1
|
Liang G, Ma Y, Deng P, Li S, He C, He H, Liu H, Fan Y, Li Z. Role of cell-based therapies in digestive disorders: Obstacles and opportunities. Regen Ther 2025; 29:1-18. [PMID: 40124469 PMCID: PMC11925584 DOI: 10.1016/j.reth.2025.02.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2024] [Revised: 02/01/2025] [Accepted: 02/20/2025] [Indexed: 03/25/2025] Open
Abstract
Stem cell-based therapies have emerged as a promising frontier in the treatment of gastrointestinal disorders, offering potential solutions for challenges posed by conventional treatments. This review comprehensively examines recent advancements in cell-based therapeutic strategies, particularly focusing on stem cell applications, immunotherapy, and cellular therapies for digestive diseases. It highlights the successful differentiation of enteric neural progenitors from pluripotent stem cells and their application in animal models, such as Hirschsprung disease. Furthermore, the review evaluates clinical trials and experimental studies demonstrating the potential of stem cells in regenerating damaged tissues, modulating immune responses, and promoting healing in conditions like Crohn's disease and liver failure. By addressing challenges, such as scalability, immunogenicity, and ethical considerations, the review underscores the translational opportunities and obstacles in realizing the clinical potential of these therapies. Concluding with an emphasis on future directions, the study provides insights into optimizing therapeutic efficacy and fostering innovations in personalized medicine for digestive disorders.
Collapse
Affiliation(s)
- Guodong Liang
- First Surgery Department of Colorectal, Gastric and Abdominal Tumors, Jilin Cancer Hospital, Changchun 130012, China
| | - Yuehan Ma
- First Surgery Department of Colorectal, Gastric and Abdominal Tumors, Jilin Cancer Hospital, Changchun 130012, China
| | - Ping Deng
- Medical Department, Jilin Cancer Hospital, Changchun 130012, China
| | - Shufeng Li
- First Department of Gynecological Tumor, Jilin Cancer Hospital, Changchun 130012, China
| | - Chunyan He
- Department of Anaesthesia, Jilin Cancer Hospital, Changchun 130012, China
| | - Haihang He
- Department of Otorhinolaryngology, Oral Maxillofacial, Head and Neck, Jilin Cancer Hospital, Changchun 130012, China
| | - Hairui Liu
- First Surgery Department of Colorectal, Gastric and Abdominal Tumors, Jilin Cancer Hospital, Changchun 130012, China
| | - Yunda Fan
- First Surgery Department of Colorectal, Gastric and Abdominal Tumors, Jilin Cancer Hospital, Changchun 130012, China
| | - Ze Li
- First Surgery Department of Colorectal, Gastric and Abdominal Tumors, Jilin Cancer Hospital, Changchun 130012, China
| |
Collapse
|
2
|
Khaliulin M, Valiullina A, Petukhov A, Yuan Y, Spada S, Bulatov E. Breaking the shield of solid tumors: a combined approach for enhanced efficacy of CAR-T cells. Cancer Immunol Immunother 2024; 74:3. [PMID: 39487875 PMCID: PMC11531461 DOI: 10.1007/s00262-024-03817-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Accepted: 08/22/2024] [Indexed: 11/04/2024]
Abstract
The use of chimeric antigen receptor (CAR)-T cells has enhanced the range of available therapeutic modalities in the context of cancer treatment. CAR-T cells have demonstrated considerable efficacy in the targeted eradication of blood cancer cells, thereby stimulating substantial interest in the advancement of such therapeutic approaches. However, the efficacy of CAR-T cells against solid tumor cells has been limited due to the presence of various obstacles. Solid tumors exhibit antigenic diversity and an immunosuppressive microenvironment, which presents a challenge for immune cells attempting to penetrate the tumor. CAR-T cells also demonstrate decreased proliferative activity and cytotoxicity. Furthermore, concerns exist regarding tumor antigen loss and therapy-associated toxicity. Currently, scientists are working to enhance the structure of the CAR and improve the survival and efficiency of CAR-T cells in recognizing tumor antigens in solid tumors. Chemotherapy drugs are frequently employed in the treatment of malignant neoplasms and can also be used prior to cell therapy to enhance CAR-T cell engraftment. Recent studies have demonstrated that chemotherapy drugs can mitigate the suppressive impact of TME, eliminate the physical barrier by destroying the tumor stroma, and facilitate greater penetration of immune cells and CAR-T cells into the tumor. This, in turn, increases their survival, persistence, and cytotoxicity, as well as affects the metabolism of immune cells inside the tumor. However, the effectiveness of the combined approach against solid tumors depends on several factors, including the type of tumor, dosage, population of CAR-T cells, and individual characteristics of the body. This review examines the principal obstacles to the utilization of CAR-T cells against solid tumors, proposes solutions to these issues, and assesses the potential advantages of a combined approach to radiation exposure, which has the potential to enhance the sensitivity of the tumor to other agents.
Collapse
Affiliation(s)
- Marat Khaliulin
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia, 420008
| | - Aygul Valiullina
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia, 420008
| | - Alexey Petukhov
- Nazarbaev University, Qabanbay Batyr Ave 53, 010000, Astana, Kazakhstan
| | - Youyong Yuan
- School of Biomedical Sciences and Engineering, Guangzhou International Campus, South China University of Technology, Guangzhou, 511442, People's Republic of China
| | - Sheila Spada
- Tumor Immunology and Immunotherapy Unit, IRCCS-Regina Elena National Cancer Institute, Via E. Chianesi 53, 00144, Rome, Italy
| | - Emil Bulatov
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia, 420008.
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia, 117997.
- Federal State Autonomous Educational Institution of Higher Education I.M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University), Moscow, Russia, 119048.
| |
Collapse
|
3
|
Liu C, Wang Q, Li L, Gao F, Zhang Y, Zhu Y. The peptide-based bispecific CAR T cells target EGFR and tumor stroma for effective cancer therapy. Int J Pharm 2024; 663:124558. [PMID: 39111352 DOI: 10.1016/j.ijpharm.2024.124558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 07/23/2024] [Accepted: 08/04/2024] [Indexed: 08/12/2024]
Abstract
BACKGROUND AND PURPOSE The efficacy of chimeric antigen receptor (CAR)-T cell for solid tumors is limited partially because of the lack of tumor-specific antigens and off-target effects. Low molecular weight peptides allowed CAR T cell to display several antigen receptors to reduce off-target effects. Here, we develop a peptide-based bispecific CAR for EGFR and tumor stroma, which are expressed in a variety of tumor types. EXPERIMENTAL APPROACH AND KEY RESULTS The peptide-based CAR T cells show excellent proliferation, cytotoxicity activity and are only activated by tumor cells overexpressing EGFR instead of normal cells with low EGFR expressing. In mouse xenograft models, the peptide bispecific CAR T cells can be delivered into the inner of tumor masses and thus are effective in inhibiting tumor growth. Meanwhile, they show strong expansion capacity and the property of maintaining long-term function in vivo. During treatment, no off-tumor toxicity is observed on healthy organs expressing lower levels of EGFR. CONCLUSIONS & IMPLICATIONS Our findings demonstrate that peptide-based bispecific CAR T holds great potential in solid tumor therapy due to an excellent targeting ability towards tumors and tumor microenvironment.
