1
|
Ben Zichri- David S, Shkuri L, Ast T. Pulling back the mitochondria's iron curtain. NPJ METABOLIC HEALTH AND DISEASE 2025; 3:6. [PMID: 40052109 PMCID: PMC11879881 DOI: 10.1038/s44324-024-00045-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Accepted: 12/09/2024] [Indexed: 03/09/2025]
Abstract
Mitochondrial functionality and cellular iron homeostasis are closely intertwined. Mitochondria are biosynthetic hubs for essential iron cofactors such as iron-sulfur (Fe-S) clusters and heme. These cofactors, in turn, enable key mitochondrial pathways, such as energy and metabolite production. Mishandling of mitochondrial iron is associated with a spectrum of human pathologies ranging from rare genetic disorders to common conditions. Here, we review mitochondrial iron utilization and its intersection with disease.
Collapse
Affiliation(s)
| | - Liraz Shkuri
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, 7610001 Israel
| | - Tslil Ast
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, 7610001 Israel
| |
Collapse
|
2
|
Naghipour S, Corben LA, Hulme AJ, Dottori M, Delatycki MB, Lees JG, Lim SY. Omaveloxolone for the Treatment of Friedreich Ataxia: Efficacy, Safety, and Future Perspectives. Mov Disord 2025; 40:226-230. [PMID: 39559924 DOI: 10.1002/mds.30070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 11/06/2024] [Accepted: 11/08/2024] [Indexed: 11/20/2024] Open
Affiliation(s)
- Saba Naghipour
- O'Brien Institute Department, St Vincent's Institute of Medical Research, Fitzroy, Victoria, Australia
| | - Louise A Corben
- Bruce Lefroy Centre for Genetic Health Research, Murdoch Children's Research Institute, Parkville, Victoria, Australia
- Department of Paediatrics, Melbourne University, Parkville, Victoria, Australia
| | - Amy J Hulme
- School of Medical, Indigenous and Health Sciences, Molecular Horizons, University of Wollongong, Wollongong, New South Wales, Australia
| | - Mirella Dottori
- School of Medical, Indigenous and Health Sciences, Molecular Horizons, University of Wollongong, Wollongong, New South Wales, Australia
| | - Martin B Delatycki
- Bruce Lefroy Centre for Genetic Health Research, Murdoch Children's Research Institute, Parkville, Victoria, Australia
- Department of Paediatrics, Melbourne University, Parkville, Victoria, Australia
- Victorian Clinical Genetics Services, Parkville, Victoria, Australia
| | - Jarmon G Lees
- O'Brien Institute Department, St Vincent's Institute of Medical Research, Fitzroy, Victoria, Australia
- Department of Medicine and Surgery, University of Melbourne, Parkville, Victoria, Australia
- Drug Discovery Biology, Faculty of Pharmacy and Pharmaceutical Sciences, Monash University, Clayton, Victoria, Australia
| | - Shiang Y Lim
- O'Brien Institute Department, St Vincent's Institute of Medical Research, Fitzroy, Victoria, Australia
- Department of Medicine and Surgery, University of Melbourne, Parkville, Victoria, Australia
- Drug Discovery Biology, Faculty of Pharmacy and Pharmaceutical Sciences, Monash University, Clayton, Victoria, Australia
- National Heart Research Institute, National Heart Center, Singapore
| |
Collapse
|
3
|
Eisel MLS, Burns M, Ashizawa T, Byrne B, Corti M, Subramony SH. Emerging therapies in hereditary ataxias. Trends Mol Med 2025; 31:181-194. [PMID: 39153956 DOI: 10.1016/j.molmed.2024.07.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 07/15/2024] [Accepted: 07/22/2024] [Indexed: 08/19/2024]
Abstract
Recent investigations have defined the pathophysiological basis of many hereditary ataxias (HAs), including loss-of-function as well as gain-of-function mechanisms at either the RNA or protein level. Preclinical studies have assessed gene editing, gene and protein replacement, gene enhancement, and gene knockdown strategies. Methodologies include viral vector delivery of genes, oligonucleotide therapies, cell-penetrating peptides, synthetic transcription factors, and technologies to deliver therapies to defined targets. In this review, we focus on Friedreich ataxia (FRDA) and the polyglutamine ataxias in which translational research is active. However, much remains to be done to identify safe and effective molecules, create ideal delivery methods, and perform innovative clinical trials to prove the safety and efficacy of treatments for these rare but devastating diseases.
Collapse
Affiliation(s)
- Mallory L S Eisel
- Department of Neurology and the Fixel Institute for Neurological Disorders, University of Florida College of Medicine, Gainesville, FL, USA
| | - Matthew Burns
- Department of Neurology and the Fixel Institute for Neurological Disorders, University of Florida College of Medicine, Gainesville, FL, USA
| | - Tetsuo Ashizawa
- Stanley H. Appel Department of Neurology, Weill Cornell Medicine at Houston Methodist Hospital, Houston, TX, USA
| | - Barry Byrne
- Department of Pediatrics and the Powell Gene Therapy Center, University of Florida College of Medicine, Gainesville, FL, USA
| | - Manuela Corti
- Department of Pediatrics and the Powell Gene Therapy Center, University of Florida College of Medicine, Gainesville, FL, USA
| | - Sub H Subramony
- Department of Neurology and the Fixel Institute for Neurological Disorders, University of Florida College of Medicine, Gainesville, FL, USA.
| |
Collapse
|
4
|
Matsugi A, Bando K, Kondo Y, Kikuchi Y, Miyata K, Hiramatsu Y, Yamanaka Y, Tanaka H, Okuda Y, Haruyama K, Yamasaki Y. Effects of physiotherapy on degenerative cerebellar ataxia: a systematic review and meta-analysis. Front Neurol 2025; 15:1491142. [PMID: 39866519 PMCID: PMC11757114 DOI: 10.3389/fneur.2024.1491142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Accepted: 12/17/2024] [Indexed: 01/28/2025] Open
Abstract
Background Evidence of the effectiveness of physiotherapy, including muscle strength training, coordination training, aerobic exercise, cycling regimen, balance training, gait training, and activity of daily living training, in patients with degenerative cerebellar ataxia (DCA) was insufficient for clinical decision making. We aimed to explore clinical outcomes and examine the parameters associated with physical impairment and activity in people with DCA based on preregistration (PROSPERO: CRD42024493883). Methods The PubMed, Cochrane Library, CHINAL, and PEDro databases were searched for relevant randomized controlled trials (RCTs). Data extraction, quality assessment, and heterogeneity analyses were conducted. The Grading of Recommendations Assessment, Development, and Evaluation framework (GRADE) was used to assess the quality of evidence, and a meta-analysis was performed. Results Eighteen RCTs, which included 398 participants, showed a serious risk of bias (RoB) and low certainty of evidence for this primary outcome. For meta-analysis, 315 patients assessed based on the Scale for Assessment and Rating of Ataxia (SARA) were included. Overall, physiotherapy significantly reduced SARA scores (MD = -1.41, [95% CI: -2.16, -0.66]); the subgroup analysis showed that the following interventions exerted significant effects: multi-aspect training program (5 studies, MD = -1.59, [95% CI: -5.15, -0.03]), balance training (3 studies, MD = -1.58, [95% CI: -2.55, -0.62]), and aerobic training (3 studies, MD = -1.65, [95% CI: -2.53, -0.77]). By contrast, vibration (2 studies, MD = -0.56, [95% CI: -2.05, 0.93]) and dual-task training (1 study, MD = 0.24, [95% CI: -6.4, 6.88]) exhibited no significant effects. Conclusion Physical therapy, especially multi-aspect physical therapy such as muscle strengthening, coordination training, gait training, and ADL training, may reduce DCA symptoms. Further, balance and aerobic training can be added to the program. However, the estimated effect size may change in future studies because of the serious RoB, very low certainty of evidence, and high heterogeneity with SARA as the primary outcome. High-quality RCTs are required to establish evidence for the effectiveness of physical therapy in patients with DCA. Systematic review registration https://www.crd.york.ac.uk/prospero/display_record.php?RecordID=493883, identifier: CRD42024493883.
Collapse
Affiliation(s)
- Akiyoshi Matsugi
- Faculty of Rehabilitation, Shijonawate Gakuen University, Osaka, Japan
| | - Kyota Bando
- National Center Hospital, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Yuki Kondo
- National Center Hospital, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Yutaka Kikuchi
- Department of Rehabilitation for Intractable Neurological Disorders, Institute of Brain and Blood Vessels Mihara Memorial Hospital, Gunma, Japan
| | - Kazuhiro Miyata
- Department of Physical Therapy, Ibaraki Prefectural University of Health Science, Ibaraki, Japan
| | - Yuichi Hiramatsu
- Neurorehabilitaion Research Institute, Morinomiya Hospital, Osaka, Japan
| | - Yuya Yamanaka
- Department of Rehabilitation, Osaka University Hospital, Osaka, Japan
| | - Hiroaki Tanaka
- Department of Physical Medicine and Rehabilitation, Kansai Medical University Hospital, Osaka, Japan
| | - Yuta Okuda
- Department of Rehabilitation for Intractable Neurological Disorders, Institute of Brain and Blood Vessels Mihara Memorial Hospital, Gunma, Japan
| | - Koshiro Haruyama
- Department of Physical Therapy, Faculty of Health Science, Juntendo University, Tokyo, Japan
| | - Yuichiro Yamasaki
- Department of Rehabilitation, Maruki Memorial Medical and Social Welfare Center, Saitama, Japan
| |
Collapse
|
5
|
Marullo C, Croci L, Giupponi I, Rivoletti C, Zuffetti S, Bettegazzi B, Cremona O, Giunti P, Ambrosi A, Casoni F, Consalez GG, Codazzi F. Altered Ca2+ responses and antioxidant properties in Friedreich's ataxia-like cerebellar astrocytes. J Cell Sci 2025; 138:jcs263446. [PMID: 39648860 PMCID: PMC11828468 DOI: 10.1242/jcs.263446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Accepted: 12/03/2024] [Indexed: 12/10/2024] Open
Abstract
Friedreich's ataxia (FRDA) is a neurodegenerative disorder characterized by severe neurological signs, affecting the peripheral and central nervous system, caused by reduced frataxin protein (FXN) levels. Although several studies have highlighted cellular dysfunctions in neurons, there is limited information on the effects of FXN depletion in astrocytes and on the potential non-cell autonomous mechanisms affecting neurons in FRDA. In this study, we generated a model of FRDA cerebellar astrocytes to unveil phenotypic alterations that might contribute to cerebellar atrophy. We treated primary cerebellar astrocytes with an RNA interference-based approach, to achieve a reduction of FXN comparable to that observed in individuals with FRDA. These FRDA-like astrocytes display some typical features of the disease, such as an increase of oxidative stress and a depletion of glutathione content. Moreover, FRDA-like astrocytes exhibit decreased Ca2+ responses to purinergic stimuli. Our findings shed light on cellular changes caused by FXN downregulation in cerebellar astrocytes, likely impairing their complex interaction with neurons. The potentially impaired ability to provide neuronal cells with glutathione or to release neuromodulators in a Ca2+-dependent manner could affect neuronal function, contributing to neurodegeneration.
