1
|
Liang G, Ma Y, Deng P, Li S, He C, He H, Liu H, Fan Y, Li Z. Role of cell-based therapies in digestive disorders: Obstacles and opportunities. Regen Ther 2025; 29:1-18. [PMID: 40124469 PMCID: PMC11925584 DOI: 10.1016/j.reth.2025.02.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2024] [Revised: 02/01/2025] [Accepted: 02/20/2025] [Indexed: 03/25/2025] Open
Abstract
Stem cell-based therapies have emerged as a promising frontier in the treatment of gastrointestinal disorders, offering potential solutions for challenges posed by conventional treatments. This review comprehensively examines recent advancements in cell-based therapeutic strategies, particularly focusing on stem cell applications, immunotherapy, and cellular therapies for digestive diseases. It highlights the successful differentiation of enteric neural progenitors from pluripotent stem cells and their application in animal models, such as Hirschsprung disease. Furthermore, the review evaluates clinical trials and experimental studies demonstrating the potential of stem cells in regenerating damaged tissues, modulating immune responses, and promoting healing in conditions like Crohn's disease and liver failure. By addressing challenges, such as scalability, immunogenicity, and ethical considerations, the review underscores the translational opportunities and obstacles in realizing the clinical potential of these therapies. Concluding with an emphasis on future directions, the study provides insights into optimizing therapeutic efficacy and fostering innovations in personalized medicine for digestive disorders.
Collapse
Affiliation(s)
- Guodong Liang
- First Surgery Department of Colorectal, Gastric and Abdominal Tumors, Jilin Cancer Hospital, Changchun 130012, China
| | - Yuehan Ma
- First Surgery Department of Colorectal, Gastric and Abdominal Tumors, Jilin Cancer Hospital, Changchun 130012, China
| | - Ping Deng
- Medical Department, Jilin Cancer Hospital, Changchun 130012, China
| | - Shufeng Li
- First Department of Gynecological Tumor, Jilin Cancer Hospital, Changchun 130012, China
| | - Chunyan He
- Department of Anaesthesia, Jilin Cancer Hospital, Changchun 130012, China
| | - Haihang He
- Department of Otorhinolaryngology, Oral Maxillofacial, Head and Neck, Jilin Cancer Hospital, Changchun 130012, China
| | - Hairui Liu
- First Surgery Department of Colorectal, Gastric and Abdominal Tumors, Jilin Cancer Hospital, Changchun 130012, China
| | - Yunda Fan
- First Surgery Department of Colorectal, Gastric and Abdominal Tumors, Jilin Cancer Hospital, Changchun 130012, China
| | - Ze Li
- First Surgery Department of Colorectal, Gastric and Abdominal Tumors, Jilin Cancer Hospital, Changchun 130012, China
| |
Collapse
|
2
|
Liu B, Zhang W, Xia B, Jing S, Du Y, Zou F, Li R, Lu L, Chen S, Li Y, Hu Q, Lin Y, Zhang Y, He Z, Zhang X, Chen X, Peng T, Tang X, Cai W, Pan T, Li L, Zhang H. Broadly neutralizing antibody-derived CAR-T cells reduce viral reservoir in HIV-1-infected individuals. J Clin Invest 2021; 131:e150211. [PMID: 34375315 DOI: 10.1172/jci150211] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Accepted: 08/05/2021] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND Chimeric antigen receptor (CAR)-modified T cells have emerged as a novel approach to treat malignant tumors. This strategy has also been proposed for the treatment of HIV-1 infection. We have developed a broadly neutralizing antibody (bNAb)-derived CAR-T cell therapy which can exerted specific cytotoxic activity against HIV-1-infected cells. METHODS We conducted an open-label trial of the safety, side-effect profile, pharmacokinetic properties, and antiviral activity of bNAb-derived CAR-T cell therapy in HIV-1-infected individuals who were undergoing analytical interruption of antiretroviral therapy (ART). RESULTS A total of 14 participants completed only a single administration of bNAb-derived CAR-T cells. CAR-T administration was safe and well tolerated. Six participants discontinued ART, and viremia rebound occurred in all of them, with a 5.3-week median time. Notably, the cell-associated viral RNA and intact proviruses decreased significantly after CAR-T treatment. Analyses of HIV-1 variants before or after CAR-T administration suggested that CAR-T cells exerted pressure on rebound viruses, resulting in a selection of viruses with less diversity and mutations against CAR-T-mediated cytotoxicity. CONCLUSIONS No safety concerns were identified with adoptive transfer of bNAb-derived CAR-T cells. They reduced viral reservoir. All the rebounds were due to preexisting or emergence of viral escape mutations. TRIAL REGISTRATION ClinicalTrials.gov number, NCT03240328. FUNDING Ministry of Science and Technology of China, National Natural Science Foundation of China, and Department of Science and Technology of Guangdong Province.
