1
|
He X, Wang R, Cao Y, Ding Y, Chang Y, Dong H, Xie R, Zhong G, Yang H, Li J. Lung-Specific mRNA Delivery by Ionizable Lipids with Defined Structure-Function Relationship and Unique Protein Corona Feature. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2416525. [PMID: 39965058 PMCID: PMC11984862 DOI: 10.1002/advs.202416525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 01/31/2025] [Indexed: 02/20/2025]
Abstract
Targeted delivery of mRNA with lipid nanoparticles (LNPs) holds great potential for treating pulmonary diseases. However, the lack of rational design principles for efficient lung-homing lipids hinders the prevalence of mRNA therapeutics in this organ. Herein, the combinatorial screening with structure-function analysis is applied to rationalize the design strategy for nonpermanently charged lung-targeted ionizable lipids. It is discovered that lipids carrying N-methyl and secondary amine groups in the heads, and three tails originated from epoxyalkanes, exhibiting superior pulmonary selectivity and efficiency. Representative ionizable lipids with systematically variation in chemical structures are selected to study the well-known but still puzzling "protein corona" adsorbed on the surface of LNPs. In addition to the commonly used corona-biomarker vitronectin, other arginine-glycine-aspartic acid (RGD)-rich proteins usually involved in collagen-containing extracellular matrix, such as fibrinogen and fibronectin have also been identified to have a strong correlation with lung tropism. This work provides insight into the rational design of lung-targeting ionizable lipids and reveals a previously unreported potential function of RGD-rich proteins in the protein corona of lung-homing LNPs.
Collapse
Affiliation(s)
- Xiaoyan He
- School of Life Science and Technology & State Key Laboratory of Advanced Medical Materials and DevicesShanghaiTech UniversityShanghai201210China
| | - Runyuan Wang
- School of Life Science and Technology & State Key Laboratory of Advanced Medical Materials and DevicesShanghaiTech UniversityShanghai201210China
| | - Yan Cao
- School of Life Science and Technology & State Key Laboratory of Advanced Medical Materials and DevicesShanghaiTech UniversityShanghai201210China
| | - Yan Ding
- School of Life Science and Technology & State Key Laboratory of Advanced Medical Materials and DevicesShanghaiTech UniversityShanghai201210China
| | - Yan Chang
- School of Life Science and Technology & State Key Laboratory of Advanced Medical Materials and DevicesShanghaiTech UniversityShanghai201210China
| | - Haoru Dong
- Department of NeurosurgeryHuashan HospitalFudan UniversityShanghai200040China
| | - Rong Xie
- Department of NeurosurgeryHuashan HospitalFudan UniversityShanghai200040China
| | - Guisheng Zhong
- iHuman InstituteShanghaiTech UniversityShanghai201210China
| | - Huiying Yang
- Department of PharmacyHuashan HospitalFudan UniversityShanghai200040China
| | - Jianfeng Li
- School of Life Science and Technology & State Key Laboratory of Advanced Medical Materials and DevicesShanghaiTech UniversityShanghai201210China
| |
Collapse
|
2
|
Haghighi E, Abolmaali SS, Dehshahri A, Mousavi Shaegh SA, Azarpira N, Tamaddon AM. Navigating the intricate in-vivo journey of lipid nanoparticles tailored for the targeted delivery of RNA therapeutics: a quality-by-design approach. J Nanobiotechnology 2024; 22:710. [PMID: 39543630 PMCID: PMC11566655 DOI: 10.1186/s12951-024-02972-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Accepted: 11/03/2024] [Indexed: 11/17/2024] Open
Abstract
RNA therapeutics, such as mRNA, siRNA, and CRISPR-Cas9, present exciting avenues for treating diverse diseases. However, their potential is commonly hindered by vulnerability to degradation and poor cellular uptake, requiring effective delivery systems. Lipid nanoparticles (LNPs) have emerged as a leading choice for in vivo RNA delivery, offering protection against degradation, enhanced cellular uptake, and facilitation of endosomal escape. However, LNPs encounter numerous challenges for targeted RNA delivery in vivo, demanding advanced particle engineering, surface functionalization with targeting ligands, and a profound comprehension of the biological milieu in which they function. This review explores the structural and physicochemical characteristics of LNPs, in-vivo fate, and customization for RNA therapeutics. We highlight the quality-by-design (QbD) approach for targeted delivery beyond the liver, focusing on biodistribution, immunogenicity, and toxicity. In addition, we explored the current challenges and strategies associated with LNPs for in-vivo RNA delivery, such as ensuring repeated-dose efficacy, safety, and tissue-specific gene delivery. Furthermore, we provide insights into the current clinical applications in various classes of diseases and finally prospects of LNPs in RNA therapeutics.
Collapse
Affiliation(s)
- Elahe Haghighi
- Department of Pharmaceutical Nanotechnology, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Samira Sadat Abolmaali
- Department of Pharmaceutical Nanotechnology, Shiraz University of Medical Sciences, Shiraz, Iran.