Collapse
Affiliation(s)
- Chiara Marullo
- Division of Neuroscience, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Laura Croci
- Division of Neuroscience, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Iris Giupponi
- Division of Neuroscience, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Claudia Rivoletti
- Division of Neuroscience, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Sofia Zuffetti
- Division of Neuroscience, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
- Faculty of Medicine and Surgery, Università Vita-Salute San Raffaele, Milan, Italy
| | - Barbara Bettegazzi
- Division of Neuroscience, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
- Faculty of Medicine and Surgery, Università Vita-Salute San Raffaele, Milan, Italy
| | - Ottavio Cremona
- Division of Neuroscience, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
- Faculty of Medicine and Surgery, Università Vita-Salute San Raffaele, Milan, Italy
| | - Paola Giunti
- Ataxia Centre, Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK
| | - Alessandro Ambrosi
- Faculty of Medicine and Surgery, Università Vita-Salute San Raffaele, Milan, Italy
| | - Filippo Casoni
- Division of Neuroscience, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
- Faculty of Medicine and Surgery, Università Vita-Salute San Raffaele, Milan, Italy
| | - Gian Giacomo Consalez
- Division of Neuroscience, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
- Faculty of Medicine and Surgery, Università Vita-Salute San Raffaele, Milan, Italy
| | - Franca Codazzi
- Division of Neuroscience, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
- Faculty of Medicine and Surgery, Università Vita-Salute San Raffaele, Milan, Italy
| |
Collapse
|
6
|
Peluzzo TM, Vieira AS, Matos AHB, Silveira C, Martin M, Filho ORC, Rezende TJR, Martinez ARM, França MC. Plasma miRNAs Correlate with Structural Brain and Cardiac Damage in Friedreich's Ataxia. CEREBELLUM (LONDON, ENGLAND) 2024; 24:15. [PMID: 39688804 DOI: 10.1007/s12311-024-01766-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 10/23/2024] [Indexed: 12/18/2024]
Abstract
Friedreich's Ataxia (FRDA) is the most common autosomal recessive ataxia worldwide and is caused by biallelic unstable intronic GAA expansions at FXN. With its limited therapy and the recent approval of the first disease-modifying agent for FRDA, the search for biological markers is urgently needed to assist and ease the development of therapies. MiRNAs have emerged as promising biomarkers in various medical fields such as oncology, cardiology, epilepsy and neurology as well. Cell-free plasmatic miRNAs have potential advantages as biomarkers because of their size, stability against blood RNases, relative ease of obtaining, storage and measurement. In this study, we attempted to characterize the plasma miRNA signature (RNA-Seq followed by qRT-PCR) and its clinical/structural correlates in a cohort of Brazilian patients with FRDA. Our results showed that miR-26a-5p is upregulated and miR-15a-5p is downregulated. The first was correlated with age at onset, cerebellum volume, spinal cord cross-sectional area (C2-CSA) and the left ventricle mass (LV_Mass). For the miR-15a-5p, significant correlations were found with cerebellum volume, spinal cord eccentricity and LV_Mass. It has been previously hypothesized that these miRs target BDNF, modulating its expression and, when this gene is downregulated, it leads to neuronal loss, explaining the ataxic phenotype and our results reinforce this hypothesis. The miR-26a-5p was already associated with cardiomyocyte hypertrophy through the increased NLRP3 inflammasome activity, which is indirectly linked with cardiac hypertrophy. Considering that, we propose these miRNAs as possible prognostic biomarkers for FRDA. However, longitudinal studies are still needed to validate their clinical use.
Collapse
Affiliation(s)
- Thiago M Peluzzo
- Department of Translacional Medicine, School of Medical Sciences, University of Campinas - UNICAMP, Campinas, Sao Paulo, Brazil
| | - André S Vieira
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas - UNICAMP, Campinas, Sao Paulo, Brazil
| | - Alexandre H B Matos
- Department of Neurology, School of Medical Sciences, University of Campinas - UNICAMP, Rua Tessália Vieira de Camargo, 126. Cidade Universitária "Zeferino Vaz" Campinas, Campinas, SP, 13083-887, Brazil
| | - Cynthia Silveira
- Department of Neurology, School of Medical Sciences, University of Campinas - UNICAMP, Rua Tessália Vieira de Camargo, 126. Cidade Universitária "Zeferino Vaz" Campinas, Campinas, SP, 13083-887, Brazil
| | - Mariana Martin
- Department of Translacional Medicine, School of Medical Sciences, University of Campinas - UNICAMP, Campinas, Sao Paulo, Brazil
| | - Otávio R C Filho
- Department of Neurology, School of Medical Sciences, University of Campinas - UNICAMP, Rua Tessália Vieira de Camargo, 126. Cidade Universitária "Zeferino Vaz" Campinas, Campinas, SP, 13083-887, Brazil
| | - Thiago J R Rezende
- Department of Neurology, School of Medical Sciences, University of Campinas - UNICAMP, Rua Tessália Vieira de Camargo, 126. Cidade Universitária "Zeferino Vaz" Campinas, Campinas, SP, 13083-887, Brazil
| | - Alberto R M Martinez
- Department of Neurology, School of Medical Sciences, University of Campinas - UNICAMP, Rua Tessália Vieira de Camargo, 126. Cidade Universitária "Zeferino Vaz" Campinas, Campinas, SP, 13083-887, Brazil
| | - Marcondes C França
- Department of Neurology, School of Medical Sciences, University of Campinas - UNICAMP, Rua Tessália Vieira de Camargo, 126. Cidade Universitária "Zeferino Vaz" Campinas, Campinas, SP, 13083-887, Brazil.
| |
Collapse
|
7
|
Gunawardene AN, Reyes N, Valdes-Arias D, Ortug A, Martinez J, Galor A, Moulton EA. Abnormal visual cortex activity using functional magnetic resonance imaging in treatment resistant photophobia in Friedreich Ataxia. Am J Ophthalmol Case Rep 2024; 36:102213. [PMID: 39583293 PMCID: PMC11585643 DOI: 10.1016/j.ajoc.2024.102213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 10/10/2024] [Accepted: 10/28/2024] [Indexed: 11/26/2024] Open
Abstract
Purpose Friedreich ataxia (FDRA) is a debilitating neurodegenerative disease that can have ophthalmological manifestations including visual dysfunction, nystagmus, and optic atrophy. However, severe photophobia has not been reported nor evaluated with functional magnetic resonance imaging (fMRI). Methods A 64-year-old white female with a 37-year history of FDRA presented to the eye clinic with worsening photophobia of 3 years. To measure her visual cortex activation and subjective responses during episodes of photophobia, she underwent event-related fMRI with light stimuli. In comparison, the same protocol was conducted in an individual with photophobia but without FDRA. After the fMRI, both patients were treated with 35 units of BoNT-A applied to the forehead. Results Analysis of visual cortex activity in response to light stimulus in the FDRA patient showed no correlation between blood oxygen level dependent (BOLD) activation and light stimuli in the first (r = -0.100, p = 0.235), and a weak negative correlation in the second half of the fMRI scan (r = -0.236 p = 0.004). In notable contrast, significant positive correlations were noted between visual cortex activity and the light stimulus (1st half: r = 0.742, p < 0.001, vs. 2nd half: r = 0.614, p < 0.001) in the comparator. Six weeks later, no improvement in photophobia was noted in either patient. Conclusion and importance Our study highlights photophobia as one potential ocular manifestation of FDRA and suggests that one underlying contributor may be a decoupled cortical neurovascular response to light. Our study provides novel information that may guide physiologic understanding and future treatments in this disease.
Collapse
Affiliation(s)
- Araliya N. Gunawardene
- Ophthalmology, Miami Veterans Affairs Medical Center, 1201 NW 16 Street, Miami, FL, 33125, USA
- Bascom Palmer Eye Institute, University of Miami, 900 NW 17 Street, Miami, FL, 33136, USA
| | - Nicholas Reyes
- Ophthalmology, Miami Veterans Affairs Medical Center, 1201 NW 16 Street, Miami, FL, 33125, USA
- Bascom Palmer Eye Institute, University of Miami, 900 NW 17 Street, Miami, FL, 33136, USA
| | - David Valdes-Arias
- Ophthalmology, Miami Veterans Affairs Medical Center, 1201 NW 16 Street, Miami, FL, 33125, USA
- Bascom Palmer Eye Institute, University of Miami, 900 NW 17 Street, Miami, FL, 33136, USA
| | - Alpen Ortug
- Radiology, Massachusetts General Hospital, 55 Fruit Street, Boston, MA, 02115, USA
- Brain and Eye Pain Imaging Lab, Pain and Affective Neuroscience Center, Department of Anesthesiology, Critical Care and Pain Medicine, Boston Children's Hospital/Harvard Medical School, 300 Longwood Avenue., Boston, MA, 02115, USA
| | - Jaime Martinez
- Bascom Palmer Eye Institute, University of Miami, 900 NW 17 Street, Miami, FL, 33136, USA
| | - Anat Galor
- Ophthalmology, Miami Veterans Affairs Medical Center, 1201 NW 16 Street, Miami, FL, 33125, USA
- Bascom Palmer Eye Institute, University of Miami, 900 NW 17 Street, Miami, FL, 33136, USA
| | - Eric A. Moulton
- Brain and Eye Pain Imaging Lab, Pain and Affective Neuroscience Center, Department of Anesthesiology, Critical Care and Pain Medicine, Boston Children's Hospital/Harvard Medical School, 300 Longwood Avenue., Boston, MA, 02115, USA
- Department of Ophthalmology, Boston Children's Hospital/Harvard Medical School, 300 Longwood Avenue., Boston, MA, 02115, USA
| |
Collapse
|
8
|
Sohns E, Szmulewicz DJ, Tarnutzer AA. Oculomotor and Vestibular Deficits in Friedreich Ataxia - Systematic Review and Meta-Analysis of Quantitative Measurements. CEREBELLUM (LONDON, ENGLAND) 2024; 23:2269-2284. [PMID: 39066865 PMCID: PMC11585506 DOI: 10.1007/s12311-024-01716-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 06/25/2024] [Indexed: 07/30/2024]
Abstract
Disease-specific oculomotor assessments play a crucial role in the early diagnosis of hereditary cerebellar ataxias. Whereas several studies have reported on quantitative oculomotor and vestibular measurements in Friedreich's Ataxia (FRDA), the value of specific oculomotor paradigms remains unclear. We aimed to address this knowledge gap through a systematic literature review and providing disease-specific recommendations for a tailored set of eye-movement recordings in FRDA. MEDLINE and Embase were searched for studies reporting on quantitative oculomotor and/or vestibular measurements in FRDA-patients. Data on oculomotor and vestibular parameters were extracted and correlations with a range of clinical parameters were sought. Included studies (n = 17) reported on 185 patients. Abnormalities observed included the presence of saccadic intrusions (143/161) such as square-wave jerks (SWJ, 90/109) and ocular flutter (21/43), impaired eccentric gaze-holding (40/104), abnormal pursuit (81/93) and angular vestibulo-ocular reflex (aVOR) deficits (39/48). For visually-guided saccades (VGS), we frequently observed increases in saccade latency (27/38) and dysmetric saccades (71/93), whereas saccade velocity was more often preserved (37/43). Augmented anti-saccade (AS) latency, downbeat nystagmus and frequent macro-SWJ correlated with disease duration. Increased AS-latency and VGS-latency, frequent macro-SWJ, reduced aVOR-gain and augmented aVOR peak-latency correlated with disease severity. A broad range of oculomotor and vestibular deficits are documented in the literature. Impairments in pursuit, saccades and aVOR-responses are most commonly reported, and as such, should be prioritized as disease markers. Quantitative oculomotor testing in FRDA may facilitate early diagnosis and prove valuable in monitoring disease progression and treatment response.
Collapse
Affiliation(s)
- E Sohns
- Faculty of Medicine, University of Zurich, Zurich, Switzerland
| | - D J Szmulewicz
- Balance Disorders & Ataxia Service, Royal Victorian Eye and Ear Hospital, Melbourne, VIC, Australia
- The Bionics Institute, Melbourne, VIC, Australia
- University of Melbourne AU, Melbourne, VIC, Australia
| | - A A Tarnutzer
- Faculty of Medicine, University of Zurich, Zurich, Switzerland.
- Neurology, Cantonal Hospital of Baden, Im Ergel 1, Baden, 5404, Switzerland.
| |
Collapse
|
9
|
Matsugi A, Ohtsuka H, Bando K, Kondo Y, Kikuchi Y. Effects of Non-Invasive Brain Stimulation for Degenerative Cerebellar Ataxia: A Systematic Review and Meta-Analysis. Mov Disord Clin Pract 2024; 11:1323-1334. [PMID: 39221650 PMCID: PMC11542298 DOI: 10.1002/mdc3.14205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 07/06/2024] [Accepted: 08/05/2024] [Indexed: 09/04/2024] Open
Abstract
BACKGROUND This systematic review and meta-analysis aimed to assess the effectiveness of non-invasive brain stimulation (NIBS), including repetitive transcranial magnetic stimulation (rTMS) and transcranial electrical stimulation (tES), as a neurological intervention for degenerative cerebellar ataxia (DCA) based on preregistration (PROSPERO: CRD42023379192). OBJECTIVE We aimed to explore clinical outcomes and examine the parameters associated with NIBS efficacy in DCA patients. METHODS The PubMed, Cochrane Library, CHINAL, and PEDro databases were searched for relevant randomized controlled trials (RCTs). Data extraction, quality assessment, and heterogeneity analyses were conducted; the Grading, Recommendations, Assessment, Development, and Evaluation was used to assess the quality of evidence and a meta-analysis was performed. RESULTS Seventeen RCTs that included 661 patients on the scale for assessment and rating of ataxia (SARA) and 606 patients on the International Cooperative Ataxia Rating Scale (ICARS) were included. These RCTs showed a serious risk of bias (RoB) and low certainty of evidence for both outcomes. NIBS significantly reduced SARA (MD = -2.49, [95% confidence interval: -3.34, -1.64]) and ICARS (-5.27 [-7.06, -3.47]); the subgroup analysis showed significant effects: rTMS and tES reduced both outcomes. However, there were no significant differences in the effects of rTMS and tES. Additional subgroup analysis indicated the impact of rTMS frequency and the total number of tES sessions on ataxia. CONCLUSION Non-invasive brain stimulation may reduce ataxia in DCA patients, but the estimated effect size may change in future studies because the RoB was serious and the certainty of evidence was low, and the heterogeneity was high. To establish evidence for selecting NIBS methods and parameters, continued high-quality RCTs are required.