Collapse
Affiliation(s)
- Cuijuan Liu
- School of Nano Technology and Nano Bionics, University of Science and Technology of China, Hefei 230026, China; CAS Key Laboratory of Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China; The Fifth Medical Center of Chinese PLA General Hospital, Beijing 100071, China
| | - Qianqian Wang
- School of Nano Technology and Nano Bionics, University of Science and Technology of China, Hefei 230026, China; CAS Key Laboratory of Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
| | - Lin Li
- CAS Key Laboratory of Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
| | - Fan Gao
- School of Nano Technology and Nano Bionics, University of Science and Technology of China, Hefei 230026, China; CAS Key Laboratory of Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
| | - Yuanyue Zhang
- Department of Oncology, Suzhou BenQ Medical Center, The Affiliated BenQ Hospital of Nanjing Medical University, Suzhou, China
| | - Yimin Zhu
- CAS Key Laboratory of Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China.
| |
Collapse
|
4
|
Khaliulin MR, Safin RN, Kunst MA, Bulatov ER. The use of T-cells with chimeric antigen receptor (CAR-T) in combination with chemotherapy and radiotherapy for the treatment of solid tumors. ADVANCES IN MOLECULAR ONCOLOGY 2024; 11:31-45. [DOI: 10.17650/2313-805x-2024-11-1-31-45] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Abstract
The introduction of chimeric antigen receptor (CAR) T-cell therapy has revolutionized the treatment of hematological diseases, particularly in combating blood cancer. The success of this cell therapy approach has led to the development of approximately seven commercial CAR-T based drugs. However, the application of CAR-T therapy for solid tumors has proven to be less effective due to challenges such as the varied antigens in solid tumors, an immunosuppressive tumor environment, limited immune cell infiltration, reduced CAR-T cell activity and toxicity issues. To solve these problems, scientists are making efforts to improve and improve the methods of treatment of solid tumors. Chemotherapy is the standard treatment for a large number of malignant neoplasms. It is also used before starting cell therapy for lymphodepletion and better engraftment of injected CAR-T cells. It has been shown that chemotherapy can reduce the immunosuppressive effect of the tumor microenvironment, destroy the stroma, and promote better infiltration of the tumor by CAR-T cells, improving their survival, persistence, cytotoxicity, and influencing the metabolism of immune cells inside the tumor. The effectiveness of combining chemotherapy and CAR-T cell therapy relies on various factors such as tumor type, dosage, treatment schedule, CAR-T cell composition, and individual biological traits. Similarly, radiation therapy can enhance tumor cell vulnerability to specific treatments while also supporting tumor cell survival.In this review, we discuss the use of CAR-T therapy to combat solid tumors, regarding the challenges of treating solid tumors, ways to overcome them, and also touch upon the possibility of using combination treatments to improve the effectiveness of cell therapy.
Collapse
Affiliation(s)
| | - R. N. Safin
- Republican Clinical Oncology Dispensary named after Prof. M.Z. Sigal Russia
| | - M. A. Kunst
- Republican Clinical Hospital of the Ministry of Health of the Republic of Tatarstan
| | - E. R. Bulatov
- Kazan (Volga Region) Federal University; Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences
| |
Collapse
|
5
|
Xue J, Yan X, Ding Q, Li N, Wu M, Song J. Effect of neoadjuvant chemotherapy on the immune microenvironment of gynaecological tumours. Ann Med 2023; 55:2282181. [PMID: 37983527 PMCID: PMC10836282 DOI: 10.1080/07853890.2023.2282181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 11/06/2023] [Indexed: 11/22/2023] Open
Abstract
Purpose: To assess the impact of neoadjuvant chemotherapy (NACT) on the tumor immune microenvironment (TIME) in gynaecological tumors, with a focus on understanding the potential for enhanced combination therapies.Methods: We systematically queried the PubMed, Embase, and Cochrane databases, encompassing reviews, clinical trials, and case studies, to undertake a thorough analysis of the impact of NACT on the TIME of gynaecological tumors.Results: NACT induces diverse immune microenvironment changes in gynaecological tumors. In cervical cancer, NACT boosts immune-promoting cells, enhancing tumor clearance. Ovarian cancer studies yield variable outcomes, influenced by patient-specific factors and treatment regimens. Limited research exists on NACT's impact on endometrial cancer's immune microenvironment, warranting further exploration. In summary, NACT-induced immune microenvironment changes display variability. Clinical trials highlight personalized immunotherapy's positive impact on gynaecological tumor prognosis, suggesting potential avenues for future cancer treatments. However, rigorous investigation is needed to determine the exact efficacy and safety of combining NACT with immunotherapy.Conclusion: This review provides a solid foundation for the development of late-stage immunotherapy and highlights the importance of therapeutic strategies targeting immune cells in TIME in anti-tumor therapy.
Collapse
Affiliation(s)
- Jing Xue
- Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, PR China
- Shanxi Medical University, Taiyuan, Shanxi Province, PR China
| | - Xia Yan
- Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, PR China
- Shanxi Provincial Key Laboratory for Translational Nuclear Medicine and Precision Protection, Taiyuan, Shanxi Province, PR China
| | - Qin Ding
- Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, PR China
- Shanxi Provincial Key Laboratory for Translational Nuclear Medicine and Precision Protection, Taiyuan, Shanxi Province, PR China
| | - Nan Li
- Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, PR China
- Shanxi Provincial Key Laboratory for Translational Nuclear Medicine and Precision Protection, Taiyuan, Shanxi Province, PR China
| | - Menghan Wu
- Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, PR China
- Shanxi Provincial Key Laboratory for Translational Nuclear Medicine and Precision Protection, Taiyuan, Shanxi Province, PR China
| | - Jianbo Song
- Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, PR China
- Shanxi Provincial Key Laboratory for Translational Nuclear Medicine and Precision Protection, Taiyuan, Shanxi Province, PR China
| |
Collapse
|
6
|
Zhang XW, Wu YS, Xu TM, Cui MH. CAR-T Cells in the Treatment of Ovarian Cancer: A Promising Cell Therapy. Biomolecules 2023; 13:biom13030465. [PMID: 36979400 PMCID: PMC10046142 DOI: 10.3390/biom13030465] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 02/23/2023] [Accepted: 03/01/2023] [Indexed: 03/06/2023] Open
Abstract
Ovarian cancer (OC) is among the most common gynecologic malignancies with a poor prognosis and a high mortality rate. Most patients are diagnosed at an advanced stage (stage III or IV), with 5-year survival rates ranging from 25% to 47% worldwide. Surgical resection and first-line chemotherapy are the main treatment modalities for OC. However, patients usually relapse within a few years of initial treatment due to resistance to chemotherapy. Cell-based therapies, particularly adoptive T-cell therapy and chimeric antigen receptor T (CAR-T) cell therapy, represent an alternative immunotherapy approach with great potential for hematologic malignancies. However, the use of CAR-T-cell therapy for the treatment of OC is still associated with several difficulties. In this review, we comprehensively discuss recent innovations in CAR-T-cell engineering to improve clinical efficacy, as well as strategies to overcome the limitations of CAR-T-cell therapy in OC.
Collapse
|
7
|
Harari-Steinfeld R, Abhinav Ayyadevara VSS, Cuevas L, Marincola F, Roh KH. Standardized in-vitro evaluation of CAR-T cells using acellular artificial target particles. Front Immunol 2022; 13:994532. [PMID: 36341361 PMCID: PMC9632174 DOI: 10.3389/fimmu.2022.994532] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 09/26/2022] [Indexed: 10/31/2024] Open
Abstract
The horizon of immunotherapy using CAR-T cells is continuously extending to treat solid tumors beyond the success in the treatment of liquid tumors. Precise in-vitro evaluations of CAR-T cells for their phenotypes, quantity and quality of activation in various tumor microenvironments including different antigen densities, and the resulting effector functions are critical for the successful development of CAR-T therapies and safe translation to clinics. Unfortunately, the development of methods and tools to accommodate these needs have been lagging behind. Here, we developed a novel biomaterial platform, acellular artificial target particles (aaTPs) against CAR-T cells, using magnetic microbeads that are already widely employed in the manufacturing of T cell products. By devising a simple and standardized procedure, we precisely controlled the antigen surface densities presented on the aaTPs for a wide range. By co-incubation of aaTPs with CAR-T cells followed by flow cytometry and cytokine assays, we quantitatively determined the antigen-specific and dose-dependent activation of anti-HER2 CAR-T cells. We also demonstrated that the aaTP can serve as a clean target cell in in-vitro assays to prove the proposed mechanism of action of a next-generation CAR-T product. Overall, the simple, inexpensive, modular and precisely controllable synthetic nature of aaTPs enables the development of clean and standardized in-vitro assays for CAR-T cells, which provides critical advantages over the conventional assays using target cell lines. The design of aaTPs can be extended to include other tumor antigens and relevant surface molecules of physiological target cells. Thus, the aaTP platform has great potential as a standardized tool for the development and evaluation of both conventional and new CAR-T products in the context of approval from regulatory agencies and clinical translation.
