1
|
Salari R, Rastegari B, Hashemi A, Farjadfar A, Masoomi MY. P53 Gene Therapy with ZIF-8 Metal-Organic Framework: A Platform in Cancer Gene Therapy. ACS OMEGA 2025; 10:10891-10902. [PMID: 40160747 PMCID: PMC11947847 DOI: 10.1021/acsomega.4c08739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 02/24/2025] [Accepted: 02/28/2025] [Indexed: 04/02/2025]
Abstract
Gene therapy holds great promise as a therapeutic approach for combating cancer, with the choice of gene delivery vector being a critical factor in its success. In recent years, metal-organic frameworks (MOFs) have emerged as valuable tools for intracellular plasmid delivery in this field. This study aimed to encapsulate plasmid DNA encoding the TP53 tumor suppressor gene (pEGFP-N1-TP53) within zeolitic imidazolate framework-8 (ZIF-8) MOFs and ZIF-8-PEI. Subsequently, the transfection efficiency and ability to induce cell death were assessed in MDA-MB-231, MCF-7, and HeLa cancer cells. A comparative analysis was conducted to evaluate the induction of cell death by pEGFP-N1-TP53@ZIF-8-PEI, pEGFP-N1-TP53-ZIF-8 nanoparticles, and Lipofectamine in the aforementioned cell lines. Additionally, an optimal condition for loading the plasmid into ZIF-8 was proposed. The findings from cell transfection assays, MTT assay, and flow cytometry revealed that both pEGFP-N1-TP53@ZIF-8-PEI and pEGFP-N1-TP53-ZIF-8 effectively delivered the plasmid to the cells. Notably, pEGFP-N1-TP53@ZIF-8-PEI exhibited significant results, inducing 77% cell death in the HeLa cell line and 73% in the MDA-MB-231 cell line. Our observations indicated that MDA-MB-231 and HeLa cells exhibited heightened responsiveness to TP53 gene therapy when delivered through ZIF-8-PEI and ZIF-8. Based on these findings, further investigation of pEGFP-N1-TP53@ZIF-8-PEI as a potential cancer therapeutic platform in other cancer cell types is warranted.
Collapse
Affiliation(s)
- Roya Salari
- Department
of Medical Biotechnology, Fasa University
of Medical Sciences, Fasa 7461686688, Iran
| | - Banafsheh Rastegari
- Diagnostic
Laboratory Sciences and Technology Research Center, Paramedical School, Shiraz University of Medical Sciences, Shiraz 71348-45794, Iran
| | - Amin Hashemi
- Department
of Cell Biology, Faculty of Basic Sciences, Shahed University, Tehran 3319118651, Iran
| | - Akbar Farjadfar
- Department
of Medical Biotechnology, Fasa University
of Medical Sciences, Fasa 7461686688, Iran
| | | |
Collapse
|
2
|
Abdelghany L, Sillapachaiyaporn C, Zhivotovsky B. The concealed side of caspases: beyond a killer of cells. Cell Mol Life Sci 2024; 81:474. [PMID: 39625520 PMCID: PMC11615176 DOI: 10.1007/s00018-024-05495-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 09/12/2024] [Accepted: 10/24/2024] [Indexed: 12/06/2024]
Abstract
Since the late 20th century, researchers have known that caspases are a pillar of cell death, particularly apoptosis. However, recent advances in cell biology have unraveled the multiple roles of caspases. These enzymes have an unconventional role in cell proliferation, differentiation, and invasion. As a result, caspase deregulation can fuel the fire of cancer, incite flames of inflammation, flare neurodegenerative disorders, and exacerbate skin pathologies. Several therapeutic approaches toward caspase inhibition have been investigated, but can caspase inhibitors harness the maladaptive effect of these proteases without causing significant side effects? A few studies have exploited caspase induction for cancer or adoptive cell therapies. Here, we provide a compelling picture of caspases, starting with their evolution, their polytomous roles beyond cell death, the flaws of their deregulation, and the merits of targeting them for therapeutic implications. Furthermore, we provide a deeper understanding of the evolution of caspase-related research up to the current era, pinpointing the role of caspases in cell survival and aiding in the development of effective caspase-targeted therapies.
Collapse
Affiliation(s)
- Lina Abdelghany
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, SE-171 77, Sweden
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Tanta University, Tanta, 31527, Egypt
| | | | - Boris Zhivotovsky
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, SE-171 77, Sweden.
- Engelhardt Institute of Molecular Biology, RAS, Moscow, 119991, Russia.
- Faculty of Medicine, Lomonosov Moscow State University, Moscow, 119192, Russia.
| |
Collapse
|
3
|
Taghizadeh-Tabarsi R, Akbari-Birgani S, Amjadi M, Mohammadi S, Nikfarjam N, Kusamori K. Aptamer-guided graphene oxide quantum dots for targeted suicide gene therapy in an organoid model of luminal breast cancer. Sci Rep 2024; 14:24104. [PMID: 39406784 PMCID: PMC11480468 DOI: 10.1038/s41598-024-74312-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 09/25/2024] [Indexed: 10/19/2024] Open
Abstract
Breast cancer is one of the most common cancers in women. One of the best therapeutic methods against breast cancer is gene therapy, while having an appropriate gene carrier is the biggest challenge of gene therapy. Hence, developing carriers with low cytotoxicity and high gene transfection efficiency, and preferentially with the selective function of gene delivery is a critical demand for this method. In the present study, we introduce a novel targeted carrier to deliver the inducible caspase-9 suicide gene (pLVSIN-iC9) into breast cancer cells. The carrier is composed of graphene oxide quantum dots decorated with polyethyleneimine, and S2.2; an aptamer with high affinity to MUC1 (GOQD-PEI/S2.2). Due to the overexpression of MUC1 in breast cancer cells, the designed GOQD-PEI/S2.2/pLVSIN-iC9 can selectively target cancer cells. Moreover, to better mimic solid tumor conditions, and to evaluate the selective effect of the GOQD-PEI/S2.2/pLVSIN-iC9, an organoid model derived from human dermal fibroblasts (HDF) and MCF-7 cells (coculture organoid) was generated and characterized. The results demonstrate that the coculture organoid model adapts the tissue structure of luminal breast cancer, as well. Therefore, the organoids were subjected to treatment with targeted gene therapy using GOQD-PEI/S2.2/pLVSIN-iC9. Our evidence supports the targeted killing effect of iC9 on the breast cancer cells of the organoids and suggests the good potential of the newly introduced carriers in targeted gene delivery.