- Center for Nanotechnology in Drug Delivery, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Ali Dehshahri
- Center for Nanotechnology in Drug Delivery, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Seyed Ali Mousavi Shaegh
- Laboratory of Microfluidics and Medical Microsystems, Research Institute for Medical Sciences, Mashhad University of Medical Sciences, Mashhad, Iran
- Orthopedic Research Center, Ghaem Hospital, Mashhad University of Medical Sciences, Mashhad, Iran
- Clinical Research Development Unit, Ghaem Hospital, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Negar Azarpira
- Stem Cells Technology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ali Mohammad Tamaddon
- Department of Pharmaceutical Nanotechnology, Shiraz University of Medical Sciences, Shiraz, Iran.
- Center for Nanotechnology in Drug Delivery, Shiraz University of Medical Sciences, Shiraz, Iran.
- Department of Pharmaceutics, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
3
|
Hulugalla K, Shofolawe-Bakare OT, Toragall V, Mohammad SA, Mayatt R, Hand K, Anderson J, Chism CM, Misra SK, Shaikh T, Tanner EEL, Smith AE, Sharp J, Fitzkee N, Werfel T. Glycopolymeric Nanoparticles Enrich Less Immunogenic Protein Coronas, Reduce Mononuclear Phagocyte Clearance, and Improve Tumor Delivery Compared to PEGylated Nanoparticles. ACS NANO 2024; 18:30540-30560. [PMID: 39436672 PMCID: PMC12045476 DOI: 10.1021/acsnano.4c08922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2024]
Abstract
Nanoparticles (NPs) offer significant promise as drug delivery vehicles; however, their in vivo efficacy is often hindered by the formation of a protein corona (PC), which influences key physiological responses such as blood circulation time, biodistribution, cellular uptake, and intracellular localization. Understanding NP-PC interactions is crucial for optimizing NP design for biomedical applications. Traditional approaches have utilized hydrophilic polymer coatings like polyethylene glycol (PEG) to resist protein adsorption, but glycopolymer-coated nanoparticles have emerged as potential alternatives due to their biocompatibility and ability to reduce the adsorption of highly immunogenic proteins. In this study, we synthesized and characterized glycopolymer-based poly[2-(diisopropylamino)ethyl methacrylate-b-poly(methacrylamidoglucopyranose) (PDPA-b-PMAG) NPs as an alternative to PEGylated NPs. We characterized the polymers using a range of techniques to establish their molecular weight and chemical composition. PMAG and PEG-based NPs showed equivalent physicochemical properties with sizes of ∼100 nm, spherical morphology, and neutral surface charges. We next assessed the magnitude of protein adsorption on both NPs and catalogued the identity of the adsorbed proteins using mass spectrometry-based techniques. The PMAG NPs were found to adsorb fewer proteins in vitro as well as fewer immunogenic proteins such as Immunoglobulins and Complement proteins. Flow cytometry and confocal microscopy were employed to examine cellular uptake in RAW 264.7 macrophages and MDA-MB-231 tumor cells, where PMAG NPs showed higher uptake into tumor cells over macrophages. In vivo studies in BALB/c mice with orthotopic 4T1 breast cancer xenografts showed that PMAG NPs exhibited prolonged circulation times and enhanced tumor accumulation compared to PEGylated NPs. The biodistribution analysis also revealed greater selectivity for tumor tissue over the liver for PMAG NPs. These findings highlight the potential of glycopolymeric NPs to improve tumor targeting and reduce macrophage uptake compared to PEGylated NPs, offering significant advancements in cancer nanomedicine and immunotherapy.
Collapse
Affiliation(s)
- Kenneth Hulugalla
- Department of BioMolecular Sciences, University of Mississippi, University, MS, 38677, USA
| | | | - Veeresh Toragall
- Department of Biomedical Engineering, University of Mississippi, University, MS, 38677, USA
| | - Sk Arif Mohammad
- Department of Biomedical Engineering, University of Mississippi, University, MS, 38677, USA
| | - Railey Mayatt
- Department of Chemistry, Mississippi State University, Starkville, MS, USA
| | - Kelsie Hand
- Department of Biomedical Engineering, University of Mississippi, University, MS, 38677, USA
| | - Joshua Anderson
- Department of Biomedical Engineering, University of Mississippi, University, MS, 38677, USA
| | - Claylee M. Chism
- Department of Chemistry and Biochemistry, University of Mississippi, University, MS, USA
| | - Sandeep K. Misra
- Department of BioMolecular Sciences, University of Mississippi, University, MS, 38677, USA
| | - Tanveer Shaikh
- Department of Chemistry, Mississippi State University, Starkville, MS, USA
| | - Eden E. L. Tanner
- Department of Chemistry and Biochemistry, University of Mississippi, University, MS, USA
| | - Adam E. Smith
- Department of Biomedical Engineering, University of Mississippi, University, MS, 38677, USA
- Department of Chemical Engineering, University of Mississippi, University, MS, 38677, USA
| | - Joshua Sharp
- Department of BioMolecular Sciences, University of Mississippi, University, MS, 38677, USA
| | - Nicholas Fitzkee
- Department of Chemistry, Mississippi State University, Starkville, MS, USA
| | - Thomas Werfel
- Department of BioMolecular Sciences, University of Mississippi, University, MS, 38677, USA
- Department of Biomedical Engineering, University of Mississippi, University, MS, 38677, USA
- Department of Chemical Engineering, University of Mississippi, University, MS, 38677, USA
- Cancer Center and Research Institute, University of Mississippi Medical Center, Jackson, MS, 39216, USA
| |
Collapse
|
4
|