Collapse
Affiliation(s)
| | - V. S. S. Abhinav Ayyadevara
- Biotechnology Science and Engineering, The University of Alabama in Huntsville, Huntsville, AL, United States
| | | | | | - Kyung-Ho Roh
- Biotechnology Science and Engineering, The University of Alabama in Huntsville, Huntsville, AL, United States
- Department of Chemical and Materials Engineering, The University of Alabama in Huntsville, Huntsville, AL, United States
| |
Collapse
|
8
|
Zhang H, Ye X, Wen J, Cai Z, Li Y, Zhang M, Shen L, Cai J. Anti-HER2 scFv-CCL19-IL7 recombinant protein inhibited gastric tumor growth in vivo. Sci Rep 2022; 12:10461. [PMID: 35729189 PMCID: PMC9213520 DOI: 10.1038/s41598-022-14336-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 06/06/2022] [Indexed: 11/24/2022] Open
Abstract
HER-2 targeted therapies, such as monoclonal antibodies (mAbs) and CAR-T cell therapy have been applied in the treatment of various of cancers. However, the anti-HER2 CAR-T cell therapy are limited by its expensive production procedure and fatal side effects such as cytokine storm or "On target, off tumor". The application of anti-HER2 mAbs to the soild tumor are also plagued by the patients resistant with different mechanisms. Thus, the recombinant protein technology can be presented as an attractive methods in advantage its less toxic and lower cost. In this study, we produced a HER-2-targeting recombinant protein, which is the fusion of the anti-HER-2 single chain fragment variable domain, CCL19 and IL7 (HCI fusion protein). Our results showed that the recombinant protein can induce the specific lysis effects of immune cells on HER-2-positive gastric tumor cells and can suppress gastric tumor growth in a xenograft model by chemotactic autoimmune cell infiltration into tumor tissues and activated T cells. Taken together, our results revealed that the HCI fusion protein can be applied as a subsequent clinical drug in treating HER-2 positive gastric tumors.
Collapse
Affiliation(s)
- Haiqiang Zhang
- Department of Surgery, Hebei Medical University, 361 East Zhongshan Road, Shijiazhuang, 050017, Hebei, China
- Department of Oncology &Surgery, Hebei General Hospital, 348 West Heping Road, Shijiazhuang, 050051, Hebei, China
- Department of Surgery, Second Hospital of Hebei Medical University, Shijiazhuang, 050000, Hebei, China
| | - Xueshuai Ye
- Department of Surgery, Hebei Medical University, 361 East Zhongshan Road, Shijiazhuang, 050017, Hebei, China
- Department of Oncology &Surgery, Hebei General Hospital, 348 West Heping Road, Shijiazhuang, 050051, Hebei, China
| | - Junye Wen
- Department of Oncology &Surgery, Hebei General Hospital, 348 West Heping Road, Shijiazhuang, 050051, Hebei, China
| | - Ziqi Cai
- Hebei Cell Therapy Technology Innovation Center, HOFOY Medicine Hebei Co., LTD, 238 Yangzi River Avenue, Shijiazhuang, 050000, China
| | - Yang Li
- Department of Surgery, Hebei Medical University, 361 East Zhongshan Road, Shijiazhuang, 050017, Hebei, China
- Department of Oncology &Surgery, Hebei General Hospital, 348 West Heping Road, Shijiazhuang, 050051, Hebei, China
| | - Mengya Zhang
- Hebei Cell Therapy Technology Innovation Center, HOFOY Medicine Hebei Co., LTD, 238 Yangzi River Avenue, Shijiazhuang, 050000, China
| | - Li Shen
- Hebei Cell Therapy Technology Innovation Center, HOFOY Medicine Hebei Co., LTD, 238 Yangzi River Avenue, Shijiazhuang, 050000, China
| | - Jianhui Cai
- Department of Surgery, Hebei Medical University, 361 East Zhongshan Road, Shijiazhuang, 050017, Hebei, China.
- Department of Oncology &Surgery, Hebei General Hospital, 348 West Heping Road, Shijiazhuang, 050051, Hebei, China.
| |
Collapse
|
9
|
Murayama Y, Kawashima H, Kubo N, Shin C, Kasahara Y, Imamura M, Oike N, Ariizumi T, Saitoh A, Mihara K, Umezu H, Ogose A, Imai C. Effectiveness of 4-1BB-costimulated HER2-targeted chimeric antigen receptor T cell therapy for synovial sarcoma. Transl Oncol 2021; 14:101227. [PMID: 34555727 PMCID: PMC8461377 DOI: 10.1016/j.tranon.2021.101227] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 09/02/2021] [Accepted: 09/06/2021] [Indexed: 12/21/2022] Open
Abstract
HER2-targeted/4-1BB costimulated CAR T cells recognized synovial sarcoma cells. HER2-targeted CAR T cells secrete interferon gamma and tumor necrosis factor alpha. HER2-targeted CAR T cells exert cytotoxic effects in synovial sarcoma cells. HER2-targeted CAR T cell therapy for chemo-refractory or relapsed synovial sarcoma.
Background Synovial sarcoma is a rare malignant soft-tissue tumor that is prevalent in adolescents and young adults, and poor prognosis has been reported in patients with metastatic lesions. Chimeric antigen receptor (CAR) T-cell therapy is an emerging novel therapy for solid tumors; however, its application in synovial sarcoma has not yet been explored. Methods A novel human epidermal growth factor receptor 2 (HER2)-targeted CAR containing scFv-FRP5, CD8α hinge and transmembrane domains as well as 4-1BB costimulatory and CD3ζ signaling domains was developed. Three synovial sarcoma cell lines that expressed the fusion transcript SS18-SSX1/2/4 were used in the study. Cytokine secretion assay, cytotoxicity assay, and real-time cell analysis experiments were conducted to confirm the function of T cells transduced with the CAR gene. Results High cell-surface expression of HER2 was observed in all the cell lines. HER2-targeted/4-1BB-costimulated CAR T cells specifically recognized the synovial sarcoma cells, secreted interferon gamma and tumor necrosis factor alpha, and exerted cytotoxic effects in these cells. Conclusion To the best of our knowledge, this is the first study to indicate that HER2-targeted CAR T cells are directly effective against molecularly defined synovial sarcoma cells. Furthermore, our findings might set the basis for developing improved CAR T cell-based therapies for chemo-refractory or relapsed synovial sarcoma.
Collapse
Affiliation(s)
- Yudai Murayama
- Department of Pediatrics, Niigata University Graduate School of Medical and Dental Sciences, 1-757 Asahimachi-dori, Chuou-ku, Niigata City, Niigata 951-8510, Japan; Division of Orthopedic Surgery, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Hiroyuki Kawashima
- Division of Orthopedic Surgery, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Nobuhiro Kubo
- Department of Pediatrics, Niigata University Graduate School of Medical and Dental Sciences, 1-757 Asahimachi-dori, Chuou-ku, Niigata City, Niigata 951-8510, Japan
| | - Chansu Shin
- Department of Pediatrics, Niigata University Graduate School of Medical and Dental Sciences, 1-757 Asahimachi-dori, Chuou-ku, Niigata City, Niigata 951-8510, Japan
| | - Yasushi Kasahara
- Department of Pediatrics, Niigata University Graduate School of Medical and Dental Sciences, 1-757 Asahimachi-dori, Chuou-ku, Niigata City, Niigata 951-8510, Japan
| | - Masaru Imamura
- Department of Pediatrics, Niigata University Graduate School of Medical and Dental Sciences, 1-757 Asahimachi-dori, Chuou-ku, Niigata City, Niigata 951-8510, Japan
| | - Naoki Oike
- Division of Orthopedic Surgery, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Takashi Ariizumi
- Division of Orthopedic Surgery, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Akihiko Saitoh
- Department of Pediatrics, Niigata University Graduate School of Medical and Dental Sciences, 1-757 Asahimachi-dori, Chuou-ku, Niigata City, Niigata 951-8510, Japan
| | - Keichiro Mihara
- International Regenerative Medical Center, Fujita Health University, Aichi, Japan
| | - Hajime Umezu
- Division of Pathology, Niigata University Medical & Dental Hospital, Niigata, Japan
| | - Akira Ogose
- Department of Orthopedic Surgery, Uonuma Kikan Hospital, Niigata, Japan
| | - Chihaya Imai
- Department of Pediatrics, Niigata University Graduate School of Medical and Dental Sciences, 1-757 Asahimachi-dori, Chuou-ku, Niigata City, Niigata 951-8510, Japan.