Collapse
Affiliation(s)
- Reza Taghizadeh-Tabarsi
- Department of Biological Sciences, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan, 4513766731, Iran
| | - Shiva Akbari-Birgani
- Department of Biological Sciences, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan, 4513766731, Iran.
- Research Center for Basic Sciences and Modern Technologies (RBST), Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan, Iran.
| | - Mehrnaz Amjadi
- Department of Biological Sciences, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan, 4513766731, Iran
| | - Soheila Mohammadi
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Nasser Nikfarjam
- Department of Chemical Engineering, College of Engineering and Computing, University of South Carolina, Columbia, SC, 29208, USA
- Department of Chemistry, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan, 4513766731, Iran
| | - Kosuke Kusamori
- Laboratory of Cellular Drug Discovery and Development, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Chiba, Japan
| |
Collapse
|
4
|
Falahi F, Akbari-Birgani S, Mortazavi Y, Johari B. Caspase-9 suppresses metastatic behavior of MDA-MB-231 cells in an adaptive organoid model. Sci Rep 2024; 14:15116. [PMID: 38956424 PMCID: PMC11219723 DOI: 10.1038/s41598-024-65711-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 06/24/2024] [Indexed: 07/04/2024] Open
Abstract
Caspase-9, a cysteine-aspartate protease traditionally associated with intrinsic apoptosis, has recently emerged as having non-apoptotic roles, including influencing cell migration-an aspect that has received limited attention in existing studies. In our investigation, we aimed to explore the impact of caspase-9 on the migration and invasion behaviors of MDA-MB-231, a triple-negative breast cancer (TNBC) cell line known for its metastatic properties. We established a stable cell line expressing an inducible caspase-9 (iC9) in MDA-MB-231 and assessed their metastatic behavior using both monolayer and the 3D organotypic model in co-culture with human Foreskin fibroblasts (HFF). Our findings revealed that caspase-9 had an inhibitory effect on migration and invasion in both models. In monolayer culture, caspase-9 effectively suppressed the migration and invasion of MDA-MB-231 cells, comparable to the anti-metastatic agent panitumumab (Pan). Notably, the combination of caspase-9 and Pan exhibited a significant additional effect in reducing metastatic behavior. Interestingly, caspase-9 demonstrated superior efficacy compared to Pan in the organotypic model. Molecular analysis showed down regulation of epithelial-mesenchymal transition and migratory markers, in caspase-9 activated cells. Additionally, flow cytometry analysis indicated a cell cycle arrest. Moreover, pre-treatment with activated caspase-9 sensitized cells to the chemotherapy of doxorubicin, thereby enhancing its effectiveness. In conclusion, the anti-metastatic potential of caspase-9 presents avenues for the development of novel therapeutic approaches for TNBC/metastatic breast cancer. Although more studies need to figure out the exact involving mechanisms behind this behavior.
Collapse
Affiliation(s)
- Farzaneh Falahi
- Department of Medical Biotechnology, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
- Department of Biological Sciences, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan, 45137-66731, Iran
| | - Shiva Akbari-Birgani
- Department of Biological Sciences, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan, 45137-66731, Iran.
- Research Center for Basic Sciences and Modern Technologies (RBST), Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan, 45137-66731, Iran.
| | - Yousef Mortazavi
- Department of Medical Biotechnology, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran.
- Cancer Gene Therapy Research Center, Zanjan University of Medical Sciences, Zanjan, Iran.
| | - Behrooz Johari
- Department of Medical Biotechnology, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| |
Collapse
|
5
|
Moradi-Mehr S, Khademy M, Akbari-Birgani S, Kafian H, Lalenejad M, Abdollahpour D, Moghimi M. Comparative evaluation of the therapeutic strategies using a minimal model of luminal-A breast cancer. Biochem Biophys Res Commun 2023; 666:107-114. [PMID: 37182285 DOI: 10.1016/j.bbrc.2023.05.028] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 05/07/2023] [Indexed: 05/16/2023]
Abstract
Cellular behavior is heavily influenced by cellular interactions, which are often lost in conventional cell culture methods. As a result, in vitro cellular behavior may not accurately reflect in vivo conditions. Three-dimensional (3D) culture, on the other hand, is better suited for studying cellular behavior as it allows for more comprehensive cell communication. In this study, we utilized 3D culture of the MCF-7 cell line to create a minimal model of luminal-A breast cancer and evaluated its histopathological and morphological features using various methods. To determine the optimal therapeutic strategies for eliminating cancer cells, we assessed the effectiveness of diverse therapeutic approaches, including targeting distinct phases of the cell cycle, endocrine therapy, and gene therapy in both 2D and 3D culture systems. Our findings indicate that cells derived from mammospheres respond differently to their parent cells in monolayer culture depending on the therapeutic strategy used. This variability in drug response may be due to the altered microenvironment created by heterogeneous cellular makeup and emerging cellular interactions in the 3D culture. Therefore, it is important to administer a therapeutic approach that can eradicate cells regardless of the microenvironment.
Collapse
Affiliation(s)
- Sahar Moradi-Mehr
- Department of Biological Sciences, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan, 45137-66731, Iran
| | - Mitra Khademy
- Department of Biological Sciences, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan, 45137-66731, Iran
| | - Shiva Akbari-Birgani
- Department of Biological Sciences, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan, 45137-66731, Iran; Research Center for Basic Sciences and Modern Technologies (RBST), Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan, 45137-66731, Iran.