Gao Y, Huang Y, Ren C, Chou P, Wu C, Pan X, Quan G, Huang Z. Looking back, moving forward: protein corona of lipid nanoparticles. J Mater Chem B 2024; 12:5573-5588. [PMID: 38757190 DOI: 10.1039/d4tb00186a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2024]
Abstract
Lipid nanoparticles (LNPs) are commonly employed for drug delivery owing to their considerable drug-loading capacity, low toxicity, and excellent biocompatibility. Nevertheless, the formation of protein corona (PC) on their surfaces significantly influences the drug's in vivo fate (such as absorption, distribution, metabolism, and elimination) upon administration. PC denotes the phenomenon wherein one or multiple strata of proteins adhere to the external interface of nanoparticles (NPs) or microparticles within the biological milieu, encompassing ex vivo fluids (e.g., serum-containing culture media) and in vivo fluids (such as blood and tissue fluids). Hence, it is essential to claim the PC formation behaviors and mechanisms on the surface of LNPs. This overview provided a comprehensive examination of crucial aspects related to such issues, encompassing time evolution, controllability, and their subsequent impacts on LNPs. Classical studies of PC generation on the surface of LNPs were additionally integrated, and its decisive role in shaping the in vivo fate of LNPs was explored. The mechanisms underlying PC formation, including the adsorption theory and alteration theory, were introduced to delve into the formation process. Subsequently, the existing experimental outcomes were synthesized to offer insights into the research and application facets of PC, and it was concluded that the manipulation of PC held substantial promise in the realm of targeted delivery.
Collapse
Affiliation(s)
- Yue Gao
- College of Pharmacy, Jinan University, Guangzhou 511443, Guangdong, P. R. China.
| | - Yeqi Huang
- College of Pharmacy, Jinan University, Guangzhou 511443, Guangdong, P. R. China.
| | - Chuanyu Ren
- College of Pharmacy, Jinan University, Guangzhou 511443, Guangdong, P. R. China.
| | - Peiwen Chou
- College of Pharmacy, Jinan University, Guangzhou 511443, Guangdong, P. R. China.
| | - Chuanbin Wu
- College of Pharmacy, Jinan University, Guangzhou 511443, Guangdong, P. R. China.
| | - Xin Pan
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, Guangdong, P. R. China
| | - Guilan Quan
- College of Pharmacy, Jinan University, Guangzhou 511443, Guangdong, P. R. China.
| | - Zhengwei Huang
- College of Pharmacy, Jinan University, Guangzhou 511443, Guangdong, P. R. China.
| |
Collapse
|
5
|
Salvati A. The biomolecular corona of nanomedicines: effects on nanomedicine outcomes and emerging opportunities. Curr Opin Biotechnol 2024; 87:103101. [PMID: 38461749 DOI: 10.1016/j.copbio.2024.103101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 12/05/2023] [Accepted: 02/14/2024] [Indexed: 03/12/2024]
Abstract
Upon administration, nanomedicines adsorb a corona of endogenous biomolecules on their surface, which can affect nanomedicine interactions with cells, targeting, and efficacy. While strategies to reduce protein binding are available, the high selectivity of the adsorbed corona is enabling novel applications, such as for biomarker discovery and rare protein identification. Additionally, the adsorbed molecules can promote interactions with specific cell receptors, thus conferring the nanomedicine new endogenous targeting capabilities. This has been reported for Onpattro, a lipid nanoparticle targeting the hepatocytes via apolipoproteins in its corona. Recently, selective organ-targeting (SORT) nanoparticles have been proposed, which exploit corona-mediated interactions to deliver nanoparticles outside the liver. Strategies for corona seeding and corona engineering are emerging to increase the selectivity of similar endogenous targeting mechanisms.
Collapse
Affiliation(s)
- Anna Salvati
- Department of Nanomedicine & Drug Targeting, Groningen Research Institute of Pharmacy, University of Groningen, A. Deusinglaan 1, 9713AV Groningen, the Netherlands.
| |
Collapse
|
6
|
Hu M, Li X, You Z, Cai R, Chen C. Physiological Barriers and Strategies of Lipid-Based Nanoparticles for Nucleic Acid Drug Delivery. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2303266. [PMID: 37792475 DOI: 10.1002/adma.202303266] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 09/21/2023] [Indexed: 10/06/2023]
Abstract
Lipid-based nanoparticles (LBNPs) are currently the most promising vehicles for nucleic acid drug (NAD) delivery. Although their clinical applications have achieved success, the NAD delivery efficiency and safety are still unsatisfactory, which are, to a large extent, due to the existence of multi-level physiological barriers in vivo. It is important to elucidate the interactions between these barriers and LBNPs, which will guide more rational design of efficient NAD vehicles with low adverse effects and facilitate broader applications of nucleic acid therapeutics. This review describes the obstacles and challenges of biological barriers to NAD delivery at systemic, organ, sub-organ, cellular, and subcellular levels. The strategies to overcome these barriers are comprehensively reviewed, mainly including physically/chemically engineering LBNPs and directly modifying physiological barriers by auxiliary treatments. Then the potentials and challenges for successful translation of these preclinical studies into the clinic are discussed. In the end, a forward look at the strategies on manipulating protein corona (PC) is addressed, which may pull off the trick of overcoming those physiological barriers and significantly improve the efficacy and safety of LBNP-based NADs delivery.