| |
Collapse
|
10
|
Ghidini M, Petrillo A, Botticelli A, Trapani D, Parisi A, La Salvia A, Sajjadi E, Piciotti R, Fusco N, Khakoo S. How to Best Exploit Immunotherapeutics in Advanced Gastric Cancer: Between Biomarkers and Novel Cell-Based Approaches. J Clin Med 2021; 10:1412. [PMID: 33915839 PMCID: PMC8037391 DOI: 10.3390/jcm10071412] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Revised: 03/17/2021] [Accepted: 03/22/2021] [Indexed: 02/07/2023] Open
Abstract
Despite extensive research efforts, advanced gastric cancer still has a dismal prognosis with conventional treatment options. Immune checkpoint inhibitors have revolutionized the treatment landscape for many solid tumors. Amongst gastric cancer subtypes, tumors with microsatellite instability and Epstein Barr Virus positive tumors provide the strongest rationale for responding to immunotherapy. Various predictive biomarkers such as mismatch repair status, programmed death ligand 1 expression, tumor mutational burden, assessment of tumor infiltrating lymphocytes and circulating biomarkers have been evaluated. However, results have been inconsistent due to different methodologies and thresholds used. Clinical implementation therefore remains a challenge. The role of immune checkpoint inhibitors in gastric cancer is emerging with data from monotherapy in the heavily pre-treated population already available and studies in earlier disease settings with different combinatorial approaches in progress. Immune checkpoint inhibitor combinations with chemotherapy (CT), anti-angiogenics, tyrosine kinase inhibitors, anti-Her2 directed therapy, poly (ADP-ribose) polymerase inhibitors or dual checkpoint inhibitor strategies are being explored. Moreover, novel strategies including vaccines and CAR T cell therapy are also being trialed. Here we provide an update on predictive biomarkers for response to immunotherapy with an overview of their strengths and limitations. We discuss clinical trials that have been reported and trials in progress whilst providing an account of future steps needed to improve outcome in this lethal disease.
Collapse
Affiliation(s)
- Michele Ghidini
- Medical Oncology Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy
| | | | - Andrea Botticelli
- Department of Clinical and Molecular Medicine, Sapienza University, 00189 Rome, Italy;
- Medical Oncology (B), Policlinico Umberto I, 00161 Rome, Italy
| | - Dario Trapani
- Division of Early Drug Development for innovative therapies, European Institute of Oncology, IRCCS, 20141 Milan, Italy;
| | - Alessandro Parisi
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy;
- Medical Oncology Unit, St. Salvatore Hospital, 67100 L’Aquila, Italy
| | - Anna La Salvia
- Department of Oncology, University Hospital 12 De Octubre, 28041 Madrid, Spain;
| | - Elham Sajjadi
- Division of Pathology, European Institute of Oncology, IRCCS, 20141 Milan, Italy; (E.S.); (R.P.); (N.F.)
- Department of Oncology and Hemato-Oncology, University of Milan, 20122 Milan, Italy
| | - Roberto Piciotti
- Division of Pathology, European Institute of Oncology, IRCCS, 20141 Milan, Italy; (E.S.); (R.P.); (N.F.)
- Department of Oncology and Hemato-Oncology, University of Milan, 20122 Milan, Italy
| | - Nicola Fusco
- Division of Pathology, European Institute of Oncology, IRCCS, 20141 Milan, Italy; (E.S.); (R.P.); (N.F.)
- Department of Oncology and Hemato-Oncology, University of Milan, 20122 Milan, Italy
| | - Shelize Khakoo
- Department of Medicine, Royal Marsden Hospital, London and Surrey, Sutton SM25PT, UK;
| |
Collapse
|
11
|
Yoneda A, Kuroki T, Eguchi S. Immunotherapeutic advances in gastric cancer. Surg Today 2021; 51:1727-1735. [PMID: 33590326 DOI: 10.1007/s00595-021-02236-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Accepted: 11/02/2020] [Indexed: 12/16/2022]
Abstract
Advanced gastric cancers are responsible for overwhelming human suffering and death. Despite the development of combination chemotherapies, the survival rates of patients with gastric cancer remain unsatisfactory. Given the growing evidence of the benefits of immunotherapy as an alternative treatment for other cancers such as advanced melanoma, non-small cell lung cancer, renal cell carcinoma, and refractory Hodgkin's lymphoma, researchers have begun to explore its application in the treatment of gastric cancer. Three types of immunotherapy have shown promising effects against gastric cancer: immune checkpoint inhibitors, chimeric antigen rector (CAR)-T cells, and tumor vaccines. Clinical trials have used either immuno-oncology monotherapies or combination immuno-chemotherapies to improve the overall survival times and objective response rates of patients with gastric cancer. We review the clinical efficacy of immunotherapy including checkpoint inhibitors, CAR‑T, and tumor vaccines, in the treatment of gastric cancer. Based on initial evidence, we believe that immunotherapy could positively impact the natural history and improve the outcomes of a subgroup of patients with gastric cancer.
Collapse
Affiliation(s)
- Akira Yoneda
- Department of Surgery, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, 852-8501, Japan. .,Department of Surgery, National Hospital Organization Nagasaki Medical Center, Nagasaki, 856-0835, Japan.
| | - Tamotsu Kuroki
- Department of Surgery, National Hospital Organization Nagasaki Medical Center, Nagasaki, 856-0835, Japan
| | - Susumu Eguchi
- Department of Surgery, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, 852-8501, Japan
| |
Collapse
|
12
|
Obajdin J, Davies DM, Maher J. Engineering of chimeric natural killer cell receptors to develop precision adoptive immunotherapies for cancer. Clin Exp Immunol 2020; 202:11-27. [PMID: 32544282 PMCID: PMC7488126 DOI: 10.1111/cei.13478] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 06/04/2020] [Accepted: 06/07/2020] [Indexed: 12/15/2022] Open
Abstract
Natural killer (NK) cells are innate immune effectors which play a crucial role in recognizing and eliminating virally infected and cancerous cells. They effectively distinguish between healthy and distressed self through the integration of signals delivered by germline‐encoded activating and inhibitory cell surface receptors. The frequent up‐regulation of stress markers on genetically unstable cancer cells has prompted the development of novel immunotherapies that exploit such innate receptors. One prominent example entails the development of chimeric antigen receptors (CAR) that detect cell surface ligands bound by NK receptors, coupling this engagement to the delivery of tailored immune activating signals. Here, we review strategies to engineer CARs in which specificity is conferred by natural killer group 2D (NKG2D) or other NK receptor types. Multiple preclinical studies have demonstrated the remarkable ability of chimeric NK receptor‐targeted T cells and NK cells to effectively and specifically eliminate cancer cells and to reject established tumour burdens. Importantly, such systems act not only acutely but, in some cases, they also incite immunological memory. Moreover, CARs targeted with the NKG2D ligand binding domain have also been shown to disrupt the tumour microenvironment, through the targeting of suppressive T regulatory cells, myeloid‐derived suppressor cells and tumour vasculature. Collectively, these findings have led to the initiation of early‐phase clinical trials evaluating both autologous and allogeneic NKG2D‐targeted CAR T cells in the haematological and solid tumour settings.
