1
|
Liu Z, Wu K, Zeng H, Huang W, Wang X, Qu Y, Chen C, Zhang L, Sun D, Chen S, Lin X, Sun N, Yang L, Xu C. A bioactive hydrogel patch accelerates revascularization in ischemic lesions for tissue repair. BURNS & TRAUMA 2025; 13:tkaf005. [PMID: 40321300 PMCID: PMC12048007 DOI: 10.1093/burnst/tkaf005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Revised: 01/15/2025] [Accepted: 01/19/2025] [Indexed: 05/08/2025]
Abstract
Background Magnesium ions play crucial roles in maintaining cellular functions. Research has shown that Mg2+ can promote angiogenesis, indicating its potential for treating cardiovascular ischemic diseases. However, conventional intravenous or oral administration of Mg2+ presents several challenges, including the risk of systemic side effects, diminished bioavailability, and a lack of targeted delivery mechanisms. In this study, we designed an Mg2+-releasing adhesive tissue patch (MgAP) that enables the dural release of Mg2+ ions. Methods A novel MgAP was developed on the basis of ionic crosslinking. Fourier transform infrared spectroscopy confirmed the chemical structure, whereas rheological analysis demonstrated stable mechanical properties and adaptability to dynamic loads. Sustained Mg2+ release was quantified over 7 days by inductively coupled plasma-mass spectrometry. In a rat acute myocardial infarction model, we performed echocardiography and strain analysis to assess cardiac function and histological staining to evaluate adverse remodeling. We also verified the proangiogenic effect through in vitro tube formation and in vivo immunofluorescence assays. Furthermore, transcriptomics and Western blotting were performed to explore the underlying mechanism. Additional assessments were also carried out in a rat model of lower limb ischemia. Results Compared with intravenous administration of magnesium chloride, MgAP application effectively improved cardiac function and reduced adverse remodeling in the myocardial infarction rat model. The left ventricular ejection fraction increased by 20.3 ± 6.6%, and the cardiac radial strain improved by 27.4 ± 4.1%. The cardiac fibrosis area and cell apoptosis rate decreased by 10.9 ± 1.2% and 32.1 ± 5.5%, respectively. RNA sequencing analysis also highlighted the upregulation of genes related to cardiac electrophysiological properties, structural and functional intercellular connections, and revascularization. The increased gap junction protein expression and restored local blood supply could contribute to the cardiac repair process posttreatment. The proangiogenic effect of MgAP was also observed in the rat limb ischemia model. Conclusions The above results revealed the convincing vascular regeneration effect of an ion therapy-based hydrogel, which enabled the local delivery of Mg2+ to the targeted ischemic tissue, aiding in cardiac and lower limb repair. This study presents a novel strategy and highlights its potential for use across various ischemic conditions.
Collapse
Affiliation(s)
- Zhuo Liu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University, 138 Xueyuan Road, Shanghai 200032, P.R. China
| | - Kang Wu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University, 138 Xueyuan Road, Shanghai 200032, P.R. China
- Orthopedic Institute, Department of Orthopedics, The First Affiliated Hospital, Soochow University, 178 East Ganjiang Road, Gusu District, Suzhou 215021, P.R. China
| | - Hong Zeng
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University, 138 Xueyuan Road, Shanghai 200032, P.R. China
| | - Wenxin Huang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University, 138 Xueyuan Road, Shanghai 200032, P.R. China
| | - Xuemeng Wang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University, 138 Xueyuan Road, Shanghai 200032, P.R. China
| | - Ying Qu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University, 138 Xueyuan Road, Shanghai 200032, P.R. China
| | - Chuntao Chen
- China Chemicobiology and Functional Materials Institute, School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, 200 Xiao Ling Wei Street, Xuanwu District, Nanjing 210094, P.R. China
| | - Lei Zhang
- China Chemicobiology and Functional Materials Institute, School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, 200 Xiao Ling Wei Street, Xuanwu District, Nanjing 210094, P.R. China
| | - Dongpin Sun