| | - Hosein Kafian
- Department of Physics, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan, 45137-66731, Iran
| | - Meelad Lalenejad
- Department of Physics, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan, 45137-66731, Iran
| | - Daryoush Abdollahpour
- Department of Physics, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan, 45137-66731, Iran; Optics Research Center, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan, 45137-66731, Iran
| | - Minoosh Moghimi
- Faculty of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| |
Collapse
|
6
|
Pourmadadi M, Mahdi Eshaghi M, Ostovar S, Mohammadi Z, K. Sharma R, Paiva-Santos AC, Rahmani E, Rahdar A, Pandey S. Innovative nanomaterials for cancer diagnosis, imaging, and therapy: Drug deliveryapplications. J Drug Deliv Sci Technol 2023. [DOI: 10.1016/j.jddst.2023.104357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2023]
|
7
|
Designing a new ligand based on pyridine for immobilization of gold nanoparticles on reduced magnetic graphene oxide: a new catalyst for the reduction of nitro compounds. JOURNAL OF THE IRANIAN CHEMICAL SOCIETY 2023. [DOI: 10.1007/s13738-022-02673-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
8
|
Non-viral inducible caspase 9 mRNA delivery using lipid nanoparticles against breast cancer: An in vitro study. Biochem Biophys Res Commun 2022; 635:144-153. [DOI: 10.1016/j.bbrc.2022.09.105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 09/12/2022] [Accepted: 09/27/2022] [Indexed: 11/18/2022]
|
9
|
Kashizadeh A, Pastras C, Rabiee N, Mohseni-Dargah M, Mukherjee P, Asadnia M. Potential nanotechnology-based diagnostic and therapeutic approaches for Meniere's disease. NANOMEDICINE : NANOTECHNOLOGY, BIOLOGY, AND MEDICINE 2022; 46:102599. [PMID: 36064032 DOI: 10.1016/j.nano.2022.102599] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Revised: 08/19/2022] [Accepted: 08/22/2022] [Indexed: 06/15/2023]
Abstract
Meniere's disease (MD) is a progressive inner ear disorder involving recurrent and prolonged episodes or attacks of vertigo with associated symptoms, resulting in a significantly reduced quality of life for sufferers. In most cases, MD starts in one ear; however, in one-third of patients, the disorder progresses to the other ear. Unfortunately, the etiology of the disease is unknown, making the development of effective treatments difficult. Nanomaterials, including nanoparticles (NPs) and nanocarriers, offer an array of novel diagnostic and therapeutic applications related to MD. NPs have specific features such as biocompatibility, biochemical stability, targetability, and enhanced visualization using imaging tools. This paper provides a comprehensive and critical review of recent advancements in nanotechnology-based diagnostic and therapeutic approaches for MD. Furthermore, the crucial challenges adversely affecting the use of nanoparticles to treat middle ear disorders are investigated. Finally, this paper provides recommendations and future directions for improving the performances of nanomaterials on theragnostic applications of MD.
Collapse
Affiliation(s)
- Afsaneh Kashizadeh
- School of Electrical and Computer Engineering, Shahid Beheshti University, Tehran 1983969411, Iran
| | - Christopher Pastras
- School of Engineering, Macquarie University, Sydney, NSW 2109, Australia; The Menière's Laboratory, Sydney Medical School, The University of Sydney, Sydney, NSW, Australia
| | - Navid Rabiee
- School of Engineering, Macquarie University, Sydney, NSW 2109, Australia
| | - Masoud Mohseni-Dargah
- School of Engineering, Macquarie University, Sydney, NSW 2109, Australia; Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Payal Mukherjee
- RPA Institute of Academic Surgery, Royal Prince Alfred Hospital, Sydney, New South Wales, Australia
| | - Mohsen Asadnia
- School of Engineering, Macquarie University, Sydney, NSW 2109, Australia.
| |
Collapse
|
10
|
Singh R, Kumar S. Cancer Targeting and Diagnosis: Recent Trends with Carbon Nanotubes. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:2283. [PMID: 35808119 PMCID: PMC9268713 DOI: 10.3390/nano12132283] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 06/30/2022] [Accepted: 07/01/2022] [Indexed: 02/06/2023]
Abstract
Cancer belongs to a category of disorders characterized by uncontrolled cell development with the potential to invade other bodily organs, resulting in an estimated 10 million deaths globally in 2020. With advancements in nanotechnology-based systems, biomedical applications of nanomaterials are attracting increasing interest as prospective vehicles for targeted cancer therapy and enhancing treatment results. In this context, carbon nanotubes (CNTs) have recently garnered a great deal of interest in the field of cancer diagnosis and treatment due to various factors such as biocompatibility, thermodynamic properties, and varied functionalization. In the present review, we will discuss recent advancements regarding CNT contributions to cancer diagnosis and therapy. Various sensing strategies like electrochemical, colorimetric, plasmonic, and immunosensing are discussed in detail. In the next section, therapy techniques like photothermal therapy, photodynamic therapy, drug targeting, gene therapy, and immunotherapy are also explained in-depth. The toxicological aspect of CNTs for biomedical application will also be discussed in order to ensure the safe real-life and clinical use of CNTs.
Collapse
Affiliation(s)
- Ragini Singh
- College of Agronomy, Liaocheng University, Liaocheng 252059, China;
| | - Santosh Kumar
- Shandong Key Laboratory of Optical Communication Science and Technology, School of Physics Science and Information Technology, Liaocheng University, Liaocheng 252059, China
| |
Collapse
|
11
|
Mostafavi E, Zare H. Carbon-based nanomaterials in gene therapy. OPENNANO 2022. [DOI: 10.1016/j.onano.2022.100062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
|
12
|
Rahamathulla M, Bhosale RR, Osmani RAM, Mahima KC, Johnson AP, Hani U, Ghazwani M, Begum MY, Alshehri S, Ghoneim MM, Shakeel F, Gangadharappa HV. Carbon Nanotubes: Current Perspectives on Diverse Applications in Targeted Drug Delivery and Therapies. MATERIALS (BASEL, SWITZERLAND) 2021; 14:6707. [PMID: 34772234 PMCID: PMC8588285 DOI: 10.3390/ma14216707] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 11/01/2021] [Accepted: 11/04/2021] [Indexed: 12/27/2022]
Abstract
Current discoveries as well as research findings on various types of carbon nanostructures have inspired research into their utilization in a number of fields. These carbon nanostructures offer uses in pharmacy, medicine and different therapies. One such unique carbon nanostructure includes carbon nanotubes (CNTs), which are one-dimensional allotropes of carbon nanostructure that can have a length-to-diameter ratio greater than 1,000,000. After their discovery, CNTs have drawn extensive research attention due to their excellent material properties. Their physical, chemical and electronic properties are excellent and their composites provide great possibilities for enormous nanometer applications. The current study provides a systematic review based on prior literature review and data gathered from various sources. The various research studies from many research labs and organizations were systematically retrieved, collected, compiled and written. The entire collection and compilation of this review concluded the use of CNT approaches and their efficacy and safety for the treatment of various diseases such as brain tumors or cancer via nanotechnology-based drug delivery, phototherapy, gene therapy, antiviral therapy, antifungal therapy, antibacterial therapy and other biomedical applications. The current review covers diverse applications of CNTs in designing a range of targeted drug delivery systems and application for various therapies. It concludes with a discussion on how CNTs based medicines can expand in the future.
