1
|
Liu Y, Mao R, Han S, Yu Z, Xu B, Xu T. Polymeric Microneedle Drug Delivery Systems: Mechanisms of Treatment, Material Properties, and Clinical Applications—A Comprehensive Review. Polymers (Basel) 2024; 16:2568. [DOI: doi:10.3390/polym16182568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/15/2025] Open
Abstract
Our comprehensive review plunges into the cutting-edge advancements of polymeric microneedle drug delivery systems, underscoring their transformative potential in the realm of transdermal drug administration. Our scrutiny centers on the substrate materials pivotal for microneedle construction and the core properties that dictate their efficacy. We delve into the distinctive interplay between microneedles and dermal layers, underscoring the mechanisms by which this synergy enhances drug absorption and precision targeting. Moreover, we examine the acupoint–target organ–ganglion nexus, an innovative strategy that steers drug concentration to specific targets, offering a paradigm for precision medicine. A thorough analysis of the clinical applications of polymeric microneedle systems is presented, highlighting their adaptability and impact across a spectrum of therapeutic domains. This review also accentuates the systems’ promise to bolster patient compliance, attributed to their minimally invasive and painless mode of drug delivery. We present forward-looking strategies aimed at optimizing stimulation sites to amplify therapeutic benefits. The anticipation is set for the introduction of superior biocompatible materials with advanced mechanical properties, customizing microneedles to cater to specialized clinical demands. In parallel, we deliberate on safety strategies aimed at boosting drug loading capacities and solidifying the efficacy of microneedle-based therapeutics. In summation, this review accentuates the pivotal role of polymeric microneedle technology in contemporary healthcare, charting a course for future investigative endeavors and developmental strides within this burgeoning field.
Collapse
Affiliation(s)
- Yun Liu
- Key Laboratory of Acupuncture and Medicine Research of Ministry of Education, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Ruiyue Mao
- Key Laboratory of Acupuncture and Medicine Research of Ministry of Education, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Shijia Han
- Key Laboratory of Acupuncture and Medicine Research of Ministry of Education, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Zhi Yu
- Key Laboratory of Acupuncture and Medicine Research of Ministry of Education, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Bin Xu
- Key Laboratory of Acupuncture and Medicine Research of Ministry of Education, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Tiancheng Xu
- Key Laboratory of Acupuncture and Medicine Research of Ministry of Education, Nanjing University of Chinese Medicine, Nanjing 210023, China
| |
Collapse
|
2
|
Liu Y, Mao R, Han S, Yu Z, Xu B, Xu T. Polymeric Microneedle Drug Delivery Systems: Mechanisms of Treatment, Material Properties, and Clinical Applications-A Comprehensive Review. Polymers (Basel) 2024; 16:2568. [PMID: 39339032 PMCID: PMC11434959 DOI: 10.3390/polym16182568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 09/08/2024] [Accepted: 09/09/2024] [Indexed: 09/30/2024] Open
Abstract
Our comprehensive review plunges into the cutting-edge advancements of polymeric microneedle drug delivery systems, underscoring their transformative potential in the realm of transdermal drug administration. Our scrutiny centers on the substrate materials pivotal for microneedle construction and the core properties that dictate their efficacy. We delve into the distinctive interplay between microneedles and dermal layers, underscoring the mechanisms by which this synergy enhances drug absorption and precision targeting. Moreover, we examine the acupoint-target organ-ganglion nexus, an innovative strategy that steers drug concentration to specific targets, offering a paradigm for precision medicine. A thorough analysis of the clinical applications of polymeric microneedle systems is presented, highlighting their adaptability and impact across a spectrum of therapeutic domains. This review also accentuates the systems' promise to bolster patient compliance, attributed to their minimally invasive and painless mode of drug delivery. We present forward-looking strategies aimed at optimizing stimulation sites to amplify therapeutic benefits. The anticipation is set for the introduction of superior biocompatible materials with advanced mechanical properties, customizing microneedles to cater to specialized clinical demands. In parallel, we deliberate on safety strategies aimed at boosting drug loading capacities and solidifying the efficacy of microneedle-based therapeutics. In summation, this review accentuates the pivotal role of polymeric microneedle technology in contemporary healthcare, charting a course for future investigative endeavors and developmental strides within this burgeoning field.
Collapse
Affiliation(s)
- Yun Liu
- Key Laboratory of Acupuncture and Medicine Research of Ministry of Education, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Ruiyue Mao
- Key Laboratory of Acupuncture and Medicine Research of Ministry of Education, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Shijia Han
- Key Laboratory of Acupuncture and Medicine Research of Ministry of Education, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Zhi Yu
- Key Laboratory of Acupuncture and Medicine Research of Ministry of Education, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Bin Xu
- Key Laboratory of Acupuncture and Medicine Research of Ministry of Education, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Tiancheng Xu
- Key Laboratory of Acupuncture and Medicine Research of Ministry of Education, Nanjing University of Chinese Medicine, Nanjing 210023, China
| |
Collapse
|
3
|
Kusumoputro S, Au C, Lam KH, Park N, Hyun A, Kusumoputro E, Wang X, Xia T. Liver-Targeting Nanoplatforms for the Induction of Immune Tolerance. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 14:67. [PMID: 38202522 PMCID: PMC10780512 DOI: 10.3390/nano14010067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 12/14/2023] [Accepted: 12/21/2023] [Indexed: 01/12/2024]
Abstract
Liver-targeting nanoparticles have emerged as a promising platform for the induction of immune tolerance by taking advantage of the liver's unique tolerogenic properties and nanoparticles' physicochemical flexibility. Such an approach provides a versatile solution to the treatment of a diversity of immunologic diseases. In this review, we begin by assessing the design parameters integral to cell-specific targeting and the tolerogenic induction of nanoplatforms engineered to target the four critical immunogenic hepatic cells, including liver sinusoidal epithelial cells (LSECs), Kupffer cells (KCs), hepatic stellate cells (HSCs), and hepatocytes. We also include an overview of multiple therapeutic strategies in which nanoparticles are being studied to treat many allergies and autoimmune disorders. Finally, we explore the challenges of using nanoparticles in this field while highlighting future avenues to expand the therapeutic utility of liver-targeting nanoparticles in autoimmune processes.
Collapse
Affiliation(s)
- Sydney Kusumoputro
- Department of Medicine, Drexel University College of Medicine, Philadelphia, PA 19129, USA; (S.K.); (N.P.)
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, CA 90095, USA
| | - Christian Au
- Department of Bioengineering, University of California, Los Angeles, CA 90095, USA;
- Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90007, USA;
| | - Katie H. Lam
- Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90007, USA;
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, CA 90095, USA
| | - Nathaniel Park
- Department of Medicine, Drexel University College of Medicine, Philadelphia, PA 19129, USA; (S.K.); (N.P.)
| | - Austin Hyun
- Department of Medicine, Lake Erie College of Osteopathic Medicine, Bradenton, FL 34211, USA;
- Department of Integrative Biology and Physiology, University of California, Los Angeles, CA 90095, USA
| | - Emily Kusumoputro
- Department of Evolution, Ecology, and Organismal Biology, University of California, Riverside, CA 92521, USA;
| | - Xiang Wang
- Division of NanoMedicine, Department of Medicine, University of California, Los Angeles, CA 90095, USA
- California NanoSystems Institute, University of California, Los Angeles, CA 90095, USA
| | - Tian Xia
- Division of NanoMedicine, Department of Medicine, University of California, Los Angeles, CA 90095, USA
- California NanoSystems Institute, University of California, Los Angeles, CA 90095, USA
| |
Collapse
|
4
|
Xu Y, Zhao M, Cao J, Fang T, Zhang J, Zhen Y, Wu F, Yu X, Liu Y, Li J, Wang D. Applications and recent advances in transdermal drug delivery systems for the treatment of rheumatoid arthritis. Acta Pharm Sin B 2023; 13:4417-4441. [PMID: 37969725 PMCID: PMC10638506 DOI: 10.1016/j.apsb.2023.05.025] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 04/21/2023] [Accepted: 05/10/2023] [Indexed: 11/17/2023] Open
Abstract
Rheumatoid arthritis is a chronic, systemic autoimmune disease predominantly based on joint lesions with an extremely high disability and deformity rate. Several drugs have been used for the treatment of rheumatoid arthritis, but their use is limited by suboptimal bioavailability, serious adverse effects, and nonnegligible first-pass effects. In contrast, transdermal drug delivery systems (TDDSs) can avoid these drawbacks and improve patient compliance, making them a promising option for the treatment of rheumatoid arthritis (RA). Of course, TDDSs also face unique challenges, as the physiological barrier of the skin makes drug delivery somewhat limited. To overcome this barrier and maximize drug delivery efficiency, TDDSs have evolved in terms of the principle of transdermal facilitation and transdermal facilitation technology, and different generations of TDDSs have been derived, which have significantly improved transdermal efficiency and even achieved individualized controlled drug delivery. In this review, we summarize the different generations of transdermal drug delivery systems, the corresponding transdermal strategies, and their applications in the treatment of RA.