- China Chemicobiology and Functional Materials Institute, School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, 200 Xiao Ling Wei Street, Xuanwu District, Nanjing 210094, P.R. China
| | - Sifeng Chen
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University, 138 Xueyuan Road, Shanghai 200032, P.R. China
| | - Xiao Lin
- Orthopedic Institute, Department of Orthopedics, The First Affiliated Hospital, Soochow University, 178 East Ganjiang Road, Gusu District, Suzhou 215021, P.R. China
| | - Ning Sun
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University, 138 Xueyuan Road, Shanghai 200032, P.R. China
- Department of Basic Medicine, Wuxi School of Medicine, Jiangnan University, 1800 Lihu Road, Binhu District, Wuxi, Jiangsu 214122, P.R. China
| | - Lei Yang
- Orthopedic Institute, Department of Orthopedics, The First Affiliated Hospital, Soochow University, 178 East Ganjiang Road, Gusu District, Suzhou 215021, P.R. China
- Center for Health Sciences and Engineering (CHSE), Hebei Key Laboratory of Biomaterials and Smart Theranostics, School of Health Sciences and Biomedical Engineering, Hebei University of Technology, 8 Guangrong Road, Hongqiao District, Tianjin 300131, P.R. China
| | - Chen Xu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University, 138 Xueyuan Road, Shanghai 200032, P.R. China
| |
Collapse
|
2
|
Li Z, Wang H, Zhou L, Chen C, Zheng X, Zhou C. The effect of electric field microenvironment on the exosome secretion of PC12 cells by chitosan carbon dots. Int J Biol Macromol 2025; 310:142747. [PMID: 40180068 DOI: 10.1016/j.ijbiomac.2025.142747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Revised: 03/27/2025] [Accepted: 03/31/2025] [Indexed: 04/05/2025]
Abstract
When neurons are sufficiently stimulated, they generate electrical signals with rapid voltage changes, and information is transferred between neurons through neurites. Chitosan carbon dots (CS CDs) possess unique optical properties, excellent biocompatibility, and superior electron transfer capabilities, making them promising materials for nerve tissue repair and replacement. Studies have shown that exosome (EXO) secretion by PC12 cells and neurite formation are critical for neural tissue repair. However, the effects of CDs on EXO secretion and neurite formation in an electric field microenvironment remain poorly explored. This study utilized CS to synthesize CDs and examined their impact on EXO secretion by PC12 cells in an electric field microenvironment. Findings demonstrated that CS-citric acid (CA) CDs had an average particle size of 4.5 nm with a lattice spacing of 0.248 nm and primarily consisted of graphitized carbon nuclei, hydroxyl, and amino groups. CS-CA CDs played a critical role in facilitating neurite elongation, especially with an electric field intensity of about 50 V/m. The combination of CS-CA CDs and electric field enhanced GAP43 expression in EXO secreted by PC12 cells. These results suggest that CS CDs have great potential for nerve injury treatment, repair, and regeneration.
Collapse
Affiliation(s)
- Zhuojuan Li
- Department of Sports Medicine, The First Affiliated Hospital, Guangdong Provincial Key Laboratory of Speed Capability, The Guangzhou Key Laboratory of Precision Orthopedics and Regenerative Medicine, Jinan University, 510630 Guangzhou, PR China
| | - Huajun Wang
- Department of Sports Medicine, The First Affiliated Hospital, Guangdong Provincial Key Laboratory of Speed Capability, The Guangzhou Key Laboratory of Precision Orthopedics and Regenerative Medicine, Jinan University, 510630 Guangzhou, PR China
| | - Lin Zhou
- Department of Sports Medicine, The First Affiliated Hospital, Guangdong Provincial Key Laboratory of Speed Capability, The Guangzhou Key Laboratory of Precision Orthopedics and Regenerative Medicine, Jinan University, 510630 Guangzhou, PR China
| | - Chengzhi Chen
- School of Life Science, Zhuhai College of Science and Technology, Zhuhai 519040, China
| | - Xiaofei Zheng
- Department of Sports Medicine, The First Affiliated Hospital, Guangdong Provincial Key Laboratory of Speed Capability, The Guangzhou Key Laboratory of Precision Orthopedics and Regenerative Medicine, Jinan University, 510630 Guangzhou, PR China.
| | - Changren Zhou
- School of Life Science, Zhuhai College of Science and Technology, Zhuhai 519040, China.