Collapse
Affiliation(s)
- Bingfeng Liu
- Institute of Human Virology of Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China
| | - Wanying Zhang
- Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Baijin Xia
- Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Shuliang Jing
- Institute of Human Virology, Institute of Human Virology of Zhongshan School of Medicine Zhongshan Schoo, Guangzhou, China
| | - Yingying Du
- Institute of Human Virology, Sun Yat-sen University, Guangzhou, China
| | - Fan Zou
- Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Rong Li
- Institute of Human Virology, Sun Yat-sen University, Guangzhou, China
| | - Lijuan Lu
- Department of Medical Oncology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Shaozhen Chen
- Infectious Diseases Center, Guangzhou Eighth People's Hospital, Guangzhou, China
| | - Yonghong Li
- Infectious Diseases Center, Guangzhou Eighth People's Hospital, Guangzhou, China
| | - Qifei Hu
- Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Yingtong Lin
- Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Yiwen Zhang
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Zhangping He
- Institute of Human Virology, Sun Yat-sen University, Guangzhou, China
| | - Xu Zhang
- Institute of Human Virology, Sun Yat-sen University, Guangzhou, China
| | - Xiejie Chen
- Infectious Diseases Center, Guangzhou Eighth People's Hospital, Guangzhou, China
| | - Tao Peng
- State Key Laboratory of Respiratory Disease, Sino-French Hoffmann Institute, Guangzhou Medical University, Guangzhou, China
| | - Xiaoping Tang
- department of infectious disease, Institute of Infectious Disease, Guangzhou Eighth People's Hospital, Guangz, guangzhou, China
| | - Weiping Cai
- Institute of Infectious Disease, Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou, China
| | - Ting Pan
- Institute of Human Virology, Zhongshan medicine shcool, Sun Yat-sen University, Guangzhou, China
| | - Linghua Li
- Institute of Infectious Disease, Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou, China
| | - Hui Zhang
- Institute of Human Virology of Zhongshan School of Medicine, Guangzhou, China
| |
Collapse
|
3
|
Alfageme-Abello O, Porret R, Perreau M, Perez L, Muller YD. Chimeric antigen receptor T-cell therapy for HIV cure. Curr Opin HIV AIDS 2021; 16:88-97. [PMID: 33560017 DOI: 10.1097/coh.0000000000000665] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
PURPOSE OF REVIEW Cell-based immunotherapies have made enormous progress over the last decade with the approval of several anti-CD19-chimeric antigen receptor (CAR)-T cell therapies for haemato-oncological diseases. CARs are synthetic receptors comprising an antigen-specific extracellular domain fused to a hinge, transmembrane and intracellular signalling domains. The success obtained with CD19 CAR-T cells rekindled interest in using CAR-T cells to treat HIV seropositive patients. The purpose of this review is to discuss historical and recent developments of anti-HIV CARs. RECENT FINDINGS Since the first description of CD4+-based CARs in the early 90s, new generations of anti-HIV CARs were developed. They target the hetero-trimeric glycoprotein gp120/gp41 and consist of either a CD4+ extracellular domain or a VH/VL segment derived from broadly neutralizing antibodies. Recent efforts were employed in multiplexing CAR specificities, intracellular signalling domains and T cells resistance to HIV. SUMMARY Several new-anti HIV CAR-T cells were successfully tested in preclinical mice models and are now waiting to be evaluated in clinical trials. One of the key parameters to successfully using CAR-T cells in HIV treatment will depend on their capacity to control the HIV reservoir without causing off-targeting activities.