Collapse
Affiliation(s)
| | | | - Jinxue Cao
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Ting Fang
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Jian Zhang
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Yanli Zhen
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Fangling Wu
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Xiaohui Yu
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Yaming Liu
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Ji Li
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Dongkai Wang
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| |
Collapse
|
5
|
Lin G, Wang J, Yang YG, Zhang Y, Sun T. Advances in dendritic cell targeting nano-delivery systems for induction of immune tolerance. Front Bioeng Biotechnol 2023; 11:1242126. [PMID: 37877041 PMCID: PMC10593475 DOI: 10.3389/fbioe.2023.1242126] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Accepted: 09/25/2023] [Indexed: 10/26/2023] Open
Abstract
Dendritic cells (DCs) are the major specialized antigen-presenting cells (APCs), play a key role in initiating the body's immune response, maintain the balance of immunity. DCs can also induce immune tolerance by rendering effector T cells absent and anergy, and promoting the expansion of regulatory T cells. Induction of tolerogenic DCs has been proved to be a promising strategy for the treatment of autoimmune diseases, organ transplantation, and allergic diseases by various laboratory researches and clinical trials. The development of nano-delivery systems has led to advances in situ modulation of the tolerance phenotype of DCs. By changing the material composition, particle size, zeta-potential, and surface modification of nanoparticles, nanoparticles can be used for the therapeutic payloads targeted delivery to DCs, endowing them with great potential in the induction of immune tolerance. This paper reviews how nano-delivery systems can be modulated for targeted delivery to DCs and induce immune tolerance and reviews their potential in the treatment of autoimmune diseases, organ transplantation, and allergic diseases.
Collapse
Affiliation(s)
- Guojiao Lin
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, Institute of Immunology, The First Hospital, Jilin University, Changchun, China
- National-local Joint Engineering Laboratory of Animal Models for Human Diseases, Changchun, China
| | - Jialiang Wang
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, Institute of Immunology, The First Hospital, Jilin University, Changchun, China
- National-local Joint Engineering Laboratory of Animal Models for Human Diseases, Changchun, China
| | - Yong-Guang Yang
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, Institute of Immunology, The First Hospital, Jilin University, Changchun, China
- National-local Joint Engineering Laboratory of Animal Models for Human Diseases, Changchun, China
- International Center of Future Science, Jilin University, Changchun, China
| | - Yuning Zhang
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, Institute of Immunology, The First Hospital, Jilin University, Changchun, China
- National-local Joint Engineering Laboratory of Animal Models for Human Diseases, Changchun, China
| | - Tianmeng Sun
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, Institute of Immunology, The First Hospital, Jilin University, Changchun, China
- National-local Joint Engineering Laboratory of Animal Models for Human Diseases, Changchun, China
- International Center of Future Science, Jilin University, Changchun, China
- State Key Laboratory of Supramolecular Structure and Materials, Jilin University, Changchun, China
| |
Collapse
|
6
|
Guo C, Diao N, Zhang D, Cao M, Wang W, Geng H, Kong M, Chen D. Achyranthes polysaccharide based dual-responsive nano-delivery system for treatment of rheumatoid arthritis. Int J Biol Macromol 2023; 234:123677. [PMID: 36796562 DOI: 10.1016/j.ijbiomac.2023.123677] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Revised: 02/04/2023] [Accepted: 02/10/2023] [Indexed: 02/16/2023]
Abstract
Achyranthes plays the role of dredging the meridians and clearing the joints with a certain anti-inflammatory effect, peripheral analgesic activity and central analgesic activity. A novel self-assembled nanoparticles containing Celastrol (Cel) with matrix metalloproteinase (MMP)-sensitive chemotherapy-sonodynamic therapy was fabricated targeting macrophages at the inflammatory site of rheumatoid arthritis. Dextran sulfate (DS) with highly expressed SR-A receptor on the surface of macrophages is used to specifically target the site of inflammation; by introducing PVGLIG enzyme-sensitive polypeptides and ROS-responsive bonds, it can achieve the desired effect on MMP-2/9 and reactive oxygen species at the joint site. The preparation forms DS-PVGLIG-Cel&Abps-thioketal-Cur@Cel nanomicelles, referred to as D&A@Cel. The resulting micelles had an average size of 204.8 nm and the zeta potential -16.46 mV. The results show that activated macrophages can effectively capture Cel in in vivo experiments, indicating that Cel delivered by nanoparticles can significantly improve bioavailability.
Collapse
Affiliation(s)
- Chunjing Guo
- College of Marine Life Science, Ocean University of China, Qingdao 266003, PR China
| | - Ningning Diao
- School of Pharmacy, Yantai University, Yantai 264005, PR China
| | - Dandan Zhang
- School of Pharmacy, Yantai University, Yantai 264005, PR China
| | - Min Cao
- School of Pharmacy, Yantai University, Yantai 264005, PR China
| | - Wenxin Wang
- School of Pharmacy, Yantai University, Yantai 264005, PR China
| | - Hongxu Geng
- School of Pharmacy, Yantai University, Yantai 264005, PR China
| | - Ming Kong
- College of Marine Life Science, Ocean University of China, Qingdao 266003, PR China.
| | - Daquan Chen
- School of Pharmacy, Yantai University, Yantai 264005, PR China.
| |
Collapse
|
7
|
Zhang G, Han W, Zhao P, Wang Z, Li M, Sui X, Liu Y, Tian B, He Z, Fu Q. Programmed pH-responsive core-shell nanoparticles for precisely targeted therapy of ulcerative colitis. NANOSCALE 2023; 15:1937-1946. [PMID: 36625215 DOI: 10.1039/d2nr04968f] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
pH-Responsive nanotherapeutics were recently developed for the treatment of ulcerative colitis (UC). However, they target the entire colon rather than the UC site, which leads to insufficient accumulation in inflamed colon lesions and causes side effects. Core-shell nanoparticles exhibit unique advantages in improving the precision of targeted delivery. In this study, Eudragit® EPO and L100, two pH-sensitive materials, were coated on nano-sized curcumin to fabricate core-shell nanoparticles. The developed CNs@EPO@L100 exhibited programmed pH-responsive drug release behavior, improved in vitro anti-inflammatory ability, and enhanced accumulation at the site of inflammation in the colon. Furthermore, after oral administration, CNs@EPO@L100 significantly ameliorated the inflammatory symptoms in mice. Taken together, this study provides insights into programmed release through the rational application of pH-sensitive materials and offers strategies for a precisely targeted therapy of UC using core-shell nanoparticles.
Collapse
Affiliation(s)
- Guangshuai Zhang
- Wuya College of Innovation, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang 110016, China.
| | - Wen Han
- Wuya College of Innovation, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang 110016, China.
| | - Peixu Zhao
- Wuya College of Innovation, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang 110016, China.
| | - Zijun Wang
- Wuya College of Innovation, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang 110016, China.
- West China School of Pharmacy, Sichuan University, No. 17, Section 3, Renmin South Road, Chengdu 610041, China
| | - Mo Li
- Liaoning Institute for Drug Control, No. 7, Chongshan West Road, Shenyang 110016, China
| | - Xiaofan Sui
- Liaoning Institute for Drug Control, No. 7, Chongshan West Road, Shenyang 110016, China
| | - Yanhua Liu
- Ningxia Medical University, No. 1160, Shengli Street, Xingqing District, Yinchuan 750004, China
| | - Baocheng Tian
- School of Pharmacy, Binzhou Medical University, No. 346, Guanhai Road, Yantai 264003, China
| | - Zhonggui He
- Wuya College of Innovation, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang 110016, China.
| | - Qiang Fu
- Wuya College of Innovation, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang 110016, China.
| |
Collapse
|
8
|
Cao Y, Song W, Chen X. Multivalent sialic acid materials for biomedical applications. Biomater Sci 2023; 11:2620-2638. [PMID: 36661319 DOI: 10.1039/d2bm01595a] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Sialic acid is a kind of monosaccharide expressed on the non-reducing end of glycoproteins or glycolipids. It acts as a signal molecule combining with its natural receptors such as selectins and siglecs (sialic acid-binding immunoglobulin-like lectins) in intercellular interactions like immunological surveillance and leukocyte infiltration. The last few decades have witnessed the exploration of the roles that sialic acid plays in different physiological and pathological processes and the use of sialic acid-modified materials as therapeutics for related diseases like immune dysregulation and virus infection. In this review, we will briefly introduce the biomedical function of sialic acids in organisms and the utilization of multivalent sialic acid materials for targeted drug delivery as well as therapeutic applications including anti-inflammation and anti-virus.
Collapse
Affiliation(s)
- Yusong Cao
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China. .,University of Science and Technology of China, Hefei, 230026, China
| | - Wantong Song
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China. .,University of Science and Technology of China, Hefei, 230026, China.,Jilin Biomedical Polymers Engineering Laboratory, Changchun, 130022, China
| | - Xuesi Chen
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China. .,University of Science and Technology of China, Hefei, 230026, China.,Jilin Biomedical Polymers Engineering Laboratory, Changchun, 130022, China
| |
Collapse
|
9
|
Soraci L, Gambuzza ME, Biscetti L, Laganà P, Lo Russo C, Buda A, Barresi G, Corsonello A, Lattanzio F, Lorello G, Filippelli G, Marino S. Toll-like receptors and NLRP3 inflammasome-dependent pathways in Parkinson's disease: mechanisms and therapeutic implications. J Neurol 2023; 270:1346-1360. [PMID: 36460875 PMCID: PMC9971082 DOI: 10.1007/s00415-022-11491-3] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 11/10/2022] [Accepted: 11/13/2022] [Indexed: 12/05/2022]
Abstract
Parkinson's disease (PD) is a chronic progressive neurodegenerative disorder characterized by motor and non-motor disturbances as a result of a complex and not fully understood pathogenesis, probably including neuroinflammation, oxidative stress, and formation of alpha-synuclein (α-syn) aggregates. As age is the main risk factor for several neurodegenerative disorders including PD, progressive aging of the immune system leading to inflammaging and immunosenescence may contribute to neuroinflammation leading to PD onset and progression; abnormal α-syn aggregation in the context of immune dysfunction may favor activation of nucleotide-binding oligomerization domain-like receptor (NOD) family pyrin domain containing 3 (NLRP3) inflammasome within microglial cells through interaction with toll-like receptors (TLRs). This process would further lead to activation of Caspase (Cas)-1, and increased production of pro-inflammatory cytokines (PC), with subsequent impairment of mitochondria and damage to dopaminergic neurons. All these phenomena are mediated by the translocation of nuclear factor kappa-B (NF-κB) and enhanced by reactive oxygen species (ROS). To date, drugs to treat PD are mainly aimed at relieving clinical symptoms and there are no disease-modifying options to reverse or stop disease progression. This review outlines the role of the TLR/NLRP3/Cas-1 pathway in PD-related immune dysfunction, also focusing on specific therapeutic options that might be used since the early stages of the disease to counteract neuroinflammation and immune dysfunction.