Collapse
Affiliation(s)
- Akiyoshi Matsugi
- Faculty of RehabilitationShijonawate Gakuen UniversityDaitōJapan
| | - Hiroyuki Ohtsuka
- Department of Physical TherapyShowa University School of Nursing and Rehabilitation SciencesTokyoJapan
| | - Kyota Bando
- National Center HospitalNational Center of Neurology and PsychiatryTokyoJapan
| | - Yuki Kondo
- National Center HospitalNational Center of Neurology and PsychiatryTokyoJapan
| | - Yutaka Kikuchi
- Department of Rehabilitation for Intractable Neurological DisordersInstitute of Brain and Blood Vessels Mihara Memorial HospitalIsesakiJapan
| |
Collapse
|
10
|
Casaril AM, Gaffney CM, Shepherd AJ. Animal models of neuropathic pain. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2024; 179:339-401. [PMID: 39580217 DOI: 10.1016/bs.irn.2024.10.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2024]
Abstract
Animal models continue to be crucial to developing our understanding of the molecular, cellular, and neurophysiological mechanisms that lead to neuropathic pain. The overwhelming majority of animal studies use rodent models, ranging from surgical and trauma-induced models to those induced by metabolic diseases, genetic mutations, viruses, neurotoxic drugs, and cancer. We discuss the clinical relevance of the available models and the pain behavior tests commonly used as outcome measures. Finally, we summarize the refinements that have been proposed to improve the ability of animal model studies to predict clinical efficacy.
Collapse
Affiliation(s)
- Angela M Casaril
- Laboratories of Neuroimmunology, Department of Symptom Research, Division of Internal Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Caitlyn M Gaffney
- Laboratories of Neuroimmunology, Department of Symptom Research, Division of Internal Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Andrew J Shepherd
- Laboratories of Neuroimmunology, Department of Symptom Research, Division of Internal Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, United States.
| |
Collapse
|
11
|
Petrillo S, Perna A, Quatrana A, Silvestri G, Bertini E, Piemonte F, Santoro M. Differential Gene Expression in Late-Onset Friedreich Ataxia: A Comparative Transcriptomic Analysis Between Symptomatic and Asymptomatic Sisters. Int J Mol Sci 2024; 25:11615. [PMID: 39519164 PMCID: PMC11546378 DOI: 10.3390/ijms252111615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 10/11/2024] [Accepted: 10/24/2024] [Indexed: 11/16/2024] Open
Abstract
Friedreich ataxia (FRDA) is the most common inherited ataxia, primarily impacting the nervous system and the heart. It is characterized by GAA repeat expansion in the FXN gene, leading to reduced mitochondrial frataxin levels. Previously, we described a family displaying two expanded GAA alleles, not only in the proband affected by late-onset FRDA but also in the younger asymptomatic sister. The molecular characterization of the expanded repeats showed that the affected sister carried two canonical uninterrupted GAA expended repeats, whereas the asymptomatic sister had a compound heterozygous for a canonical GAA repeat and an expanded GAAGGA motif. Therefore, we decided to perform RNA sequencing (RNA-seq) on fibroblasts from both sisters in order to understand whether some genes and/or pathways might be differently involved in the occurrence of FRDA clinical manifestation. The transcriptomic analysis revealed 398 differentially expressed genes. Notably, TLR4, IL20RB, and SLITRK5 were up-regulated, while TCF21 and GRIN2A were down-regulated, as validated by qRT-PCR. Gene ontology (GO) enrichment and network analysis highlighted significant involvement in immune response and neuronal functions. Our results, in particular, suggest that TLR4 may contribute to inflammation in FRDA, while IL20RB, SLITRK5, TCF21, and GRIN2A dysregulation may play roles in the disease pathogenesis. This study introduces new perspectives on the inflammatory and developmental aspects in FRDA, offering potential targets for therapeutic intervention.
Collapse
Affiliation(s)
- Sara Petrillo
- Unit of Muscular and Neurodegenerative Diseases, Children’s Hospital Bambino Gesù, Scientific Institute for Research, Hospitalization and Healthcare (IRCCS), 00146 Rome, Italy; (S.P.); (A.Q.); (E.B.)
| | - Alessia Perna
- Center for Neuromuscular and Neurological Rare Diseases, San Camillo Forlanini Hospital, 00152 Rome, Italy;
| | - Andrea Quatrana
- Unit of Muscular and Neurodegenerative Diseases, Children’s Hospital Bambino Gesù, Scientific Institute for Research, Hospitalization and Healthcare (IRCCS), 00146 Rome, Italy; (S.P.); (A.Q.); (E.B.)
| | - Gabriella Silvestri
- Department of Neurosciences, Università Cattolica del Sacro Cuore, 00168 Rome, Italy;
- UOC of Neurology, Area of Neuroscience, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
| | - Enrico Bertini
- Unit of Muscular and Neurodegenerative Diseases, Children’s Hospital Bambino Gesù, Scientific Institute for Research, Hospitalization and Healthcare (IRCCS), 00146 Rome, Italy; (S.P.); (A.Q.); (E.B.)
| | - Fiorella Piemonte
- Unit of Muscular and Neurodegenerative Diseases, Children’s Hospital Bambino Gesù, Scientific Institute for Research, Hospitalization and Healthcare (IRCCS), 00146 Rome, Italy; (S.P.); (A.Q.); (E.B.)
| | - Massimo Santoro
- Division of Biotechnologies, Italian National Agency for New Technologies, Energy and Sustainable Development (ENEA), 00123 Rome, Italy;
| |
Collapse
|
12
|
Scott V, Delatycki MB, Tai G, Corben LA. New and Emerging Drug and Gene Therapies for Friedreich Ataxia. CNS Drugs 2024; 38:791-805. [PMID: 39115603 PMCID: PMC11377510 DOI: 10.1007/s40263-024-01113-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/18/2024] [Indexed: 09/06/2024]
Abstract
The life shortening nature of Friedreich Ataxia (FRDA) demands the search for therapies that can delay, stop or reverse its relentless trajectory. This review provides a contemporary position of drug and gene therapies for FRDA currently in phase 1 clinical trials and beyond. Despite significant scientific advances in the specificity of both compounds and targets developed and investigated, challenges remain for the advancement of treatments in a limited recruitment population. Currently therapies focus on reducing oxidative stress and improving mitochondrial function, modulating frataxin controlled metabolic pathways and gene replacement and editing. Approval of omaveloxolone, the first treatment for individuals with FRDA aged 16 years and over, has created much excitement for both those living with FRDA and those that care for them. The process of approval of omaveloxolone by the US Food and Drug Administration highlighted the importance of sensitive outcome measures and the significant role of data from natural history studies.
Collapse
Affiliation(s)
- Varlli Scott
- Bruce Lefroy Centre for Genetic Health Research, Murdoch Children's Research Institute, Parkville, VIC, 3052, Australia
- Department of Paediatrics, University of Melbourne, Parkville, VIC, Australia
| | - Martin B Delatycki
- Bruce Lefroy Centre for Genetic Health Research, Murdoch Children's Research Institute, Parkville, VIC, 3052, Australia
- Department of Paediatrics, University of Melbourne, Parkville, VIC, Australia
- Victorian Clinical Genetics Service, Parkville, VIC, Australia
| | - Geneieve Tai
- Bruce Lefroy Centre for Genetic Health Research, Murdoch Children's Research Institute, Parkville, VIC, 3052, Australia
| | - Louise A Corben
- Bruce Lefroy Centre for Genetic Health Research, Murdoch Children's Research Institute, Parkville, VIC, 3052, Australia.
- Department of Paediatrics, University of Melbourne, Parkville, VIC, Australia.
- Turner Institute for Brain and Mental Health, School of Psychological Sciences, Monash University, Clayton, VIC, Australia.
| |
Collapse
|
13
|
Molenaars M, Mir H, Alvarez SW, Arivazhagan L, Rosselot C, Zhan D, Park CY, Garcia-Ocana A, Schmidt AM, Possemato R. Acute inhibition of iron-sulfur cluster biosynthesis disrupts metabolic flexibility in mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.19.608291. [PMID: 39229169 PMCID: PMC11370322 DOI: 10.1101/2024.08.19.608291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
Iron-sulfur clusters (ISCs) are cell-essential cofactors present in ∼60 proteins including subunits of OXPHOS complexes I-III, DNA polymerases, and iron-sensing proteins. Dysfunctions in ISC biosynthesis are associated with anemias, neurodegenerative disorders, and metabolic diseases. To assess consequences of acute ISC inhibition in a whole body setting, we developed a mouse model in which key ISC biosynthetic enzyme NFS1 can be acutely and reversibly suppressed. Contrary to in vitro ISC inhibition and pharmacological OXPHOS suppression, global NFS1 inhibition rapidly enhances lipid utilization and decreases adiposity without affecting caloric intake and physical activity. ISC proteins decrease, including key proteins involved in OXPHOS (SDHB), lipoic acid synthesis (LIAS), and insulin mRNA processing (CDKAL1), causing acute metabolic inflexibility. Age-related metabolic changes decelerate loss of adiposity substantially prolonged survival of mice with NFS1 inhibition. Thus, the observation that ISC metabolism impacts organismal fuel choice will aid in understanding the mechanisms underlying ISC diseases with increased risk for diabetes. Graphical abstract Highlights Acute ISC inhibition leads to rapid loss of adiposity in miceMulti-metabolic pathway disruption upon ISC deficiency blocks energy storageNfs1 inhibition induces glucose dyshomeostasis due to ISC deficiency in β-cellsEnergy distress caused by inhibition of ISC synthesis is attenuated in aged mice.
Collapse
|
14
|
Nishiyama M, Kalambogias J, Imai F, Yang E, Lang S, de Nooij JC, Yoshida Y. Anatomical and functional analysis of the corticospinal tract in an FRDA mouse model. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.28.601178. [PMID: 39005321 PMCID: PMC11244874 DOI: 10.1101/2024.06.28.601178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
Friedreich's ataxia (FRDA) is one of the most common hereditary ataxias. It is caused by a GAA repeat in the first intron of the FXN gene, which encodes an essential mitochondrial protein. Patients suffer from progressive motor dysfunction due to the degeneration of mechanoreceptive and proprioceptive neurons in dorsal root ganglia (DRG) and cerebellar dentate nucleus neurons, especially at early disease stages. Postmortem analyses of FRDA patients also indicate pathological changes in motor cortex including in the projection neurons that give rise to the cortical spinal tract (CST). Yet, it remains poorly understood how early in the disease cortical spinal neurons (CSNs) show these alterations, or whether CSN/CST pathology resembles the abnormalities observed in other tissues affected by FXN loss. To address these questions, we examined CSN driven motor behaviors and pathology in the YG8JR FRDA mouse model. We find that FRDA mice show impaired motor skills, exhibit significant reductions in CSN functional output, and, among other pathological changes, show abnormal mitochondrial distributions in CSN neurons and CST axonal tracts. Moreover, some of these alterations were observed as early as two months of age, suggesting that CSN/CST pathology may be an earlier event in FRDA disease than previously appreciated. These studies warrant a detailed mechanistic understanding of how FXN loss impacts CSN health and functionality.