Collapse
Affiliation(s)
- Oscar Alfageme-Abello
- Lausanne University Hospital (CHUV), Department of Medicine, Division of Immunology and Allergy, Lausanne, Switzerland
| | | | | | | | | |
Collapse
|
4
|
Dual CD4-based CAR T cells with distinct costimulatory domains mitigate HIV pathogenesis in vivo. Nat Med 2020; 26:1776-1787. [PMID: 32868878 PMCID: PMC9422086 DOI: 10.1038/s41591-020-1039-5] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Accepted: 07/28/2020] [Indexed: 02/06/2023]
Abstract
An effective strategy to cure HIV will likely require a potent and sustained antiviral T cell response. Here we explored the utility of chimeric antigen receptor (CAR) T cells, expressing the CD4 ectodomain to confer specificity for the HIV envelope, to mitigate HIV-induced pathogenesis in bone marrow, liver, thymus (BLT) humanized mice. CAR T cells expressing the 4-1BB/CD3-ζ endodomain were insufficient to prevent viral rebound and CD4+ T cell loss after the discontinuation of antiretroviral therapy. Through iterative improvements to the CAR T cell product, we developed Dual-CAR T cells that simultaneously expressed both 4-1BB/CD3-ζ and CD28/CD3-ζ endodomains. Dual-CAR T cells exhibited expansion kinetics that exceeded 4-1BB-, CD28- and third-generation costimulated CAR T cells, elicited effector functions equivalent to CD28-costimulated CAR T cells and prevented HIV-induced CD4+ T cell loss despite persistent viremia. Moreover, when Dual-CAR T cells were protected from HIV infection through expression of the C34-CXCR4 fusion inhibitor, these cells significantly reduced acute-phase viremia, as well as accelerated HIV suppression in the presence of antiretroviral therapy and reduced tissue viral burden. Collectively, these studies demonstrate the enhanced therapeutic potency of a novel Dual-CAR T cell product with the potential to effectively treat HIV infection.
Collapse
|
5
|
Namdari H, Rezaei F, Teymoori-Rad M, Mortezagholi S, Sadeghi A, Akbari A. CAR T cells: Living HIV drugs. Rev Med Virol 2020; 30:1-14. [PMID: 32713110 DOI: 10.1002/rmv.2139] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 06/04/2020] [Accepted: 06/09/2020] [Indexed: 12/29/2022]
Abstract
Human immunodeficiency virus type 1 (HIV-1), the virus that causes AIDS (acquired immunodeficiency syndrome), is a major global public health issue. Although the advent of combined antiretroviral therapy (ART) has made significant progress in inhibiting HIV replication in patients, HIV-infected cells remain the principal cellular reservoir of HIV, this allows HIV to rebound immediately upon stopping ART, which is considered the major obstacle to curing HIV infection. Chimeric antigen receptor (CAR) cell therapy has provided new opportunities for HIV treatment. Engineering T cells or hematopoietic stem cells (HSCs) to generate CAR T cells is a rapidly growing approach to develop an efficient immune cell to fight HIV. Herein, we review preclinical and clinical data available for the development of CAR T cells. Further, the advantages and disadvantages of clinical application of anti-HIV CAR T cells will be discussed.