Collapse
Affiliation(s)
- Luca Soraci
- Unit of Geriatric Medicine, Italian National Research Center on Aging (INRCA-IRCCS), 87100 Cosenza, Italy
| | - Maria Elsa Gambuzza
- Territorial Office of Messina, Italian Ministry of Health, 98122 Messina, Italy
| | - Leonardo Biscetti
- Section of Neurology, Italian National Research Center on Aging (INRCA-IRCCS), 60121, Ancona, Italy.
| | - Pasqualina Laganà
- Biomedical, Dental, Morphological and Functional Imaging Department, University of Messina, 98124 Messina, Italy
| | - Carmela Lo Russo
- Unit of Geriatric Medicine, Italian National Research Center on Aging (INRCA-IRCCS), 87100 Cosenza, Italy
| | - Annamaria Buda
- Department of Clinical and Experimental Medicine, University of Messina, 98124 Messina, Italy
| | - Giada Barresi
- Department of Clinical and Experimental Medicine, University of Messina, 98124 Messina, Italy
| | - Andrea Corsonello
- Unit of Geriatric Medicine, Italian National Research Center on Aging (INRCA-IRCCS), 87100 Cosenza, Italy
| | - Fabrizia Lattanzio
- Scientific Direction, Italian National Research Center on Aging (INRCA-IRCCS), 60121 Ancona, Italy
| | - Giuseppe Lorello
- Unit of Internal Medicine, Polyclinic G Martino Hospital, 98125 Messina, Italy
| | | | - Silvia Marino
- IRCCS Centro Neurolesi Bonino-Pulejo, 98124 Messina, Italy
| |
Collapse
|
10
|
Tredicine M, Ria F, Poerio N, Lucchini M, Bianco A, De Santis F, Valentini M, De Arcangelis V, Rende M, Stabile AM, Pistilli A, Camponeschi C, Nociti V, Mirabella M, Fraziano M, Di Sante G. Liposome-based nanoparticles impact on regulatory and effector phenotypes of macrophages and T cells in multiple Sclerosis patients. Biomaterials 2023; 292:121930. [PMID: 36493716 DOI: 10.1016/j.biomaterials.2022.121930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Revised: 11/19/2022] [Accepted: 11/22/2022] [Indexed: 11/30/2022]
Abstract
Current available treatments of Multiple Sclerosis (MS) reduce neuroinflammation acting on different targets on the immune system, but potentially lead to severe side effects and have a limited efficacy in slowing the progression of the disease. Here, we evaluated in vitro the immunomodulatory potential of a new class of nanoparticles - liposomes, constituted by a double-layer of phosphatidylserine (PSCho/PS), and double-faced, with an outer layer of phosphatidylserine and an inner layer of phosphatidic acid (PSCho/PA), either alone or in the presence of the myelin basic protein (MBP) peptide (residues 85-99) (PSCho/PS-MBP and PSCho/PA-MBP). Results showed that PSCho/PS are equally and efficiently internalized by pro- and anti-inflammatory macrophages (M1 and M2 respectively), while PSCho/PA were internalized better by M2 than M1. PSCho/PS liposomes were able to inhibit the secretion of innate pro-inflammatory cytokine IL-1β. PSCho/PS liposomes expanded Tregs, reducing Th1 and Th17 cells, while PSCho/PA liposomes were unable to dampen pro-inflammatory T cells and to promote immune-regulatory phenotype (Treg). The ability of PSCho/PS liposomes to up-regulate Treg cells was more pronounced in MS patients with high basal expression of M2 markers. PSCho/PS liposomes were more effective in decreasing Th1 (but not Th17) cells in MS patients with a disease duration >3 months. On the other hand, down-modulation of Th17 cells was evident in MS patients with active, Gadolinium enhancing lesions at MRI and in MS patients with a high basal expression of M1-associated markers in the monocytes. The same findings were observed for the modulation of MBP-driven Th1/Th17/Treg responses. These observations suggest that early MS associate to a hard-wired pro-Th1 phenotype of M1 that is lost later during disease course. On the other hand, acute inflammatory events reflect a temporary decrease of M2 phenotype that however is amenable to restauration upon treatment with PSCho/PS liposomes. Thus, together these data indicate that monocytes/macrophages may play an important regulatory function during MS course and suggest a role for PSCho/PS and PSCho/PS-MBP as new therapeutic tools to dampen the pro-inflammatory immune responses and to promote its regulatory branch.
Collapse
Affiliation(s)
- Maria Tredicine
- Section of General Pathology, Department of Translational Medicine and Surgery, Università Cattolica del Sacro Cuore, Largo Francesco Vito 1, 00168, Rome, Italy.
| | - Francesco Ria
- Section of General Pathology, Department of Translational Medicine and Surgery, Università Cattolica del Sacro Cuore, Largo Francesco Vito 1, 00168, Rome, Italy; Fondazione Policlinico Universitario A. Gemelli IRCCS, Department Laboratory and Infectious diseases Sciences, Largo Agostino Gemelli 1-8, 00168, Rome, Italy.
| | - Noemi Poerio
- Department of Biology, University of Rome "TorVergata", Via della Ricerca Scientifica 1, 00173, Rome, Italy.
| | - Matteo Lucchini
- Fondazione Policlinico Universitario Agostino Gemelli IRCCS, UOC of Neurology, Largo Agostino Gemelli 8, 00168, Rome, Italy; Department of Neurosciences, Centro di Ricerca Sclerosi Multipla (CERSM), Università Cattolica del Sacro Cuore, Largo Francesco Vito 1, 00168, Rome, Italy.
| | - Assunta Bianco
- Fondazione Policlinico Universitario Agostino Gemelli IRCCS, UOC of Neurology, Largo Agostino Gemelli 8, 00168, Rome, Italy; Department of Neurosciences, Centro di Ricerca Sclerosi Multipla (CERSM), Università Cattolica del Sacro Cuore, Largo Francesco Vito 1, 00168, Rome, Italy.
| | - Federica De Santis
- Department of Biology, University of Rome "TorVergata", Via della Ricerca Scientifica 1, 00173, Rome, Italy.
| | - Mariagrazia Valentini
- Section of Pathology, Department of Woman, Child and Public Health Sciences, Fondazione Policlinico Universitario A. Gemelli IRCCS, Largo Agostino Gemelli 1-8, 00168, Rome, Italy.
| | - Valeria De Arcangelis
- Fondazione Policlinico Universitario Agostino Gemelli IRCCS, UOC of Neurology, Largo Agostino Gemelli 8, 00168, Rome, Italy; Department of Neurosciences, Centro di Ricerca Sclerosi Multipla (CERSM), Università Cattolica del Sacro Cuore, Largo Francesco Vito 1, 00168, Rome, Italy.
| | - Mario Rende
- Department of Surgery and Medicine, Institute of Human, Clinical and Forensic Anatomy, Piazza L. Severi 1, 06125, Perugia, Italy.
| | - Anna Maria Stabile
- Department of Surgery and Medicine, Institute of Human, Clinical and Forensic Anatomy, Piazza L. Severi 1, 06125, Perugia, Italy.
| | - Alessandra Pistilli
- Department of Surgery and Medicine, Institute of Human, Clinical and Forensic Anatomy, Piazza L. Severi 1, 06125, Perugia, Italy.
| | - Chiara Camponeschi
- Section of General Pathology, Department of Translational Medicine and Surgery, Università Cattolica del Sacro Cuore, Largo Francesco Vito 1, 00168, Rome, Italy; Institute of Chemical Sciences and Technologies ''Giulio Natta'' (SCITEC)-CNR, Largo Francesco Vito 1, 00168, Rome, Italy.
| | - Viviana Nociti
- Fondazione Policlinico Universitario Agostino Gemelli IRCCS, UOC of Neurology, Largo Agostino Gemelli 8, 00168, Rome, Italy; Department of Neurosciences, Centro di Ricerca Sclerosi Multipla (CERSM), Università Cattolica del Sacro Cuore, Largo Francesco Vito 1, 00168, Rome, Italy.
| | - Massimiliano Mirabella
- Fondazione Policlinico Universitario Agostino Gemelli IRCCS, UOC of Neurology, Largo Agostino Gemelli 8, 00168, Rome, Italy; Department of Neurosciences, Centro di Ricerca Sclerosi Multipla (CERSM), Università Cattolica del Sacro Cuore, Largo Francesco Vito 1, 00168, Rome, Italy.
| | - Maurizio Fraziano
- Department of Biology, University of Rome "TorVergata", Via della Ricerca Scientifica 1, 00173, Rome, Italy.
| | - Gabriele Di Sante
- Section of General Pathology, Department of Translational Medicine and Surgery, Università Cattolica del Sacro Cuore, Largo Francesco Vito 1, 00168, Rome, Italy; Department of Surgery and Medicine, Institute of Human, Clinical and Forensic Anatomy, Piazza L. Severi 1, 06125, Perugia, Italy.