Collapse
Affiliation(s)
- Misa Nishiyama
- Burke Neurological Institute, White Plains, New York, United States
| | - John Kalambogias
- Burke Neurological Institute, White Plains, New York, United States
- Department of Neurology, Columbia University, New York, NY, USA
| | - Fumiyasu Imai
- Burke Neurological Institute, White Plains, New York, United States
- Brain and Mind Research Institute, Weill Cornell Medicine, New York, United States
| | - Emily Yang
- Burke Neurological Institute, White Plains, New York, United States
| | - Sonia Lang
- Burke Neurological Institute, White Plains, New York, United States
| | | | - Yutaka Yoshida
- Burke Neurological Institute, White Plains, New York, United States
- Brain and Mind Research Institute, Weill Cornell Medicine, New York, United States
- Neural Circuit Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
| |
Collapse
|
15
|
Spoto G, Ceraolo G, Butera A, Di Rosa G, Nicotera AG. Exploring the Genetic Landscape of Chorea in Infancy and Early Childhood: Implications for Diagnosis and Treatment. Curr Issues Mol Biol 2024; 46:5632-5654. [PMID: 38921008 PMCID: PMC11202702 DOI: 10.3390/cimb46060337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 06/01/2024] [Accepted: 06/02/2024] [Indexed: 06/27/2024] Open
Abstract
Chorea is a hyperkinetic movement disorder frequently observed in the pediatric population, and, due to advancements in genetic techniques, an increasing number of genes have been associated with this disorder. In genetic conditions, chorea may be the primary feature of the disorder, or be part of a more complex phenotype characterized by epileptic encephalopathy or a multisystemic syndrome. Moreover, it can appear as a persistent disorder (chronic chorea) or have an episodic course (paroxysmal chorea). Managing chorea in childhood presents challenges due to its varied clinical presentation, often involving a spectrum of hyperkinetic movement disorders alongside neuropsychiatric and multisystemic manifestations. Furthermore, during infancy and early childhood, transient motor phenomena resembling chorea occurring due to the rapid nervous system development during this period can complicate the diagnosis. This review aims to provide an overview of the main genetic causes of pediatric chorea that may manifest during infancy and early childhood, focusing on peculiarities that can aid in differential diagnosis among different phenotypes and discussing possible treatment options.
Collapse
Affiliation(s)
- Giulia Spoto
- Unit of Child Neurology and Psychiatry, Department of Biomedical Sciences, Dental Sciences & Morpho-Functional Imaging, University of Messina, 98125 Messina, Italy;
| | - Graziana Ceraolo
- Unit of Child Neurology and Psychiatry, Department of Human Pathology of the Adult and Developmental Age “Gaetano Barresi”, University of Messina, 98125 Messina, Italy;
| | - Ambra Butera
- Unit of Child Neurology and Psychiatry, Department of Chemical, Biological, Farmaceutical & Environmental Science, University of Messina, 98125 Messina, Italy;
| | - Gabriella Di Rosa
- Unit of Child Neurology and Psychiatry, Department of Biomedical Sciences, Dental Sciences & Morpho-Functional Imaging, University of Messina, 98125 Messina, Italy;
| | - Antonio Gennaro Nicotera
- Unit of Child Neurology and Psychiatry, Maternal-Infantile Department, University of Messina, 98125 Messina, Italy;
| |
Collapse
|
16
|
Theodosopoulou P, Mavromati M, Paraskeva A. Friedreich's Ataxia and Cesarean Delivery: A Case Report of Epidural Anesthesia With Ropivacaine. Cureus 2024; 16:e61776. [PMID: 38975512 PMCID: PMC11227031 DOI: 10.7759/cureus.61776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/05/2024] [Indexed: 07/09/2024] Open
Abstract
Friedreich's ataxia (FRDA), a rare inherited neurodegenerative disease, presents distinctive complexities in obstetrical anesthesia. Available research about FRDA in obstetrics is extremely limited. In this report, the anesthetic management of a 40-year-old primigravida with FRDA undergoing cesarean delivery is presented. An uneventful cesarean delivery with effective epidural anesthesia with ropivacaine at the L2-L3 intervertebral space was performed in our case. Neither hypotension nor bradycardia was observed, and vital signs remained stable, with no need for administration of vasoactive drugs. After discharge, the parturient reported no change in her neurologic symptoms. Conclusive recommendations are contingent upon more extensive studies. Overall management and the choice to proceed with neuraxial anesthesia in a woman with FRDA should be based on comprehensive consultations in both cardio-obstetrics and pre-anesthetic evaluations.
Collapse
Affiliation(s)
- Polyxeni Theodosopoulou
- Anesthesia and Pain Medicine, Aretaieion University Hospital, National and Kapodistrian University of Athens, Athens, GRC
| | - Marianna Mavromati
- Anesthesia and Pain Medicine, Aretaieion University Hospital, National and Kapodistrian University of Athens, Athens, GRC
| | - Anteia Paraskeva
- Anesthesia and Pain Medicine, Aretaieion University Hospital, National and Kapodistrian University of Athens, Athens, GRC
| |
Collapse
|
17
|
Öz G, Cocozza S, Henry PG, Lenglet C, Deistung A, Faber J, Schwarz AJ, Timmann D, Van Dijk KRA, Harding IH. MR Imaging in Ataxias: Consensus Recommendations by the Ataxia Global Initiative Working Group on MRI Biomarkers. CEREBELLUM (LONDON, ENGLAND) 2024; 23:931-945. [PMID: 37280482 PMCID: PMC11102392 DOI: 10.1007/s12311-023-01572-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 05/18/2023] [Indexed: 06/08/2023]
Abstract
With many viable strategies in the therapeutic pipeline, upcoming clinical trials in hereditary and sporadic degenerative ataxias will benefit from non-invasive MRI biomarkers for patient stratification and the evaluation of therapies. The MRI Biomarkers Working Group of the Ataxia Global Initiative therefore devised guidelines to facilitate harmonized MRI data acquisition in clinical research and trials in ataxias. Recommendations are provided for a basic structural MRI protocol that can be used for clinical care and for an advanced multi-modal MRI protocol relevant for research and trial settings. The advanced protocol consists of modalities with demonstrated utility for tracking brain changes in degenerative ataxias and includes structural MRI, magnetic resonance spectroscopy, diffusion MRI, quantitative susceptibility mapping, and resting-state functional MRI. Acceptable ranges of acquisition parameters are provided to accommodate diverse scanner hardware in research and clinical contexts while maintaining a minimum standard of data quality. Important technical considerations in setting up an advanced multi-modal protocol are outlined, including the order of pulse sequences, and example software packages commonly used for data analysis are provided. Outcome measures most relevant for ataxias are highlighted with use cases from recent ataxia literature. Finally, to facilitate access to the recommendations by the ataxia clinical and research community, examples of datasets collected with the recommended parameters are provided and platform-specific protocols are shared via the Open Science Framework.
Collapse
Affiliation(s)
- Gülin Öz
- Center for Magnetic Resonance Research, Department of Radiology, University of Minnesota, 2021 Sixth Street Southeast, Minneapolis, MN, 55455, USA.
| | - Sirio Cocozza
- UNINA Department of Advanced Biomedical Sciences, University of Naples Federico II , Naples, Italy
| | - Pierre-Gilles Henry
- Center for Magnetic Resonance Research, Department of Radiology, University of Minnesota, 2021 Sixth Street Southeast, Minneapolis, MN, 55455, USA
| | - Christophe Lenglet
- Center for Magnetic Resonance Research, Department of Radiology, University of Minnesota, 2021 Sixth Street Southeast, Minneapolis, MN, 55455, USA
| | - Andreas Deistung
- Department for Radiation Medicine, University Clinic and Outpatient Clinic for Radiology, University Hospital Halle (Saale), Halle (Saale), Germany
| | - Jennifer Faber
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
- Department of Neurology, University Hospital Bonn, Bonn, Germany
| | | | - Dagmar Timmann
- Department of Neurology and Center for Translational Neuro- and Behavioral Sciences (C-TNBS), Essen University Hospital, University of Duisburg-Essen, Essen, Germany
| | - Koene R A Van Dijk
- Digital Sciences and Translational Imaging, Early Clinical Development, Pfizer, Inc., Cambridge, MA, USA
| | - Ian H Harding
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Australia
- Monash Biomedical Imaging, Monash University, Melbourne, Australia
| |
Collapse
|
18
|
Papapetropoulos A, Topouzis S, Alexander SPH, Cortese-Krott M, Kendall DA, Martemyanov KA, Mauro C, Nagercoil N, Panettieri RA, Patel HH, Schulz R, Stefanska B, Stephens GJ, Teixeira MM, Vergnolle N, Wang X, Ferdinandy P. Novel drugs approved by the EMA, the FDA, and the MHRA in 2023: A year in review. Br J Pharmacol 2024; 181:1553-1575. [PMID: 38519837 DOI: 10.1111/bph.16337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Accepted: 01/29/2024] [Indexed: 03/25/2024] Open
Abstract
In 2023, seventy novel drugs received market authorization for the first time in either Europe (by the EMA and the MHRA) or in the United States (by the FDA). Confirming a steady recent trend, more than half of these drugs target rare diseases or intractable forms of cancer. Thirty drugs are categorized as "first-in-class" (FIC), illustrating the quality of research and innovation that drives new chemical entity discovery and development. We succinctly describe the mechanism of action of most of these FIC drugs and discuss the therapeutic areas covered, as well as the chemical category to which these drugs belong. The 2023 novel drug list also demonstrates an unabated emphasis on polypeptides (recombinant proteins and antibodies), Advanced Therapy Medicinal Products (gene and cell therapies) and RNA therapeutics, including the first-ever approval of a CRISPR-Cas9-based gene-editing cell therapy.
Collapse
Affiliation(s)
- Andreas Papapetropoulos
- Laboratory of Pharmacology, Department of Pharmacy, National and Kapodistrian University of Athens, Athens, Greece
- Clinical, Experimental Surgery and Translational Research Center, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | - Stavros Topouzis
- Laboratory of Molecular Pharmacology Department of Pharmacy, University of Patras, Patras, Greece
| | | | - Miriam Cortese-Krott
- Myocardial Infarction Research Laboratory, Department of Cardiology, Pneumology, Angiology, Medical Faculty, Heinrich Heine University of Düsseldorf, Düsseldorf, Germany
- CARID, Cardiovascular Research Institute Düsseldorf, Düsseldorf, Germany
| | | | | | - Claudio Mauro
- Institute of Inflammation and Ageing, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | | | | | - Hemal H Patel
- VA San Diego Healthcare System and University of California/San Diego, San Diego, CA, USA
| | | | | | | | | | - Nathalie Vergnolle
- IRSD, Université de Toulouse, INSERM, INRAE, ENVT, UPS, Toulouse, France
| | - Xin Wang
- University of Manchester, Manchester, UK
| | - Péter Ferdinandy
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary
- Pharmahungary Group, Szeged, Hungary
| |
Collapse
|
19
|
Németh AH, Antoniades CA, Dukart J, Minnerop M, Rentz C, Schuman BJ, van de Warrenburg B, Willemse I, Bertini E, Gupta AS, de Mello Monteiro CB, Almoajil H, Quinn L, Perlman SB, Horak F, Ilg W, Traschütz A, Vogel AP, Dawes H. Using Smartphone Sensors for Ataxia Trials: Consensus Guidance by the Ataxia Global Initiative Working Group on Digital-Motor Biomarkers. CEREBELLUM (LONDON, ENGLAND) 2024; 23:912-923. [PMID: 38015365 PMCID: PMC11102363 DOI: 10.1007/s12311-023-01608-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 09/25/2023] [Indexed: 11/29/2023]
Abstract
Smartphone sensors are used increasingly in the assessment of ataxias. To date, there is no specific consensus guidance regarding a priority set of smartphone sensor measurements, or standard assessment criteria that are appropriate for clinical trials. As part of the Ataxia Global Initiative Digital-Motor Biomarkers Working Group (AGI WG4), aimed at evaluating key ataxia clinical domains (gait/posture, upper limb, speech and oculomotor assessments), we provide consensus guidance for use of internal smartphone sensors to assess key domains. Guidance was developed by means of a literature review and a two stage Delphi study conducted by an Expert panel, which surveyed members of AGI WG4, representing clinical, research, industry and patient-led experts, and consensus meetings by the Expert panel to agree on standard criteria and map current literature to these criteria. Seven publications were identified that investigated ataxias using internal smartphone sensors. The Delphi 1 survey ascertained current practice, and systems in use or under development. Wide variations in smartphones sensor use for assessing ataxia were identified. The Delphi 2 survey identified seven measures that were strongly endorsed as priorities in assessing 3/4 domains, namely gait/posture, upper limb, and speech performance. The Expert panel recommended 15 standard criteria to be fulfilled in studies. Evaluation of current literature revealed that none of the studies met all criteria, with most being early-phase validation studies. Our guidance highlights the importance of consensus, identifies priority measures and standard criteria, and will encourage further research into the use of internal smartphone sensors to measure ataxia digital-motor biomarkers.