Collapse
Affiliation(s)
- Mingdi Hu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
- Sino-Danish College, University of Chinese Academy of Sciences, Beijing, 100049, China
- Sino-Danish Center for Education and Research, Beijing, 100049, China
| | - Xiaoyan Li
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
| | - Zhen You
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
| | - Rong Cai
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
| | - Chunying Chen
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
- Sino-Danish College, University of Chinese Academy of Sciences, Beijing, 100049, China
- Sino-Danish Center for Education and Research, Beijing, 100049, China
- The GBA National Institute for Nanotechnology Innovation, Guangzhou, 510700, China
| |
Collapse
|
7
|
Lee DY, Amirthalingam S, Lee C, Rajendran AK, Ahn YH, Hwang NS. Strategies for targeted gene delivery using lipid nanoparticles and cell-derived nanovesicles. NANOSCALE ADVANCES 2023; 5:3834-3856. [PMID: 37496613 PMCID: PMC10368001 DOI: 10.1039/d3na00198a] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 06/10/2023] [Indexed: 07/28/2023]
Abstract
Gene therapy is a promising approach for the treatment of many diseases. However, the effective delivery of the cargo without degradation in vivo is one of the major hurdles. With the advent of lipid nanoparticles (LNPs) and cell-derived nanovesicles (CDNs), gene delivery holds a very promising future. The targeting of these nanosystems is a prerequisite for effective transfection with minimal side-effects. In this review, we highlight the emerging strategies utilized for the effective targeting of LNPs and CDNs, and we summarize the preparation methodologies for LNPs and CDNs. We have also highlighted the non-ligand targeting of LNPs toward certain organs based on their composition. It is highly expected that continuing the developments in the targeting approaches of LNPs and CDNs for the delivery system will further promote them in clinical translation.
Collapse
Affiliation(s)
- Dong-Yup Lee
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University Seoul 08826 Republic of Korea
| | - Sivashanmugam Amirthalingam
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University Seoul 08826 Republic of Korea
- Institute of Engineering Research, Seoul National University Seoul 08826 Republic of Korea
| | - Changyub Lee
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University Seoul 08826 Republic of Korea
| | - Arun Kumar Rajendran
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University Seoul 08826 Republic of Korea
| | - Young-Hyun Ahn
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University Seoul 08826 Republic of Korea
- Bio-MAX/N-Bio Institute, Institute of Bio-Engineering, Seoul National University Seoul 08826 Republic of Korea
| | - Nathaniel S Hwang
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University Seoul 08826 Republic of Korea
- Interdisciplinary Program in Bioengineering, Seoul National University Seoul 08826 Republic of Korea
- Bio-MAX/N-Bio Institute, Institute of Bio-Engineering, Seoul National University Seoul 08826 Republic of Korea
- Institute of Engineering Research, Seoul National University Seoul 08826 Republic of Korea
| |
Collapse
|
8
|
Liu K, Nilsson R, Lázaro-Ibáñez E, Duàn H, Miliotis T, Strimfors M, Lerche M, Salgado Ribeiro AR, Ulander J, Lindén D, Salvati A, Sabirsh A. Multiomics analysis of naturally efficacious lipid nanoparticle coronas reveals high-density lipoprotein is necessary for their function. Nat Commun 2023; 14:4007. [PMID: 37414857 PMCID: PMC10325984 DOI: 10.1038/s41467-023-39768-9] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 06/27/2023] [Indexed: 07/08/2023] Open
Abstract
In terms of lipid nanoparticle (LNP) engineering, the relationship between particle composition, delivery efficacy, and the composition of the biocoronas that form around LNPs, is poorly understood. To explore this we analyze naturally efficacious biocorona compositions using an unbiased screening workflow. First, LNPs are complexed with plasma samples, from individual lean or obese male rats, and then functionally evaluated in vitro. Then, a fast, automated, and miniaturized method retrieves the LNPs with intact biocoronas, and multiomics analysis of the LNP-corona complexes reveals the particle corona content arising from each individual plasma sample. We find that the most efficacious LNP-corona complexes were enriched with high-density lipoprotein (HDL) and, compared to the commonly used corona-biomarker Apolipoprotein E, corona HDL content was a superior predictor of in-vivo activity. Using technically challenging and clinically relevant lipid nanoparticles, these methods reveal a previously unreported role for HDL as a source of ApoE and, form a framework for improving LNP therapeutic efficacy by controlling corona composition.