| |
Collapse
|
3
|
Sadeghi M, Mohammadi M, Tavakol Afshari J, Iranparast S, Ansari B, Dehnavi S. Therapeutic potential of mesenchymal stem cell-derived exosomes for allergic airway inflammation. Cell Immunol 2024; 397-398:104813. [PMID: 38364454 DOI: 10.1016/j.cellimm.2024.104813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 01/16/2024] [Accepted: 02/09/2024] [Indexed: 02/18/2024]
Abstract
Due to their immunomodulatory capacities, mesenchymal stem cells (MSCs) have been extensively used as therapeutic approaches in cell-based therapy for various inflammatory diseases. Several lines of studies have shown that the most beneficial effects of MSCs are associated with MSC-derived exosomes. Exosomes are nanoscale extracellular vesicles that contain important biomolecules such as RNA, microRNAs (miRNAs), DNA, growth factors, enzymes, chemokines, and cytokines that regulate immune cell functions and parenchymal cell survival. Recently, exosomes, especially MSC-derived exosomes, have been shown to have protective effects in allergic airway inflammation. This review focused on the immune-regulatory potential of MSC-derived exosomes as nanoscale delivery systems in the treatment of allergic airway inflammation.
Collapse
Affiliation(s)
- Mahvash Sadeghi
- Department of Immunology, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran; Student Research Committee, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mojgan Mohammadi
- Immunology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Jalil Tavakol Afshari
- Immunology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Immunology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Sara Iranparast
- Immunology Research Center, Institute of Immunology and Infectious Diseases, Iran University of Medical Sciences, Tehran, Iran
| | - Bahareh Ansari
- Immunology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Sajad Dehnavi
- Immunology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Immunology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
4
|
Guo J, Wang H, Li Y, Zhu S, Hu H, Gu Z. Nanotechnology in coronary heart disease. Acta Biomater 2023; 171:37-67. [PMID: 37714246 DOI: 10.1016/j.actbio.2023.09.011] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 08/17/2023] [Accepted: 09/08/2023] [Indexed: 09/17/2023]
Abstract
Coronary heart disease (CHD) is one of the major causes of death and disability worldwide, especially in low- and middle-income countries and among older populations. Conventional diagnostic and therapeutic approaches have limitations such as low sensitivity, high cost and side effects. Nanotechnology offers promising alternative strategies for the diagnosis and treatment of CHD by exploiting the unique properties of nanomaterials. In this review, we use bibliometric analysis to identify research hotspots in the application of nanotechnology in CHD and provide a comprehensive overview of the current state of the art. Nanomaterials with enhanced imaging and biosensing capabilities can improve the early detection of CHD through advanced contrast agents and high-resolution imaging techniques. Moreover, nanomaterials can facilitate targeted drug delivery, tissue engineering and modulation of inflammation and oxidative stress, thus addressing multiple aspects of CHD pathophysiology. We discuss the application of nanotechnology in CHD diagnosis (imaging and sensors) and treatment (regulation of macrophages, cardiac repair, anti-oxidative stress), and provide insights into future research directions and clinical translation. This review serves as a valuable resource for researchers and clinicians seeking to harness the potential of nanotechnology in the management of CHD. STATEMENT OF SIGNIFICANCE: Coronary heart disease (CHD) is the one of leading cause of death and disability worldwide. Nanotechnology offers new strategies for diagnosing and treating CHD by exploiting the unique properties of nanomaterials. This review uses bibliometric analysis to uncover research trends in the use of nanotechnology for CHD. We discuss the potential of nanomaterials for early CHD detection through advanced imaging and biosensing, targeted drug delivery, tissue engineering, and modulation of inflammation and oxidative stress. We also offer insights into future research directions and potential clinical applications. This work aims to guide researchers and clinicians in leveraging nanotechnology to improve CHD patient outcomes and quality of life.
Collapse
Affiliation(s)
- Junsong Guo
- Academician Workstation, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan 637000, China; Department of Cardiology, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan 637000, China
| | - Hao Wang
- Academician Workstation, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan 637000, China; Department of Cardiology, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan 637000, China
| | - Ying Li
- Academician Workstation, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan 637000, China; Department of Cardiology, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan 637000, China
| | - Shuang Zhu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nano-safety, Institute of High Energy Physics, Beijing 100049, China; CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Chinese Academy of Sciences, Beijing 100190, China; Center of Materials Science and Optoelectronics Engineering, College of Materials Science and Optoelectronic Technology, University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Houxiang Hu
- Academician Workstation, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan 637000, China; Department of Cardiology, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan 637000, China.