Collapse
Affiliation(s)
- J Obajdin
- School of Cancer and Pharmaceutical Sciences, CAR Mechanics Laboratory, Guy's Cancer Centre, King's College London, London, UK
| | - D M Davies
- School of Cancer and Pharmaceutical Sciences, CAR Mechanics Laboratory, Guy's Cancer Centre, King's College London, London, UK
| | - J Maher
- School of Cancer and Pharmaceutical Sciences, CAR Mechanics Laboratory, Guy's Cancer Centre, King's College London, London, UK.,Department of Clinical Immunology and Allergy, King's College Hospital NHS Foundation Trust, London, UK.,Department of Immunology, Eastbourne Hospital, Eastbourne, UK.,Leucid Bio Ltd, Guy's Hospital, London, UK
| |
Collapse
|
13
|
Le Naour J, Galluzzi L, Zitvogel L, Kroemer G, Vacchelli E. Trial watch: TLR3 agonists in cancer therapy. Oncoimmunology 2020; 9:1771143. [PMID: 32934877 PMCID: PMC7466857 DOI: 10.1080/2162402x.2020.1771143] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Toll-like receptor 3 (TLR3) is a pattern recognition receptor that senses exogenous (viral) as well as endogenous (mammalian) double-stranded RNA in endosomes. On activation, TLR3 initiates a signal transduction pathway that culminates with the secretion of pro-inflammatory cytokines including type I interferon (IFN). The latter is essential not only for innate immune responses to infection but also for the initiation of antigen-specific immunity against viruses and malignant cells. These aspects of TLR3 biology have supported the development of various agonists for use as stand-alone agents or combined with other therapeutic modalities in cancer patients. Here, we review recent preclinical and clinical advances in the development of TLR3 agonists for oncological disorders. Abbreviations cDC, conventional dendritic cell; CMT, cytokine modulating treatment; CRC, colorectal carcinoma; CTL, cytotoxic T lymphocyte; DC, dendritic cell; dsRNA, double-stranded RNA; FLT3LG, fms-related receptor tyrosine kinase 3 ligand; HNSCC, head and neck squamous cell carcinoma; IFN, interferon; IL, interleukin; ISV, in situ vaccine; MUC1, mucin 1, cell surface associated; PD-1, programmed cell death 1; PD-L1, programmed death-ligand 1; polyA:U, polyadenylic:polyuridylic acid; polyI:C, polyriboinosinic:polyribocytidylic acid; TLR, Toll-like receptor.
Collapse
Affiliation(s)
- Julie Le Naour
- Equipe Labellisée Par La Ligue Contre Le Cancer, Université De Paris, Sorbonne Université, INSERM U1138, Centre De Recherche Des Cordeliers, Paris, France.,Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Campus, Villejuif, France.,Gustave Roussy Cancer Campus, Villejuif, France.,Faculty of Medicine Kremlin Bicêtre, Université Paris Sud, Paris Saclay, Kremlin Bicêtre, France
| | - Lorenzo Galluzzi
- Department of Radiation Oncology, Weill Cornell Medical College, New York, NY, USA.,Sandra and Edward Meyer Cancer Center, New York, NY, USA.,Caryl and Israel Englander Institute for Precision Medicine, New York, NY, USA.,Department of Dermatology, Yale School of Medicine, New Haven, CT, USA.,Université De Paris, Paris, France
| | - Laurence Zitvogel
- Gustave Roussy Cancer Campus, Villejuif, France.,Equipe Labellisée Ligue Contre Le Cancer, INSERM, Villejuif, France.,Center of Clinical Investigations in Biotherapies of Cancer (CICBT) 1428, Villejuif, France
| | - Guido Kroemer
- Equipe Labellisée Par La Ligue Contre Le Cancer, Université De Paris, Sorbonne Université, INSERM U1138, Centre De Recherche Des Cordeliers, Paris, France.,Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Campus, Villejuif, France.,Gustave Roussy Cancer Campus, Villejuif, France.,Center of Clinical Investigations in Biotherapies of Cancer (CICBT) 1428, Villejuif, France.,AP-HP, Hôpital Européen Georges Pompidou, Paris, France.,Suzhou Institute for Systems Medicine, Chinese Academy of Medical Sciences, Suzhou, China.,Karolinska Institute, Department of Women's and Children's Health, Karolinska University Hospital, Stockholm, Sweden
| | - Erika Vacchelli
- Equipe Labellisée Par La Ligue Contre Le Cancer, Université De Paris, Sorbonne Université, INSERM U1138, Centre De Recherche Des Cordeliers, Paris, France.,Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Campus, Villejuif, France.,Gustave Roussy Cancer Campus, Villejuif, France
| |
Collapse
|
14
|
Jiang H, Shi Z, Wang P, Wang C, Yang L, Du G, Zhang H, Shi B, Jia J, Li Q, Wang H, Li Z. Claudin18.2-Specific Chimeric Antigen Receptor Engineered T Cells for the Treatment of Gastric Cancer. J Natl Cancer Inst 2020; 111:409-418. [PMID: 30203099 DOI: 10.1093/jnci/djy134] [Citation(s) in RCA: 168] [Impact Index Per Article: 33.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Revised: 06/05/2018] [Accepted: 06/29/2018] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Claudin18.2 (CLDN18.2), a gastric-specific membrane protein, has been regarded as a potential therapeutic target for gastric cancer and other cancer types. The aim of our study was to elucidate whether chimeric antigen receptor T (CAR T) cells redirected to CLDN18.2 have the potential to be used in the treatment of this deadly disease. METHODS CLDN18.2-specific humanized antibodies were developed using hybridoma and humanization technology. CLDN18.2-specific CAR T cells were prepared by lentiviral vector transduction. In vitro antitumor activities and cytokine production of the CAR T cells to gastric cancer cell lines were examined by cytotoxicity and ELISA assay. In vivo antitumor activities of CAR T cells were evaluated in mice bearing gastric cancer cell line and patient-derived tumor xenograft (PDX) models (n ≥ 6 mice per group). All statistical tests were two-sided. RESULTS Humanized CLDN18.2-specific hu8E5 and hu8E5-2I single-chain fragment variables (scFv) were successfully developed. CLDN18.2-specific CAR T cells were developed using hu8E5 or hu8E5-2I scFv as targeting moieties. Both hu8E5-28Z and hu8E5-2I-28Z CAR T cells comprising the CD28 costimulatory domain potently suppressed tumor growth in a cancer cell line xenograft mouse model (mean [SD] tumor volume: hu8E5-28Z = 118.0 [108.6] mm3 and hu8E5-2I-28Z group = 75.5 [118.7] mm3 vs untransduced T cell group = 731.8 [206.3] mm3 at day 29 after tumor inoculation, P < .001). Partial or complete tumor elimination was observed in CLDN18.2-positive gastric cancer PDX models treated with the hu8E5-2I-28Z CAR T cells (P < .001), which persist well in vivo and infiltrate efficiently into the tumor tissues. Although the CLDN18.2 CAR T cells could lyse target cells expressing murine CLDN18.2 (mCLDN18.2), no obvious deleterious effect on the normal organs including the gastric tissues was observed in the mice. CONCLUSIONS CLDN18.2-specific CAR T cells could be a promising treatment strategy for gastric cancer and potentially other CLDN18.2-positive tumors.
Collapse
Affiliation(s)
- Hua Jiang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | | | - Peng Wang
- CARsgen Therapeutics, Shanghai, China
| | - Cong Wang
- CARsgen Therapeutics, Shanghai, China
| | | | - Guoxiu Du
- CARsgen Therapeutics, Shanghai, China
| | | | - Bizhi Shi
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Jie Jia
- CARsgen Therapeutics, Shanghai, China
| | | | | | - Zonghai Li
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China.,CARsgen Therapeutics, Shanghai, China
| |
Collapse
|
15
|
Long B, Qin L, Zhang B, Li Q, Wang L, Jiang X, Ye H, Zhang G, Yu Z, Jiao Z. CAR T‑cell therapy for gastric cancer: Potential and perspective (Review). Int J Oncol 2020; 56:889-899. [PMID: 32319561 DOI: 10.3892/ijo.2020.4982] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Accepted: 12/13/2019] [Indexed: 12/24/2022] Open
Abstract
Gastric cancer (GC) is one of the most frequently diagnosed digestive malignancies and is the third leading cause of cancer‑associated death worldwide. Delayed diagnosis and poor prognosis indicate the urgent need for new therapeutic strategies. The success of chimeric antigen receptor (CAR) T‑cell therapy for chemotherapy‑refractory hematological malignancies has inspired the development of a similar strategy for GC treatment. Although using CAR T‑cells against GC is not without difficulty, results from preclinical studies remain encouraging. The current review summarizes relevant preclinical studies and ongoing clinical trials for the use of CAR T‑cells for GC treatment and investigates possible toxicities, as well as current clinical experiences and emerging approaches. With a deeper understanding of the tumor microenvironment, novel target epitopes and scientific‑technical progress, the potential of CAR T‑cell therapy for GC is anticipated in the near future.