Collapse
Affiliation(s)
- Kai Liu
- Advanced Drug Delivery, Pharmaceutical Sciences, R&D, AstraZeneca, Gothenburg, Sweden
| | - Ralf Nilsson
- Translational Science and Experimental Medicine, Research and Early Development, Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Elisa Lázaro-Ibáñez
- Advanced Drug Delivery, Pharmaceutical Sciences, R&D, AstraZeneca, Gothenburg, Sweden
| | - Hanna Duàn
- Advanced Drug Delivery, Pharmaceutical Sciences, R&D, AstraZeneca, Gothenburg, Sweden
| | - Tasso Miliotis
- Translational Science and Experimental Medicine, Research and Early Development, Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Marie Strimfors
- Bioscience Metabolism, Research and Early Development, Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Michael Lerche
- Advanced Drug Delivery, Pharmaceutical Sciences, R&D, AstraZeneca, Gothenburg, Sweden
| | | | - Johan Ulander
- Data Science and Modelling, Pharmaceutical Sciences, R&D, AstraZeneca, Gothenburg, Sweden
| | - Daniel Lindén
- Bioscience Metabolism, Research and Early Development, Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
- Division of Endocrinology, Department of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Anna Salvati
- Department of Nanomedicine & Drug Targeting, Groningen Research Institute of Pharmacy, University of Groningen, Groningen, 9713AV, The Netherlands
| | - Alan Sabirsh
- Advanced Drug Delivery, Pharmaceutical Sciences, R&D, AstraZeneca, Gothenburg, Sweden.
| |
Collapse
|
9
|
Li X, Guo X, Hu M, Cai R, Chen C. Optimal delivery strategies for nanoparticle-mediated mRNA delivery. J Mater Chem B 2023; 11:2063-2077. [PMID: 36794598 DOI: 10.1039/d2tb02455a] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Messenger RNA (mRNA) has emerged as a new and efficient agent for the treatment of various diseases. The success of lipid nanoparticle-mRNA against the novel coronavirus (SARS-CoV-2) pneumonia epidemic has proved the clinical potential of nanoparticle-mRNA formulations. However, the deficiency in the effective biological distribution, high transfection efficiency and good biosafety are still the major challenges in clinical translation of nanomedicine for mRNA delivery. To date, a variety of promising nanoparticles have been constructed and then gradually optimized to facilitate the effective biodistribution of carriers and efficient mRNA delivery. In this review, we describe the design of nanoparticles with an emphasis on lipid nanoparticles, and discuss the manipulation strategies for nanoparticle-biology (nano-bio) interactions for mRNA delivery to overcome the biological barriers and improve the delivery efficiency, because the specific nano-bio interaction of nanoparticles usually remoulds the biomedical and physiological properties of the nanoparticles especially the biodistribution, mechanism of cellular internalization and immune response. Finally, we give a perspective for the future applications of this promising technology. We believe that the regulation of nano-bio interactions would be a significant breakthrough to improve the mRNA delivery efficiency and cross biological barriers. This review may provide a new direction for the design of nanoparticle-mediated mRNA delivery systems.
Collapse
Affiliation(s)
- Xiaoyan Li
- Henan Institute of Advanced Technology, Zhengzhou University, Zhengzhou 450001, China.,CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China.
| | - Xiaocui Guo
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China.
| | - Mingdi Hu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China. .,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Rong Cai
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China.
| | - Chunying Chen
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China. .,University of Chinese Academy of Sciences, Beijing 100049, China.,The GBA National Institute for Nanotechnology Innovation, Guangzhou 510700, China
| |
Collapse
|
10
|
Swetha KL, Paul M, Maravajjala KS, Kumbham S, Biswas S, Roy A. Overcoming drug resistance with a docetaxel and disulfiram loaded pH-sensitive nanoparticle. J Control Release 2023; 356:93-114. [PMID: 36841286 DOI: 10.1016/j.jconrel.2023.02.023] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 02/06/2023] [Accepted: 02/15/2023] [Indexed: 02/27/2023]
Abstract
Previous studies have demonstrated that breast cancer cells deploy a myriad array of strategies to thwart the activity of anticancer drugs like docetaxel (DTX), including acquired drug resistance due to overexpression of drug-efflux pumps like P-glycoprotein (P-gp) and innate drug resistance by cancer stem cells (CSCs). As disulfiram (DSF) can inhibit both P-gp and CSCs, we hypothesized that co-treatment of DTX and DSF could sensitize the drug-resistant breast cancer cells. To deliver a fixed dose ratio of DTX and DSF targeted to the tumor, a tumor extracellular pH-responsive nanoparticle (NP) was developed using a histidine-conjugated star-shaped PLGA with TPGS surface decoration ([DD]NpH-T). By releasing the encapsulated drugs in the tumor microenvironment, pH-sensitive NPs can overcome the tumor stroma-based resistance against nanomedicines. In in-vitro studies, [DD]NpH-T exhibited increased drug release at pH 6.8, improved penetration in a 3D tumor spheroid, reduced serum protein adsorption, and enhanced cytotoxic efficacy against both innate and acquired DTX-resistant breast cancer cells. In in-vivo studies, a significant increase in plasma AUC and tumor drug delivery was observed with [DD]NpH-T, which resulted in an enhanced in-vivo anti-tumor efficacy against a mouse orthotopic breast cancer, with a significantly increased intratumoral ROS and apoptosis, while decreasing P-gp expression and prevention of lung metastasis. Altogether, the current study demonstrated that the DTX and DSF combination could effectively target multiple drug-resistance pathways in-vitro, and the in-vivo delivery of this drug combination using TPGS-decorated pH-sensitive NPs could increase tumor accumulation, resulting in improved anti-tumor efficacy.