Collapse
Affiliation(s)
- Haideh Namdari
- Iranian Tissue Bank Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Farhad Rezaei
- Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Majid Teymoori-Rad
- Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Sahar Mortezagholi
- Department of Immunology, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ahmadreza Sadeghi
- Iranian Tissue Bank Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Abolfazl Akbari
- Colorectal Research Center, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
6
|
Jain T, Bar M, Kansagra AJ, Chong EA, Hashmi SK, Neelapu SS, Byrne M, Jacoby E, Lazaryan A, Jacobson CA, Ansell SM, Awan FT, Burns L, Bachanova V, Bollard CM, Carpenter PA, DiPersio JF, Hamadani M, Heslop HE, Hill JA, Komanduri KV, Kovitz CA, Lazarus HM, Serrette JM, Mohty M, Miklos D, Nagler A, Pavletic SZ, Savani BN, Schuster SJ, Kharfan-Dabaja MA, Perales MA, Lin Y. Use of Chimeric Antigen Receptor T Cell Therapy in Clinical Practice for Relapsed/Refractory Aggressive B Cell Non-Hodgkin Lymphoma: An Expert Panel Opinion from the American Society for Transplantation and Cellular Therapy. Biol Blood Marrow Transplant 2019; 25:2305-2321. [PMID: 31446199 DOI: 10.1016/j.bbmt.2019.08.015] [Citation(s) in RCA: 130] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Accepted: 08/16/2019] [Indexed: 02/07/2023]
Abstract
Axicabtagene ciloleucel (YESCARTA; Kite Pharma, a Gilead Company, Los Angeles CA) and tisagenlecleucel (KYMRIAH; Novartis Pharmaceuticals Corp., Basel, Switzerland) are two CD19-directed chimeric antigen receptor (CAR) T cell products currently approved by the US Food and Drug Administration; the European Medicines Agency; Health Canada; Ministry of Health, Labor and Welfare (Japan); and Therapeutic Goods Administration (Australia) for treatment of specific subtypes of relapsed/refractory aggressive B cell non-Hodgkin lymphoma (NHL). Although this approval has been transformative in the use of cellular immunotherapy in lymphoma, there are concerns regarding appropriate use of this novel therapy and of short- and long-term toxicities. To address these issues, representatives of the American Society of Transplantation and Cellular Therapy convened to recognize and address key issues surrounding the clinical application of CD19 CAR T cell therapy in B cell lymphomas, in collaboration with worldwide experts. The aim of this article is to provide consensus opinion from experts in the fields of hematopoietic cell transplantation, cellular immunotherapy, and lymphoma regarding key clinical questions pertinent to the use of CD19 CAR T cell products for the treatment of NHL. As the clinical practice using CAR T cells grows worldwide, we anticipate that this guidance will be relevant for hematology/oncology physicians who care for patients with lymphomas.
Collapse
Affiliation(s)
- Tania Jain
- Adult Bone Marrow Transplant Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York; Hematologic Malignancies and Bone Marrow Transplantation Program, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Merav Bar
- Division of Clinical Research, Fred Hutchinson Cancer Research Center and Department of Medicine, University of Washington, Seattle, Washington
| | - Ankit J Kansagra
- Department of Hematology and Oncology, Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Elise A Chong
- Lymphoma Program, Abramson Cancer Center at University of Pennsylvania, Philadelphia, Pennsylvania
| | - Shahrukh K Hashmi
- Division of Hematology, Mayo Clinic, Rochester, Minnesota; Oncology Centre, King Faisal Specialist Hospital & Research Centre, Riyadh, Saudi Arabia
| | - Sattva S Neelapu
- Department of Lymphoma and Myeloma, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Michael Byrne
- Division of Hematology and Medical Oncology, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Elad Jacoby
- The Chaim Sheba Medical Center, Tel-Hashomer, Affiliated with the Sackler School of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Aleksandr Lazaryan
- Blood and Marrow Transplant and Cellular Immunotherapy Program, Moffitt Cancer Center, Tampa, Florida
| | - Caron A Jacobson
- Immune Effector Cell Therapy Program, Dana-Farber Cancer Institute, Boston, Massachusetts
| | | | - Farrukh T Awan
- Department of Hematology and Oncology, Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Linda Burns
- National Marrow Donor Program and Center for International Blood and Marrow Transplant Research, Minneapolis, Minnesota
| | - Veronika Bachanova
- Division of Hematology, Oncology and Transplantation, University of Minnesota, Minneapolis, Minnesota
| | - Catherine M Bollard
- Center for Cancer and Immunology Research, Children's National Health System, Washington, DC
| | - Paul A Carpenter
- Division of Clinical Research, Fred Hutchinson Cancer Research Center and Department of Medicine, University of Washington, Seattle, Washington; Department of Pediatrics, University of Washington School of Medicine, Seattle, Washington
| | - John F DiPersio
- Division of Oncology, Washington University School of Medicine, St Louis, Missouri
| | - Mehdi Hamadani
- Division of Hematology/Oncology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Helen E Heslop
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, Texas