Collapse
Affiliation(s)
- Andrea H Németh
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
- Oxford Centre for Genomic Medicine, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Chrystalina A Antoniades
- Neurometrology Group, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Juergen Dukart
- Institute of Neuroscience and Medicine, Brain & Behaviour (INM-7), Research Centre Jülich, Jülich, Germany
- Institute of Systems Neuroscience, Medical Faculty & University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Martina Minnerop
- Institute of Clinical Neuroscience and Medical Psychology, Medical Faculty & University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- Department of Neurology, Center for Movement Disorders and Neuromodulation, Medical Faculty & University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- Institute of Neuroscience and Medicine, (INM-1), Research Centre Jülich, Jülich, Germany
| | - Clara Rentz
- Institute of Neuroscience and Medicine, (INM-1), Research Centre Jülich, Jülich, Germany
| | | | - Bart van de Warrenburg
- Department of Neurology, Donders Institute for Brain, Cognition, and Behaviour, Radboud University Medical Center, 6525, Nijmegen, Netherlands
| | - Ilse Willemse
- Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, Netherlands
| | - Enrico Bertini
- Unit of Neuromuscular and Neurodegenerative Disorders, Dept Neurosciences, Bambino Gesu' Children's Research Hospital, IRCCS, Rome, Italy
| | - Anoopum S Gupta
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Carlos Bandeira de Mello Monteiro
- Faculty of Medicine, University of São Paulo, São Paulo, SP, Brazil
- School of Arts, Science and Humanities, University of São Paulo, São Paulo, SP, Brazil
| | - Hajar Almoajil
- Physical Therapy Department, College of Applied Medical Sciences, Imam Abdulrahman Bin Faisal University, Damman, Saudi Arabia
| | - Lori Quinn
- Department of Biobehavioral Sciences, Teachers College, Columbia University, New York, NY, USA
| | | | - Fay Horak
- Department of Neurology, Oregon Health & Science University, Portland, OR, USA
- APDM Precision Motion, Clario, Portland, OR, USA
| | - Winfried Ilg
- Section Computational Sensomotorics, Hertie Institute for Clinical Brain Research, Tübingen, Germany
- Centre for Integrative Neuroscience (CIN), Tübingen, Germany
| | - Andreas Traschütz
- Research Division "Translational Genomics of Neurodegenerative Diseases", Hertie Institute for Clinical Brain Research and Center of Neurology, University of Tübingen, Tübingen, Germany
- German Center for Neurodegenerative Diseases (DZNE), University of Tübingen, Tübingen, Germany
| | - Adam P Vogel
- Centre for Neuroscience of Speech, The University of Melbourne, Melbourne, Australia
- Division of Translational Genomics of Neurodegenerative Diseases, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
- Center for Neurology, University Hospital Tübingen, Tübingen, Germany
- Redenlab Inc, Melbourne, Australia
| | - Helen Dawes
- NIHR Exeter Biomedical Research Centre, Medical School, Faculty of Health and Life Sciences, College of Medicine and Health, St Lukes Campus, University of Exeter, Heavitree Road, Exeter, UK.
| |
Collapse
|
20
|
Da Conceição LMA, Cabral LM, Pereira GRC, De Mesquita JF. An In Silico Analysis of Genetic Variants and Structural Modeling of the Human Frataxin Protein in Friedreich's Ataxia. Int J Mol Sci 2024; 25:5796. [PMID: 38891993 PMCID: PMC11172458 DOI: 10.3390/ijms25115796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 05/15/2024] [Accepted: 05/20/2024] [Indexed: 06/21/2024] Open
Abstract
Friedreich's Ataxia (FRDA) stands out as the most prevalent form of hereditary ataxias, marked by progressive movement ataxia, loss of vibratory sensitivity, and skeletal deformities, severely affecting daily functioning. To date, the only medication available for treating FRDA is Omaveloxolone (Skyclarys®), recently approved by the FDA. Missense mutations within the human frataxin (FXN) gene, responsible for intracellular iron homeostasis regulation, are linked to FRDA development. These mutations induce FXN dysfunction, fostering mitochondrial iron accumulation and heightened oxidative stress, ultimately triggering neuronal cell death pathways. This study amalgamated 226 FXN genetic variants from the literature and database searches, with only 18 previously characterized. Predictive analyses revealed a notable prevalence of detrimental and destabilizing predictions for FXN mutations, predominantly impacting conserved residues crucial for protein function. Additionally, an accurate, comprehensive three-dimensional model of human FXN was constructed, serving as the basis for generating genetic variants I154F and W155R. These variants, selected for their severe clinical implications, underwent molecular dynamics (MD) simulations, unveiling flexibility and essential dynamic alterations in their N-terminal segments, encompassing FXN42, FXN56, and FXN78 domains pivotal for protein maturation. Thus, our findings indicate potential interaction profile disturbances in the FXN42, FXN56, and FXN78 domains induced by I154F and W155R mutations, aligning with the existing literature.
Collapse
Affiliation(s)
- Loiane Mendonça Abrantes Da Conceição
- Laboratory of Bioinformatics and Computational Biology, Federal University of the State of Rio de Janeiro (UNIRIO), Avenida Pasteur, 296, Urca, Rio de Janeiro 22290-250, Brazil (J.F.D.M.)
| | - Lucio Mendes Cabral
- Pharmaceutical Industrial Technology Laboratory, Federal University of Rio de Janeiro (UFRJ), Avenida Carlos Chagas Filho, 373, Cidade Universitária, Rio de Janeiro 21941-590, Brazil
| | - Gabriel Rodrigues Coutinho Pereira
- Pharmaceutical Industrial Technology Laboratory, Federal University of Rio de Janeiro (UFRJ), Avenida Carlos Chagas Filho, 373, Cidade Universitária, Rio de Janeiro 21941-590, Brazil
- Laboratory of Molecular Modeling & QSAR, Federal University of Rio de Janeiro (UFRJ), Avenida Carlos Chagas Filho, 373, Cidade Universitária, Rio de Janeiro 21941-590, Brazil
| | - Joelma Freire De Mesquita
- Laboratory of Bioinformatics and Computational Biology, Federal University of the State of Rio de Janeiro (UNIRIO), Avenida Pasteur, 296, Urca, Rio de Janeiro 22290-250, Brazil (J.F.D.M.)
| |
Collapse
|
21
|
Vancheri C, Quatrana A, Morini E, Mariotti C, Mongelli A, Fichera M, Rufini A, Condò I, Testi R, Novelli G, Malisan F, Amati F. An RNA-seq study in Friedreich ataxia patients identified hsa-miR-148a-3p as a putative prognostic biomarker of the disease. Hum Genomics 2024; 18:50. [PMID: 38778374 PMCID: PMC11110315 DOI: 10.1186/s40246-024-00602-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 03/26/2024] [Indexed: 05/25/2024] Open
Abstract
Friedreich ataxia (FRDA) is a life-threatening hereditary ataxia; its incidence is 1:50,000 individuals in the Caucasian population. A unique therapeutic drug for FRDA, the antioxidant Omaveloxolone, has been recently approved by the US Food and Drug Administration (FDA). FRDA is a multi-systemic neurodegenerative disease; in addition to a progressive neurodegeneration, FRDA is characterized by hypertrophic cardiomyopathy, diabetes mellitus and musculoskeletal deformities. Cardiomyopathy is the predominant cause of premature death. The onset of FRDA typically occurs between the ages of 5 and 15. Given the complexity and heterogeneity of clinical features and the variability of their onset, the identification of biomarkers capable of assessing disease progression and monitoring the efficacy of treatments is essential to facilitate decision making in clinical practice. We conducted an RNA-seq analysis in peripheral blood mononuclear cells from FRDA patients and healthy donors, identifying a signature of small non-coding RNAs (sncRNAs) capable of distinguishing healthy individuals from the majority of FRDA patients. Among the differentially expressed sncRNAs, microRNAs are a class of small non-coding endogenous RNAs that regulate posttranscriptional silencing of target genes. In FRDA plasma samples, hsa-miR-148a-3p resulted significantly upregulated. The analysis of the Receiver Operating Characteristic (ROC) curve, combining the circulating expression levels of hsa-miR-148a-3p and hsa-miR-223-3p (previously identified by our group), revealed an Area Under the Curve (AUC) of 0.86 (95%, Confidence Interval 0.77-0.95; p-value < 0.0001). An in silico prediction analysis indicated that the IL6ST gene, an interesting marker of neuroinflammation in FRDA, is a common target gene of both miRNAs. Our findings support the evaluation of combined expression levels of different circulating miRNAs as potent epi-biomarkers in FRDA. Moreover, we found hsa-miR-148a-3p significantly over-expressed in Intermediate and Late-Onset Friedreich Ataxia patients' group (IOG and LOG, respectively) compared to healthy individuals, indicating it as a putative prognostic biomarker in this pathology.
Collapse
Affiliation(s)
- Chiara Vancheri
- Department of Biomedicine and Prevention, Genetics Unit, Tor Vergata University of Rome, Via Montpellier 1, Rome, 00133, Italy
| | - Andrea Quatrana
- Department of Biomedicine and Prevention, Laboratory of Signal Transduction, Tor Vergata University of Rome, Via Montpellier 1, Rome, 00133, Italy
- Muscular and Neurodegenerative Diseases Laboratory, Bambino Gesù, Children's Hospital, IRCCS, Rome, Italy
| | - Elena Morini
- Department of Biomedicine and Prevention, Genetics Unit, Tor Vergata University of Rome, Via Montpellier 1, Rome, 00133, Italy
| | - Caterina Mariotti
- Unit of Medical Genetics and Neurogenetics, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, 20133, Italy
| | - Alessia Mongelli
- Unit of Medical Genetics and Neurogenetics, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, 20133, Italy
| | - Mario Fichera
- Unit of Medical Genetics and Neurogenetics, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, 20133, Italy
| | - Alessandra Rufini
- Department of Biomedicine and Prevention, Laboratory of Signal Transduction, Tor Vergata University of Rome, Via Montpellier 1, Rome, 00133, Italy
- Saint Camillus International University of Health and Medical Sciences, Rome, 00131, Italy
| | - Ivano Condò
- Department of Biomedicine and Prevention, Laboratory of Signal Transduction, Tor Vergata University of Rome, Via Montpellier 1, Rome, 00133, Italy
| | - Roberto Testi
- Department of Biomedicine and Prevention, Laboratory of Signal Transduction, Tor Vergata University of Rome, Via Montpellier 1, Rome, 00133, Italy
| | - Giuseppe Novelli
- Department of Biomedicine and Prevention, Genetics Unit, Tor Vergata University of Rome, Via Montpellier 1, Rome, 00133, Italy
- Neuromed Institute, IRCCS, Pozzilli, 86077, Italy
- Department of Pharmacology, School of Medicine, University of Nevada, Reno, NV, 89557, USA
| | - Florence Malisan
- Department of Biomedicine and Prevention, Laboratory of Signal Transduction, Tor Vergata University of Rome, Via Montpellier 1, Rome, 00133, Italy.
| | - Francesca Amati
- Department of Biomedicine and Prevention, Genetics Unit, Tor Vergata University of Rome, Via Montpellier 1, Rome, 00133, Italy.
| |
Collapse
|
22
|
Shen MM, Rummey C, Lynch DR. Phenotypic variation of FXN compound heterozygotes in a Friedreich ataxia cohort. Ann Clin Transl Neurol 2024; 11:1110-1121. [PMID: 38396238 PMCID: PMC11093247 DOI: 10.1002/acn3.52027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 01/24/2024] [Accepted: 02/09/2024] [Indexed: 02/25/2024] Open
Abstract
OBJECTIVE Most individuals with Friedreich ataxia (FRDA) have homozygous GAA triplet repeat expansions in the FXN gene, correlating with a typical phenotype of ataxia and cardiomyopathy. A minority are compound heterozygotes carrying a GAA expansion on one allele and a mutation on the other. The study aim was to examine phenotypic variation among compound heterozygotes. METHODS Data on FXN mutations were obtained from the Friedreich Ataxia Clinical Outcome Measures Study (FA-COMS). We compared clinical features in a single-site FA-COMS cohort of 51 compound heterozygous and 358 homozygous patients, including quantitative measures of cardiac, neurologic, and visual disease progression. RESULTS Non-GAA repeat mutations were associated with reduced cardiac disease, and patients with minimal/no function mutations otherwise had a typical FRDA phenotype but with significantly more severe progression. The partial function mutation group was characterized by relative sparing of bulbar and upper limb function, as well as particularly low cardiac involvement. Other clinical features in this group, including optic atrophy and diabetes mellitus, varied widely depending on the specific type of partial function mutation. INTERPRETATION These data support that the typical FRDA phenotype is driven by frataxin deficiency, especially severe in compound heterozygotes with minimal/no function mutations, whereas the heterogeneous presentations of those with partial function mutations may indicate other contributing factors to FRDA pathogenesis.
