1
|
Song Y, Mehl F, Zeichner SL. Vaccine Strategies to Elicit Mucosal Immunity. Vaccines (Basel) 2024; 12:191. [PMID: 38400174 PMCID: PMC10892965 DOI: 10.3390/vaccines12020191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 01/29/2024] [Accepted: 02/08/2024] [Indexed: 02/25/2024] Open
Abstract
Vaccines are essential tools to prevent infection and control transmission of infectious diseases that threaten public health. Most infectious agents enter their hosts across mucosal surfaces, which make up key first lines of host defense against pathogens. Mucosal immune responses play critical roles in host immune defense to provide durable and better recall responses. Substantial attention has been focused on developing effective mucosal vaccines to elicit robust localized and systemic immune responses by administration via mucosal routes. Mucosal vaccines that elicit effective immune responses yield protection superior to parenterally delivered vaccines. Beyond their valuable immunogenicity, mucosal vaccines can be less expensive and easier to administer without a need for injection materials and more highly trained personnel. However, developing effective mucosal vaccines faces many challenges, and much effort has been directed at their development. In this article, we review the history of mucosal vaccine development and present an overview of mucosal compartment biology and the roles that mucosal immunity plays in defending against infection, knowledge that has helped inform mucosal vaccine development. We explore new progress in mucosal vaccine design and optimization and novel approaches created to improve the efficacy and safety of mucosal vaccines.
Collapse
Affiliation(s)
- Yufeng Song
- Department of Pediatrics, University of Virginia, Charlottesville, VA 22908, USA; (Y.S.)
| | - Frances Mehl
- Department of Pediatrics, University of Virginia, Charlottesville, VA 22908, USA; (Y.S.)
| | - Steven L. Zeichner
- Department of Pediatrics, University of Virginia, Charlottesville, VA 22908, USA; (Y.S.)
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, Charlottesville, VA 22908, USA
| |
Collapse
|
2
|
Correa VA, Portilho AI, De Gaspari E. Vaccines, Adjuvants and Key Factors for Mucosal Immune Response. Immunology 2022; 167:124-138. [PMID: 35751397 DOI: 10.1111/imm.13526] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 04/26/2022] [Indexed: 11/29/2022] Open
Abstract
Vaccines are the most effective tool to control infectious diseases, which provoke significant morbidity and mortality. Most vaccines are administered through the parenteral route and can elicit a robust systemic humoral response, but they induce a weak T-cell-mediated immunity and are poor inducers of mucosal protection. Considering that most pathogens enter the body through mucosal surfaces, a vaccine that elicits protection in the first site of contact between the host and the pathogen is promising. However, despite the advantages of mucosal vaccines as good options to confer protection on the mucosal surface, only a few mucosal vaccines are currently approved. In this review, we discuss the impact of vaccine administration in different mucosal surfaces; how appropriate adjuvants enhance the induction of protective mucosal immunity and other factors that can influence the mucosal immune response to vaccines. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Victor Araujo Correa
- Adolfo Lutz Institute, Immunology Center, Av Dr Arnaldo, 355, 11th floor, room 1116, Cerqueira César, São Paulo, SP, Brazil.,São Paulo University, Biomedical Sciences Institute, Graduate Program Interunits in Biotechnology, Av Prof Lineu Prestes, 2415, ICB III, São Paulo, SP, Brazil
| | - Amanda Izeli Portilho
- Adolfo Lutz Institute, Immunology Center, Av Dr Arnaldo, 355, 11th floor, room 1116, Cerqueira César, São Paulo, SP, Brazil.,São Paulo University, Biomedical Sciences Institute, Graduate Program Interunits in Biotechnology, Av Prof Lineu Prestes, 2415, ICB III, São Paulo, SP, Brazil
| | - Elizabeth De Gaspari
- Adolfo Lutz Institute, Immunology Center, Av Dr Arnaldo, 355, 11th floor, room 1116, Cerqueira César, São Paulo, SP, Brazil.,São Paulo University, Biomedical Sciences Institute, Graduate Program Interunits in Biotechnology, Av Prof Lineu Prestes, 2415, ICB III, São Paulo, SP, Brazil
| |
Collapse
|
3
|
Sahu KK, Pandey RS. Development and characterization of HBsAg-loaded Eudragit nanoparticles for effective colonic immunization. Pharm Dev Technol 2018; 24:166-175. [DOI: 10.1080/10837450.2018.1444639] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Kantrol Kumar Sahu
- SLT Institute of Pharmaceutical Sciences, Guru Ghasidas Vishwavidyalaya, Bilaspur, India
| | - Ravi Shankar Pandey
- SLT Institute of Pharmaceutical Sciences, Guru Ghasidas Vishwavidyalaya, Bilaspur, India
| |
Collapse
|
4
|
Fotoran WL, Santangelo R, de Miranda BNM, Irvine DJ, Wunderlich G. DNA-Loaded Cationic Liposomes Efficiently Function as a Vaccine against Malarial Proteins. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2017; 7:1-10. [PMID: 28879213 PMCID: PMC5581859 DOI: 10.1016/j.omtm.2017.08.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Accepted: 08/18/2017] [Indexed: 12/14/2022]
Abstract
The delivery of antigens as DNA vaccines is an efficient alternative to induce immune responses against antigens, which are difficult to produce in recombinant form. However, the delivery of naked DNA is ineffective or relies on sophisticated ballistic devices. Here, we show a combination of liposome application and naked DNA vaccine that successfully overcomes these problems. Upon entrapment of plasmids encoding different antigens in cationic particles, transfection efficiencies similar to commercial kits were achieved in in vitro cell cultures. The liposome-based approach provided strong humoral responses against three malarial antigens, namely the Circumsporozoite protein and the C terminus of merozoite surface protein 1 from Plasmodium vivax (titers 104 or 103–104, respectively) and P. falciparum Rhoptry antigen 5 from Plasmodium falciparum (titers 103–104). When employed in P. falciparum growth-inhibition assays, antibodies demonstrated consistent reinvasion-blocking activities that were dose dependent. Liposome-formulated DNA vaccines may prove useful when targets cannot be produced as recombinant proteins and when conformation-dependent and highly specific antibodies are mandatory.