Collapse
Affiliation(s)
- K Laxmi Swetha
- Department of Pharmacy, Birla Institute of Technology & Science, Pilani, Vidya Vihar, Pilani, Rajasthan 333031, India
| | - Milan Paul
- Department of Pharmacy, Birla Institute of Technology & Science-Pilani, Hyderabad Campus, Jawahar Nagar, Medchal, Hyderabad, Telangana 500078, India
| | - Kavya Sree Maravajjala
- Department of Pharmacy, Birla Institute of Technology & Science, Pilani, Vidya Vihar, Pilani, Rajasthan 333031, India
| | - Soniya Kumbham
- Department of Pharmacy, Birla Institute of Technology & Science-Pilani, Hyderabad Campus, Jawahar Nagar, Medchal, Hyderabad, Telangana 500078, India
| | - Swati Biswas
- Department of Pharmacy, Birla Institute of Technology & Science-Pilani, Hyderabad Campus, Jawahar Nagar, Medchal, Hyderabad, Telangana 500078, India.
| | - Aniruddha Roy
- Department of Pharmacy, Birla Institute of Technology & Science, Pilani, Vidya Vihar, Pilani, Rajasthan 333031, India.
| |
Collapse
|
11
|
Kim W, Ly NK, He Y, Li Y, Yuan Z, Yeo Y. Protein corona: Friend or foe? Co-opting serum proteins for nanoparticle delivery. Adv Drug Deliv Rev 2023; 192:114635. [PMID: 36503885 PMCID: PMC9812987 DOI: 10.1016/j.addr.2022.114635] [Citation(s) in RCA: 49] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 11/15/2022] [Accepted: 11/22/2022] [Indexed: 11/27/2022]
Abstract
For systemically delivered nanoparticles to reach target tissues, they must first circulate long enough to reach the target and extravasate there. A challenge is that the particles end up engaging with serum proteins and undergo immune cell recognition and premature clearance. The serum protein binding, also known as protein corona formation, is difficult to prevent, even with artificial protection via "stealth" coating. Protein corona may be problematic as it can interfere with the interaction of targeting ligands with tissue-specific receptors and abrogate the so-called active targeting process, hence, the efficiency of drug delivery. However, recent studies show that serum protein binding to circulating nanoparticles may be actively exploited to enhance their downstream delivery. This review summarizes known issues of protein corona and traditional strategies to control the corona, such as avoiding or overriding its formation, as well as emerging efforts to enhance drug delivery to target organs via nanoparticles. It concludes with a discussion of prevailing challenges in exploiting protein corona for nanoparticle development.
Collapse
Affiliation(s)
- Woojun Kim
- Department of Industrial and Physical Pharmacy, Purdue University, 575 Stadium Mall Drive, West Lafayette, IN 47907, USA
| | - Nhu Ky Ly
- Department of Industrial and Physical Pharmacy, Purdue University, 575 Stadium Mall Drive, West Lafayette, IN 47907, USA; Université Paris Cité, Faculté de Santé, 4 Avenue de l'Observatoire, 75006 Paris, France
| | - Yanying He
- Department of Industrial and Physical Pharmacy, Purdue University, 575 Stadium Mall Drive, West Lafayette, IN 47907, USA
| | - Yongzhe Li
- Department of Industrial and Physical Pharmacy, Purdue University, 575 Stadium Mall Drive, West Lafayette, IN 47907, USA
| | - Zhongyue Yuan
- Department of Industrial and Physical Pharmacy, Purdue University, 575 Stadium Mall Drive, West Lafayette, IN 47907, USA
| | - Yoon Yeo
- Department of Industrial and Physical Pharmacy, Purdue University, 575 Stadium Mall Drive, West Lafayette, IN 47907, USA; Weldon School of Biomedical Engineering, Purdue University, 206 South Martin Jischke Drive, West Lafayette, IN 47907, USA.