Collapse
Affiliation(s)
- Bo Long
- Department of First General Surgery, Lanzhou University Second Hospital, Lanzhou, Gansu 730000, P.R. China
| | - Long Qin
- The Cuiying Center, Lanzhou University Second Hospital, Lanzhou, Gansu 730000, P.R. China
| | - Boya Zhang
- Department of First General Surgery, Lanzhou University Second Hospital, Lanzhou, Gansu 730000, P.R. China
| | - Qiong Li
- Department of Endocrinology, The First Hospital of Lanzhou University, Lanzhou, Gansu 730000, P.R. China
| | - Long Wang
- Department of First General Surgery, Lanzhou University Second Hospital, Lanzhou, Gansu 730000, P.R. China
| | - Xiangyan Jiang
- Department of First General Surgery, Lanzhou University Second Hospital, Lanzhou, Gansu 730000, P.R. China
| | - Huili Ye
- The Cuiying Center, Lanzhou University Second Hospital, Lanzhou, Gansu 730000, P.R. China
| | - Genyuan Zhang
- Department of First General Surgery, Lanzhou University Second Hospital, Lanzhou, Gansu 730000, P.R. China
| | - Zeyuan Yu
- Department of First General Surgery, Lanzhou University Second Hospital, Lanzhou, Gansu 730000, P.R. China
| | - Zuoyi Jiao
- Department of First General Surgery, Lanzhou University Second Hospital, Lanzhou, Gansu 730000, P.R. China
| |
Collapse
|
16
|
Chung HK, Zou X, Bajar BT, Brand VR, Huo Y, Alcudia JF, Ferrell JE, Lin MZ. A compact synthetic pathway rewires cancer signaling to therapeutic effector release. Science 2019; 364:364/6439/eaat6982. [PMID: 31048459 DOI: 10.1126/science.aat6982] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Accepted: 03/05/2019] [Indexed: 12/13/2022]
Abstract
An important goal in synthetic biology is to engineer biochemical pathways to address unsolved biomedical problems. One long-standing problem in molecular medicine is the specific identification and ablation of cancer cells. Here, we describe a method, named Rewiring of Aberrant Signaling to Effector Release (RASER), in which oncogenic ErbB receptor activity, instead of being targeted for inhibition as in existing treatments, is co-opted to trigger therapeutic programs. RASER integrates ErbB activity to specifically link oncogenic states to the execution of desired outputs. A complete mathematical model of RASER and modularity in design enable rational optimization and output programming. Using RASER, we induced apoptosis and CRISPR-Cas9-mediated transcription of endogenous genes specifically in ErbB-hyperactive cancer cells. Delivery of apoptotic RASER by adeno-associated virus selectively ablated ErbB-hyperactive cancer cells while sparing ErbB-normal cells. RASER thus provides a new strategy for oncogene-specific cancer detection and treatment.
Collapse
Affiliation(s)
- Hokyung K Chung
- Department of Biology, Stanford University, Stanford, CA, USA.,Department of Neurobiology, Stanford University, Stanford, CA, USA.,Department of Pediatrics, Stanford University, Stanford, CA, USA
| | - Xinzhi Zou
- Department of Bioengineering, Stanford University, Stanford, CA, USA
| | - Bryce T Bajar
- Department of Pediatrics, Stanford University, Stanford, CA, USA.,Department of Bioengineering, Stanford University, Stanford, CA, USA
| | - Veronica R Brand
- Department of Pediatrics, Stanford University, Stanford, CA, USA.,Department of Bioengineering, Stanford University, Stanford, CA, USA
| | - Yunwen Huo
- Department of Neurobiology, Stanford University, Stanford, CA, USA.,Department of Pediatrics, Stanford University, Stanford, CA, USA.,Department of Bioengineering, Stanford University, Stanford, CA, USA
| | - Javier F Alcudia
- Neuroscience Gene Vector and Virus Core, Stanford University, Stanford, CA, USA
| | - James E Ferrell
- Department of Chemical and Systems Biology, Stanford University, Stanford, CA, USA
| | - Michael Z Lin
- Department of Neurobiology, Stanford University, Stanford, CA, USA. .,Department of Pediatrics, Stanford University, Stanford, CA, USA.,Department of Bioengineering, Stanford University, Stanford, CA, USA.,Department of Chemical and Systems Biology, Stanford University, Stanford, CA, USA
| |
Collapse
|
17
|
Springuel L, Lonez C, Alexandre B, Van Cutsem E, Machiels JPH, Van Den Eynde M, Prenen H, Hendlisz A, Shaza L, Carrasco J, Canon JL, Opyrchal M, Odunsi K, Rottey S, Gilham DE, Flament A, Lehmann FF. Chimeric Antigen Receptor-T Cells for Targeting Solid Tumors: Current Challenges and Existing Strategies. BioDrugs 2019; 33:515-537. [PMID: 31363930 PMCID: PMC6790340 DOI: 10.1007/s40259-019-00368-z] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Chimeric antigen receptor-T cells (CAR-Ts) are an exciting new cancer treatment modality exemplified by the recent regulatory approval of two CD19-targeted CAR-T therapies for certain B cell malignancies. However, this success in the hematological setting has yet to translate to a significant level of objective clinical responses in the solid tumor setting. The reason for this lack of translation undoubtedly lies in the substantial challenges raised by solid tumors to all therapies, including CAR-T, that differ from B cell malignancies. For instance, intravenously infused CAR-Ts are likely to make rapid contact with cancerous B cells since both tend to reside in the same vascular compartments within the body. By contrast, solid cancers tend to form discrete tumor masses with an immune-suppressive tumor microenvironment composed of tumor cells and non-tumor stromal cells served by abnormal vasculature that restricts lymphocyte infiltration and suppresses immune function, expansion, and persistence. Moreover, the paucity of uniquely and homogeneously expressed tumor antigens and inherent plasticity of cancer cells provide major challenges to the specificity, potency, and overall effectiveness of CAR-T therapies. This review focuses on the major preclinical and clinical strategies currently being pursued to tackle these challenges in order to drive the success of CAR-T therapy against solid tumors.
Collapse
Affiliation(s)
| | | | | | | | | | - Marc Van Den Eynde
- Cliniques Universitaires Saint-Luc, Université Catholique de Louvain, Brussels, Belgium
| | - Hans Prenen
- University Hospital Antwerp (UZ Antwerp), Antwerp, Belgium
| | - Alain Hendlisz
- Institut Jules Bordet, Université Libre de Bruxelles, Brussels, Belgium
| | - Leila Shaza
- Institut Jules Bordet, Université Libre de Bruxelles, Brussels, Belgium
| | | | | | | | - Kunle Odunsi
- Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | | | | | | | | |
Collapse
|
18
|
Yang L, Wang Y, Wang H. Use of immunotherapy in the treatment of gastric cancer. Oncol Lett 2019; 18:5681-5690. [PMID: 31788040 PMCID: PMC6865147 DOI: 10.3892/ol.2019.10935] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Accepted: 04/29/2019] [Indexed: 12/21/2022] Open
Abstract
Gastric cancer (GC) is a malignant tumor that negatively impacts human health, which typically presents in the advanced stages of disease in the majority of patients. Despite the development of combination chemotherapy, only a modest survival advantage is gained in patients with GC treated by this method. Recently, cancer immunotherapies have received considerable attention as a viable therapeutic option for GC. Specifically, the immune checkpoint inhibitors, chimeric antigen rector (CAR)-T cells and tumor vaccines, represent immunotherapies that have exhibited promising effects in the treatment of GC. A number of clinical trials have employed either immuno-oncology monotherapies or combination therapies to improve the overall survival time (OS) and objective response rate (ORR) of patients with GC. The current review presents a summary of the clinical effects of checkpoint inhibitors, including CAR-T and tumor vaccines, in the treatment of GC.