| |
Collapse
|
11
|
Du Y, Li C, Zhang Y, Xiong W, Wang F, Wang J, Zhang Y, Deng L, Li X, Chen W, Cui W. In Situ-Activated Phospholipid-Mimic Artemisinin Prodrug via Injectable Hydrogel Nano/Microsphere for Rheumatoid Arthritis Therapy. RESEARCH (WASHINGTON, D.C.) 2022; 2022:0003. [PMID: 39290968 PMCID: PMC11407526 DOI: 10.34133/research.0003] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 10/19/2022] [Indexed: 09/19/2024]
Abstract
In situ-activated therapy is a decent option for localized diseases with improved efficacies and reduced side effects, which is heavily dependent on the local conversion or activation of bioinert components. In this work, we applied a phospholipid-mimic artemisinin prodrug (ARP) for preparing an injectable nano/microsphere to first realize an in situ-activated therapy of the typical systemically administrated artemisinin-based medicines for a localized rheumatoid arthritis (RA) lesion. ARP is simultaneously an alternative of phospholipids and an enzyme-independent activable prodrug, which can formulate "drug-in-drug" co-delivery liposomes with cargo of partner drugs (e.g., methotrexate). To further stabilize ARP/methotrexate "drug-in-drug" liposomes (MTX/ARPL) for a long-term intra-articular retention, a liposome-embedded hydrogel nano/microsphere (MTX/ARPL@MS) was prepared. After the local injection, the MTX/ARPL could be slowly released because of imine hydrolysis and targeted to RA synovial macrophages and fibroblasts simultaneously. ARP assembly is relatively stable before cellular internalization but disassembled ARP after lysosomal escape and converted into dihydroartemisinin rapidly to realize the effective in situ activation. Taken together, phospholipid-mimic ARP was applied for the firstly localized in situ-activated RA therapy of artemisinin-based drugs, which also provided a brand-new phospholipid-mimic strategy for other systemically administrated prodrugs to realize a remodeling therapeutic schedule for localized diseases.
Collapse
Affiliation(s)
- Yawei Du
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai 200025, China
| | - Chao Li
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai 200025, China
- Department of Orthopaedic Surgery, the Third Hospital of Hebei Medical University, No. 139 Ziqiang Road, Shijiazhuang 050051, China
| | - Yu Zhang
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai 200025, China
| | - Wei Xiong
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai 200025, China
| | - Fei Wang
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai 200025, China
| | - Juan Wang
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai 200025, China
| | - Yingze Zhang
- Department of Orthopaedic Surgery, the Third Hospital of Hebei Medical University, No. 139 Ziqiang Road, Shijiazhuang 050051, China
| | - Lianfu Deng
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai 200025, China
| | - Xinsong Li
- School of Chemistry and Chemical Engineering, Southeast University, 2 Southeast University Road, Nanjing 211189, China
| | - Wei Chen
- Department of Orthopaedic Surgery, the Third Hospital of Hebei Medical University, No. 139 Ziqiang Road, Shijiazhuang 050051, China
| | - Wenguo Cui
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai 200025, China
| |
Collapse
|
12
|
Faria P, Pacheco C, Moura RP, Sarmento B, Martins C. Multifunctional nanomedicine strategies to manage brain diseases. Drug Deliv Transl Res 2022; 13:1322-1342. [PMID: 36344871 DOI: 10.1007/s13346-022-01256-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/30/2022] [Indexed: 11/09/2022]
Abstract
Brain diseases represent a substantial social and economic burden, currently affecting one in six individuals worldwide. Brain research has been focus of great attention in order to unravel the pathogenesis and complexity of brain diseases at the cellular, molecular, and microenvironmental levels. Due to the intrinsic nature of the brain, the presence of the highly restrictive blood-brain barrier (BBB), and the pathophysiology of most diseases, therapies can hardly be considered successful purely by the administration of one drug to a patient. Apart from improving pharmacokinetic parameters, tailoring biodistribution, and reducing the number of side effects, nanomedicines are able to actively co-target the therapeutics to the brain parenchyma and brain lesions, as well as to achieve the delivery of multiple cargos with therapeutic, diagnostic, and theranostic properties. Among other multivalent effects that can be personalized according to the disease needs, this represents a promising class of novel nanosystems, termed multifunctional nanomedicines. Herein, we review the principal mechanisms of therapeutic resistance of the most prevalent brain diseases, how to overcome this therapeutic resistance through the use of multifunctional nanomedicines that tackle multiple fronts of the disease microenvironment, and the promising therapeutic responses achieved by some of the most cutting-edge multifunctional nanomedicines reported in literature.
Collapse
|
13
|
Nooreen R, Nene S, Jain H, Prasannanjaneyulu V, Chitlangya P, Otavi S, Khatri DK, Raghuvanshi RS, Singh SB, Srivastava S. Polymer nanotherapeutics: A versatile platform for effective rheumatoid arthritis therapy. J Control Release 2022; 348:397-419. [PMID: 35660632 DOI: 10.1016/j.jconrel.2022.05.054] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 05/27/2022] [Accepted: 05/29/2022] [Indexed: 11/27/2022]
Abstract
Rheumatoid arthritis is an aggressive and severely debilitating disorder that is characterized by joint pain and cartilage damage. It restricts mobility in patients, leaving them unable to carry out simple tasks. RA presents itself with severe lasting pain, swelling and stiffness in the joints and may cause permanent disability in patients. Treatment regimens currently employed for rheumatoid arthritis revolve around keeping clinical symptoms like joint pain, inflammation, swelling and stiffness at bay. The current therapeutic interventions in rheumatoid arthritis involve the use of non-steroidal anti-inflammatory drugs, glucocorticoids, disease-modifying anti-rheumatic drugs and newer biological drugs that are engineered for inhibiting the expression of pro-inflammatory mediators. These conventional drugs are plagued with severe adverse effects because of their higher systemic distribution, lack of specificity and higher doses. Oral, intra-articular, and intravenous routes are routinely used for drug delivery which is associated with decreased patient compliance, high cost, poor bioavailability and rapid systemic clearance. All these drawbacks have enticed researchers to create novel strategies for drug delivery, the main approach being nanocarrier-based systems. In this article, we aim to consolidate the remarkable contributions of polymeric carrier systems including microneedle technology and smart trigger-responsive polymeric carriers in the management of rheumatoid arthritis along with its detailed pathophysiology. This review also briefly describes the safety and regulatory aspects of polymer therapeutics.
Collapse
Affiliation(s)
- Rimsha Nooreen
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana 500037, India
| | - Shweta Nene
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana 500037, India
| | - Harsha Jain
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana 500037, India
| | - Velpula Prasannanjaneyulu
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana 500037, India
| | - Palak Chitlangya
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana 500037, India
| | - Shivam Otavi
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana 500037, India
| | - Dharmendra Kumar Khatri
- Department of Biological Science, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana 500037, India
| | - Rajeev Singh Raghuvanshi
- Indian Pharmacopoeia Commission, Ministry of Health & Family Welfare, Government of India, India
| | - Shashi Bala Singh
- Department of Biological Science, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana 500037, India
| | - Saurabh Srivastava
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana 500037, India.
| |
Collapse
|
14
|
Liu Y, Xu L, Zhang Q, Kang Y, Liu L, Liu Z, Wang Y, Jiang X, Shan Y, Luo R, Cui X, Yang Y, Yang X, Liu X, Li Z. Localized Myocardial Anti-Inflammatory Effects of Temperature-Sensitive Budesonide Nanoparticles during Radiofrequency Catheter Ablation. RESEARCH 2022; 2022:9816234. [PMID: 35707046 PMCID: PMC9178488 DOI: 10.34133/2022/9816234] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 05/05/2022] [Indexed: 01/04/2023]
Abstract
Radiofrequency (RF) catheter ablation has emerged as an effective alternative for the treatment of atrial fibrillation (AF), but ablation lesions will result in swelling and hematoma of local surrounding tissue, triggering inflammatory cell infiltration and increased release of inflammatory cytokines. Some studies have shown that the inflammatory response may be related to the early occurrence of AF. The most direct way to inhibit perioperative inflammation is to use anti-inflammatory drugs such as glucocorticoids. Here, we prepared polylactic-co-glycolic acid (PLGA) nanoparticles loaded with budesonide (BUD) and delivered them through irrigation of saline during the onset of ablation. Local high temperature promoted local rupture of PLGA nanoparticles, releasing BUD, and produced a timely and effective local myocardial anti-inflammatory effect, resulting in the reduction of acute hematoma and inflammatory cell infiltration and the enhancement of ablation effect. Nanoparticles would also infiltrate into the local myocardium and gradually release BUD ingredients to produce a continuous anti-inflammatory effect in the next few days. This resulted in a decrease in the level of inflammatory cytokine IL-6 and an increase of anti-inflammatory cytokine IL-10. This study explored an extraordinary drug delivery strategy to reduce ablation-related inflammation, which may prevent early recurrence of AF.