Collapse
Affiliation(s)
- Megan M. Shen
- Division of NeurologyThe Children's Hospital of PhiladelphiaPhiladelphiaPennsylvaniaUSA
- Perelman School of Medicine, University of Pennsylvania.PhiladelphiaPennsylvaniaUSA
| | | | - David R. Lynch
- Division of NeurologyThe Children's Hospital of PhiladelphiaPhiladelphiaPennsylvaniaUSA
- Perelman School of Medicine, University of Pennsylvania.PhiladelphiaPennsylvaniaUSA
| |
Collapse
|
23
|
Tamaš O, Mijajlović M, Švabić T, Kostić M, Marić G, Milovanović A, Jeremić M, Dragašević-Mišković N. Transcranial Sonography Characteristics of Cerebellar Neurodegenerative Ataxias. Brain Sci 2024; 14:340. [PMID: 38671992 PMCID: PMC11048096 DOI: 10.3390/brainsci14040340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 03/27/2024] [Indexed: 04/28/2024] Open
Abstract
Cerebellar neurodegenerative ataxias are a group of disorders affecting the cerebellum and its pathways with different neurological structures. Transcranial sonography (TCS) has been used for the evaluation of brain parenchymal structures in various diseases because of its fast and safe utilization, especially in neuropsychiatric and neurodegenerative diseases. The aim of our study was to investigate TCS characteristics of patients with neurodegenerative cerebellar ataxias. In our study, we included 74 patients with cerebellar degenerative ataxia; 36.5% had autosomal dominant onset, while 33.8% had sporadic onset. Standardized ultrasonographic planes were used for the identification of brain structures of interest. The SARA, INAS, neuropsychological and psychiatric scales were used for the further clinical evaluation of our study participants. The brainstem raphe was discontinued in 33.8% of the patients. The substantia nigra (SN) hyperechogenicity was identified in 79.7%. The third and fourth ventricle enlargement had 79.7% and 45.9% of patients, respectively. A positive and statistically significant correlation was found between SN hyperechogenicity with dystonia (p < 0.01), rigidity and dyskinesia (p < 0.05). The higher SARA total score is statistically significantly correlated with the larger diameter of the III (r = 0.373; p = 0.001) and IV ventricles (r = 0.324; p = 0.005). In such patients, the echogenicity of substantia nigra has been linked to extrapyramidal signs, and raphe discontinuity to depression. Furthermore, ataxia and its clinical subtypes have positively correlated with the IV ventricle diameter, indicating brain atrophy and brain mass reduction.
Collapse
Affiliation(s)
- Olivera Tamaš
- Neurology Clinic, University Clinical Centre of Serbia, Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia; (M.M.); (T.Š.); (A.M.); (M.J.); (N.D.-M.)
| | - Milija Mijajlović
- Neurology Clinic, University Clinical Centre of Serbia, Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia; (M.M.); (T.Š.); (A.M.); (M.J.); (N.D.-M.)
| | - Tamara Švabić
- Neurology Clinic, University Clinical Centre of Serbia, Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia; (M.M.); (T.Š.); (A.M.); (M.J.); (N.D.-M.)
| | - Milutin Kostić
- Institute of Mental Health, Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia;
| | - Gorica Marić
- Institute of Epidemiology, Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia;
| | - Andona Milovanović
- Neurology Clinic, University Clinical Centre of Serbia, Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia; (M.M.); (T.Š.); (A.M.); (M.J.); (N.D.-M.)
| | - Marta Jeremić
- Neurology Clinic, University Clinical Centre of Serbia, Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia; (M.M.); (T.Š.); (A.M.); (M.J.); (N.D.-M.)
| | - Nataša Dragašević-Mišković
- Neurology Clinic, University Clinical Centre of Serbia, Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia; (M.M.); (T.Š.); (A.M.); (M.J.); (N.D.-M.)
| |
Collapse
|
24
|
Ast T, Itoh Y, Sadre S, McCoy JG, Namkoong G, Wengrod JC, Chicherin I, Joshi PR, Kamenski P, Suess DLM, Amunts A, Mootha VK. METTL17 is an Fe-S cluster checkpoint for mitochondrial translation. Mol Cell 2024; 84:359-374.e8. [PMID: 38199006 PMCID: PMC11046306 DOI: 10.1016/j.molcel.2023.12.016] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 08/13/2023] [Accepted: 12/12/2023] [Indexed: 01/12/2024]
Abstract
Friedreich's ataxia (FA) is a debilitating, multisystemic disease caused by the depletion of frataxin (FXN), a mitochondrial iron-sulfur (Fe-S) cluster biogenesis factor. To understand the cellular pathogenesis of FA, we performed quantitative proteomics in FXN-deficient human cells. Nearly every annotated Fe-S cluster-containing protein was depleted, indicating that as a rule, cluster binding confers stability to Fe-S proteins. We also observed depletion of a small mitoribosomal assembly factor METTL17 and evidence of impaired mitochondrial translation. Using comparative sequence analysis, mutagenesis, biochemistry, and cryoelectron microscopy, we show that METTL17 binds to the mitoribosomal small subunit during late assembly and harbors a previously unrecognized [Fe4S4]2+ cluster required for its stability. METTL17 overexpression rescued the mitochondrial translation and bioenergetic defects, but not the cellular growth, of FXN-depleted cells. These findings suggest that METTL17 acts as an Fe-S cluster checkpoint, promoting translation of Fe-S cluster-rich oxidative phosphorylation (OXPHOS) proteins only when Fe-S cofactors are replete.
Collapse
Affiliation(s)
- Tslil Ast
- Broad Institute, Cambridge, MA 02142, USA; Howard Hughes Medical Institute, Massachusetts General Hospital, Boston, MA 02114, USA; Department of Molecular Biology, Massachusetts General Hospital, Boston, MA 02114, USA; Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Yuzuru Itoh
- Science for Life Laboratory, Department of Biochemistry and Biophysics, Stockholm University, Solna, Sweden
| | - Shayan Sadre
- Broad Institute, Cambridge, MA 02142, USA; Howard Hughes Medical Institute, Massachusetts General Hospital, Boston, MA 02114, USA; Department of Molecular Biology, Massachusetts General Hospital, Boston, MA 02114, USA; Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Jason G McCoy
- Broad Institute, Cambridge, MA 02142, USA; Howard Hughes Medical Institute, Massachusetts General Hospital, Boston, MA 02114, USA; Department of Molecular Biology, Massachusetts General Hospital, Boston, MA 02114, USA; Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Gil Namkoong
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Jordan C Wengrod
- Broad Institute, Cambridge, MA 02142, USA; Howard Hughes Medical Institute, Massachusetts General Hospital, Boston, MA 02114, USA; Department of Molecular Biology, Massachusetts General Hospital, Boston, MA 02114, USA; Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Ivan Chicherin
- Department of Biology, M.V.Lomonosov Moscow State University, Moscow 119234, Russia
| | - Pallavi R Joshi
- Broad Institute, Cambridge, MA 02142, USA; Howard Hughes Medical Institute, Massachusetts General Hospital, Boston, MA 02114, USA; Department of Molecular Biology, Massachusetts General Hospital, Boston, MA 02114, USA; Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Piotr Kamenski
- Department of Biology, M.V.Lomonosov Moscow State University, Moscow 119234, Russia
| | - Daniel L M Suess
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Alexey Amunts
- Science for Life Laboratory, Department of Biochemistry and Biophysics, Stockholm University, Solna, Sweden
| | - Vamsi K Mootha
- Broad Institute, Cambridge, MA 02142, USA; Howard Hughes Medical Institute, Massachusetts General Hospital, Boston, MA 02114, USA; Department of Molecular Biology, Massachusetts General Hospital, Boston, MA 02114, USA; Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
25
|
Saini AK, Anil N, Vijay AN, Mangla B, Javed S, Kumar P, Ahsan W. Recent Advances in the Treatment Strategies of Friedreich's Ataxia: A Review of Potential Drug Candidates and their Underlying Mechanisms. Curr Pharm Des 2024; 30:1472-1489. [PMID: 38638052 DOI: 10.2174/0113816128288707240404051856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 03/21/2024] [Indexed: 04/20/2024]
Abstract
BACKGROUND Friedreich's Ataxia (FRDA) is a rare hereditary neurodegenerative disorder characterized by progressive ataxia, cardiomyopathy, and diabetes. The disease is caused by a deficiency of frataxin, a mitochondrial protein involved in iron-sulfur cluster synthesis and iron metabolism. OBJECTIVE This review aims to summarize recent advances in the development of treatment strategies for FRDA, with a focus on potential drug candidates and their mechanisms of action. METHODS A comprehensive literature search was conducted using various authentic scientific databases to identify studies published in the last decade that investigated potential treatment strategies for FRDA. The search terms used included "Friedreich's ataxia", "treatment", "drug candidates", and "mechanisms of action". RESULTS To date, only one drug got approval from US-FDA in the year 2023; however, significant developments were achieved in FRDA-related research focusing on diverse therapeutic interventions that could potentially alleviate the symptoms of this disease. Several promising drug candidates have been identified for the treatment of FRDA, which target various aspects of frataxin deficiency and aim to restore frataxin levels, reduce oxidative stress, and improve mitochondrial function. Clinical trials have shown varying degrees of success, with some drugs demonstrating significant improvements in neurological function and quality of life in FRDA patients. CONCLUSION While there has been significant progress in the development of treatment strategies for FRDA, further research is needed to optimize these approaches and identify the most effective and safe treatment options for patients. The integration of multiple therapeutic strategies may be necessary to achieve the best outcomes in FRDA management.
Collapse
Affiliation(s)
- Aman Kumar Saini
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences and Research University (DPSRU), New Delhi 110017, India
| | - Neha Anil
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences and Research University (DPSRU), New Delhi 110017, India
| | - Ardra N Vijay
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences and Research University (DPSRU), New Delhi 110017, India
| | - Bharti Mangla
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences and Research University (DPSRU), New Delhi 110017, India
| | - Shamama Javed
- Department of Pharmaceutics, College of Pharmacy, Jazan University, Jazan, P. Box No. 114, Saudi Arabia
| | - Pankaj Kumar
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences and Research University (DPSRU), New Delhi 110017, India
| | - Waquar Ahsan
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jazan University, Jazan, P. Box No. 114, Saudi Arabia
| |
Collapse
|
26
|
Rojsajjakul T, Hordeaux JJ, Choudhury GR, Hinderer CJ, Mesaros C, Wilson JM, Blair IA. Quantification of human mature frataxin protein expression in nonhuman primate hearts after gene therapy. Commun Biol 2023; 6:1093. [PMID: 37891254 PMCID: PMC10611776 DOI: 10.1038/s42003-023-05472-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 10/16/2023] [Indexed: 10/29/2023] Open
Abstract
Deficiency in human mature frataxin (hFXN-M) protein is responsible for the devastating neurodegenerative and cardiodegenerative disease of Friedreich's ataxia (FRDA). It results primarily through epigenetic silencing of the FXN gene by GAA triplet repeats on intron 1 of both alleles. GAA repeat lengths are most commonly between 600 and 1200 but can reach 1700. A subset of approximately 3% of FRDA patients have GAA repeats on one allele and a mutation on the other. FRDA patients die most commonly in their 30s from heart disease. Therefore, increasing expression of heart hFXN-M using gene therapy offers a way to prevent early mortality in FRDA. We used rhesus macaque monkeys to test the pharmacology of an adeno-associated virus (AAV)hu68.CB7.hFXN therapy. The advantage of using non-human primates for hFXN-M gene therapy studies is that hFXN-M and monkey FXN-M (mFXN-M) are 98.5% identical, which limits potential immunologic side-effects. However, this presented a formidable bioanalytical challenge in quantification of proteins with almost identical sequences. This could be overcome by the development of a species-specific quantitative mass spectrometry-based method, which has revealed for the first time, robust transgene-specific human protein expression in monkey heart tissue. The dose response is non-linear resulting in a ten-fold increase in monkey heart hFXN-M protein expression with only a three-fold increase in dose of the vector.