Collapse
Affiliation(s)
- Mohamed Rahamathulla
- Department of Pharmaceutics, College of Pharmacy, King Khalid University, Abha 61421, Saudi Arabia; (M.R.); (U.H.); (M.G.); (M.Y.B.)
| | - Rohit R. Bhosale
- Department of Pharmaceutics, Krishna Institute of Pharmacy, Krishna Institute of Medical Sciences “Deemed To Be University”, Karad 415539, Maharashtra, India;
| | - Riyaz A. M. Osmani
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Mysuru 570015, Karnataka, India; (R.A.M.O.); (K.C.M.); (A.P.J.)
| | - Kasturi C. Mahima
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Mysuru 570015, Karnataka, India; (R.A.M.O.); (K.C.M.); (A.P.J.)
| | - Asha P. Johnson
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Mysuru 570015, Karnataka, India; (R.A.M.O.); (K.C.M.); (A.P.J.)
| | - Umme Hani
- Department of Pharmaceutics, College of Pharmacy, King Khalid University, Abha 61421, Saudi Arabia; (M.R.); (U.H.); (M.G.); (M.Y.B.)
| | - Mohammed Ghazwani
- Department of Pharmaceutics, College of Pharmacy, King Khalid University, Abha 61421, Saudi Arabia; (M.R.); (U.H.); (M.G.); (M.Y.B.)
| | - Mohammed Y. Begum
- Department of Pharmaceutics, College of Pharmacy, King Khalid University, Abha 61421, Saudi Arabia; (M.R.); (U.H.); (M.G.); (M.Y.B.)
| | - Sultan Alshehri
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia; (S.A.); (F.S.)
| | - Mohammed M. Ghoneim
- Department of Pharmacy Practice, College of Pharmacy, AlMaarefa University, Ad Diriyah 13713, Saudi Arabia;
| | - Faiyaz Shakeel
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia; (S.A.); (F.S.)
| | - Hosahalli V. Gangadharappa
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Mysuru 570015, Karnataka, India; (R.A.M.O.); (K.C.M.); (A.P.J.)
| |
Collapse
|
13
|
Sohail M, Guo W, Li Z, Xu H, Zhao F, Chen D, Fu F. Nanocarrier-based Drug Delivery System for Cancer Therapeutics: A Review of the Last Decade. Curr Med Chem 2021; 28:3753-3772. [PMID: 33019919 DOI: 10.2174/0929867327666201005111722] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 09/05/2020] [Accepted: 09/07/2020] [Indexed: 11/22/2022]
Abstract
In recent years, due to the shortcomings of conventional chemotherapy, such as poor bioavailability, low treatment index, and unclear side effects, the focus of cancer research has shifted to new nanocarriers of chemotherapeutic drugs. By using biodegradable materials, nanocarriers generally have the advantages of good biocompatibility, low side effects, targeting, controlled release profile, and improved efficacy. More to the point, nanocarrier based anti-cancer drug delivery systems clearly show the potential to overcome the problems associated with conventional chemotherapy. In order to promote the in-depth research and development in this field, we herein summarized and analyzed various nanocarrier based drug delivery systems for cancer therapy, including the concepts, types, characteristics, and preparation methods. The active and passive targeting mechanisms of cancer therapy were also included, along with a brief introduction of the research progress of nanocarriers used for anti-cancer drug delivery in the past decade.
Collapse
Affiliation(s)
- Muhammad Sohail
- School of Pharmacy, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Key Laboratory of Molecular Pharmacology and Drug Evaluation, Yantai University, Yantai, China
| | - Wenna Guo
- School of Pharmacy, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Key Laboratory of Molecular Pharmacology and Drug Evaluation, Yantai University, Yantai, China
| | - Zhiyong Li
- School of Pharmacy, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Key Laboratory of Molecular Pharmacology and Drug Evaluation, Yantai University, Yantai, China
| | - Hui Xu
- School of Pharmacy, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Key Laboratory of Molecular Pharmacology and Drug Evaluation, Yantai University, Yantai, China
| | - Feng Zhao
- School of Pharmacy, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Key Laboratory of Molecular Pharmacology and Drug Evaluation, Yantai University, Yantai, China
| | - Daquan Chen
- School of Pharmacy, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Key Laboratory of Molecular Pharmacology and Drug Evaluation, Yantai University, Yantai, China
| | - Fenghua Fu
- School of Pharmacy, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Key Laboratory of Molecular Pharmacology and Drug Evaluation, Yantai University, Yantai, China
| |
Collapse
|
14
|
Madadi Z, Akbari-Birgani S, Mohammadi S, Khademy M, Mousavi SA. The effect of caspase-9 in the differentiation of SH-SY5Y cells. Eur J Pharmacol 2021; 904:174138. [PMID: 33933463 DOI: 10.1016/j.ejphar.2021.174138] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 04/23/2021] [Accepted: 04/26/2021] [Indexed: 11/26/2022]
Abstract
Neuroblastoma is the most common solid malignant tumor in infants and young children. Its origin is the incompletely committed precursor cells from the autonomic nervous system. Neuroblastoma cells are multipotent cells with a high potency of differentiation into the neural cell types. Neural differentiation leads to the treatment of neuroblastoma by halting the cell and tumor growth and consequently its expansion. Caspases are a family of proteins involved in apoptosis and differentiation. The present study aimed to investigate the potential role of caspase-9 activation on the differentiation of the human neuroblastoma SH-SY5Y cells. Here we investigated the caspase-9 and 3/7 activity during 1,25-dihydroxycholecalciferol (D3)-mediated differentiation of SH-SY5Y cells and took advantage of the inducible caspase-9 system in putting out the differentiation of the neuroblastoma cells. D3-induced differentiation of the cells could lead to activation of caspase-9 and caspase-3/7, astrocyte-like morphology, and increased expression of Glial fibrillary acidic protein (GFAP). By using the inducible caspase-9 system, we showed differentiation of SH-SY5Y cells to astrocyte-like morphology and increased level of GFAP expression. Furthered studies using a specific caspase-9 inhibitor showed inhibition of differentiation mediated by D3 or caspase-9 to astrocyte-like cells. These results show the potency of caspase-9 to direct differentiation of the human neuroblastoma SH-SY5Y cells into cells showing an astrocyte-like morphology.