Collapse
Affiliation(s)
- Ye Liu
- Heart Center & Beijing Key Laboratory of Hypertension, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100020, China
| | - Lingling Xu
- Beijing Key Laboratory of Micro-Nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 101400, China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qiuyun Zhang
- School of Traditional Chinese Medicine, Capital Medical University, Beijing 100069, China
| | - Yong Kang
- Academy of Medical Engineering and Translational Medicine, Medical College, Tianjin University, Tianjin 300072, China
| | - Lifeng Liu
- Heart Center & Beijing Key Laboratory of Hypertension, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100020, China
| | - Zheng Liu
- Heart Center & Beijing Key Laboratory of Hypertension, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100020, China
| | - Yuxing Wang
- Heart Center & Beijing Key Laboratory of Hypertension, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100020, China
| | - Xuejiao Jiang
- Academy of Medical Engineering and Translational Medicine, Medical College, Tianjin University, Tianjin 300072, China
| | - Yizhu Shan
- Beijing Key Laboratory of Micro-Nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 101400, China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ruizeng Luo
- Beijing Key Laboratory of Micro-Nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 101400, China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xi Cui
- Beijing Key Laboratory of Micro-Nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 101400, China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuan Yang
- Beijing Key Laboratory of Micro-Nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 101400, China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xinchun Yang
- Heart Center & Beijing Key Laboratory of Hypertension, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100020, China
| | - Xiaoqing Liu
- Heart Center & Beijing Key Laboratory of Hypertension, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100020, China
| | - Zhou Li
- Beijing Key Laboratory of Micro-Nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 101400, China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing 100049, China
- Center on Nanoenergy Research, School of Physical Science and Technology, Guangxi University, Nanning 530004, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|
15
|
To SKY, Tang MKS, Tong Y, Zhang J, Chan KKL, Ip PPC, Shi J, Wong AST. A Selective β-Catenin-Metadherin/CEACAM1-CCL3 Axis Mediates Metastatic Heterogeneity upon Tumor-Macrophage Interaction. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2103230. [PMID: 35403834 PMCID: PMC9165500 DOI: 10.1002/advs.202103230] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 01/31/2022] [Indexed: 05/23/2023]
Abstract
Tumor heterogeneity plays a key role in cancer relapse and metastasis, however, the distinct cellular behaviors and kinetics of interactions among different cancer cell subclones and the tumor microenvironment are poorly understood. By profiling an isogenic model that resembles spontaneous human ovarian cancer metastasis with an highly metastatic (HM) and non-metastatic (NM) tumor cell pair, one finds an upregulation of Wnt/β-catenin signaling uniquely in HM. Using humanized immunocompetent mice, one shows for the first time that activated β-catenin acts nonautonomously to modulate the immune microenvironment by enhancing infiltrating tumor-associated macrophages (TAM) at the metastatic site. Single-cell time-lapse microscopy further reveals that upon contact with macrophages, a significant subset of HM, but not NM, becomes polyploid, a phenotype pivotal for tumor aggressiveness and therapy resistance. Moreover, HM, but not NM, polarizes macrophages to a TAM phenotype. Mechanistically, β-catenin upregulates cancer cell surface metadherin, which communicates through CEACAM1 expressed on macrophages to produce CCL3. Tumor xenografts in humanized mice and clinical patient samples both corroborate the relevance of enhanced metastasis, TAM activation, and polyploidy in vivo. The results thus suggest that targeting the β-catenin-metadherin/CEACAM1-CCL3 positive feedback cascade holds great therapeutic potential to disrupt polyploidization of the cancer subclones that drive metastasis.
Collapse
Affiliation(s)
- Sally K. Y. To
- School of Biological SciencesThe University of Hong KongPokfulam RoadHong KongChina
| | - Maggie K. S. Tang
- School of Biological SciencesThe University of Hong KongPokfulam RoadHong KongChina
- Laboratory for Synthetic Chemistry and Chemical Biology Limited17W, Hong Kong Science and Technology Parks, New TerritoriesHong KongChina
| | - Yin Tong
- Department of PathologyThe University of Hong KongQueen Mary HospitalPokfulam RoadHong Kong
| | - Jiangwen Zhang
- School of Biological SciencesThe University of Hong KongPokfulam RoadHong KongChina
| | - Karen K. L. Chan
- Department of Obstetrics & GynaecologyThe University of Hong KongQueen Mary HospitalPokfulam RoadHong KongChina
| | - Philip P. C. Ip
- Department of PathologyThe University of Hong KongQueen Mary HospitalPokfulam RoadHong Kong
| | - Jue Shi
- Centre for Quantitative Systems Biology and Department of PhysicsHong Kong Baptist UniversityHong KongChina
| | - Alice S. T. Wong
- School of Biological SciencesThe University of Hong KongPokfulam RoadHong KongChina
| |
Collapse
|
16
|
Shao LT, Luo L, Qiu JH, Deng DYB. PTH (1-34) enhances the therapeutic effect of bone marrow mesenchymal stem cell-derived exosomes by inhibiting proinflammatory cytokines expression on OA chondrocyte repair in vitro. Arthritis Res Ther 2022; 24:96. [PMID: 35488245 PMCID: PMC9052609 DOI: 10.1186/s13075-022-02778-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 04/08/2022] [Indexed: 12/03/2022] Open
Abstract
Background The effects of bone marrow mesenchymal stem cells (BMSCs) during the treatment of cartilage damage have been proven to be attributed to paracrine mechanisms, particularly the effect of exosomes. Exosomes from different batches are inhomogeneous, and different treatment effects are observed between samples. The purpose of this research was to find more effective and homogeneous exosomes for the repair of chondrocytes in osteoarthritis (OA). We observed the potential effects and possible mechanisms of exosomes derived from parathyroid hormone (PTH) (1-34)-preconditioned BMSCs (ExoPTH) in the alleviation of OA. Materials and methods Exosomes derived from BMSCs (ExoBMSC) and ExoPTH were isolated by differential centrifugation. Primary rat chondrocytes were used to establish the OA model by interleukin 1 beta (IL-1β) in vitro. The effects of these two types of exosomes on OA chondrocyte proliferation, migration, apoptosis, and extracellular matrix formation were measured and compared. We observed changes in IL-2, TNF-α, and IL-6 levels via Western blotting (WB), and quantitative real-time PCR (qRT–PCR). Results We successfully extracted ExoBMSC and ExoPTH and established an IL-1β-induced OA model in primary chondrocytes from rats. Our study showed that IL-2, TNF-α, and IL-6 levels increased significantly in OA chondrocytes; however, both ExoBMSC and ExoPTH reduced the levels of IL-2, TNF-α, and IL-6. In addition, ExoPTH exhibited stronger anti-inflammatory effects. ExoPTH had a more marked effect on proliferation, migration, and production of the extracellular matrix (Col-II) in OA chondrocytes than ExoBMSC at 24 h. Conclusion ExoPTH increased the migration, proliferation, and chondral matrix formation of OA chondrocytes in vitro. In OA chondrocyte therapy, the potential mechanism of ExoPTH might involve the inhibition of production of proinflammatory cytokines. Although the two types of exosomes had some similar effects, most effects of ExoPTH were better than those of ExoBMSC, so ExoPTH may have a better ability to alleviate OA. Supplementary Information The online version contains supplementary material available at 10.1186/s13075-022-02778-x.
Collapse
Affiliation(s)
- Li-Tao Shao
- Department of Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, China
| | - Liang Luo
- Department of Critical Care Medicine, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, China
| | - Jie-Hong Qiu
- The Department of Obstetrics and Gynecology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - David Y B Deng
- Department of Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, China.
| |
Collapse
|
17
|
Hu S, Lin Y, Tong C, Huang H, Yi O, Dai Z, Su Z, Liu B, Cai X. A pH-Driven Indomethacin-loaded Nanomedicine for Effective Rheumatoid Arthritis Therapy by Combining with Photothermal Therapy. J Drug Target 2022; 30:737-752. [PMID: 35282742 DOI: 10.1080/1061186x.2022.2053539] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- Shengtao Hu
- Institute of Innovation and Applied Research in Chinese Medicine and Department of Rheumatology of The First Hospital, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China
| | - Ye Lin
- Institute of Innovation and Applied Research in Chinese Medicine and Department of Rheumatology of The First Hospital, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China
| | - Chunyi Tong
- College of Biology, Hunan University, Changsha, Hunan 410082, China
| | - Hong Huang
- Institute of Innovation and Applied Research in Chinese Medicine and Department of Rheumatology of The First Hospital, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China
| | - Ouyang Yi
- Institute of Innovation and Applied Research in Chinese Medicine and Department of Rheumatology of The First Hospital, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China
| | - Zongsun Dai
- Institute of Innovation and Applied Research in Chinese Medicine and Department of Rheumatology of The First Hospital, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China
| | - Zhaoli Su
- Institute of Innovation and Applied Research in Chinese Medicine and Department of Rheumatology of The First Hospital, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China
| | - Bin Liu
- College of Biology, Hunan University, Changsha, Hunan 410082, China
| | - Xiong Cai
- Institute of Innovation and Applied Research in Chinese Medicine and Department of Rheumatology of The First Hospital, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China
| |
Collapse
|
18
|
Zhang M, Hu W, Cai C, Wu Y, Li J, Dong S. Advanced application of stimuli-responsive drug delivery system for inflammatory arthritis treatment. Mater Today Bio 2022; 14:100223. [PMID: 35243298 PMCID: PMC8881671 DOI: 10.1016/j.mtbio.2022.100223] [Citation(s) in RCA: 127] [Impact Index Per Article: 42.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 02/15/2022] [Accepted: 02/16/2022] [Indexed: 02/06/2023] Open
|
19
|
Chen H, Jiang Y, Xu T, Xu J, Yu J, Chu Z, Jiang Y, Song Y, Wang H, Qian H. Au nanoclusters modulated macrophages polarization and synoviocytes apoptosis for enhanced rheumatoid arthritis treatment. J Mater Chem B 2022; 10:4789-4799. [DOI: 10.1039/d2tb00869f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The persistent progression of synovial inflammation and cartilage destruction was contributed to the cross-talk of pro-inflammatory macrophages and activated fibroblast-like synoviocytes (FLS) in synovial microenvironment. In this work, a structurally...
Collapse
|
20
|
Paris JL, de la Torre P, Flores AI. New Therapeutic Approaches for Allergy: A Review of Cell Therapy and Bio- or Nano-Material-Based Strategies. Pharmaceutics 2021; 13:2149. [PMID: 34959429 PMCID: PMC8707403 DOI: 10.3390/pharmaceutics13122149] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 12/07/2021] [Accepted: 12/10/2021] [Indexed: 02/05/2023] Open
Abstract
Allergy constitutes a major health issue due to its large prevalence. The established therapeutic approaches (allergen avoidance, antihistamines, and corticosteroids) do not address the underlying causes of the pathology, highlighting the need for other long-term treatment options. Antigen-specific immunotherapy enables the long-term control of allergic diseases by promoting immunological tolerance to the allergen. However, efficacious immunotherapies are not available for all possible allergens, and the risk of undesired reactions during therapy remains a concern, especially in patients with severe allergic reactions. In this context, two types of therapeutic strategies appear especially promising for the future in the context of allergy: cell therapy and bio- or nano-material-based therapy. In this review, the main strategies developed this far in these two types of strategies are discussed, with several examples illustrating the different approaches.
