in the demyelinated spinal cord.
Collapse
Affiliation(s)
- Zhou Liu
- Department of Histology and Embryology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Ng TK, Fortino VR, Pelaez D, Cheung HS. Progress of mesenchymal stem cell therapy for neural and retinal diseases. World J Stem Cells 2014; 6:111-119. [PMID: 24772238 PMCID: PMC3999769 DOI: 10.4252/wjsc.v6.i2.111] [Citation(s) in RCA: 94] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2013] [Revised: 01/14/2014] [Accepted: 03/04/2014] [Indexed: 02/07/2023] Open
Abstract
Complex circuitry and limited regenerative power make central nervous system (CNS) disorders the most challenging and difficult for functional repair. With elusive disease mechanisms, traditional surgical and medical interventions merely slow down the progression of the neurodegenerative diseases. However, the number of neurons still diminishes in many patients. Recently, stem cell therapy has been proposed as a viable option. Mesenchymal stem cells (MSCs), a widely-studied human adult stem cell population, have been discovered for more than 20 years. MSCs have been found all over the body and can be conveniently obtained from different accessible tissues: bone marrow, blood, and adipose and dental tissue. MSCs have high proliferative and differentiation abilities, providing an inexhaustible source of neurons and glia for cell replacement therapy. Moreover, MSCs also show neuroprotective effects without any genetic modification or reprogramming. In addition, the extraordinary immunomodulatory properties of MSCs enable autologous and heterologous transplantation. These qualities heighten the clinical applicability of MSCs when dealing with the pathologies of CNS disorders. Here, we summarize the latest progress of MSC experimental research as well as human clinical trials for neural and retinal diseases. This review article will focus on multiple sclerosis, spinal cord injury, autism, glaucoma, retinitis pigmentosa and age-related macular degeneration.
Collapse
|
35
|
Pistoia V, Raffaghello L. Unveiling the role of TNF-α in mesenchymal stromal cell-mediated immunosuppression. Eur J Immunol 2014; 44:352-6. [PMID: 24435827 DOI: 10.1002/eji.201344372] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Revised: 12/20/2013] [Accepted: 01/14/2014] [Indexed: 01/14/2023]
Abstract
Mesenchymal stromal cells (MSCs) are multipotent progenitors of mesodermal origin that not only differentiate into osteoblasts, chondrocytes, connective stromal cells, and adipocytes, but also exert immunoregulatory activities, usually induced by soluble molecules released during the cross-talk between MSCs and their target immune cell populations. In this issue of the European Journal of Immunology, Dorronsoro et al. [Eur. J. Immunol. 2014. 44: 480-488] demonstrate for the first time that TNF-α released by activated T cells confers immunosuppressive properties upon MSCs by binding to TNF-R1 and activating the NF-kB pathway. Such findings may improve our knowledge of the mechanisms underlying the reported efficacy of human MSCs administered locally or systemically to patients with autoimmune/inflammatory disorders, such as Crohn's disease and graft versus host disease, as discussed in this commentary.
Collapse
Affiliation(s)
- Vito Pistoia
- Department of Experimental and Laboratory Medicine, Istituto Giannina Gaslini, Genova, Italy
| | | |
Collapse
|
36
|
El Omar R, Beroud J, Stoltz JF, Menu P, Velot E, Decot V. Umbilical cord mesenchymal stem cells: the new gold standard for mesenchymal stem cell-based therapies? TISSUE ENGINEERING PART B-REVIEWS 2014; 20:523-44. [PMID: 24552279 DOI: 10.1089/ten.teb.2013.0664] [Citation(s) in RCA: 220] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Due to their self-renewal capacity, multilineage differentiation potential, paracrine effects, and immunosuppressive properties, mesenchymal stromal cells (MSCs) are an attractive and promising tool for regenerative medicine. MSCs can be isolated from various tissues but despite their common immunophenotypic characteristics and functional properties, source-dependent differences in MSCs properties have recently emerged and lead to different clinical applications. Considered for a long time as a medical waste, umbilical cord appears these days as a promising source of MSCs. Several reports have shown that umbilical cord-derived MSCs are more primitive, proliferative, and immunosuppressive than their adult counterparts. In this review, we aim at synthesizing the differences between umbilical cord MSCs and MSCs from other sources (bone marrow, adipose tissue, periodontal ligament, dental pulp,…) with regard to their proliferation capacity, proteic and transcriptomic profiles, and their secretome involved in their regenerative, homing, and immunomodulatory capacities. Although umbilical cord MSCs are until now not particularly used as an MSC source in clinical practice, accumulating evidence shows that they may have a therapeutic advantage to treat several diseases, especially autoimmune and neurodegenerative diseases.