| | - Zhanjun Gu
- Academician Workstation, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan 637000, China; CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nano-safety, Institute of High Energy Physics, Beijing 100049, China; Center of Materials Science and Optoelectronics Engineering, College of Materials Science and Optoelectronic Technology, University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
5
|
Sarathkumar E, Victor M, Menon JA, Jibin K, Padmini S, Jayasree RS. Nanotechnology in cardiac stem cell therapy: cell modulation, imaging and gene delivery. RSC Adv 2021; 11:34572-34588. [PMID: 35494731 PMCID: PMC9043027 DOI: 10.1039/d1ra06404e] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 10/04/2021] [Indexed: 12/11/2022] Open
Abstract
The wide arena of applications opened by nanotechnology is multidimensional. It is already been proven that its prominence can continuously influence human life. The role of stem cells in curing degenerative diseases is another major area of research. Cardiovascular diseases are one of the major causes of death globally. Nanotechnology-assisted stem cell therapy could be used to tackle the challenges faced in the management of cardiovascular diseases. In spite of the positive indications and proven potential of stem cells to differentiate into cardiomyocytes for cardiac repair and regeneration during myocardial infarction, this therapeutic approach still remains in its infancy due to several factors such as non-specificity of injected cells, insignificant survival rate, and low cell retention. Attempts to improve stem cell therapy using nanoparticles have shown some interest among researchers. This review focuses on the major hurdles associated with cardiac stem cell therapy and the role of nanoparticles to overcome the major challenges in this field, including cell modulation, imaging, tracking and gene delivery. This review summarizes the potential challenges present in cardiac stem cell therapy and the major role of nanotechnology to overcome these challenges including cell modulation, tracking and imaging of stem cells.![]()
Collapse
Affiliation(s)
- Elangovan Sarathkumar
- Division of Biophotonics and Imaging, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Biomedical Technology Wing Trivandrum India
| | - Marina Victor
- Division of Biophotonics and Imaging, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Biomedical Technology Wing Trivandrum India
| | | | - Kunnumpurathu Jibin
- Division of Biophotonics and Imaging, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Biomedical Technology Wing Trivandrum India
| | - Suresh Padmini
- Sree Narayana Institute of Medical Sciences Kochi Kerala India
| | - Ramapurath S Jayasree
- Division of Biophotonics and Imaging, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Biomedical Technology Wing Trivandrum India
| |
Collapse
|
6
|
Pan Q, Xu J, Wen CJ, Xiong YY, Gong ZT, Yang YJ. Nanoparticles: Promising Tools for the Treatment and Prevention of Myocardial Infarction. Int J Nanomedicine 2021; 16:6719-6747. [PMID: 34621124 PMCID: PMC8491866 DOI: 10.2147/ijn.s328723] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 09/17/2021] [Indexed: 12/12/2022] Open
Abstract
Despite several recent advances, current therapy and prevention strategies for myocardial infarction are far from satisfactory, owing to limitations in their applicability and treatment effects. Nanoparticles (NPs) enable the targeted and stable delivery of therapeutic compounds, enhance tissue engineering processes, and regulate the behaviour of transplants such as stem cells. Thus, NPs may be more effective than other mechanisms, and may minimize potential adverse effects. This review provides evidence for the view that function-oriented systems are more practical than traditional material-based systems; it also summarizes the latest advances in NP-based strategies for the treatment and prevention of myocardial infarction.