Collapse
Affiliation(s)
- Juan L. Paris
- Allergy Research Group, Instituto de Investigación Biomédica de Málaga-IBIMA, 29010 Málaga, Spain;
- Andalusian Centre for Nanomedicine and Biotechnology-BIONAND, 29590 Málaga, Spain
| | - Paz de la Torre
- Grupo de Medicina Regenerativa, Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), 28041 Madrid, Spain;
| | - Ana I. Flores
- Grupo de Medicina Regenerativa, Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), 28041 Madrid, Spain;
| |
Collapse
|
21
|
Dangkoub F, Sankian M, Tafaghodi M, Jaafari MR, Badiee A. The impact of nanocarriers in the induction of antigen-specific immunotolerance in autoimmune diseases. J Control Release 2021; 339:274-283. [PMID: 34600024 DOI: 10.1016/j.jconrel.2021.09.037] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 09/26/2021] [Accepted: 09/27/2021] [Indexed: 12/22/2022]
Abstract
Immunotolerance induction in an antigen-specific manner is the long-term goal of immunotherapy to treat autoimmune diseases. Nanocarriers (NCs) can be designed as a new generation of delivery systems to modulate the immune responses through targeted delivery of antigens and immunomodulators to antigen presenting cells (APCs). In this manuscript, several formulation factors in the preparation of NCs which affect their uptake using APCs and generation of tolerance have been reviewed. The physicochemical properties and composition of NCs have been shown to play essential roles in achieving the desired immunological outcome. Also, targeting of dendritic cells and macrophages as APCs and direct targeting of the autoreactive lymphocytes have been presented as two main ways for induction of antigen-specific tolerance by these tolerogenic nanocarriers (tNCs). These particles herald a promising approach to treat or even prevent unwanted immune reactions in humans specifically.
Collapse
Affiliation(s)
- Faezeh Dangkoub
- Department of Pharmaceutical Nanotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran; Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mojtaba Sankian
- Immunology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohsen Tafaghodi
- Department of Pharmaceutical Nanotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran; Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mahmoud Reza Jaafari
- Department of Pharmaceutical Nanotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran; Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ali Badiee
- Department of Pharmaceutical Nanotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran; Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
22
|
Li H, Liu S, Han J, Li S, Gao X, Wang M, Zhu J, Jin T. Role of Toll-Like Receptors in Neuroimmune Diseases: Therapeutic Targets and Problems. Front Immunol 2021; 12:777606. [PMID: 34790205 PMCID: PMC8591135 DOI: 10.3389/fimmu.2021.777606] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 10/15/2021] [Indexed: 12/16/2022] Open
Abstract
Toll-like receptors (TLRs) are a class of proteins playing a key role in innate and adaptive immune responses. TLRs are involved in the development and progression of neuroimmune diseases via initiating inflammatory responses. Thus, targeting TLRs signaling pathway may be considered as a potential therapy for neuroimmune diseases. However, the role of TLRs is elusive and complex in neuroimmune diseases. In addition to the inadequate immune response of TLRs inhibitors in the experiments, the recent studies also demonstrated that partial activation of TLRs is conducive to the production of anti-inflammatory factors and nervous system repair. Exploring the mechanism of TLRs in neuroimmune diseases and combining with developing the emerging drug may conquer neuroimmune diseases in the future. Herein, we provide an overview of the role of TLRs in several neuroimmune diseases, including multiple sclerosis, neuromyelitis optica spectrum disorder, Guillain-Barré syndrome and myasthenia gravis. Emerging difficulties and potential solutions in clinical application of TLRs inhibitors will also be discussed.
Collapse
Affiliation(s)
- Haixia Li
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Changchun, China
| | - Shan Liu
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Changchun, China
| | - Jinming Han
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
- Department of Clinical Neuroscience, Karolinska Institutet, Solna, Sweden
| | - Shengxian Li
- Department of Urology, The First Hospital of Jilin University, Changchun, China
| | - Xiaoyan Gao
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Changchun, China
| | - Meng Wang
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Changchun, China
| | - Jie Zhu
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Changchun, China
- Department of Neurobiology, Care Sciences and Society, Karolinska Institute, Karolinska University Hospital, Solna, Sweden
| | - Tao Jin
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
23
|
Masoumi E, Tahaghoghi-Hajghorbani S, Jafarzadeh L, Sanaei MJ, Pourbagheri-Sigaroodi A, Bashash D. The application of immune checkpoint blockade in breast cancer and the emerging role of nanoparticle. J Control Release 2021; 340:168-187. [PMID: 34743998 DOI: 10.1016/j.jconrel.2021.10.018] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 10/13/2021] [Accepted: 10/14/2021] [Indexed: 12/13/2022]
Abstract
Breast cancer is the most common malignancy in the female population with a high mortality rate. Despite the satisfying depth of studies evaluating the contributory role of immune checkpoints in this malignancy, few articles have reviewed the pros and cons of immune checkpoint blockades (ICBs). In the current review, we provide an overview of immune-related inhibitory molecules and also discuss the original data obtained from international research laboratories on the aberrant expression of T and non-T cell-associated immune checkpoints in breast cancer. Then, we especially focus on recent studies that utilized ICBs as the treatment strategy in breast cancer and provide their efficiency reports. As there are always costs and benefits, we discuss the limitations and challenges toward ICB therapy such as adverse events and drug resistance. In the last section, we allocate an overview of the recent data concerning the application of nanoparticle systems for cancer immunotherapy and propose that nano-based ICB approaches may overcome the challenges related to ICB therapy in breast cancer. In conclusion, it seems it is time for nanoscience to more rapidly move forward into clinical trials and illuminates the breast cancer treatment area with its potent features for the target delivery of ICBs.
Collapse
Affiliation(s)
- Elham Masoumi
- Department of Immunology, School of Medicine, Ilam University of Medical Sciences, Ilam, Iran; Student Research Committee, School of Medicine, Ilam University of Medical Sciences, Ilam, Iran
| | - Sahar Tahaghoghi-Hajghorbani
- Microbiology and Virology Research Center, Qaem Hospital, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Immunology, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Leila Jafarzadeh
- Department of Laboratory Science, Sirjan Faculty of Medical Science, Sirjan, Iran
| | - Mohammad-Javad Sanaei
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Atieh Pourbagheri-Sigaroodi
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Davood Bashash
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
24
|
Biologia Futura: Emerging antigen-specific therapies for autoimmune diseases. Biol Futur 2021; 72:15-24. [PMID: 34554499 DOI: 10.1007/s42977-021-00074-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 01/16/2021] [Indexed: 02/05/2023]
Abstract
Autoimmune diseases are caused by breaking the central and/or peripheral tolerance against self, leading to uncontrolled immune response to autoantigens. The incidences of autoimmune diseases have increased significantly worldwide over the last decades; nearly 5% of the world's population is affected. The current treatments aim to reduce pain and inflammation to prevent organ damage and have a general immunosuppressive effect, but they cannot cure the disease. There is a huge unmet need for autoantigen-specific therapy, without affecting the immune response against pathogens. This goal can be achieved by targeting autoantigen-specific T or B cells and by restoring self-tolerance by inducing tolerogenic antigen-presenting cells (APC) and the development of regulatory T (Treg) cells, for example, by using autoantigenic peptides bound to nanoparticles. Transferring in vitro manipulated autologous tolerogenic APC or autologous autoantigen-specific Treg cells to patients is the promising approach to develop cellular therapeutics. Most recently, chimeric autoantibody receptor T cells have been designed to specifically deplete autoreactive B cells. Limitations of these novel autoantigen-specific therapies will also be discussed.
Collapse
|
25
|
Ilić N, Kosanović M, Gruden-Movsesijan A, Glamočlija S, Sofronić-Milosavljević L, Čolić M, Tomić S. Harnessing immunomodulatory mechanisms of Trichinella spiralis to design novel nanomedical approaches for restoring self-tolerance in autoimmunity. Immunol Lett 2021; 238:57-67. [PMID: 34363897 DOI: 10.1016/j.imlet.2021.04.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 03/28/2021] [Accepted: 04/28/2021] [Indexed: 01/13/2023]
Abstract
The rapid increase in the prevalence of autoimmune diseases in recent decades, especially in developed countries, coincided with improved living conditions and healthcare. Part of this increase could be ascribed to the lack of exposure to infectious agents like helminths that co-evolved with us and display potent immune regulatory actions. In this review we discussed many investigations, including our own, showing that Trichinella spiralis via its excretory-secretory products attenuate Th1/Th17 immunopathological response in autoimmunity and potentiate the protective Th2 and or regulatory T cell response, acting as an effective induction of tolerogenic dendritic cells (DCs), and probably mimicking the autoantigen in some diseases. A recent discovery of T. spiralis extracellular vesicles (TsEVs) suggested that inducing a complex regulation of the immune response requires simultaneous delivery of different signals in nano-sized packages. Indeed, different artificial nanomedical approaches discussed here suggested that co-delivery of multiple signals via nanoparticles is the most promising strategy for the treatment of autoimmune diseases. Although a long way is ahead of us before we could completely replicate natural nano-delivery systems which are both safe and potent in restoring self-tolerance, a clear path is being opened from a careful examination of parasite-host interactions.