Collapse
Affiliation(s)
- Reine El Omar
- 1 CNRS UMR UL 7365 , Bâtiment Biopôle, Faculté de médecine, Vandœuvre-lès-Nancy, France
| | | | | | | | | | | |
Collapse
|
37
|
Hansen L, Hansen AB, Mathiasen AB, Ng M, Bhakoo K, Ekblond A, Kastrup J, Friis T. Ultrastructural characterization of mesenchymal stromal cells labeled with ultrasmall superparamagnetic iron-oxide nanoparticles for clinical tracking studies. Scandinavian Journal of Clinical and Laboratory Investigation 2014; 74:437-46. [DOI: 10.3109/00365513.2014.900698] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
38
|
Lathrop MJ, Brooks EM, Bonenfant NR, Sokocevic D, Borg ZD, Goodwin M, Loi R, Cruz F, Dunaway CW, Steele C, Weiss DJ. Mesenchymal stromal cells mediate Aspergillus hyphal extract-induced allergic airway inflammation by inhibition of the Th17 signaling pathway. Stem Cells Transl Med 2014; 3:194-205. [PMID: 24436442 DOI: 10.5966/sctm.2013-0061] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Systemic administration of mesenchymal stromal cells (MSCs) suppresses airway inflammation and methacholine-induced airway hyper-responsiveness (AHR) in mouse models of T helper cell (Th) type 2-mediated eosinophilic allergic airway inflammation (AAI); however, the efficacy of MSCs in mouse models of severe Th17-mediated neutrophilic AAI has not yet been demonstrated. We assessed MSC effects in a mouse model of mixed Th2/Th17 AAI produced by mucosal exposure to Aspergillus fumigatus hyphal extract (AHE). Following sensitization produced by oropharyngeal AHE administration, systemic (tail vein) administration of syngeneic MSCs on the first day of challenge significantly reduced acute AHR predominantly through reduction of Th17-mediated airway inflammation. In parallel experiments, MSCs also mitigated AHR when administered during recurrent challenge 10 weeks after initial sensitization and challenge through reduction in systemic Th17-mediated inflammation. Investigation into potential mechanistic actions of MSCs in this model demonstrated that although T regulatory cells were increased in all AHE-treated mice, MSC administration did not alter T regulatory cell numbers in either the acute or recurrent model. Differential induction of interleukin-17a secretion was observed in ex vivo restimulation of mediastinal lymph node mixed-cell cytokine analyses. Although the mechanisms by which MSCs act to decrease inflammation and AHR in this model are not yet fully elucidated, decrease in Th17-mediated airway inflammation appears to play a significant role. These results provide a basis for further investigations of MSC administration as a potential therapeutic approach for severe refractory neutrophilic asthma.
Collapse
Affiliation(s)
- Melissa J Lathrop
- Pulmonary Disease & Critical Care Medicine, Department of Medicine, University of Vermont, Burlington, Vermont, USA; Department of Biomedical Sciences, University of Cagliari, Cagliari, Italy; Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil; Department of Medicine, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Kamarul T. Advances in stem cells technologies and their commercialization potential. Expert Rev Clin Pharmacol 2014; 6:363-5. [DOI: 10.1586/17512433.2013.811804] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
40
|
Obermeier B, Daneman R, Ransohoff RM. Development, maintenance and disruption of the blood-brain barrier. Nat Med 2013; 19:1584-96. [PMID: 24309662 DOI: 10.1038/nm.3407] [Citation(s) in RCA: 1718] [Impact Index Per Article: 143.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2013] [Accepted: 10/22/2013] [Indexed: 01/01/2023]
Abstract
The interface between the blood circulation and the neural tissue features unique characteristics that are encompassed by the term 'blood-brain barrier' (BBB). The main functions of this barrier, namely maintenance of brain homeostasis, regulation of influx and efflux transport, and protection from harm, are determined by its specialized multicellular structure. Every constituent cell type makes an indispensable contribution to the BBB's integrity. But if one member of the BBB fails, and as a result the barrier breaks down, there can be dramatic consequences and neuroinflammation and neurodegeneration can occur. In this Review, we highlight recently gained mechanistic insights into the development and maintenance of the BBB. We then discuss how BBB disruption can cause or contribute to neurological disease. Finally, we examine how this knowledge can be used to explore new possibilities for BBB repair.
Collapse
Affiliation(s)
- Birgit Obermeier
- Neuroinflammation Research Center, Department of Neuroscience, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | | | | |
Collapse
|
41
|
Zhang XM, Shou ZX, Shi YP, Fan H, Tang Q, Zuo DM, Liu XX. Bone marrow mesenchymal stem cells repair colonic vascular endothelium in rats with ulcerative colitis. Shijie Huaren Xiaohua Zazhi 2013; 21:2908-2914. [DOI: 10.11569/wcjd.v21.i28.2908] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To investigate whether bone marrow mesenchymal stem cells (MSCs) can repair colonic vascular endothelium in rats with ulcerative colitis (UC).