Collapse
Affiliation(s)
- Teerapat Rojsajjakul
- Penn/CHOP Friedreich's Ataxia Center of Excellence and Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Juliette J Hordeaux
- Gene Therapy Program, Departments of Medicine and Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Gourav R Choudhury
- Gene Therapy Program, Departments of Medicine and Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Christian J Hinderer
- Gene Therapy Program, Departments of Medicine and Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Clementina Mesaros
- Penn/CHOP Friedreich's Ataxia Center of Excellence and Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - James M Wilson
- Gene Therapy Program, Departments of Medicine and Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.
| | - Ian A Blair
- Penn/CHOP Friedreich's Ataxia Center of Excellence and Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.
| |
Collapse
|
27
|
Matsugi A, Nishishita S, Bando K, Kikuchi Y, Tsujimoto K, Tanabe Y, Yoshida N, Tanaka H, Douchi S, Honda T, Odagaki M, Nakano H, Okada Y, Mori N, Hosomi K. Excessive excitability of inhibitory cortical circuit and disturbance of ballistic targeting movement in degenerative cerebellar ataxia. Sci Rep 2023; 13:13917. [PMID: 37626122 PMCID: PMC10457313 DOI: 10.1038/s41598-023-41088-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Accepted: 08/22/2023] [Indexed: 08/27/2023] Open
Abstract
This study aimed to investigate abnormalities in inhibitory cortical excitability and motor control during ballistic-targeting movements in individuals with degenerative cerebellar ataxia (DCA). Sixteen participants took part in the study (DCA group [n = 8] and healthy group [n = 8]). The resting motor-threshold and cortical silent period (cSP) were measured in the right-hand muscle using transcranial magnetic stimulation over the left primary motor cortex. Moreover, the performance of the ballistic-targeting task with right wrist movements was measured. The Scale for the Assessment and Rating of Ataxia was used to evaluate the severity of ataxia. The results indicated that the cSP was significantly longer in participants with DCA compared to that in healthy controls. However, there was no correlation between cSP and severity of ataxia. Furthermore, cSP was linked to the ballistic-targeting task performance in healthy participants but not in participants with DCA. These findings suggest that there is excessive activity in the gamma-aminobutyric acid-mediated cortical inhibitory circuit in individuals with DCA. However, this increase in inhibitory activity not only fails to contribute to the control of ballistic-targeting movement but also shows no correlation with the severity of ataxia. These imply that increased excitability in inhibitory cortical circuits in the DCA may not contribute the motor control as much as it does in healthy older adults under limitations associated with a small sample size. The study's results contribute to our understanding of motor control abnormalities in people with DCA and provide potential evidence for further research in this area.
Collapse
Affiliation(s)
- Akiyoshi Matsugi
- Faculty of Rehabilitation, Shijonawate Gakuen University, Hojo 5-11-10, Daitou City, Osaka, 574-0011, Japan.
| | - Satoru Nishishita
- Institute of Rehabilitation Science, Tokuyukai Medical Corporation, 3-11-1 Sakuranocho, Toyonaka City, Osaka, 560-0054, Japan
- Kansai Rehabilitation Hospital, 3-11-1 Sakuranocho, Toyonaka City, Osaka, 560-0054, Japan
| | - Kyota Bando
- National Center Hospital, National Center of Neurology and Psychiatry, Kodaira, 187-0031, Japan
| | - Yutaka Kikuchi
- Department of Rehabilitation for Intractable Neurological Disorders, Institute of Brain and Blood Vessels Mihara Memorial Hospital, Ohtamachi 366, Isesaki City, Gunma, 372-0006, Japan
| | - Keigo Tsujimoto
- National Center Hospital, National Center of Neurology and Psychiatry, Kodaira, 187-0031, Japan
| | - Yuto Tanabe
- Department of Rehabilitation for Intractable Neurological Disorders, Institute of Brain and Blood Vessels Mihara Memorial Hospital, Ohtamachi 366, Isesaki City, Gunma, 372-0006, Japan
| | - Naoki Yoshida
- Okayama Healthcare Professional University, 3-2-18 Daiku, Kita-ku, Okayama City, Okayama, 700-0913, Japan
| | - Hiroaki Tanaka
- KMU Day-Care Center Hirakata, Kansai Medical University Hospital, Shinmachi 2-3-1, Hirakata City, Osaka, 573-1191, Japan
- Department of Physical Medicine and Rehabilitation, Kansai Medical University, Shinmachi 2-5-1, Hirakata City, Osaka, 573-1010, Japan
| | - Shinya Douchi
- Department of Rehabilitation, National Hospital Organization Wakayama Hospital, Hukakusamukaihatacyo1-1, Husimi-ku, Kyoto City, Kyoto, 612-8555, Japan
| | - Takeru Honda
- The Center for Personalized Medicine for Healthy Aging, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan
| | - Masato Odagaki
- Maebashi Institute of Technology, Maebashi, Gunma Prefecture, Japan
| | - Hideki Nakano
- Department of Physical Therapy, Faculty of Health Sciences, Kyoto Tachibana University, Kyoto, Japan
| | - Yohei Okada
- Neurorehabilitation Research Center of Kio University, Koryo-cho, Kitakatsuragi-gun, Nara, 635-0832, Japan
| | - Nobuhiko Mori
- Department of Neurosurgery, Osaka University Graduate School of Medicine, Yamadaoka 2-2, Suita City, Osaka, 565-0871, Japan
| | - Koichi Hosomi
- Department of Neurosurgery, Osaka University Graduate School of Medicine, Yamadaoka 2-2, Suita City, Osaka, 565-0871, Japan
| |
Collapse
|
28
|
Ast T, Wang H, Marutani E, Nagashima F, Malhotra R, Ichinose F, Mootha VK. Continuous, but not intermittent, regimens of hypoxia prevent and reverse ataxia in a murine model of Friedreich's ataxia. Hum Mol Genet 2023; 32:2600-2610. [PMID: 37260376 PMCID: PMC10407700 DOI: 10.1093/hmg/ddad091] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 05/08/2023] [Accepted: 05/22/2023] [Indexed: 06/02/2023] Open
Abstract
Friedreich's ataxia (FA) is a devastating, multi-systemic neurodegenerative disease affecting thousands of people worldwide. We previously reported that oxygen is a key environmental variable that can modify FA pathogenesis. In particular, we showed that chronic, continuous normobaric hypoxia (11% FIO2) prevents ataxia and neurological disease in a murine model of FA, although it did not improve cardiovascular pathology or lifespan. Here, we report the pre-clinical evaluation of seven 'hypoxia-inspired' regimens in the shFxn mouse model of FA, with the long-term goal of designing a safe, practical and effective regimen for clinical translation. We report three chief results. First, a daily, intermittent hypoxia regimen (16 h 11% O2/8 h 21% O2) conferred no benefit and was in fact harmful, resulting in elevated cardiac stress and accelerated mortality. The detrimental effect of this regimen is likely owing to transient tissue hyperoxia that results when daily exposure to 21% O2 combines with chronic polycythemia, as we could blunt this toxicity by pharmacologically inhibiting polycythemia. Second, we report that more mild regimens of chronic hypoxia (17% O2) confer a modest benefit by delaying the onset of ataxia. Third, excitingly, we show that initiating chronic, continuous 11% O2 breathing once advanced neurological disease has already started can rapidly reverse ataxia. Our studies showcase both the promise and limitations of candidate hypoxia-inspired regimens for FA and underscore the need for additional pre-clinical optimization before future translation into humans.
Collapse
Affiliation(s)
- Tslil Ast
- Broad Institute, Cambridge, MA 02142, USA
- Howard Hughes Medical Institute, Massachusetts General Hospital, Boston, MA 02114, USA
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA 02114, USA
- Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Hong Wang
- Broad Institute, Cambridge, MA 02142, USA
- Howard Hughes Medical Institute, Massachusetts General Hospital, Boston, MA 02114, USA
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA 02114, USA
- Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Eizo Marutani
- Department of Anesthesia, Critical Care, and Pain Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Fumiaki Nagashima
- Department of Anesthesia, Critical Care, and Pain Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Rajeev Malhotra
- Cardiology Division, Department of Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Fumito Ichinose
- Department of Anesthesia, Critical Care, and Pain Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Vamsi K Mootha
- Broad Institute, Cambridge, MA 02142, USA
- Howard Hughes Medical Institute, Massachusetts General Hospital, Boston, MA 02114, USA
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA 02114, USA
- Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
29
|
Del Giudice L, Pontieri P, Aletta M, Calcagnile M. Mitochondrial Neurodegenerative Diseases: Three Mitochondrial Ribosomal Proteins as Intermediate Stage in the Pathway That Associates Damaged Genes with Alzheimer's and Parkinson's. BIOLOGY 2023; 12:972. [PMID: 37508402 PMCID: PMC10376763 DOI: 10.3390/biology12070972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 06/29/2023] [Accepted: 06/30/2023] [Indexed: 07/30/2023]
Abstract
Currently, numerous research endeavors are dedicated to unraveling the intricate nature of neurodegenerative diseases. These conditions are characterized by the gradual and progressive impairment of specific neuronal systems that exhibit anatomical or physiological connections. In particular, in the last twenty years, remarkable efforts have been made to elucidate neurodegenerative disorders such as Alzheimer's disease and Parkinson's disease. However, despite extensive research endeavors, no cure or effective treatment has been discovered thus far. With the emergence of studies shedding light on the contribution of mitochondria to the onset and advancement of mitochondrial neurodegenerative disorders, researchers are now directing their investigations toward the development of therapies. These therapies include molecules designed to protect mitochondria and neurons from the detrimental effects of aging, as well as mutant proteins. Our objective is to discuss and evaluate the recent discovery of three mitochondrial ribosomal proteins linked to Alzheimer's and Parkinson's diseases. These proteins represent an intermediate stage in the pathway connecting damaged genes to the two mitochondrial neurological pathologies. This discovery potentially could open new avenues for the production of medicinal substances with curative potential for the treatment of these diseases.
Collapse
Affiliation(s)
- Luigi Del Giudice
- Istituto di Bioscienze e BioRisorse-UOS Napoli-CNR c/o Dipartimento di Biologia, Sezione di Igiene, 80134 Napoli, Italy
| | - Paola Pontieri
- Istituto di Bioscienze e BioRisorse-UOS Napoli-CNR c/o Dipartimento di Biologia, Sezione di Igiene, 80134 Napoli, Italy
| | | | - Matteo Calcagnile
- Dipartimento di Scienze e Tecnologie Biologiche e Ambientali, Università del Salento, 73100 Lecce, Italy
| |
Collapse
|
30
|
Matsugi A, Ohtsuka H, Bando K, Kondo Y, Kikuchi Y. Effects of non-invasive brain stimulation for degenerative cerebellar ataxia: a protocol for a systematic review and meta-analysis. BMJ Open 2023; 13:e073526. [PMID: 37385745 PMCID: PMC10314638 DOI: 10.1136/bmjopen-2023-073526] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 06/21/2023] [Indexed: 07/01/2023] Open
Abstract
INTRODUCTION To date, the medical and rehabilitation needs of people with degenerative cerebellar ataxia (DCA) are not fully met because no curative treatment has yet been established. Movement disorders such as cerebellar ataxia and balance and gait disturbance are common symptoms of DCA. Recently, non-invasive brain stimulation (NIBS) techniques, including repetitive transcranial magnetic stimulation and transcranial electrical stimulation, have been reported as possible intervention methods to improve cerebellar ataxia. However, evidence of the effects of NIBS on cerebellar ataxia, gait ability, and activity of daily living is insufficient. This study will aim to systematically evaluate the clinical effects of NIBS on patients with DCA. METHODS AND ANALYSIS We will conduct a preregistered systematic review and meta-analysis based on the Preferred Reporting Items for Systematic Reviews and Meta-Analyses statement. We will include randomised controlled trials to assess the effects of NIBS on patients with DCA. The primary clinical outcome will be cerebellar ataxia, as measured by the Scale for Assessment and Rating of Ataxia and the International Cooperative Ataxia Rating Scale. The secondary outcomes will include gait speed, functional ambulatory capacity and functional independence measure, as well as any other reported outcomes that the reviewer considers important. The following databases will be searched: PubMed, Cochrane Central Register of Controlled Trials, CINAHL and PEDro. We will assess the strength of the evidence included in the studies and estimate the effects of NIBS. ETHICS AND DISSEMINATION Because of the nature of systematic reviews, no ethical issues are anticipated. This systematic review will provide evidence on the effects of NIBS in patients with DCA. The findings of this review are expected to contribute to clinical decision-making towards selecting NIBS techniques for treatment and generating new clinical questions to be addressed. PROSPERO REGISTRATION NUMBER CRD42023379192.