| | - Joshua A Hill
- Division of Clinical Research, Fred Hutchinson Cancer Research Center and Department of Medicine, University of Washington, Seattle, Washington; Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Krishna V Komanduri
- Division of Transplantation and Cellular Therapy, Sylvester Comprehensive Cancer Center, Miami, Florida
| | - Craig A Kovitz
- Department of General Oncology, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Hillard M Lazarus
- Division of Hematology and Oncology, Case Western Reserve University, Cleveland, Ohio
| | - Justin M Serrette
- Department of Pediatrics, University of Texas Medical Branch, Galveston, Texas
| | - Mohamad Mohty
- Hematology and Cellular Therapy Department, Saint-Antoine Hospital, AP-HP, Sorbonne University, INSERM UMRs 938, Paris, France
| | - David Miklos
- Division of Blood and Marrow Transplantation, Stanford University, Stanford, California
| | - Arnon Nagler
- Division of Hematology and Medical Oncology, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Steven Z Pavletic
- Graft-versus-Host and Late Effects Section, National Cancer Institute, Center for Cancer Research, National Institutes of Health, Bethesda, Maryland
| | - Bipin N Savani
- Division of Hematology and Medical Oncology, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Stephen J Schuster
- Lymphoma Program, Abramson Cancer Center at University of Pennsylvania, Philadelphia, Pennsylvania
| | - Mohamed A Kharfan-Dabaja
- Division of Hematology-Oncology and Blood and Marrow Transplantation Program, Mayo Clinic, Jacksonville, Florida.
| | - Miguel-Angel Perales
- Adult Bone Marrow Transplant Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York; Department of Medicine, Weill Cornell Medical College, New York, New York.
| | - Yi Lin
- Division of Hematology, Mayo Clinic, Rochester, Minnesota.
| |
Collapse
|
7
|
Development of CAR-T cells for long-term eradication and surveillance of HIV-1 reservoir. Curr Opin Virol 2019; 38:21-30. [PMID: 31132749 DOI: 10.1016/j.coviro.2019.04.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 04/18/2019] [Accepted: 04/19/2019] [Indexed: 12/21/2022]
Abstract
Human immunodeficiency virus type 1 (HIV-1) reservoir is a pool of latently infected cells harboring replication-competent proviral DNA that limits antiretroviral therapy. Suppression of HIV-1 by combination antiretroviral therapy (cART) delays progression of the disease but does not eliminate the viral reservoir, necessitating lifetime daily administration of antiretroviral drugs. To achieve durable suppression of viremia without daily therapy, various strategies have been developed, including long-acting antiretroviral drugs (LA-ARVs), broadly neutralizing antibodies (bNAbs), and chimeric antigen receptor T (CAR-T) cells. Here, we summarize and discuss recent breakthroughs in CAR-T cell therapies toward the eradication of HIV-1 reservoir. Although substantial challenges exist, CAR-T cell technology may serve as a promising strategy toward HIV-1 functional cure.
Collapse
|
8
|
Baliou S, Adamaki M, Kyriakopoulos AM, Spandidos DA, Panayiotidis M, Christodoulou I, Zoumpourlis V. CRISPR therapeutic tools for complex genetic disorders and cancer (Review). Int J Oncol 2018; 53:443-468. [PMID: 29901119 PMCID: PMC6017271 DOI: 10.3892/ijo.2018.4434] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Accepted: 05/18/2018] [Indexed: 12/13/2022] Open
Abstract
One of the fundamental discoveries in the field of biology is the ability to modulate the genome and to monitor the functional outputs derived from genomic alterations. In order to unravel new therapeutic options, scientists had initially focused on inducing genetic alterations in primary cells, in established cancer cell lines and mouse models using either RNA interference or cDNA overexpression or various programmable nucleases [zinc finger nucleases (ZNF), transcription activator-like effector nucleases (TALEN)]. Even though a huge volume of data was produced, its use was neither cheap nor accurate. Therefore, the clustered regularly interspaced short palindromic repeats (CRISPR) system was evidenced to be the next step in genome engineering tools. CRISPR-associated protein 9 (Cas9)-mediated genetic perturbation is simple, precise and highly efficient, empowering researchers to apply this method to immortalized cancerous cell lines, primary cells derived from mouse and human origins, xenografts, induced pluripotent stem cells, organoid cultures, as well as the generation of genetically engineered animal models. In this review, we assess the development of the CRISPR system and its therapeutic applications to a wide range of complex diseases (particularly distinct tumors), aiming at personalized therapy. Special emphasis is given to organoids and CRISPR screens in the design of innovative therapeutic approaches. Overall, the CRISPR system is regarded as an eminent genome engineering tool in therapeutics. We envision a new era in cancer biology during which the CRISPR-based genome engineering toolbox will serve as the fundamental conduit between the bench and the bedside; nonetheless, certain obstacles need to be addressed, such as the eradication of side-effects, maximization of efficiency, the assurance of delivery and the elimination of immunogenicity.