Collapse
Affiliation(s)
- Zahra Madadi
- Department of Biological Sciences, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan, 45137-66731, Iran.
| | - Shiva Akbari-Birgani
- Department of Biological Sciences, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan, 45137-66731, Iran; Center for Research in Basic Sciences and Contemporary Technologies, IASBS, Zanjan, Iran.
| | - Saeed Mohammadi
- Hematology, Oncology and Stem Cell Transplantation Research Center, Tehran University of Medical Sciences, Tehran, Iran; Cell Therapy and Hematopoietic Stem Cell Transplantation Research Center, Tehran University of Medical Sciences, Tehran, Iran.
| | - Mitra Khademy
- Department of Biological Sciences, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan, 45137-66731, Iran.
| | - Seyed Asadollah Mousavi
- Hematology, Oncology and Stem Cell Transplantation Research Center, Tehran University of Medical Sciences, Tehran, Iran; Cell Therapy and Hematopoietic Stem Cell Transplantation Research Center, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
15
|
Makvandi P, Ashrafizadeh M, Ghomi M, Najafi M, Hossein HHS, Zarrabi A, Mattoli V, Varma RS. Injectable hyaluronic acid-based antibacterial hydrogel adorned with biogenically synthesized AgNPs-decorated multi-walled carbon nanotubes. Prog Biomater 2021; 10:77-89. [PMID: 33768486 PMCID: PMC8021662 DOI: 10.1007/s40204-021-00155-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 03/18/2021] [Indexed: 12/18/2022] Open
Abstract
Injectable materials have shown great potential in tissue engineering applications. However, bacterial infection is one of the main challenges in using these materials in the field of regenerative medicine. In this study, biogenically synthesized silver nanoparticle-decorated multi-walled carbon nanotubes (Ag/MWCNTs) were deployed for adorning biogenic-derived AgNPs which were subsequently used in the preparation of thermosensitive hydrogels based on hyaluronic acid encompassing these green-synthesized NPs. The antibacterial capacity of AgNPs decorated on MWCNTs synthesized through Camellia sinensis extract in an organic solvent-free medium displayed a superior activity by inhibiting the growth of Gram-negative (E. coli and Klebsiella) and Gram-positive (S. aureus and E. faecalis). The injectable hydrogel nanocomposites demonstrated good mechanical properties, as well. The thermosensitive hyaluronic acid-based hydrogels also exhibited Tgel below the body temperature, indicating the transition from liquid-like behavior to elastic gel-like behavior. Such a promising injectable nanocomposite could be applied as liquid, pomade, or ointment to enter wound cavities or bone defects and subsequently its transition in situ to gel form at human body temperature bodes well for their immense potential application in the biomedical sector.
Collapse
Affiliation(s)
- Pooyan Makvandi
- Istituto Italiano di Tecnologia, Centre for Materials Interface, viale Rinaldo Piaggio 34, 56025, Pontedera, Pisa, Italy.
| | - Milad Ashrafizadeh
- Department of Basic Science, Faculty of Veterinary Medicine, University of Tabriz, 51666-16471, Tabriz, Iran.,Sabanci University Nanotechnology Research and Application Center (SUNUM), 34956, Tuzla, Istanbul, Turkey
| | - Matineh Ghomi
- Chemistry Department, Faculty of Science, Shahid Chamran University of Ahvaz, 61537-53843, Ahvaz, Iran.
| | - Masoud Najafi
- Medical Technology Research Center, Institute of Health Technology, Kermanshah University of Medical Sciences, 6715847141, Kermanshah, Iran. .,Radiology and Nuclear Medicine Department, School of Paramedical Sciences, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| | | | - Ali Zarrabi
- Sabanci University Nanotechnology Research and Application Center (SUNUM), 34956, Tuzla, Istanbul, Turkey
| | - Virgilio Mattoli
- Istituto Italiano di Tecnologia, Centre for Materials Interface, viale Rinaldo Piaggio 34, 56025, Pontedera, Pisa, Italy
| | - Rajender S Varma
- Regional Centre of Advanced Technologies and Materials, Palacky University, Slechtitelu 27, 783 71, Olomouc, Czech Republic
| |
Collapse
|
16
|
Montané X, Matulewicz K, Balik K, Modrakowska P, Łuczak M, Pérez Pacheco Y, Reig-Vano B, Montornés JM, Bajek A, Tylkowski B. Present trends in the encapsulation of anticancer drugs. PHYSICAL SCIENCES REVIEWS 2021. [DOI: 10.1515/psr-2020-0080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
Different nanomedicine devices that were developed during the recent years can be suitable candidates for their application in the treatment of various deadly diseases such as cancer. From all the explored devices, the nanoencapsulation of several anticancer medicines is a very promising approach to overcome some drawbacks of traditional medicines: administered dose of the drugs, drug toxicity, low solubility of drugs, uncontrolled drug delivery, resistance offered by the physiological barriers in the body to drugs, among others. In this chapter, the most important and recent progress in the encapsulation of anticancer medicines is examined: methods of preparation of distinct nanoparticles (inorganic nanoparticles, dendrimers, biopolymeric nanoparticles, polymeric micelles, liposomes, polymersomes, carbon nanotubes, quantum dots, and hybrid nanoparticles), drug loading and drug release mechanisms. Furthermore, the possible applications in cancer prevention, diagnosis, and cancer therapy of some of these nanoparticles have been highlighted.