| |
Collapse
|
12
|
Arezki Y, Delalande F, Schaeffer-Reiss C, Cianférani S, Rapp M, Lebeau L, Pons F, Ronzani C. Surface charge influences protein corona, cell uptake and biological effects of carbon dots. NANOSCALE 2022; 14:14695-14710. [PMID: 36168840 DOI: 10.1039/d2nr03611h] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Carbon dots are emerging nanoparticles (NPs) with tremendous applications, especially in the biomedical field. Herein is reported the first quantitative proteomic analysis of the protein corona formed on CDs with different surface charge properties. Four CDs were synthesized from citric acid and various amine group-containing passivation reagents, resulting in cationic NPs with increasing zeta (ζ)-potential and density of positive charges. After CD contact with serum, we show that protein corona identity is influenced by CD surface charge properties, which in turn impacts CD uptake and viability loss in macrophages. In particular, CDs with high ζ-potential (>+30 mV) and charge density (>2 μmol mg-1) are the most highly internalized, and their cell uptake is strongly correlated with a corona enriched in vitronectin, fibulin, fetuin, adiponectin and alpha-glycoprotein. On the contrary, CDs with a lower ζ-potential (+11 mV) and charge density (0.01 μmol mg-1) are poorly internalized, while having a corona with a very different protein signature characterized by a high abundance of apolipoproteins (APOA1, APOB and APOC), albumin and hemoglobin. These data illustrate how corona characterization may contribute to a better understanding of CD cellular fate and biological effects, and provide useful information for the development of CDs for biomedical applications.
Collapse
Affiliation(s)
- Yasmin Arezki
- Laboratoire de Conception et Application de Molécules Bioactives, UMR 7199 CNRS-Université de Strasbourg, 67400 Illkirch, France.
| | - François Delalande
- Laboratoire de Spectrométrie de Masse BioOrganique (LSMBO), IPHC, UMR 7178, CNRS-Université de Strasbourg, 67087 Strasbourg, France
- Infrastructure Nationale de Protéomique ProFI - FR2048 CNRS, 67087 Strasbourg, France
| | - Christine Schaeffer-Reiss
- Laboratoire de Spectrométrie de Masse BioOrganique (LSMBO), IPHC, UMR 7178, CNRS-Université de Strasbourg, 67087 Strasbourg, France
- Infrastructure Nationale de Protéomique ProFI - FR2048 CNRS, 67087 Strasbourg, France
| | - Sarah Cianférani
- Laboratoire de Spectrométrie de Masse BioOrganique (LSMBO), IPHC, UMR 7178, CNRS-Université de Strasbourg, 67087 Strasbourg, France
- Infrastructure Nationale de Protéomique ProFI - FR2048 CNRS, 67087 Strasbourg, France
| | - Mickaël Rapp
- Laboratoire de Conception et Application de Molécules Bioactives, UMR 7199 CNRS-Université de Strasbourg, 67400 Illkirch, France.
| | - Luc Lebeau
- Laboratoire de Conception et Application de Molécules Bioactives, UMR 7199 CNRS-Université de Strasbourg, 67400 Illkirch, France.
| | - Françoise Pons
- Laboratoire de Conception et Application de Molécules Bioactives, UMR 7199 CNRS-Université de Strasbourg, 67400 Illkirch, France.
| | - Carole Ronzani
- Laboratoire de Conception et Application de Molécules Bioactives, UMR 7199 CNRS-Université de Strasbourg, 67400 Illkirch, France.
| |
Collapse
|
13
|
Jiang Z, Chu Y, Zhan C. Protein corona: challenges and opportunities for targeted delivery of nanomedicines. Expert Opin Drug Deliv 2022; 19:833-846. [PMID: 35738018 DOI: 10.1080/17425247.2022.2093854] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION Targeted drug delivery has been widely explored as a promising way to improve the performance of nanomedicines. However, protein corona formed on the nano-surface represents a major issue that has great impacts on the in vivo fate of targeting nanomedicines, which has been overlooked in the past. With the increasing understanding of protein corona in the recent decade, many efforts have been made to improve targeting efficacy. AREAS COVERED In this review, we briefly summarize insights of targeted delivery systems inspired by protein corona, and discuss the promising strategies to regulate protein corona for better targeting. EXPERT OPINION The interaction between nanomedicines and endogenous proteins brings great uncertainty and challenges, but it also provides great opportunities for the development of targeting nanomedicines at the same time. With increasing understanding of protein corona, the strategies to regulate protein corona pave new avenues for the development of targeting nanomedicines.