Collapse
Affiliation(s)
- Nataša Ilić
- Department for Immunology and Immunoparasitology, Institute for the Application of Nuclear Energy, University in Belgrade, Serbia
| | - Maja Kosanović
- Department for Immunology and Immunoparasitology, Institute for the Application of Nuclear Energy, University in Belgrade, Serbia
| | - Alisa Gruden-Movsesijan
- Department for Immunology and Immunoparasitology, Institute for the Application of Nuclear Energy, University in Belgrade, Serbia
| | - Sofija Glamočlija
- Department for Immunology and Immunoparasitology, Institute for the Application of Nuclear Energy, University in Belgrade, Serbia
| | - Ljiljana Sofronić-Milosavljević
- Department for Immunology and Immunoparasitology, Institute for the Application of Nuclear Energy, University in Belgrade, Serbia
| | - Miodrag Čolić
- Department for Immunology and Immunoparasitology, Institute for the Application of Nuclear Energy, University in Belgrade, Serbia; Medical Faculty Foča, University of East Sarajevo, Bosnia and Hercegovina; Serbian Academy of Sciences and Arts, Belgrade, Serbia
| | - Sergej Tomić
- Department for Immunology and Immunoparasitology, Institute for the Application of Nuclear Energy, University in Belgrade, Serbia.
| |
Collapse
|
26
|
Li J, Zhang H, Bei S, Zhang X, Li H, Ye L, Feng L. Disruption of Wnt/β-catenin Pathway Elevates the Sensitivity of Gastric Cancer Cells to PD-1 Antibody. Curr Mol Pharmacol 2021; 15:557-569. [PMID: 34139974 DOI: 10.2174/1874467214666210617163821] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Revised: 04/10/2021] [Accepted: 04/26/2021] [Indexed: 12/24/2022]
Abstract
BACKGROUND Gastric cancer (GC) is the fifth most common malignancy tumor and the third cause of cancer-related death around the world. Immune checkpoint inhibitors (ICIs) such as programmed cell death-1 (PD-1) antibodies play an active role in tumor therapy. A recent study reveals that the Wnt/β-catenin signaling pathway is negatively correlated with T-cell infiltration in the tumor microenvironment (TME), thereby influencing the therapeutic efficacy of the PD-1 antibody. OBJECTIVE In this study, we aimed to uncover the relationship of the Wnt/β-catenin pathway to CD8+ T cell activity as well as its effect on anti-PD-1 therapeutic efficacy in GC. METHODS We first collected clinical samples and went through an immunohistochemical analysis and found that a high β-catenin expression in GC tissues was often associated with a significant absence of CD8+ T-cell infiltration. RESULTS In addition, our data further indicated that disruption of the Wnt/β-catenin pathway in GC cells inhibited their migratory and invasive ability. Meanwhile, enhanced sensitivity of GC cells to PD-1 blockade therapy was evident by decreased Jurkat cell apoptosis rate and increased GC cell apoptosis rate in a tumor and Jurkat cells co-culture system with the presence of Wnt/β-catenin pathway inhibition. CONCLUSION Collectively, these findings indicated that the Wnt/β-catenin pathway might play a significant role in modulating the activity of Jurkat cells, and downregulation of Wnt/β-catenin may enhance the sensitivity of GC cells to PD-1 antibody in vitro. This result further indicated that β-catenin and PD-1 targeted inhibition might become a potential and effective therapy for GC patients.
Collapse
Affiliation(s)
- Jian Li
- Endoscopy center, Minhang Hospital, Fudan University, Shanghai 201199, China
| | - Hui Zhang
- Department of Biological Medicines & Shanghai Engineering Research Center of Immuno Therapeutics, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Songhua Bei
- Endoscopy center, Minhang Hospital, Fudan University, Shanghai 201199, China
| | - Xiaohong Zhang
- Endoscopy center, Minhang Hospital, Fudan University, Shanghai 201199, China
| | - Huanqing Li
- Endoscopy center, Minhang Hospital, Fudan University, Shanghai 201199, China
| | - Li Ye
- Department of Biological Medicines & Shanghai Engineering Research Center of Immuno Therapeutics, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Li Feng
- Endoscopy center, Minhang Hospital, Fudan University, Shanghai 201199, China
| |
Collapse
|
27
|
Wang F, Ullah A, Fan X, Xu Z, Zong R, Wang X, Chen G. Delivery of nanoparticle antigens to antigen-presenting cells: from extracellular specific targeting to intracellular responsive presentation. J Control Release 2021; 333:107-128. [PMID: 33774119 DOI: 10.1016/j.jconrel.2021.03.027] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 03/19/2021] [Accepted: 03/22/2021] [Indexed: 02/05/2023]
Abstract
An appropriate delivery system can improve the immune effects of antigens against various infections or tumors. Antigen-presenting cells (APCs) are specialized to capture and process antigens in vivo, which link the innate and adaptive immune responses. Functionalization of vaccine delivery systems with targeting moieties to APCs is a promising strategy for provoking potent immune responses. Additionally, the internalization and intracellular distribution of antigens are closely related to the initiation of downstream immune responses. With a deeper understanding of the intracellular microenvironment and the mechanisms of antigen presentation, vehicles designed to respond to endogenous and external stimuli can modulate antigen processing and presentation pathways, which are critical to the types of immune response. Here, an overview of extracellular targeting delivery of antigens to APCs and intracellular stimulus-responsiveness strategies is provided, which might be helpful for the rational design of vaccine delivery systems.
Collapse
Affiliation(s)
- Fei Wang
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; Institute of Comparative Medicine, Yangzhou University, Yangzhou 225009, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Aftab Ullah
- Shantou University Medical College, Shantou 515041, China
| | - Xuelian Fan
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; Institute of Comparative Medicine, Yangzhou University, Yangzhou 225009, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Zhou Xu
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; Institute of Comparative Medicine, Yangzhou University, Yangzhou 225009, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Rongling Zong
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; Institute of Comparative Medicine, Yangzhou University, Yangzhou 225009, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Xuewen Wang
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; Institute of Comparative Medicine, Yangzhou University, Yangzhou 225009, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Gang Chen
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; Institute of Comparative Medicine, Yangzhou University, Yangzhou 225009, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou 225009, China.
| |
Collapse
|
28
|
Paus C, van der Voort R, Cambi A. Nanomedicine in cancer therapy: promises and hurdles of polymeric nanoparticles. EXPLORATION OF MEDICINE 2021. [DOI: 10.37349/emed.2021.00040] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The limitations of current cancer treatments have stimulated the application of nanotechnology to develop more effective and safer cancer therapies. Remarkable progress has been made in the development of nanomedicine to overcome issues associated with conventional cancer treatment, including low drug solubility, insufficient targeting, and drug resistance. The modulation of nanoparticles allows the improvement of drug pharmacokinetics, leading to improved targeting and reduced side effects. In addition, nanoparticles can be conjugated to ligands that specifically target cancer cells. Furthermore, strategies that exploit tumor characteristics to locally trigger drug release have shown to increase targeted drug delivery. However, although some clinical successes have been achieved, most nanomedicines fail to reach the clinic. Factors that hinder clinical translation vary from the complexity of design, incomplete understanding of biological mechanisms, and high demands during the manufacturing process. Clinical translation might be improved by combining knowledge from different disciplines such as cell biology, chemistry, and tumor pathophysiology. An increased understanding on how nanoparticle modifications affect biological systems is pivotal to improve design, eventually aiding development of more effective nanomedicines. This review summarizes the key successes that have been made in nanomedicine, including improved drug delivery and release by polymeric nanoparticles as well as the introduction of strategies that overcome drug resistance. In addition, the application of nanomedicine in immunotherapy is discussed, and several remaining challenges addressed.
Collapse
|
29
|
Liu J, Li Z, Zhao D, Feng X, Wang C, Li D, Ding J. Immunogenic cell death-inducing chemotherapeutic nanoformulations potentiate combination chemoimmunotherapy. MATERIALS & DESIGN 2021; 202:109465. [DOI: 10.1016/j.matdes.2021.109465] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/07/2024]
|
30
|
Kim GB, Sung HD, Nam GH, Kim W, Kim S, Kang D, Lee EJ, Kim IS. Design of PD-1-decorated nanocages targeting tumor-draining lymph node for promoting T cell activation. J Control Release 2021; 333:328-338. [PMID: 33794271 DOI: 10.1016/j.jconrel.2021.03.038] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 03/10/2021] [Accepted: 03/27/2021] [Indexed: 01/15/2023]
Abstract
Targeted delivery of immunomodulatory molecules to the lymph nodes is an attractive means of improving the efficacy of anti-cancer immunotherapy. In this study, to improve the efficacy of PD-1 blockade-based therapy, nanocages were designed by surface engineering to decorate a programmed cell death protein 1 (PD-1) that is capable of binding against programmed death-ligand 1 (PD-L1) and -ligand 2 (PD-L2). This nanocage-mediated multivalent interaction remarkably increases the binding affinity and improves the antagonistic activity compared to free soluble PD-1. In addition, with the desirable nanocage size for optimal tumor-draining lymph node (TDLN) targeting (approximately 20 nm), rapid draining and increased accumulation into the TDLNs were observed. Moreover, the interference of the PD-1/PD-L axis with ultra-high affinity in the tumor microenvironment (effector phase) and the TDLNs (cognitive phase) significantly enhances the dendritic cell-mediated tumor-specific T cell activation. This characteristic successfully inhibited tumor growth and induced complete tumor eradication in some mice. Thus, the delivery of immunomodulatory molecules with nanocages can be a highly efficient strategy to achieve stronger anti-tumor immunity.