Collapse
Affiliation(s)
- Qi Pan
- State Key Laboratory of Cardiovascular Disease, Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China
| | - Jing Xu
- State Key Laboratory of Cardiovascular Disease, Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China
| | - Cen-Jin Wen
- Department of Cardiology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China
| | - Yu-Yan Xiong
- State Key Laboratory of Cardiovascular Disease, Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China
| | - Zhao-Ting Gong
- State Key Laboratory of Cardiovascular Disease, Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China
| | - Yue-Jin Yang
- State Key Laboratory of Cardiovascular Disease, Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China
| |
Collapse
|
7
|
Li Y, Lyu P, Ze Y, Li P, Zeng X, Shi Y, Qiu B, Gong P, Yao Y. Exosomes derived from plasma: promising immunomodulatory agents for promoting angiogenesis to treat radiation-induced vascular dysfunction. PeerJ 2021; 9:e11147. [PMID: 33859878 PMCID: PMC8020864 DOI: 10.7717/peerj.11147] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 03/03/2021] [Indexed: 02/05/2023] Open
Abstract
Ionizing radiation (IR)-induced vascular disorders slow down tissue regeneration. Exosomes derived from plasma exhibit potential to promote angiogenesis; meanwhile, the immune microenvironment plays a significant role in the process. This study aimed to test the hypothesis that plasma exosomes promote angiogenesis in irradiated tissue by mediating the immune microenvironment. First, we explored the impact of IR on macrophages. We found that cell viability and capacity for promoting angiogenesis were decreased in irradiated macrophages compared to control macrophages. Then, we isolated and characterized rat plasma-derived exosomes (RP-Exos) which were defined as 40-160 nm extracellular vesicles extracted from rat plasma. Afterward, we evaluated the effects of RP-Exos on the behaviors of irradiated macrophages. Our results show that RP-Exos promoted cell proliferation. More importantly, we found that RP-Exos stimulated the immune microenvironment in a manner that improved the angiogenesis-related genes and proteins of irradiated macrophages. The supernatant of macrophage cell cultures was used as conditioned medium to treat human primary umbilical vein endothelial cells, further confirming the pro-angiogenic ability of macrophages receiving RP-Exo intervention. RP-Exos were used in vivo to treat irradiated skin or calvarial defects in irradiated Sprague-Dawley male rats. The results indicated the ability of RP-Exos to enhance angiogenesis and promote tissue regeneration. Our research suggested the potential of plasma exosomes to be used as immunomodulatory agents with angiogenic capacity to treat radiation-associated vascular disorders and facilitate tissue repair.
Collapse
Affiliation(s)
- Yanxi Li
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Ping Lyu
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Yiting Ze
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Peiran Li
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Xinyi Zeng
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Yixin Shi
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Bingrun Qiu
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Ping Gong
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Yang Yao
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
8
|
Zhang T, Zhu G, Lu B, Qian Z, Peng Q. Protein corona formed in the gastrointestinal tract and its impacts on oral delivery of nanoparticles. Med Res Rev 2020; 41:1835-1850. [PMID: 33289146 DOI: 10.1002/med.21767] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 09/14/2020] [Accepted: 11/20/2020] [Indexed: 02/05/2023]
Abstract
The interaction of nanoparticles (NPs) with proteins and the formation of protein corona in the biological fluids are of great interest and significance for drug delivery. In the past decade, the corona formation in the blood and its impacts on the in vitro and in vivo fate of NPs has been well investigated and reviewed. Recently, more and more attention is paid to the nano-protein interactions taking place in the gastrointestinal tract (GIT) between the orally administered NPs and the digestive enzymes. The enzyme corona formed in the GIT can significantly affect the properties, gastrointestinal transit, and oral absorption of NPs. Since oral delivery is the most preferred delivery route, comprehensively understanding the corona formation in the GIT and its impacts on oral delivery NPs are of great importance. Herein, we aim to summarize the recent updates on the nano-protein interactions between NPs and digestive enzymes, and launch an interesting discussion on the potentials of using the digestive enzyme corona for the colon targeted delivery.
Collapse
Affiliation(s)
- Tianxu Zhang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Guanyin Zhu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Boyao Lu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Zhiyong Qian
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, China
| | - Qiang Peng
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
9
|
Li S, Tang Y, Dou Y. The Potential of Milk-Derived Exosomes for Drug Delivery. Curr Drug Deliv 2020; 18:688-699. [PMID: 32807052 DOI: 10.2174/1567201817666200817112503] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 03/30/2020] [Accepted: 06/26/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND Exosomes, one of the extracellular vesicles, are widely present in all biological fluids and play an important role in intercellular communication. Due to their hydrophobic lipid bilayer and aqueous hydrophilic core structure, they are considered a possible alternative to liposome drug delivery systems. Not only do they protect the cargo like liposomes during delivery, but they are also less toxic and better tolerated. However, due to the lack of sources and methods for obtaining enough exosomes, the therapeutic application of exosomes as drug carriers is limited. METHODS A literature search was performed using the ScienceDirect and PubMed electronic databases to obtain information from published literature on milk exosomes related to drug delivery. RESULTS Here, we briefly reviewed the current knowledge of exosomes, expounded the advantages of milk-derived exosomes over other delivery vectors, including higher yield, the oral delivery characteristic and additional therapeutic benefits. The purification and drug loading methods of milk exosomes, and the current application of milk exosomes were also introduced. CONCLUSION The emergence of milk-derived exosomes is expected to break through the limitations of exosomes as therapeutic carriers of drugs. We hope to raise awareness of the therapeutic potential of milk-derived exosomes as a new drug delivery system.