Collapse
Affiliation(s)
- Stella Baliou
- National Hellenic Research Foundation, 11635 Athens, Greece
| | - Maria Adamaki
- National Hellenic Research Foundation, 11635 Athens, Greece
| | | | - Demetrios A Spandidos
- Laboratory of Clinical Virology, Medical School, University of Crete, Heraklion 71003, Greece
| | - Mihalis Panayiotidis
- Department of Applied Sciences, Northumbria University, Newcastle Upon Tyne, NE1 8ST, UK
| | | | | |
Collapse
|
9
|
Zhang Q, Zhang Z, Peng M, Fu S, Xue Z, Zhang R. CAR-T cell therapy in gastrointestinal tumors and hepatic carcinoma: From bench to bedside. Oncoimmunology 2016; 5:e1251539. [PMID: 28123893 PMCID: PMC5214859 DOI: 10.1080/2162402x.2016.1251539] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Accepted: 10/17/2016] [Indexed: 12/13/2022] Open
Abstract
The chimeric antigen receptor (CAR) is a genetically engineered receptor that combines a scFv domain, which specifically recognizes the tumor-specific antigen, with T cell activation domains. CAR-T cell therapies have demonstrated tremendous efficacy against hematologic malignancies in many clinical trials. Recent studies have extended these efforts to the treatment of solid tumors. However, the outcomes of CAR-T cell therapy for solid tumors are not as remarkable as the outcomes have been for hematologic malignancies. A series of hurdles has arisen with respect to CAR-T cell-based immunotherapy, which needs to be overcome to target solid tumors. The major challenge for CAR-T cell therapy in solid tumors is the selection of the appropriate specific antigen to demarcate the tumor from normal tissue. In this review, we discuss the application of CAR-T cells to gastrointestinal and hepatic carcinomas in preclinical and clinical research. Furthermore, we analyze the usefulness of several specific markers in the study of gastrointestinal tumors and hepatic carcinoma.
Collapse
Affiliation(s)
- Qi Zhang
- Laboratory of Immunology and Inflammation, Department of Immunology and Research Center of Basic Medical Science, Tianjin Medical University, Tianjin, China; Key Laboratory of Immune Microenvironment and Diseases of Educational Ministry of China, Tianjin Key Laboratory of Molecular and Cellular Immunology, Tianjin Medical University, Tianjin, China
| | - Zimu Zhang
- Laboratory of Immunology and Inflammation, Department of Immunology and Research Center of Basic Medical Science, Tianjin Medical University, Tianjin, China; Key Laboratory of Immune Microenvironment and Diseases of Educational Ministry of China, Tianjin Key Laboratory of Molecular and Cellular Immunology, Tianjin Medical University, Tianjin, China
| | - Meiyu Peng
- Department of Immunology, Basic Medical College, Weifang Medical University , Weifang, China
| | - Shuyu Fu
- Laboratory of Immunology and Inflammation, Department of Immunology and Research Center of Basic Medical Science, Tianjin Medical University, Tianjin, China; Key Laboratory of Immune Microenvironment and Diseases of Educational Ministry of China, Tianjin Key Laboratory of Molecular and Cellular Immunology, Tianjin Medical University, Tianjin, China
| | - Zhenyi Xue
- Laboratory of Immunology and Inflammation, Department of Immunology and Research Center of Basic Medical Science, Tianjin Medical University, Tianjin, China; Key Laboratory of Immune Microenvironment and Diseases of Educational Ministry of China, Tianjin Key Laboratory of Molecular and Cellular Immunology, Tianjin Medical University, Tianjin, China
| | - Rongxin Zhang
- Laboratory of Immunology and Inflammation, Department of Immunology and Research Center of Basic Medical Science, Tianjin Medical University, Tianjin, China; Key Laboratory of Immune Microenvironment and Diseases of Educational Ministry of China, Tianjin Key Laboratory of Molecular and Cellular Immunology, Tianjin Medical University, Tianjin, China
| |
Collapse
|
10
|