Collapse
Affiliation(s)
- Akiyoshi Matsugi
- Faculty of Rehabilitation, Shijonawate Gakuen University, Daito, Japan
| | - Hiroyuki Ohtsuka
- Department of Rehabilitation, School of Nursing and Rehabilitation Sciences, Showa University, Midoriku, Yokohama-shi, Kanagawa, Japan
| | - Kyota Bando
- Department of Physical Rehabilitation, National Center of Neurology and Psychiatry, Kodaira, Tokyo, Japan
| | - Yuki Kondo
- Department of Physical Rehabilitation, National Center of Neurology and Psychiatry, Kodaira, Tokyo, Japan
| | - Yutaka Kikuchi
- Department of Rehabilitation for Intractable Neurological Disorders, Mihara Memorial Hospital, Isesaki, Gunma, Japan
| |
Collapse
|
31
|
Blair I, Rojsajjakul T, Hordeaux J, Chaudhary G, Hinderer C, Mesaros C, Wilson J. Quantification of human mature frataxin protein expression in nonhuman primate hearts after gene therapy. RESEARCH SQUARE 2023:rs.3.rs-3121549. [PMID: 37461697 PMCID: PMC10350221 DOI: 10.21203/rs.3.rs-3121549/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
Deficiency in human mature frataxin (hFXN-M) protein is responsible for the devastating neurodegenerative and cardiodegenerative disease of Friedreich's ataxia (FRDA). It results primarily by epigenetic silencing the FXN gene due to up to 1400 GAA triplet repeats in intron 1 of both alleles of the gene; a subset of approximately 3% of FRDA patients have a mutation on one allele. FRDA patients die most commonly in their 30s from heart disease. Therefore, increasing expression of heart hFXN-M using gene therapy offers a way to prevent early mortality in FRDA. We used rhesus macaque monkeys to test the pharmacology of an adeno-associated virus (AAV)hu68.CB7.hFXN therapy. The advantage of using non-human primates for hFXN-M gene therapy studies is that hFXN-M and monkey FXN-M (mFXN-M) are 98.5% identical, which limits potential immunologic side-effects. However, this presented a formidable bioanalytical challenge in quantification of proteins with almost identical sequences. This was overcome by development of a species-specific quantitative mass spectrometry-based method, which revealed for the first time, robust transgene-specific human protein expression in monkey heart tissue. The dose response was non-linear resulting in a ten-fold increase in monkey heart hFXN-M protein expression with only a three-fold increase in dose of the vector.
Collapse
|
32
|
Rojsajjakul T, Wu L, Grady CB, Hwang WT, Mesaros C, Lynch DR, Blair IA. Liquid Chromatography-Mass Spectrometry Analysis of Frataxin Proteoforms in Whole Blood as Biomarkers of the Genetic Disease Friedreich's Ataxia. Anal Chem 2023; 95:4251-4260. [PMID: 36800320 PMCID: PMC9979142 DOI: 10.1021/acs.analchem.3c00091] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
Abstract
Friedreich's ataxia (FRDA) is caused primarily by expanded GAA repeats in intron 1 of both alleles of the FXN gene, which causes transcriptional silencing and reduced expression of frataxin mRNA and protein. FRDA is characterized by slowly progressive ataxia and cardiomyopathy. Symptoms generally appear during adolescence, and patients slowly progress to wheelchair dependency usually in the late teens or early twenties with death on average in the 4th decade. There are two known mature proteoforms of frataxin. Mitochondrial frataxin (frataxin-M) is a 130-amino acid protein with a molecular weight of 14,268 Da, and there is an alternatively spliced N-terminally acetylated 135-amino acid form (frataxin-E) with a molecular weight of 14,953 Da found in erythrocytes. There is reduced expression of frataxin in the heart and brain, but frataxin is not secreted into the systemic circulation, so it cannot be analyzed in serum or plasma. Blood is a readily accessible biofluid that contains numerous different cell types that express frataxin. We have found that pig blood can serve as an excellent surrogate matrix to validate an assay for frataxin proteoforms because pig frataxin is lost during the immunoprecipitation step used to isolate human frataxin. Frataxin-M is expressed in blood cells that contain mitochondria, whereas extra-mitochondrial frataxin-E is found in erythrocytes. This means that the analysis of frataxin in whole blood provides information on the concentration of both proteoforms without having to isolate the individual cell types. In the current study, we observed that the distributions of frataxin levels for a sample of 25 healthy controls and 50 FRDA patients were completely separated from each other, suggesting 100% specificity and 100% sensitivity for distinguishing healthy controls from FRDA cases, a very unusual finding for a biomarker assay. Additionally, frataxin levels were significantly correlated with the GAA repeat length and age of onset with higher correlations for extra-mitochondrial frataxin-E than those for mitochondrial frataxin-M. These findings auger well for using frataxin levels measured by the validated stable isotope dilution ultrahigh-performance liquid chromatography-multiple reaction monitoring/mass spectrometry assay to monitor therapeutic interventions and the natural history of FRDA. Our study also illustrates the utility of using whole blood for protein disease biomarker discovery and validation.
Collapse
Affiliation(s)
- Teerapat Rojsajjakul
- Penn/CHOP
Friedreich’s Ataxia Center of Excellence, Philadelphia, Pennsylvania 19104, United States,Center
of Excellence in Environmental Toxicology, Department of Systems Pharmacology
and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Linfeng Wu
- Agilent
Technologies Inc., 5301
Stevens Creek Blvd., Santa Clara, California 95051, United States
| | - Connor B. Grady
- Center
for Clinical Epidemiology and Biostatistics, Department of Biostatistics,
Epidemiology and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, 19104, United States
| | - Wei-Ting Hwang
- Center
for Clinical Epidemiology and Biostatistics, Department of Biostatistics,
Epidemiology and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, 19104, United States
| | - Clementina Mesaros
- Penn/CHOP
Friedreich’s Ataxia Center of Excellence, Philadelphia, Pennsylvania 19104, United States,Center
of Excellence in Environmental Toxicology, Department of Systems Pharmacology
and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - David R. Lynch
- Penn/CHOP
Friedreich’s Ataxia Center of Excellence, Philadelphia, Pennsylvania 19104, United States,Departments
of Pediatrics and Neurology, Children’s
Hospital of Philadelphia and University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Ian A. Blair
- Penn/CHOP
Friedreich’s Ataxia Center of Excellence, Philadelphia, Pennsylvania 19104, United States,Center
of Excellence in Environmental Toxicology, Department of Systems Pharmacology
and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States,. Phone: +1-610-529-0610. Fax: +1-215-573-9889
| |
Collapse
|
33
|
Powell E. Welcome to Volume 13 of Neurodegenerative Disease Management. Neurodegener Dis Manag 2023; 13:1-4. [PMID: 36722322 DOI: 10.2217/nmt-2022-0042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Affiliation(s)
- Emily Powell
- Future Science Group, Unitec House, 2 Albert Place, London, N3 1QB, UK
| |
Collapse
|
34
|
Basri R, Awan FM, Yang BB, Awan UA, Obaid A, Naz A, Ikram A, Khan S, Haq IU, Khan SN, Aqeel MB. Brain-protective mechanisms of autophagy associated circRNAs: Kick starting self-cleaning mode in brain cells via circRNAs as a potential therapeutic approach for neurodegenerative diseases. Front Mol Neurosci 2023; 15:1078441. [PMID: 36727091 PMCID: PMC9885805 DOI: 10.3389/fnmol.2022.1078441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 12/13/2022] [Indexed: 01/19/2023] Open
Abstract
Altered autophagy is a hallmark of neurodegeneration but how autophagy is regulated in the brain and dysfunctional autophagy leads to neuronal death has remained cryptic. Being a key cellular waste-recycling and housekeeping system, autophagy is implicated in a range of brain disorders and altering autophagy flux could be an effective therapeutic strategy and has the potential for clinical applications down the road. Tight regulation of proteins and organelles in order to meet the needs of complex neuronal physiology suggests that there is distinct regulatory pattern of neuronal autophagy as compared to non-neuronal cells and nervous system might have its own separate regulator of autophagy. Evidence has shown that circRNAs participates in the biological processes of autophagosome assembly. The regulatory networks between circRNAs, autophagy, and neurodegeneration remains unknown and warrants further investigation. Understanding the interplay between autophagy, circRNAs and neurodegeneration requires a knowledge of the multiple steps and regulatory interactions involved in the autophagy pathway which might provide a valuable resource for the diagnosis and therapy of neurodegenerative diseases. In this review, we aimed to summarize the latest studies on the role of brain-protective mechanisms of autophagy associated circRNAs in neurodegenerative diseases (including Alzheimer's disease, Parkinson's disease, Huntington's disease, Spinal Muscular Atrophy, Amyotrophic Lateral Sclerosis, and Friedreich's ataxia) and how this knowledge can be leveraged for the development of novel therapeutics against them. Autophagy stimulation might be potential one-size-fits-all therapy for neurodegenerative disease as per considerable body of evidence, therefore future research on brain-protective mechanisms of autophagy associated circRNAs will illuminate an important feature of nervous system biology and will open the door to new approaches for treating neurodegenerative diseases.
Collapse
Affiliation(s)
- Rabea Basri
- Department of Medical Lab Technology, The University of Haripur (UOH), Haripur, Pakistan
| | - Faryal Mehwish Awan
- Department of Medical Lab Technology, The University of Haripur (UOH), Haripur, Pakistan
| | - Burton B. Yang
- Sunnybrook Health Sciences Centre, Sunnybrook Research Institute, Toronto, ON, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
- Institute of Medical Sciences, University of Toronto, Toronto, ON, Canada
| | - Usman Ayub Awan
- Department of Medical Lab Technology, The University of Haripur (UOH), Haripur, Pakistan
| | - Ayesha Obaid
- Department of Medical Lab Technology, The University of Haripur (UOH), Haripur, Pakistan
| | - Anam Naz
- Institute of Molecular Biology and Biotechnology (IMBB), The University of Lahore (UOL), Lahore, Pakistan
| | - Aqsa Ikram
- Institute of Molecular Biology and Biotechnology (IMBB), The University of Lahore (UOL), Lahore, Pakistan
| | - Suliman Khan
- Department of Medical Lab Technology, The University of Haripur (UOH), Haripur, Pakistan
| | - Ijaz ul Haq
- Department of Public Health and Nutrition, The University of Haripur (UOH), Haripur, Pakistan
| | - Sadiq Noor Khan
- Department of Medical Lab Technology, The University of Haripur (UOH), Haripur, Pakistan
| | - Muslim Bin Aqeel
- Department of Medical Lab Technology, The University of Haripur (UOH), Haripur, Pakistan
| |
Collapse
|
35
|
Profeta V, McIntyre K, Wells M, Park C, Lynch DR. Omaveloxolone: an activator of Nrf2 for the treatment of Friedreich ataxia. Expert Opin Investig Drugs 2023; 32:5-16. [PMID: 36708320 DOI: 10.1080/13543784.2023.2173063] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
INTRODUCTION Friedreich ataxia (FRDA) is a rare autosomal recessive degenerative disorder characterized by ataxia, dysarthria, diabetes, cardiomyopathy, scoliosis, and occasionally vision loss in late-stage disease. The discovery of the abnormal gene in FRDA and its product frataxin has provided insight into the pathophysiology and mechanisms of treatment. AREAS COVERED Although the neurologic phenotype of FRDA is well defined, there are currently no established pharmacological treatments. Omaveloxolone, a nuclear factor erythroid 2-related factor 2 (Nrf2) activator, is currently under review by the Food and Drug Administration (FDA) and has the potential to be the first approved treatment for FRDA. In the present report, we have reviewed the basic and clinical literature on Nrf2 deficiency in FRDA, and evidence for the benefit of omaveloxolone. EXPERT OPINION The present perspective suggests that omaveloxolone is a rational and efficacious therapy that is possibly disease modifying in treatment of FRDA.
Collapse
Affiliation(s)
- Victoria Profeta
- Departments of Pediatrics and Neurology, Children's Hospital of Philadelphia, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Kellie McIntyre
- Departments of Pediatrics and Neurology, Children's Hospital of Philadelphia, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - McKenzie Wells
- Departments of Pediatrics and Neurology, Children's Hospital of Philadelphia, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Courtney Park
- Departments of Pediatrics and Neurology, Children's Hospital of Philadelphia, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - David R Lynch
- Departments of Pediatrics and Neurology, Children's Hospital of Philadelphia, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|