Collapse
Affiliation(s)
- Shuyuan Li
- Department of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Yue Tang
- Department of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Yushun Dou
- Department of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| |
Collapse
|
10
|
Smagul S, Kim Y, Smagulova A, Raziyeva K, Nurkesh A, Saparov A. Biomaterials Loaded with Growth Factors/Cytokines and Stem Cells for Cardiac Tissue Regeneration. Int J Mol Sci 2020; 21:E5952. [PMID: 32824966 PMCID: PMC7504169 DOI: 10.3390/ijms21175952] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 08/06/2020] [Accepted: 08/07/2020] [Indexed: 12/17/2022] Open
Abstract
Myocardial infarction causes cardiac tissue damage and the release of damage-associated molecular patterns leads to activation of the immune system, production of inflammatory mediators, and migration of various cells to the site of infarction. This complex response further aggravates tissue damage by generating oxidative stress, but it eventually heals the infarction site with the formation of fibrotic tissue and left ventricle remodeling. However, the limited self-renewal capability of cardiomyocytes cannot support sufficient cardiac tissue regeneration after extensive myocardial injury, thus, leading to an irreversible decline in heart function. Approaches to improve cardiac tissue regeneration include transplantation of stem cells and delivery of inflammation modulatory and wound healing factors. Nevertheless, the harsh environment at the site of infarction, which consists of, but is not limited to, oxidative stress, hypoxia, and deficiency of nutrients, is detrimental to stem cell survival and the bioactivity of the delivered factors. The use of biomaterials represents a unique and innovative approach for protecting the loaded factors from degradation, decreasing side effects by reducing the used dosage, and increasing the retention and survival rate of the loaded cells. Biomaterials with loaded stem cells and immunomodulating and tissue-regenerating factors can be used to ameliorate inflammation, improve angiogenesis, reduce fibrosis, and generate functional cardiac tissue. In this review, we discuss recent findings in the utilization of biomaterials to enhance cytokine/growth factor and stem cell therapy for cardiac tissue regeneration in small animals with myocardial infarction.
Collapse
Affiliation(s)
| | | | | | | | | | - Arman Saparov
- Department of Medicine, School of Medicine, Nazarbayev University, Nur-Sultan 010000, Kazakhstan; (S.S.); (Y.K.); (A.S.); (K.R.); (A.N.)
| |
Collapse
|
11
|
Yu CH, Chen GY, Xia MY, Xie Y, Chi YQ, He ZY, Zhang CL, Zhang T, Chen QM, Peng Q. Understanding the sheet size-antibacterial activity relationship of graphene oxide and the nano-bio interaction-based physical mechanisms. Colloids Surf B Biointerfaces 2020; 191:111009. [DOI: 10.1016/j.colsurfb.2020.111009] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 03/08/2020] [Accepted: 04/01/2020] [Indexed: 12/12/2022]
|
12
|
Hong L, Luo SH, Yu CH, Xie Y, Xia MY, Chen GY, Peng Q. Functional Nanomaterials and Their Potential Applications in Antibacterial Therapy. Pharm Nanotechnol 2019; 7:129-146. [PMID: 30894114 DOI: 10.2174/2211738507666190320160802] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 12/05/2018] [Accepted: 03/18/2019] [Indexed: 02/05/2023]
Abstract
In the past decades, nanomaterials have shown great potential in biomedical fields, especially in drug delivery, imaging and targeted therapy. Recently, the development of novel functional nanomaterials for antibacterial application has attracted much attention. Compared to the traditional direct use of antibiotics, antibacterial nanomaterials either as drug delivery systems or active agents have a higher efficacy and lower side effects. Herein, we will focus on the antibacterial applications of four commonly used nanomaterials, including metal-based nanomaterials, polymeric nanoparticles, graphene oxides or carbon-based nanomaterials and nanogels.