Patel S, Jones RB, Nixon DF, Bollard CM. T-cell therapies for HIV: Preclinical successes and current clinical strategies. Cytotherapy 2016; 18:931-942. [PMID: 27265874 DOI: 10.1016/j.jcyt.2016.04.007] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2016] [Accepted: 04/19/2016] [Indexed: 12/21/2022]
Abstract
Although antiretroviral therapy (ART) has been successful in controlling HIV infection, it does not provide a permanent cure, requires lifelong treatment, and HIV-positive individuals are left with social concerns such as stigma. The recent application of T cells to treat cancer and viral reactivations post-transplant offers a potential strategy to control HIV infection. It is known that naturally occurring HIV-specific T cells can inhibit HIV initially, but this response is not sustained in the majority of people living with HIV. Genetically modifying T cells to target HIV, resist infection, and persist in the immunosuppressive environment found in chronically infected HIV-positive individuals might provide a therapeutic solution for HIV. This review focuses on successful preclinical studies and current clinical strategies using T-cell therapy to control HIV infection and mediate a functional cure solution.
Collapse
Affiliation(s)
- Shabnum Patel
- Institute for Biomedical Sciences, The George Washington University, Washington, DC, USA; Department of Microbiology, Immunology, and Tropical Medicine, The George Washington University, Washington, DC, USA; Program for Cell Enhancement and Technologies for Immunotherapy, Children's National Health System, Washington, DC, USA
| | - R Brad Jones
- Department of Microbiology, Immunology, and Tropical Medicine, The George Washington University, Washington, DC, USA
| | - Douglas F Nixon
- Department of Microbiology, Immunology, and Tropical Medicine, The George Washington University, Washington, DC, USA
| | - Catherine M Bollard
- Department of Microbiology, Immunology, and Tropical Medicine, The George Washington University, Washington, DC, USA; Program for Cell Enhancement and Technologies for Immunotherapy, Children's National Health System, Washington, DC, USA.
| |
Collapse
|
11
|
Vu BT, Tan Le D, Van Pham P. Synergistic effect of chimeric antigen receptors and cytokineinduced killer cells: An innovative combination for cancer therapy. BIOMEDICAL RESEARCH AND THERAPY 2016. [DOI: 10.7603/s40730-016-0025-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
12
|
A Multidrug-resistant Engineered CAR T Cell for Allogeneic Combination Immunotherapy. Mol Ther 2015; 23:1507-18. [PMID: 26061646 PMCID: PMC4817890 DOI: 10.1038/mt.2015.104] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2014] [Accepted: 05/27/2015] [Indexed: 02/07/2023] Open
Abstract
The adoptive transfer of chimeric antigen receptor (CAR) T cell represents a highly promising strategy to fight against multiple cancers. The clinical outcome of such therapies is intimately linked to the ability of effector cells to engraft, proliferate, and specifically kill tumor cells within patients. When allogeneic CAR T-cell infusion is considered, host versus graft and graft versus host reactions must be avoided to prevent rejection of adoptively transferred cells, host tissue damages and to elicit significant antitumoral outcome. This work proposes to address these three requirements through the development of multidrug-resistant T cell receptor αβ-deficient CAR T cells. We demonstrate that these engineered T cells displayed efficient antitumor activity and proliferated in the presence of purine and pyrimidine nucleoside analogues, currently used in clinic as preconditioning lymphodepleting regimens. The absence of TCRαβ at their cell surface along with their purine nucleotide analogues-resistance properties could prevent their alloreactivity and enable them to resist to lymphodepleting regimens that may be required to avoid their ablation via HvG reaction. By providing a basic framework to develop a universal T cell compatible with allogeneic adoptive transfer, this work is laying the foundation stone of the large-scale utilization of CAR T-cell immunotherapies.