METHODS: Monocytes were purified from bone marrow, amplified and identified as MSCs in vitro. Thirty female Wistar rats were randomly and equally divided into three groups: a normal control, a model group and a MSC group. Colitis was induced with trinitro-benzene-sulfonic acid in rats of the model and MSC groups. Rats of the MSC group were injected with 1 mL of MSC suspension via the tail vein, while the rats of the normal control group and model group were injected with equal volume of normal saline. After two weeks, colon tissue samples were analyzed for histopathology, and serial sections of the colon tissue were made for determining the distribution of Y chromosome and CD34 double positive cells. The protein expression of CD34 was detected by immunohistochemisty. The mRNA expression of CD34 was determined by RT-PCR. The contents of interleukin-6 (IL-6) and interleukin-10 (IL-10) in colon tissue were determined by ELISA.
RESULTS: Y chromosome and CD34 double positive cells could be seen in colon tissue of rats injected with MSCs. Compared to the normal control group, the expression of CD34 and IL-6 was increased (1.629 ± 0.067 vs 1.000 ± 0.113, P < 0.05; 238.304 pg/mL ± 0.019 pg/mL vs 81.439 pg/mL ± 0.120 pg/mL, P < 0.01) and the expression of IL-10 was decreased (87.531 pg/mL ± 0.101 pg/mL vs 289.413 pg/mL ± 0.039 pg/mL, P < 0.01) in the model group. Compared to the model group, the expression of CD34 and IL-10 was increased (2.502 ± 0.189 vs 1.629 ± 0.067, P < 0.05; 158.185 pg/mL ± 0.033 pg/mL vs 87.531 pg/mL ± 0.115 pg/mL, P < 0.01) and the expression of IL-6 was decreased (160.95 pg/mL ± 0.116 pg/mL vs 238.304 pg/mL ± 0.109 pg/mL, P < 0.01) in the MSC group.
CONCLUSION: MSCs may exert a therapeutic effect on colitis by differentiating into vascular cell endothelial cells and inhibiting inflammation.
Collapse
|
42
|
Myelin repair and functional recovery mediated by neural cell transplantation in a mouse model of multiple sclerosis. Neurosci Bull 2013; 29:239-50. [PMID: 23471865 DOI: 10.1007/s12264-013-1312-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2012] [Accepted: 01/25/2013] [Indexed: 01/09/2023] Open
Abstract
Cellular therapies are becoming a major focus for the treatment of demyelinating diseases such as multiple sclerosis (MS), therefore it is important to identify the most effective cell types that promote myelin repair. Several components contribute to the relative benefits of specific cell types including the overall efficacy of the cell therapy, the reproducibility of treatment, the mechanisms of action of distinct cell types and the ease of isolation and generation of therapeutic populations. A range of distinct cell populations promote functional recovery in animal models of MS including neural stem cells and mesenchymal stem cells derived from different tissues. Each of these cell populations has advantages and disadvantages and likely works through distinct mechanisms. The relevance of such mechanisms to myelin repair in the adult central nervous system is unclear since the therapeutic cells are generally derived from developing animals. Here we describe the isolation and characterization of a population of neural cells from the adult spinal cord that are characterized by the expression of the cell surface glycoprotein NG2. In functional studies, injection of adult NG2(+) cells into mice with ongoing MOG35-55-induced experimental autoimmune encephalomyelitis (EAE) enhanced remyelination in the CNS while the number of CD3(+) T cells in areas of spinal cord demyelination was reduced approximately three-fold. In vivo studies indicated that in EAE, NG2(+) cells stimulated endogenous repair while in vitro they responded to signals in areas of induced inflammation by differentiating into oligodendrocytes. These results suggested that adult NG2(+) cells represent a useful cell population for promoting neural repair in a variety of different conditions including demyelinating diseases such as MS.
Collapse
|
43
|
Wu Y, Huang S, Enhe J, Fu X. Insights into bone marrow-derived mesenchymal stem cells safety for cutaneous repair and regeneration. Int Wound J 2012; 9:586-94. [PMID: 22931499 DOI: 10.1111/j.1742-481x.2012.01076.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Wound healing involves the orchestration of a complex process of interactions between numerous types of cell, components of extracellular matrix and signalling molecules following injury, which is usually a highly successful biological course to reconstruct the integrity of the skin. Nevertheless, when skin is severely damaged, the injured skin is limited in its ability to repair itself and possibly results in the hypertrophic scars or so-called keloids, and non healing wound or ulcer. Bone marrow-derived mesenchymal stem cells (BM-MSCs) are being clinically explored as a promising therapy in the field of tissue repair and regeneration. However, potential risks associated with these cell-based therapies remain uncertain. The aim of this review is to summarise the safety issues accompanying the administration of BM-MSCs for acute or chronic skin repair and regeneration. More importantly, this review highlights the requirement for fundamental research to improve future clinical application of these strategies, as well as for regulatory authorities to establish clinical criteria to identify the qualitative requirements for the manufacture process of cells products, which will ensure the manufacture process of the best benefit-to-risk ratio of cell-based therapy for the patients.
Collapse
Affiliation(s)
- Y Wu
- Trauma Center of Chinese PLA General Hospital, Beijing, China
| | | | | | | |
Collapse
|