Collapse
Affiliation(s)
- Le Hong
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Shu-Han Luo
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Chen-Hao Yu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Yu Xie
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Meng-Ying Xia
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Ge-Yun Chen
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Qiang Peng
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| |
Collapse
|
13
|
Xia MY, Xie Y, Yu CH, Chen GY, Li YH, Zhang T, Peng Q. Graphene-based nanomaterials: the promising active agents for antibiotics-independent antibacterial applications. J Control Release 2019; 307:16-31. [PMID: 31185232 DOI: 10.1016/j.jconrel.2019.06.011] [Citation(s) in RCA: 128] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 06/05/2019] [Accepted: 06/07/2019] [Indexed: 02/05/2023]
Abstract
Graphene-based nanomaterials, such as graphene oxide (GO) and reduced graphene oxide (rGO), have shown great potentials in drug delivery and photodynamic/photothermal therapy due to their featured structure and physicochemical properties. In recent years, their antibacterial potentials have also been exploited. The commonly recognized antibacterial mechanisms include sharp edge-mediated cutting effect, oxidative stress and cell entrapment. This antibacterial activity is very important for human health. As we know, infection with the pathogenic bacteria, especially the drug-resistant ones, is a great threat to human lives. Thus, the development of the antibiotics-independent and drug-free antibacterial agents is of great importance and significance. Graphene-based nanomaterials are a kind of such antibacterial agents. An insight into their properties and antibacterial mechanisms is necessary before they are developed into real products. Herein, we provide a comprehensive understanding of the antibacterial application of graphene-based nanomaterials via summarizing their antibacterial activities against some typical microbial species and discussing their unique mechanisms. In addition, the side-effects and problems in using these nanomaterials are also discussed.
Collapse
Affiliation(s)
- Meng-Ying Xia
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Yu Xie
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Chen-Hao Yu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Ge-Yun Chen
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Yuan-Hong Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Ting Zhang
- Department of Pharmacy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Qiang Peng
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
14
|
Liao W, Du Y, Zhang C, Pan F, Yao Y, Zhang T, Peng Q. Exosomes: The next generation of endogenous nanomaterials for advanced drug delivery and therapy. Acta Biomater 2019; 86:1-14. [PMID: 30597259 DOI: 10.1016/j.actbio.2018.12.045] [Citation(s) in RCA: 284] [Impact Index Per Article: 47.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 11/23/2018] [Accepted: 12/27/2018] [Indexed: 02/08/2023]
Abstract
Development of functional nanomaterials is of great importance and significance for advanced drug delivery and therapy. Nevertheless, exogenous nanomaterials have a great ability to induce undesired immune responses and nano-protein interactions, which may result in toxicity and failure of therapy. Exosomes, a kind of endogenous extracellular vesicle (40-100 nm in diameter), are considered as a new generation of a natural nanoscale delivery system. Exosomes secreted by different types of cells carry different signal molecules (such as RNAs and proteins) and thus have a great potential for targeted drug delivery and therapy. Herein, we provide comprehensive understanding of the properties and applications of exosomes, including their biogenesis, biofunctions, isolation, purification, and drug loading, and typical examples in drug delivery and therapy. Furthermore, their advantages compared to other nanoparticles and potential in tumor immunotherapy are also discussed. STATEMENT OF SIGNIFICANCE: Exosomes, a kind of endogenous extracellular vesicle, have emerged as a novel and attractive endogenous nanomaterial for advanced drug delivery and targeted therapy. Exosomes are secreted by many types of cells and carry some unique signals obtained from their parental cells. Furthermore, the liposome-like structure allows exosomes to load various drugs. Hence, the potential of exosomes in drug delivery, tumor targeted therapy, and immunotherapy has been investigated in recent years. On the basis of their endogenous features and multifunctional properties, exosomes are of great significance and interest for the development of future medicine and pharmaceuticals.
Collapse
|
15
|
Zhang T, Zhu GY, Yu CH, Xie Y, Xia MY, Lu BY, Fei X, Peng Q. The UV absorption of graphene oxide is size-dependent: possible calibration pitfalls. Mikrochim Acta 2019; 186:207. [DOI: 10.1007/s00604-019-3329-5] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Accepted: 02/16/2019] [Indexed: 12/31/2022]
|