Collapse
Affiliation(s)
- Xavier Montané
- Departament de Química Analítica i Química Orgànica , Universitat Rovira i Virgili Facultat de Quimica , Carrer Marcel·lí Domingo s/n, 43007, Tarragona , Spain
| | - Karolina Matulewicz
- Department of Tissue Engineering Chair of Urology , Nicolaus Copernicus University in Toruń Ludwik Rydygier Collegium Medicum in Bydgoszcz , Karlowicza St. 24, 85-092, Bydgoszcz , Poland
| | - Karolina Balik
- Department of Tissue Engineering Chair of Urology , Nicolaus Copernicus University in Toruń Ludwik Rydygier Collegium Medicum in Bydgoszcz , Karlowicza St. 24, 85-092, Bydgoszcz , Poland
| | - Paulina Modrakowska
- Department of Tissue Engineering Chair of Urology , Nicolaus Copernicus University in Toruń Ludwik Rydygier Collegium Medicum in Bydgoszcz , Karlowicza St. 24, 85-092, Bydgoszcz , Poland
| | - Marcin Łuczak
- Wrzesińskiego Pułku Piechoty we Wrześni , Samorządowa Szkoła Podstawowa nr 1 im. 68 , 62-300, Września , Poland
| | - Yaride Pérez Pacheco
- Departament d’Enginyeria Química , Universitat Rovira i Virgili Escola Tècnica Superior d’Enginyeria Química , Av. Països Catalans, 26, 43007, Tarragona , Spain
| | - Belen Reig-Vano
- Departament d’Enginyeria Química , Universitat Rovira i Virgili Escola Tècnica Superior d’Enginyeria Química , Av. Països Catalans, 26, 43007, Tarragona , Spain
| | - Josep M. Montornés
- Chemical Unit , Eurecat Centre Tecnològic de Catalunya , Carrer Marcel·lí Domingo, s/n,43007, Tarragona , Spain
| | - Anna Bajek
- Department of Tissue Engineering Chair of Urology , Nicolaus Copernicus University in Toruń Ludwik Rydygier Collegium Medicum in Bydgoszcz , Karlowicza St. 24, 85-092, Bydgoszcz , Poland
| | - Bartosz Tylkowski
- Chemical Unit , Eurecat Centre Tecnològic de Catalunya , Carrer Marcel·lí Domingo, s/n,43007, Tarragona , Spain
| |
Collapse
|
17
|
Singh A, Hua Hsu M, Gupta N, Khanra P, Kumar P, Prakash Verma V, Kapoor M. Derivatized Carbon Nanotubes for Gene Therapy in Mammalian and Plant Cells. Chempluschem 2021; 85:466-475. [PMID: 32159284 DOI: 10.1002/cplu.201900678] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 02/17/2020] [Indexed: 01/06/2023]
Abstract
The concept of gene vectors for therapeutic applications has been known for several years, but it is far from revealing its actual potential. With the advent of hollow cylindrical carbon nanomaterials such as carbon nanotubes (CNTs), researchers have invented several new tools to deliver genes at the required site of action in mammalian and plant cells. The ease of diversified functionalization has allowed CNTs to be by far the most adaptable non-viral vector for gene therapy. This Minireview addresses the dexterity with which CNTs undergo surface modifications and their applications as a potent vector in gene therapy of humans and plants. Specifically, we will discuss the new tools that scientific communities have invented to achieve gene therapy using plasmid DNA, RNA silencing, suicide gene therapy, and plant genetic engineering. Additionally, we will shed some light on the mechanism of gene transportation using carbon nanotubes in cancer cells and plants.
Collapse
Affiliation(s)
- Adhish Singh
- Chitkara University Institute of Engineering and Technology, Chitkara University, Punjab, 140401, India
| | - Ming Hua Hsu
- National Changhua University of Education, Changhua, 500, R.O.C. Taiwan
| | - Neeraj Gupta
- Department of Chemistry, Shoolni University, Solon, H.P., 173229, India
| | - Partha Khanra
- Chitkara University Institute of Engineering and Technology, Chitkara University, Punjab, 140401, India
| | - Pankaj Kumar
- Chitkara University Institute of Engineering and Technology, Chitkara University, Punjab, 140401, India
| | - Ved Prakash Verma
- Department of Chemistry, Banasthali University, Newai-Jodhpuriya Road, Vanasthali, 304022, India
| | - Mohit Kapoor
- Chitkara University Institute of Engineering and Technology, Chitkara University, Punjab, 140401, India
| |
Collapse
|
18
|
Montaño-Samaniego M, Bravo-Estupiñan DM, Méndez-Guerrero O, Alarcón-Hernández E, Ibáñez-Hernández M. Strategies for Targeting Gene Therapy in Cancer Cells With Tumor-Specific Promoters. Front Oncol 2020; 10:605380. [PMID: 33381459 PMCID: PMC7768042 DOI: 10.3389/fonc.2020.605380] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Accepted: 10/30/2020] [Indexed: 12/16/2022] Open
Abstract
Cancer is the second cause of death worldwide, surpassed only by cardiovascular diseases, due to the lack of early diagnosis, and high relapse rate after conventional therapies. Chemotherapy inhibits the rapid growth of cancer cells, but it also affects normal cells with fast proliferation rate. Therefore, it is imperative to develop other safe and more effective treatment strategies, such as gene therapy, in order to significantly improve the survival rate and life expectancy of patients with cancer. The aim of gene therapy is to transfect a therapeutic gene into the host cells to express itself and cause a beneficial biological effect. However, the efficacy of the proposed strategies has been insufficient for delivering the full potential of gene therapy in the clinic. The type of delivery vehicle (viral or non viral) chosen depends on the desired specificity of the gene therapy. The first gene therapy trials were performed with therapeutic genes driven by viral promoters such as the CMV promoter, which induces non-specific toxicity in normal cells and tissues, in addition to cancer cells. The use of tumor-specific promoters over-expressed in the tumor, induces specific expression of therapeutic genes in a given tumor, increasing their localized activity. Several cancer- and/or tumor-specific promoters systems have been developed to target cancer cells. This review aims to provide up-to-date information concerning targeting gene therapy with cancer- and/or tumor-specific promoters including cancer suppressor genes, suicide genes, anti-tumor angiogenesis, gene silencing, and gene-editing technology, as well as the type of delivery vehicle employed. Gene therapy can be used to complement traditional therapies to provide more effective treatments.