Collapse
Affiliation(s)
- Zhuxuan Jiang
- Center of Medical Research and Innovation, Shanghai Pudong Hospital & Department of Pharmacology, School of Basic Medical Sciences & State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, P.R. China
| | - Yuxiu Chu
- Center of Medical Research and Innovation, Shanghai Pudong Hospital & Department of Pharmacology, School of Basic Medical Sciences & State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, P.R. China
| | - Changyou Zhan
- Center of Medical Research and Innovation, Shanghai Pudong Hospital & Department of Pharmacology, School of Basic Medical Sciences & State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, P.R. China.,Greater Bay Area Institute of Precision Medicine (Guangzhou), Fudan University, Guangzhou, P.R. China.,Shanghai Engineering Research Center for Synthetic Immunology, Shanghai, P.R. China
| |
Collapse
|
14
|
Recent advances in the development of multifunctional lipid-based nanoparticles for co-delivery, combination treatment strategies, and theranostics in breast and lung cancer. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103300] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
15
|
Zhang Y, Almazi JG, Ong HX, Johansen MD, Ledger S, Traini D, Hansbro PM, Kelleher AD, Ahlenstiel CL. Nanoparticle Delivery Platforms for RNAi Therapeutics Targeting COVID-19 Disease in the Respiratory Tract. Int J Mol Sci 2022; 23:2408. [PMID: 35269550 PMCID: PMC8909959 DOI: 10.3390/ijms23052408] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 02/14/2022] [Accepted: 02/18/2022] [Indexed: 02/06/2023] Open
Abstract
Since December 2019, a pandemic of COVID-19 disease, caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has rapidly spread across the globe. At present, the Food and Drug Administration (FDA) has issued emergency approval for the use of some antiviral drugs. However, these drugs still have limitations in the specific treatment of COVID-19, and as such, new treatment strategies urgently need to be developed. RNA-interference-based gene therapy provides a tractable target for antiviral treatment. Ensuring cell-specific targeted delivery is important to the success of gene therapy. The use of nanoparticles (NPs) as carriers for the delivery of small interfering RNA (siRNAs) to specific tissues or organs of the human body could play a crucial role in the specific therapy of severe respiratory infections, such as COVID-19. In this review, we describe a variety of novel nanocarriers, such as lipid NPs, star polymer NPs, and glycogen NPs, and summarize the pre-clinical/clinical progress of these nanoparticle platforms in siRNA delivery. We also discuss the application of various NP-capsulated siRNA as therapeutics for SARS-CoV-2 infection, the challenges with targeting these therapeutics to local delivery in the lung, and various inhalation devices used for therapeutic administration. We also discuss currently available animal models that are used for preclinical assessment of RNA-interference-based gene therapy. Advances in this field have the potential for antiviral treatments of COVID-19 disease and could be adapted to treat a range of respiratory diseases.
Collapse
Affiliation(s)
- Yuan Zhang
- Kirby Institute, UNSW, Sydney, NSW 2052, Australia; (Y.Z.); (S.L.); (A.D.K.)
| | - Juhura G. Almazi
- Respiratory Technology, Woolcock Institute of Medical Research, Sydney, NSW 2037, Australia; (J.G.A.); (H.X.O.); (D.T.)
- Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Ryde, NSW 2109, Australia
| | - Hui Xin Ong
- Respiratory Technology, Woolcock Institute of Medical Research, Sydney, NSW 2037, Australia; (J.G.A.); (H.X.O.); (D.T.)
- Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Ryde, NSW 2109, Australia
| | - Matt D. Johansen
- Centre for Inflammation, Faculty of Science, Centenary Institute and University of Technology Sydney, Sydney, NSW 2050, Australia; (M.D.J.); (P.M.H.)
| | - Scott Ledger
- Kirby Institute, UNSW, Sydney, NSW 2052, Australia; (Y.Z.); (S.L.); (A.D.K.)
| | - Daniela Traini
- Respiratory Technology, Woolcock Institute of Medical Research, Sydney, NSW 2037, Australia; (J.G.A.); (H.X.O.); (D.T.)
- Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Ryde, NSW 2109, Australia
| | - Philip M. Hansbro
- Centre for Inflammation, Faculty of Science, Centenary Institute and University of Technology Sydney, Sydney, NSW 2050, Australia; (M.D.J.); (P.M.H.)
| | - Anthony D. Kelleher
- Kirby Institute, UNSW, Sydney, NSW 2052, Australia; (Y.Z.); (S.L.); (A.D.K.)
| | | |
Collapse
|
16
|
Salvati A, Poelstra K. Drug Targeting and Nanomedicine: Lessons Learned from Liver Targeting and Opportunities for Drug Innovation. Pharmaceutics 2022; 14:217. [PMID: 35057111 PMCID: PMC8777931 DOI: 10.3390/pharmaceutics14010217] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 12/23/2021] [Accepted: 12/24/2021] [Indexed: 02/08/2023] Open
Abstract
Drug targeting and nanomedicine are different strategies for improving the delivery of drugs to their target. Several antibodies, immuno-drug conjugates and nanomedicines are already approved and used in clinics, demonstrating the potential of such approaches, including the recent examples of the DNA- and RNA-based vaccines against COVID-19 infections. Nevertheless, targeting remains a major challenge in drug delivery and different aspects of how these objects are processed at organism and cell level still remain unclear, hampering the further development of efficient targeted drugs. In this review, we compare properties and advantages of smaller targeted drug constructs on the one hand, and larger nanomedicines carrying higher drug payload on the other hand. With examples from ongoing research in our Department and experiences from drug delivery to liver fibrosis, we illustrate opportunities in drug targeting and nanomedicine and current challenges that the field needs to address in order to further improve their success.
Collapse
Affiliation(s)
- Anna Salvati
- Correspondence: (A.S.); (K.P.); Tel.: +31-503639831 (A.S.); +31-503633287 (K.P.)
| | - Klaas Poelstra
- Correspondence: (A.S.); (K.P.); Tel.: +31-503639831 (A.S.); +31-503633287 (K.P.)
| |
Collapse
|