Collapse
Affiliation(s)
- Luhong Yang
- Modern College of Humanities and Science, Shanxi Normal University, Linfen, Shanxi 041004, P.R. China.,School of Life Science, Shanxi Normal University, Linfen, Shanxi 041004, P.R. China
| | - Yanxia Wang
- School of Life Science, Shanxi Normal University, Linfen, Shanxi 041004, P.R. China
| | - Huafeng Wang
- Modern College of Humanities and Science, Shanxi Normal University, Linfen, Shanxi 041004, P.R. China.,School of Life Science, Shanxi Normal University, Linfen, Shanxi 041004, P.R. China
| |
Collapse
|
19
|
Han X, Wang Y, Han WD. Chimeric antigen receptor modified T-cells for cancer treatment. Chronic Dis Transl Med 2018; 4:225-243. [PMID: 30603741 PMCID: PMC6309024 DOI: 10.1016/j.cdtm.2018.08.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Indexed: 12/12/2022] Open
Abstract
T cells engineered with the chimeric antigen receptor (CAR) are rapidly emerging as an important immunotherapy for hematologic malignancies. The anti-cluster of differentiation (CD)19 CAR-T cell therapy has been remarkably successful against refractory/relapsed acute lymphoblastic leukemia (ALL), and a complete remission rate as high as 90% was observed, in both children and adults. Although the achievement of clinical efficacy using CAR-T cell therapy for solid tumors has encountered several obstacles that were associated with the multiple mechanisms contributing to an immunosuppressive microenvironment, investigators are exploring more optimized approaches to improve the efficiency of CAR-T in solid tumors. In addition, cytokine release syndrome (CRS) and neurotoxicity following CAR-T cell therapy can be severe or even fatal; therefore, the management of these toxicities is significant. Herein, we briefly review the structure of CAR-T and some novel CAR designs, the clinical application of CAR-T cell therapies, as well as the assessment and management of toxicities.
Collapse
Affiliation(s)
- Xiao Han
- Molecular & Immunological Department, Bio-therapeutic Department, The General Hospital of People's Liberation Army, Beijing 100853, China
| | - Yao Wang
- Molecular & Immunological Department, Bio-therapeutic Department, The General Hospital of People's Liberation Army, Beijing 100853, China
| | - Wei-Dong Han
- Molecular & Immunological Department, Bio-therapeutic Department, The General Hospital of People's Liberation Army, Beijing 100853, China
| |
Collapse
|
20
|
Ajina A, Maher J. Strategies to Address Chimeric Antigen Receptor Tonic Signaling. Mol Cancer Ther 2018; 17:1795-1815. [PMID: 30181329 PMCID: PMC6130819 DOI: 10.1158/1535-7163.mct-17-1097] [Citation(s) in RCA: 163] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Revised: 03/19/2018] [Accepted: 06/18/2018] [Indexed: 12/18/2022]
Abstract
Adoptive cell transfer using chimeric antigen receptors (CAR) has emerged as one of the most promising new therapeutic modalities for patients with relapsed or refractory B-cell malignancies. Thus far, results in patients with advanced solid tumors have proven disappointing. Constitutive tonic signaling in the absence of ligand is an increasingly recognized complication when deploying these synthetic fusion receptors and can be a cause of poor antitumor efficacy, impaired survival, and reduced persistence in vivo In parallel, ligand-dependent tonic signaling can mediate toxicity and promote T-cell anergy, exhaustion, and activation-induced cell death. Here, we review the mechanisms underpinning CAR tonic signaling and highlight the wide variety of effects that can emerge after making subtle structural changes or altering the methodology of CAR transduction. We highlight strategies to prevent unconstrained tonic signaling and address its deleterious consequences. We also frame this phenomenon in the context of endogenous TCR tonic signaling, which has been shown to regulate peripheral tolerance, facilitate the targeting of foreign antigens, and suggest opportunities to coopt ligand-dependent CAR tonic signaling to facilitate in vivo persistence and efficacy. Mol Cancer Ther; 17(9); 1795-815. ©2018 AACR.
Collapse
MESH Headings
- Cell Differentiation/genetics
- Cell Differentiation/immunology
- Humans
- Immunotherapy, Adoptive/methods
- Leukemia, Lymphocytic, Chronic, B-Cell/immunology
- Leukemia, Lymphocytic, Chronic, B-Cell/metabolism
- Leukemia, Lymphocytic, Chronic, B-Cell/therapy
- Receptors, Antigen, T-Cell/genetics
- Receptors, Antigen, T-Cell/immunology
- Receptors, Antigen, T-Cell/metabolism
- Receptors, Chimeric Antigen/genetics
- Receptors, Chimeric Antigen/immunology
- Receptors, Chimeric Antigen/metabolism
- Recombinant Fusion Proteins/genetics
- Recombinant Fusion Proteins/immunology
- Recombinant Fusion Proteins/metabolism
- Signal Transduction/genetics
- Signal Transduction/immunology
- T-Lymphocytes/immunology
- T-Lymphocytes/metabolism
Collapse
Affiliation(s)
- Adam Ajina
- CAR Mechanics Group, King's College London, London, United Kingdom.
- School of Cancer and Pharmaceutical Studies, Guy's Hospital, London, United Kingdom
| | - John Maher
- CAR Mechanics Group, King's College London, London, United Kingdom
- School of Cancer and Pharmaceutical Studies, Guy's Hospital, London, United Kingdom
- Department of Clinical Immunology and Allergy, King's College Hospital NHS Foundation Trust, London, United Kingdom
- Department of Immunology, Eastbourne Hospital, East Sussex, United Kingdom
| |
Collapse
|
21
|
Xu J, Wang Y, Shi J, Liu J, Li Q, Chen L. Combination therapy: A feasibility strategy for CAR-T cell therapy in the treatment of solid tumors. Oncol Lett 2018; 16:2063-2070. [PMID: 30008901 PMCID: PMC6036511 DOI: 10.3892/ol.2018.8946] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Accepted: 03/07/2018] [Indexed: 12/16/2022] Open
Abstract
Chimeric antigen receptor (CAR) T-cell therapies have been demonstrated to have durable and potentially curative therapeutic efficacies in patients with hematological malignancies. Currently, multiple clinical trials in CAR-T cell therapy have been evaluated for the treatment of patients with solid malignancies, but have had less marked therapeutic effects when the agents are used as monotherapies. When summarizing relevant studies, the present study found that combination therapy strategies for solid tumors based on CAR-T cell therapies might be more effective. This review will focus on various aspects of treating solid tumors with CAR-T cell therapy: i) The therapeutic efficacy of CAR-T cell monotherapy, ii) the feasibility of the CAR-T cell therapy in conjunction with chemotherapy, iii) the feasibility of CAR-T cell therapy with radiotherapy, iv) the feasibility of CAR-T cell therapy with chemoradiotherapy, and v) the feasibility of the combination of CAR-T cell therapy with other strategies.
Collapse
Affiliation(s)
- Jinjing Xu
- Galactophore Department, Jiangsu Huai'an Maternity and Children Hospital, Huai'an, Jiangsu 223001, P.R. China
| | - Yali Wang
- Galactophore Department, Jiangsu Huai'an Maternity and Children Hospital, Huai'an, Jiangsu 223001, P.R. China
| | - Jing Shi
- Galactophore Department, Jiangsu Huai'an Maternity and Children Hospital, Huai'an, Jiangsu 223001, P.R. China
| | - Juan Liu
- Galactophore Department, Jiangsu Huai'an Maternity and Children Hospital, Huai'an, Jiangsu 223001, P.R. China
| | - Qingguo Li
- Galactophore Department, Jiangsu Huai'an Maternity and Children Hospital, Huai'an, Jiangsu 223001, P.R. China
| | - Longzhou Chen
- Galactophore Department, Jiangsu Huai'an Maternity and Children Hospital, Huai'an, Jiangsu 223001, P.R. China
| |
Collapse
|
22
|
Zhang M, Zhang DB, Shi H. Application of chimeric antigen receptor-engineered T cells in ovarian cancer therapy. Immunotherapy 2018; 9:851-861. [PMID: 28877629 DOI: 10.2217/imt-2017-0039] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Due to the critical role of T cells in the immune surveillance of ovarian cancer, adoptive T-cell therapies are receiving increased attention as an immunotherapeutic approach for ovarian cancer. Chimeric antigen receptors (CARs), constructed by incorporating the single-chain Fv fragment to a T-cell signaling domain such as CD3 ζ or Fc receptor γ chain, endow T cell with nonmajor histocompatibility complex-restricted specificity. Dual specificity, trans-signaling CARs and affinity-tuned single-chain Fv fragment have broadened the applicability of CAR-engineered T-cell therapy and may be considered preferential to T cell receptor T-cell therapy in clinical care. As new insights into the CAR-engineered T cells have emerged over the last decade, we review the development of CAR T-cell therapy and discuss the progress and safety concerns regarding its translation from basic research into clinical care of ovarian cancer.