Collapse
Affiliation(s)
- Mariela Montaño-Samaniego
- Laboratorio de Terapia Génica, Departamento de Bioquímica, Escuela Nacional de Ciencias Biológicas del Instituto Politécnico Nacional, Ciudad de México, México
| | - Diana M. Bravo-Estupiñan
- Laboratorio de Terapia Génica, Departamento de Bioquímica, Escuela Nacional de Ciencias Biológicas del Instituto Politécnico Nacional, Ciudad de México, México
| | - Oscar Méndez-Guerrero
- Laboratorio de Terapia Génica, Departamento de Bioquímica, Escuela Nacional de Ciencias Biológicas del Instituto Politécnico Nacional, Ciudad de México, México
| | - Ernesto Alarcón-Hernández
- Laboratorio de Genética Molecular, Departamento de Bioquímica, Escuela Nacional de Ciencias Biológicas del Instituto Politécnico Nacional, Ciudad de México, México
| | - Miguel Ibáñez-Hernández
- Laboratorio de Terapia Génica, Departamento de Bioquímica, Escuela Nacional de Ciencias Biológicas del Instituto Politécnico Nacional, Ciudad de México, México
| |
Collapse
|
19
|
Alnasser SM. Review on mechanistic strategy of gene therapy in the treatment of disease. Gene 2020; 769:145246. [PMID: 33098937 DOI: 10.1016/j.gene.2020.145246] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 09/08/2020] [Accepted: 10/15/2020] [Indexed: 12/12/2022]
Abstract
Gene therapy has become a revolution and its breakthrough is a corner stone in modern science. This treatment has rising advantages with limited negative aspects. Gene therapy is a therapeutic method in which, transfer of DNA to an individual to manipulate a defective gene is performed and to mitigate a disease which is not responding to pharmacological therapy. The gene therapy strategies are divided into two main categories such as direct in-vivo gene delivery of manipulated viral vector vehicle into the host and ex-vivo genetically engineered stem cells. In this review, we tried to cover all aspects of gene therapy studies; starting with the concept of gene, its treatment, gene delivery system and types, clinical trial either by vitro or In-Vivo -Clinical Trials and Clinical Intoxication of Gene Therapy. Therefore, the promise of successful treatment with gene therapy could positively affect millions of lives. The main aim of this review is to address the principles of gene therapy, various methods involved in the gene therapy, clinical applications and its merits and demerits.
Collapse
Affiliation(s)
- Sulaiman M Alnasser
- Department of Pharmacology and Toxicology, College of Pharmacy, Qassim University, Unaizah, Saudi Arabia
| |
Collapse
|
20
|
The role of single- and multi-walled carbon nanotube in breast cancer treatment. Ther Deliv 2020; 11:653-672. [DOI: 10.4155/tde-2020-0019] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Numerous studies have been conducted to design new strategies for breast cancer treatment. Past studies have shown a wide range of carbon-nanomaterials properties, such as single- and multi-walled carbon nanotubes (SWCNTs and MWCNTs) in breast cancer diagnosis and treatment. In this regard, the current study aims to review the role of both SWCNTs and MWCNTs in breast cancer treatment and diagnosis. For reaching this goal, we reviewed the literature by using various searching engines such as Scopus, PubMed, Google Scholar, Web of Science and MEDLINE. This comprehensive review showed that CNTs could dramatically improve breast cancer treatment and could be used as a novel modality to increase diagnostic accuracy; however, no clinical studies have been conducted based on CNTs. In addition, the literature review demonstrates a lack of enough studies to evaluate the side effects of using CNTs.
Collapse
|
21
|
Gao W, Wei S, Li Z, Li L, Zhang X, Li C, Gao D. Nano magnetic liposomes-encapsulated parthenolide and glucose oxidase for ultra-efficient synergistic antitumor therapy. NANOTECHNOLOGY 2020; 31:355104. [PMID: 32403097 DOI: 10.1088/1361-6528/ab92c8] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Multifunctional nanoplatforms yield extremely high synergistic therapeutic effects on the basis of low biological toxicity. Based on the unique tumor microenvironment (TME), a liposomes (Lips)-based multifunctional antitumor drug delivery system known as GOD-PTL-Lips@MNPs was synthesized for chemotherapy, chemodynamic therapy (CDT), starvation therapy, and magnetic targeting synergistic therapy. Evidence has suggested that parthenolide (PTL) can induce apoptosis and consume excessive glutathione (GSH), thereby increasing the efficacy of chemodynamic therapy. On the other hand, glucose oxidase (GOD) can consume intratumoral glucose, lower pH and increase the level of H2O2 in the tumor tissue. Integrated Fe3O4 magnetic nanoparticles (MNPs) containing Fe2+ and Fe3+ effectively catalyzes H2O2 to a highly toxic hydroxyl radical (•OH) and provide magnetic targeting. During the course of in vitro and in vivo experiments, GOD-PTL-Lips@MNPs demonstrated remarkable synergistic antitumor efficacy. In particular, in mice receiving a 14 day treatment of GOD-PTL-Lips@MNPs, tumor growth was significantly inhibited, as compared with the control group. Moreover, toxicology study and histological examination demonstrated low biotoxicity of this novel therapeutic approach. In summary, our data suggests great antitumor potential for GOD-PTL-Lips@MNPs which could provide an alternative means of further improving the efficacy of anticancer therapies.
Collapse
Affiliation(s)
- Wenbin Gao
- State Key Laboratory of Metastable Materials Science and Technology, Applying Chemistry Key Lab of Hebei Province, Yanshan University, No.438 Hebei Street, Qinhuangdao 066004, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
22
|
Cancer Therapy and Imaging Through Functionalized Carbon Nanotubes Decorated with Magnetite and Gold Nanoparticles as a Multimodal Tool. Appl Biochem Biotechnol 2020; 191:1280-1293. [PMID: 32086708 DOI: 10.1007/s12010-020-03280-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2019] [Accepted: 02/13/2020] [Indexed: 02/07/2023]
Abstract
Pharmacotherapy and imaging are two critical facets of cancer therapy. Carbon nanotubes and their modified species such as magnetic or gold nanoparticle conjugated ones they have been introduced as good candidates for both purposes. Gold nanoparticles enhance effects of X-rays during radiotherapy. Nanomaterial-mediated radiofrequency (RF) hyperthermia refers to using RF to heat tumors treated with nanomaterials for cancer therapy. The combination of hyperthermia and radiotherapy, synergistically, causes a significant reduction in X-ray doses. The present study was conducted to investigate the ability and efficiency of the multi-walled carbon nanotubes functionalized with magnetic Fe3O4 and gold nanoparticles (mf-MWCNT/AuNPs) for imaging and cancer therapy. The mf-MWCNT/AuNPs were utilized for imaging approaches such as ultrasounds, CT scan, and MRI. They were also examined in thermotherapy and radiotherapy. The MCF-7 cell line was used as an in vitro model to study thermotherapy and radiotherapy. The mf-MWCNT/AuNPs are beneficial as a contrast agent in imaging by ultrasounds, CT scan, and MRI. They are also radio waves and X-rays absorbent and enhance the efficiency of thermotherapy and radiotherapy in the elimination of cancer cells. The valuable properties of mf-MWCNT/AuNPs in radio- and thermotherapies and imaging strategies make them a good candidate as a multimodal tool in cancer therapy. Graphical Abstract The mf-MWCNT/AuNPs are beneficial as a contrast agent in imaging by US (ultrasounds), CT scan, and MRI. They are also radio waves and X-rays absorbent and enhance the efficiency of thermotherapy and radiotherapy in the elimination of cancer cells. The valuable properties of the mf-MWCNT/AuNPs in radio- and thermotherapies and imaging strategies make them a good candidate as a multimodal tool in cancer therapy.