Collapse
Affiliation(s)
- Gi Beom Kim
- KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea; Center for Theragnosis, Biomedical Research Institute, Korea Institute of Science and Technology, 5 Hwarang-ro 14-gil, Seongbuk-gu, Seoul 02792, Republic of Korea
| | - Hyo-Dong Sung
- Department of Chemical Engineering, School of Applied Chemical Engineering, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Gi-Hoon Nam
- KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea; Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Wonjun Kim
- Department of Chemical Engineering, School of Applied Chemical Engineering, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Seohyun Kim
- KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea; Center for Theragnosis, Biomedical Research Institute, Korea Institute of Science and Technology, 5 Hwarang-ro 14-gil, Seongbuk-gu, Seoul 02792, Republic of Korea
| | - Dayeon Kang
- Department of Chemical Engineering, School of Applied Chemical Engineering, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Eun Jung Lee
- Department of Chemical Engineering, School of Applied Chemical Engineering, Kyungpook National University, Daegu 41566, Republic of Korea.
| | - In-San Kim
- KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea; Center for Theragnosis, Biomedical Research Institute, Korea Institute of Science and Technology, 5 Hwarang-ro 14-gil, Seongbuk-gu, Seoul 02792, Republic of Korea.
| |
Collapse
|
31
|
Emrani S, Lamar M, Price CC, Baliga S, Wasserman V, Matusz E, Swenson R, Baliga G, Libon DJ. Assessing the capacity for mental manipulation in patients with statically-determined mild cognitive impairment using digital technology. EXPLORATION OF MEDICINE 2021. [DOI: 10.37349/emed.2021.00034] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Aims: Prior research employing a standard backward digit span test has been successful in operationally defining neurocognitive constructs associated with the Fuster’s model of executive attention. The current research sought to test if similar behavior could be obtained using a cross-modal mental manipulation test.
Methods: Memory clinic patients were studied. Using Jak-Bondi criteria, 24 patients were classified with mild cognitive impairment (MCI), and 33 memory clinic patients did not meet criteria for MCI (i.e. non-MCI). All patients were assessed with the digital version of the WRAML-2 Symbolic Working Memory Test-Part 1, a cross-modal mental manipulation task where patients hear digits, but respond by touching digits from lowest to highest on an answer key. Only 4 and 5-span trials were analyzed. Using an iPad, all test stimuli were played; and, all responses were obtained with a touch key. Only correct trials were analyzed. Average time to complete trials and latency for each digit was recorded.
Results: Groups did not differ when average time to complete 4-span trials was calculated. MCI patients displayed slower latency, or required more time to re-order the 1st and 3rd digits. Regression analyses, primarily involving initial and latter response latencies, were associated with better, but different underlying neuropsychological abilities. Almost no 5-span analyses were significant.
Conclusions: This cross-modal test paradigm found no difference for total average time. MCI patients generated slower 1st and 3rd response latency, suggesting differences in time allocation to achieve correct serial order recall. Moreover, different neuropsychological abilities were associated with different time-based test components. These data extend prior findings using a standard backward digit span test. Differences in time epochs are consistent with constructs underlying the model of executive attention and help explain mental manipulation deficits in MCI. These latency measures could constitute neurocognitive biomarkers that track emergent disease.
Collapse
Affiliation(s)
- Sheina Emrani
- Department of Psychology, Rowan University, Glassboro, NJ 08028, USA
| | - Melissa Lamar
- Department of Behavioral Sciences and the Rush Alzheimer’s Disease Center, Rush University Medical Center, Chicago, IL 60612, USA
| | - Catherine C. Price
- Department of Clinical and Health Psychology, University of Florida, Gainesville, FL 32610, USA
| | - Satya Baliga
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Victor Wasserman
- Department of Psychology, Rowan University, Glassboro, NJ 08028, USA
| | - Emily Matusz
- 5New Jersey Institute for Successful Aging, School of Osteopathic Medicine, Rowan University, Stratford, NJ 08084, USA
| | - Rod Swenson
- Department Psychiatry and Behavioral Science, University of North Dakota School of Medicine and Health Sciences, Grand Fork, Fargo, ND 58103, USA
| | - Ganesh Baliga
- Department of Computer Science, Rowan University, Glassboro, NJ 08028, USA
| | - David J. Libon
- Department of Psychology, Rowan University, Glassboro, NJ 08028, USA 5New Jersey Institute for Successful Aging, School of Osteopathic Medicine, Rowan University, Stratford, NJ 08084, USA
| |
Collapse
|
32
|
Agnello L, Camorani S, Fedele M, Cerchia L. Aptamers and antibodies: rivals or allies in cancer targeted therapy? EXPLORATION OF TARGETED ANTI-TUMOR THERAPY 2021; 2:107-121. [PMID: 36046085 PMCID: PMC9400792 DOI: 10.37349/etat.2021.00035] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 02/01/2021] [Indexed: 12/29/2022] Open
Abstract
The goal of an efficacious cancer therapy is to specifically target diseased cells at high accuracy while sparing normal, healthy cells. Over the past three decades, immunotherapy, based on the use of monoclonal antibodies (mAbs) directed against tumor-associated antigens, to inhibit their oncogenic function, or against immune checkpoints, to modulate specific T cell responses against cancer, has proven to be an important strategy for cancer therapy. Nevertheless, the number of mAbs approved for clinical use is still limited because of significant drawbacks to their applicability. Oligonucleotide aptamers, similarly to antibodies, form high-affinity bonds with their specific protein targets, thus representing an effective tool for active cancer targeting. Compared to antibodies, aptamers’ use as therapeutic agents benefits from their low size, low/no immunogenicity, simple synthesis and design flexibility for improving efficacy and stability. This review intends to highlight recently emerged applications of aptamers as recognition elements, from biomarker discovery to targeted drug delivery and targeted treatment, showing aptamers’ potential to work in conjunction with antibodies for attacking cancer from multiple flanks.
Collapse
Affiliation(s)
- Lisa Agnello
- Institute of Experimental Endocrinology and Oncology “Gaetano Salvatore”, National Research Council (CNR), Via S. Pansini 5, 80131 Naples, Italy
| | - Simona Camorani
- Institute of Experimental Endocrinology and Oncology “Gaetano Salvatore”, National Research Council (CNR), Via S. Pansini 5, 80131 Naples, Italy
| | - Monica Fedele
- Institute of Experimental Endocrinology and Oncology “Gaetano Salvatore”, National Research Council (CNR), Via S. Pansini 5, 80131 Naples, Italy
| | - Laura Cerchia
- Institute of Experimental Endocrinology and Oncology “Gaetano Salvatore”, National Research Council (CNR), Via S. Pansini 5, 80131 Naples, Italy
| |
Collapse
|
33
|
Zhao Z, Li D, Wu Z, Wang Q, Ma Z, Zhang C. Research Progress and Prospect of Nanoplatforms for Treatment of Oral Cancer. Front Pharmacol 2020; 11:616101. [PMID: 33391000 PMCID: PMC7773899 DOI: 10.3389/fphar.2020.616101] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Accepted: 11/30/2020] [Indexed: 12/27/2022] Open
Abstract
Oral cancers refer to malignant tumors associated with high morbidity and mortality, and oral squamous cell carcinoma accounts for the majority of cases. It is an important part of head and neck, and oral cancer is one of the six most common cancers in the world. At present, the traditional treatment methods for oral cancer include surgery, radiation therapy, and chemotherapy. However, these methods have many disadvantages. In recent years, nanomedicine, the delivery of drugs through nanoplatforms for the treatment of cancer, has become a promising substitutive therapy. The use of nanoplatforms can reduce the degradation of the drug in the body and accurately deliver it to the tumor site. This minimizes the distribution of the drug to other organs, thereby reducing its toxicity and allowing higher drug concentration at the tumor site. This review introduces polymer nanoparticles, lipid-based nanoparticles, metal nanoparticles, hydrogels, exosomes, and dendrimers for the treatment of oral cancer, and discusses how these nanoplatforms play an anti-cancer effect. Finally, the review gives a slight outlook on the future prospects of nanoplatforms for oral cancer treatment.
Collapse
Affiliation(s)
- Zhilong Zhao
- Department of Stomatology, The First Hospital of Jilin University, Changchun, China
| | - Dan Li
- Department of Cancer Center, The First Hospital of Jilin University, Changchun, China
| | - Ziqi Wu
- Department of Stomatology, The First Hospital of Jilin University, Changchun, China
| | - Qihui Wang
- Department of Stomatology, The First Hospital of Jilin University, Changchun, China
| | | | - Congxiao Zhang
- Department of Stomatology, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
34
|
Li J, Luo Y, Li B, Xia Y, Wang H, Fu C. Implantable and Injectable Biomaterial Scaffolds for Cancer Immunotherapy. Front Bioeng Biotechnol 2020; 8:612950. [PMID: 33330440 PMCID: PMC7734317 DOI: 10.3389/fbioe.2020.612950] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Accepted: 11/05/2020] [Indexed: 12/15/2022] Open
Abstract
Cancer immunotherapy has become an emerging strategy recently producing durable immune responses in patients with varieties of malignant tumors. However, the main limitation for the broad application of immunotherapies still to reduce side effects by controlling and regulating the immune system. In order to improve both efficacy and safety, biomaterials have been applied to immunotherapies for the specific modulation of immune cells and the immunosuppressive tumor microenvironment. Recently, researchers have constantly developed biomaterials with new structures, properties and functions. This review provides the most recent advances in the delivery strategies of immunotherapies based on localized biomaterials, focusing on the implantable and injectable biomaterial scaffolds. Finally, the challenges and prospects of applying implantable and injectable biomaterial scaffolds in the development of future cancer immunotherapies are discussed.
Collapse
Affiliation(s)
- Jie Li
- Department of Spine Surgery, The First Hospital of Jilin University, Changchun, China
| | - Yiqian Luo
- Department of Spine Surgery, The First Hospital of Jilin University, Changchun, China
| | - Baoqin Li
- Department of Spine Surgery, The First Hospital of Jilin University, Changchun, China
| | - Yuanliang Xia
- Department of Spine Surgery, The First Hospital of Jilin University, Changchun, China
| | - Hengyi Wang
- Department of Spine Surgery, The First Hospital of Jilin University, Changchun, China
| | - Changfeng Fu
- Department of Spine Surgery, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|