Collapse
|
13
|
Linch M, Gennatas S, Kazikin S, Iqbal J, Gunapala R, Priest K, Severn J, Norton A, Ayite B, Bhosle J, O'Brien M, Popat S. A serum mesothelin level is a prognostic indicator for patients with malignant mesothelioma in routine clinical practice. BMC Cancer 2014; 14:674. [PMID: 25227779 PMCID: PMC4182776 DOI: 10.1186/1471-2407-14-674] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2013] [Accepted: 09/10/2014] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Malignant mesothelioma (MM) carries a poor prognosis and response rates to palliative chemotherapy remain low. Identifying patients with MM that are unlikely to respond to chemotherapy could prevent futile treatments and improve patient quality of life. Studies have suggested that soluble mesothelin is a potential biomarker for early diagnosis and prognosis of MM. We set out to explore the utility of serum mesothelin in routine clinical practice. METHODS We conducted a prospective exploratory study of serum mesothelin levels in 53 consecutive patients with MM at our institution between April 2009 and February 2011. Survival was assessed and analysed by mesothelin level as both continuous and categorical variables using Cox regression models. Differences in response rate between treatment groups were assessed by the Kruskal-Wallis Test. RESULTS All 53 patients, who had been given study information agreed to participate. The patients' median age was 69 (range 24-90). Median mesothelin level was 2.7 nM and this value was used to dichotomize categories: ≤2.7 nM (low) and >2.7 nM (high). The progression free survival (PFS) for low vs high mesothelin was 8.0 vs 5.1 months (HR 1.8, p-0.058). When mesothelin was accessed as a continuous variable for PFS the HR was 1.03 (95% CI: 1.01-1.06; p=0.013). The overall survival (OS) for low vs high mesothelin was 17.2 vs 11.3 months (HR 1.9, p=0.088). When mesothelin was assessed as a continuous variable for OS the HR was 1.02 (95% CI: 0.99 - 1.04; p=0.073). Thirty patients received chemotherapy of which 18 had a pre-chemotherapy serum mesothelin level. In these 18 patients, the pre-chemotherapy mesothelin level did not correlate with response. CONCLUSIONS A single random sample provides information about patient prognosis but does not predict treatment response. We suggest further prospective validation of mesothelin testing as a prognostic biomarker.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | - Sanjay Popat
- Royal Marsden Hospital, Fulham Road, SW3 6JJ London, Surrey, UK.
| |
Collapse
|
14
|
Villena-Vargas J, Adusumilli PS. Mesothelin-targeted immunotherapies for malignant pleural mesothelioma. Ann Cardiothorac Surg 2013; 1:466-71. [PMID: 23977538 DOI: 10.3978/j.issn.2225-319x.2012.10.03] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2012] [Accepted: 10/18/2012] [Indexed: 11/14/2022]
Affiliation(s)
- Jonathan Villena-Vargas
- Center for Cell Engineering and Department of Surgery, Thoracic Service, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA
| | | |
Collapse
|
15
|
Han EQ, Li XL, Wang CR, Li TF, Han SY. Chimeric antigen receptor-engineered T cells for cancer immunotherapy: progress and challenges. J Hematol Oncol 2013; 6:47. [PMID: 23829929 PMCID: PMC3706354 DOI: 10.1186/1756-8722-6-47] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2013] [Accepted: 07/03/2013] [Indexed: 01/01/2023] Open
Abstract
Recent years have witnessed much progress in both basic research and clinical trials regarding cancer immunotherapy with chimeric antigen receptor (CAR)-engineered T cells. The unique structure of CAR endows T cell tumor specific cytotoxicity and resistance to immunosuppressive microenvironment in cancers, which helps patients to better tackle the issue of immunological tolerance. Adoptive immunotherapy (AIT) using this supernatural T cell have gained momentum after decades of intense debates because of the promising results obtained from preclinical models and clinical trials. However, it is very important for us to evaluate thoroughly the challenges/obstacles before widespread clinical application, which clearly warrants more studies to improve our understanding of the mechanism underlying AIT. In this review, we focus on the critical issues related to the clinical outcomes of CAR-based adoptive immunotherapy and discuss the rationales to refine this new cancer therapeutic modality.
Collapse
Affiliation(s)
- Ethan Q Han
- Drexel University College of Medicine, Philadelphia, PA 19129, USA
| | | | | | | | | |
Collapse
|