Collapse
|
23
|
Prajapati SK, Malaiya A, Kesharwani P, Soni D, Jain A. Biomedical applications and toxicities of carbon nanotubes. Drug Chem Toxicol 2020; 45:435-450. [DOI: 10.1080/01480545.2019.1709492] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
| | | | - Payal Kesharwani
- Ram-Eesh Institute of Vocational and Technical Education, Knowledge Park I, Greater Noida, Uttar Pradesh, India
| | - Deeksha Soni
- Rawatpura Sarkar Institute of Pharmacy, Datia, Madhya Pradesh, India
| | - Aakanchha Jain
- Bhagyodaya Tirth Pharmacy College, Sagar, Madhya Pradesh, India
| |
Collapse
|
24
|
Abstract
Breast cancer is one of the most leading causes of death for women worldwide. According to statistics published by the International Agency for Research on Cancer (IARC), the incidence of breast cancer is on the rise year by year in most parts of the world. The existence of heterogeneity limits the early diagnosis and targeted therapy of breast cancer. Nowadays, precision medicine brings a new perspective to personalized diagnosis and targeted therapy, overcomes the heterogeneity of different patients, and provides an opportunity for screening of high-risk populations. As a clinician, we are committed to using genomic to provide a favorable perspective in the field of breast cancer. The current review describes the recent advances in the understanding of precision medicine for breast cancer in the aspect of the genomics which could be applied to improve our ability to diagnose and treat breast cancer individually and effectively.
Collapse
|
25
|
Madadi Z, Akbari-Birgani S, Monfared PD, Mohammadi S. The non-apoptotic role of caspase-9 promotes differentiation in leukemic cells. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2019; 1866:118524. [DOI: 10.1016/j.bbamcr.2019.118524] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Revised: 07/26/2019] [Accepted: 08/04/2019] [Indexed: 12/22/2022]
|
26
|
Naskhi A, Jabbari S, Othman GQ, Aziz FM, Salihi A, Sharifi M, Sari S, Akhtari K, Abdulqadir SZ, Alasady AA, Abou-Zied OK, Hasan A, Falahati M. Vitamin K1 As A Potential Molecule For Reducing Single-Walled Carbon Nanotubes-Stimulated α-Synuclein Structural Changes And Cytotoxicity. Int J Nanomedicine 2019; 14:8433-8444. [PMID: 31749617 PMCID: PMC6818677 DOI: 10.2147/ijn.s223182] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2019] [Accepted: 10/09/2019] [Indexed: 11/23/2022] Open
Abstract
Aims Different kinds of vitamins can be used as promising candidates to mitigate the structural changes of proteins and associated cytotoxicity stimulated by NPs. Therefore, the structural changes of α-syn molecules and their associated cytotoxicity in the presence of SWCNTs either alone or co-incubated with vitamin K1 were studied by spectroscopic, bioinformatical, and cellular assays. Methods Intrinsic and ThT fluorescence, CD, and Congo red absorption spectroscopic approaches as well as TEM investigation, molecular docking, and molecular dynamics were used to explore the protective effect of vitamin K1 on the structural changes of α-syn induced by SWCNTs. The cytotoxicity of α-syn/SWCNTs co-incubated with vitamin K1 against SH-SY5Y cells was also carried out by MTT, LDH, and caspase-3 assays. Results Fluorescence spectroscopy showed that vitamin K1 has a significant effect in reducing SWCNT-induced fluorescence quenching and aggregation of α- syn. CD, Congo red adsorption, and TEM investigations determined that co-incubation of α- syn with vitamin K1 inhibited the propensity of α-syn into the structural changes and amorphous aggregation in the presence of SWCNT. Docking studies determined the occupation of preferred docked site of SWCNT by vitamin K1 on α- syn conformation. A molecular dynamics study also showed that vitamin K1 reduced the structural changes of α- syn induced by SWCNT. Cellular data exhibited that the cytotoxicity of α- syn co-incubated with vitamin K1 in the presence of SWCNTs is less than the outcomes obtained in the absence of the vitamin K1. Conclusion It may be concluded that vitamin K1 decreases the propensity of α- syn aggregation in the presence of SWCNTs and induction of cytotoxicity.
Collapse
Affiliation(s)
- Amitis Naskhi
- Department of Cellular and Molecular Biology, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Sanaz Jabbari
- Department of Cellular and Molecular Biology, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Goran Qader Othman
- Department of Medical Laboratory, Health Technical College, Erbil Polytechnic University, Erbil, Iraq
| | - Falah Mohammad Aziz
- Department of Biology, College of Science, Salahaddin University-Erbil, Kurdistan Region, Iraq
| | - Abbas Salihi
- Department of Biology, College of Science, Salahaddin University-Erbil, Kurdistan Region, Iraq.,Department of Medical Analysis, Faculty of Science, Tishk International University, Erbil, Iraq
| | - Majid Sharifi
- Department of Nanotechnology, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Soyar Sari
- Department of Cellular and Molecular Biology, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Keivan Akhtari
- Department of Physics, University of Kurdistan, Sanandaj, Iran
| | - Shang Ziyad Abdulqadir
- Department of Biology, College of Science, Salahaddin University-Erbil, Kurdistan Region, Iraq
| | - Asaad Ab Alasady
- Anatomy, Histology, and Embryology Unit, College of Medicine, University of Duhok, Kurdistan Region, Iraq
| | - Osama K Abou-Zied
- Department of Chemistry, Faculty of Science, Sultan Qaboos University, Muscat, Sultanate of Oman
| | - Anwarul Hasan
- Department of Mechanical and Industrial Engineering, College of Engineering, Qatar University, Doha 2713, Qatar.,Biomedical Research Center, Qatar University, Doha 2713, Qatar
| | - Mojtaba Falahati
- Department of Nanotechnology, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| |
Collapse
|