Collapse
Affiliation(s)
- Minghui Zhang
- Department of Obstetrics & Gynecology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Dr Bin Zhang
- Biotherapy Center, The First Affiliated Hospital of Zhengzhou University,1 Jianshe Road, Erqi, Zhengzhou, Henan 450052, P.R. China.,Robert H. Lurie Comprehensive Cancer Center, Department of Medicine, Division of Hematology/Oncology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Huirong Shi
- Department of Obstetrics & Gynecology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
23
|
Current status and perspectives of chimeric antigen receptor modified T cells for cancer treatment. Protein Cell 2017; 8:896-925. [PMID: 28466386 PMCID: PMC5712290 DOI: 10.1007/s13238-017-0400-z] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2016] [Accepted: 03/15/2017] [Indexed: 12/21/2022] Open
Abstract
Chimeric antigen receptor (CAR) is a recombinant immunoreceptor combining an antibody-derived targeting fragment with signaling domains capable of activating cells, which endows T cells with the ability to recognize tumor-associated surface antigens independent of the expression of major histocompatibility complex (MHC) molecules. Recent early-phase clinical trials of CAR-modified T (CAR-T) cells for relapsed or refractory B cell malignancies have demonstrated promising results (that is, anti-CD19 CAR-T in B cell acute lymphoblastic leukemia (B-ALL)). Given this success, broadening the clinical experience of CAR-T cell therapy beyond hematological malignancies has been actively investigated. Here we discuss the basic design of CAR and review the clinical results from the studies of CAR-T cells in B cell leukemia and lymphoma, and several solid tumors. We additionally discuss the major challenges in the further development and strategies for increasing anti-tumor activity and safety, as well as for successful commercial translation.
Collapse
|
24
|
Zhang Q, Zhang Z, Peng M, Fu S, Xue Z, Zhang R. CAR-T cell therapy in gastrointestinal tumors and hepatic carcinoma: From bench to bedside. Oncoimmunology 2016; 5:e1251539. [PMID: 28123893 PMCID: PMC5214859 DOI: 10.1080/2162402x.2016.1251539] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Accepted: 10/17/2016] [Indexed: 12/13/2022] Open
Abstract
The chimeric antigen receptor (CAR) is a genetically engineered receptor that combines a scFv domain, which specifically recognizes the tumor-specific antigen, with T cell activation domains. CAR-T cell therapies have demonstrated tremendous efficacy against hematologic malignancies in many clinical trials. Recent studies have extended these efforts to the treatment of solid tumors. However, the outcomes of CAR-T cell therapy for solid tumors are not as remarkable as the outcomes have been for hematologic malignancies. A series of hurdles has arisen with respect to CAR-T cell-based immunotherapy, which needs to be overcome to target solid tumors. The major challenge for CAR-T cell therapy in solid tumors is the selection of the appropriate specific antigen to demarcate the tumor from normal tissue. In this review, we discuss the application of CAR-T cells to gastrointestinal and hepatic carcinomas in preclinical and clinical research. Furthermore, we analyze the usefulness of several specific markers in the study of gastrointestinal tumors and hepatic carcinoma.
Collapse
Affiliation(s)
- Qi Zhang
- Laboratory of Immunology and Inflammation, Department of Immunology and Research Center of Basic Medical Science, Tianjin Medical University, Tianjin, China; Key Laboratory of Immune Microenvironment and Diseases of Educational Ministry of China, Tianjin Key Laboratory of Molecular and Cellular Immunology, Tianjin Medical University, Tianjin, China
| | - Zimu Zhang
- Laboratory of Immunology and Inflammation, Department of Immunology and Research Center of Basic Medical Science, Tianjin Medical University, Tianjin, China; Key Laboratory of Immune Microenvironment and Diseases of Educational Ministry of China, Tianjin Key Laboratory of Molecular and Cellular Immunology, Tianjin Medical University, Tianjin, China
| | - Meiyu Peng
- Department of Immunology, Basic Medical College, Weifang Medical University , Weifang, China
| | - Shuyu Fu
- Laboratory of Immunology and Inflammation, Department of Immunology and Research Center of Basic Medical Science, Tianjin Medical University, Tianjin, China; Key Laboratory of Immune Microenvironment and Diseases of Educational Ministry of China, Tianjin Key Laboratory of Molecular and Cellular Immunology, Tianjin Medical University, Tianjin, China
| | - Zhenyi Xue
- Laboratory of Immunology and Inflammation, Department of Immunology and Research Center of Basic Medical Science, Tianjin Medical University, Tianjin, China; Key Laboratory of Immune Microenvironment and Diseases of Educational Ministry of China, Tianjin Key Laboratory of Molecular and Cellular Immunology, Tianjin Medical University, Tianjin, China
| | - Rongxin Zhang
- Laboratory of Immunology and Inflammation, Department of Immunology and Research Center of Basic Medical Science, Tianjin Medical University, Tianjin, China; Key Laboratory of Immune Microenvironment and Diseases of Educational Ministry of China, Tianjin Key Laboratory of Molecular and Cellular Immunology, Tianjin Medical University, Tianjin, China
| |
Collapse
|
25
|
CAR T Cell Therapy: A Game Changer in Cancer Treatment. J Immunol Res 2016; 2016:5474602. [PMID: 27298832 PMCID: PMC4889848 DOI: 10.1155/2016/5474602] [Citation(s) in RCA: 110] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Revised: 04/28/2016] [Accepted: 05/04/2016] [Indexed: 01/13/2023] Open
Abstract
The development of novel targeted therapies with acceptable safety profiles is critical to successful cancer outcomes with better survival rates. Immunotherapy offers promising opportunities with the potential to induce sustained remissions in patients with refractory disease. Recent dramatic clinical responses in trials with gene modified T cells expressing chimeric antigen receptors (CARs) in B-cell malignancies have generated great enthusiasm. This therapy might pave the way for a potential paradigm shift in the way we treat refractory or relapsed cancers. CARs are genetically engineered receptors that combine the specific binding domains from a tumor targeting antibody with T cell signaling domains to allow specifically targeted antibody redirected T cell activation. Despite current successes in hematological cancers, we are only in the beginning of exploring the powerful potential of CAR redirected T cells in the control and elimination of resistant, metastatic, or recurrent nonhematological cancers. This review discusses the application of the CAR T cell therapy, its challenges, and strategies for successful clinical and commercial translation.
Collapse
|
26
|
Nahas GR, Walker ND, Bryan M, Rameshwar P. A Perspective of Immunotherapy for Breast Cancer: Lessons Learned and Forward Directions for All Cancers. BREAST CANCER-BASIC AND CLINICAL RESEARCH 2015; 9:35-43. [PMID: 26568682 PMCID: PMC4631157 DOI: 10.4137/bcbcr.s29425] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Revised: 07/09/2015] [Accepted: 07/12/2015] [Indexed: 12/14/2022]
Abstract
Immunotherapy for cancer has been a focus 50 years ago. At the time, this treatment was developed prior to cloning of the cytokines, no knowledge of regulatory T-cells, and very little information that mesenchymal stem cells (MSCs) (originally colony forming unit-fibroblasts [CFU-F]) could be licensed by the inflammatory microenvironment to suppress an immune response. Given the information available at that time, mononuclear cells from the peripheral blood were activated ex vivo and then replaced in the patients with tumor. The intent was to harness these activated immune cells to target the cancer cells. These studies did not lead to long-term responses because the activated cells when reinfused into the patients were an advantage to the resident MSCs, which can home the tumor and then become suppressive in the presence of the immune cells. The immune suppression caused by MSCs would also expand regulatory T-cells, resulting instead in tumor protection. As time progressed, these different fields converged into a new approach to use immunotherapy for cancer. This article discusses these approaches and also reviews chimeric antigen receptor in the context of future treatments for solid tumors, including breast cancer.
Collapse
Affiliation(s)
| | - Nykia D Walker
- Rutgers New Jersey Medical School, Newark, NJ, USA. ; Rutgers Graduate School of Biomedical Sciences, Newark, NJ, USA
| | | | - Pranela Rameshwar
- Rutgers New Jersey Medical School, Newark, NJ, USA. ; Rutgers Graduate School of Biomedical Sciences, Newark, NJ, USA
| |
Collapse
|