Collapse
Affiliation(s)
- Wesley L Fotoran
- Department of Parasitology, Institute for Biomedical Sciences, University of São Paulo, Av. Prof. Lineu Prestes 1374, São Paulo, 05508000, Brazil
| | - Rachele Santangelo
- Department of Parasitology, Institute for Biomedical Sciences, University of São Paulo, Av. Prof. Lineu Prestes 1374, São Paulo, 05508000, Brazil
| | - Beatriz N M de Miranda
- Institute of Chemistry of São Carlos, University of São Paulo, Av. Trabalhador São-Carlense 400, São Carlos, 13566-590, Brazil
| | - Darrell J Irvine
- Koch Institute for Integrative Cancer Research and Department of Biomedical Engineering and Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA.,Ragon Institute of MGH, MIT and Harvard University, Boston, MA, USA.,Howard Hughes Medical Institute, Chevy Chase, MD, USA
| | - Gerhard Wunderlich
- Department of Parasitology, Institute for Biomedical Sciences, University of São Paulo, Av. Prof. Lineu Prestes 1374, São Paulo, 05508000, Brazil
| |
Collapse
|
5
|
Sahu KK, Pandey RS. Immunological evaluation of colonic delivered Hepatitis B surface antigen loaded TLR-4 agonist modified solid fat nanoparticles. Int Immunopharmacol 2016; 39:343-352. [PMID: 27526270 DOI: 10.1016/j.intimp.2016.08.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2016] [Revised: 08/03/2016] [Accepted: 08/05/2016] [Indexed: 12/29/2022]
Abstract
Hepatitis B is one of the leading liver diseases and remains a major global health problem. Currently available vaccines provide protection but often results in weaker/minimal mucosal immunity. Thus the present study is devoted to the development and in-vivo exploration of the colonically delivered biomimetic nanoparticles which capably enhance humoral as well as cellular immune response. In present work, Hepatitis B surface antigen (HBsAg) entrapped nanoparticles containing Monophosphoryl lipid A (MPLA) (HB+L-NP) were prepared by solvent evaporation method and characterized for particle size (~210nm), shape, zeta potential (-24mV±0.68), entrapment efficiency (58.45±1.68%), in-vitro release and antigen integrity. Dose escalation study was done to confirm prophylactic immune response following defined doses of prepared nanoparticulate formulations with or without MPLA. Intramuscular administered alum based marketed HBsAg (Genevac B) was used as standard (10μg) and were able to induce significant systemic (IgG) but remarkably low mucosal immune (IgA) response. Notably, HB+L-NP (0.5ml-10μg) induced strong systemic and robust mucosal immunity (510 and 470 mIU/ml respectively, p<0.001) from which mucosal was more significant due to the involvement of Common Mucosal Immune System (CMIS). Likewise, significant cellular immune response was elicited by HB+L-NP through T-cell activation (mixed Th1 and Th2) as confirmed by significantly increased cytokines level (IL-2 and Interferon-γ) in spleen homogenates. This study supports that delivery of HBsAg to the colon may open new vista in designing oral vaccines later being one of most accepted route for potential vaccines in future.
Collapse
Affiliation(s)
- Kantrol Kumar Sahu
- SLT Institute of Pharmaceutical Sciences, Guru Ghasidas Vishwavidyalaya, Bilaspur, C.G. 495001, India
| | - Ravi Shankar Pandey
- SLT Institute of Pharmaceutical Sciences, Guru Ghasidas Vishwavidyalaya, Bilaspur, C.G. 495001, India.
| |
Collapse
|
6
|
Harde H, Siddhapura K, Agrawal AK, Jain S. Development of dual toxoid-loaded layersomes for complete immunostimulatory response following peroral administration. Nanomedicine (Lond) 2016; 10:1077-91. [PMID: 25929566 DOI: 10.2217/nnm.14.177] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
AIM Present study reports the development of divalent vaccine with enhanced protection, permeation and presentation following peroral immunization. MATERIALS & METHODS Layersomes were prepared by layer-by-layer tuning of polyelectrolytes on liposomes template. The developed system was evaluated for in vitro stability of antigen and layersomes, cell-based assays and immunization experiments in mice. RESULTS Layersomes exhibited enhanced stability in simulated biological fluids, still preserving the integrity, biological activity and conformational stability of toxoids. Layersomes also exhibited complete and protective (>0.1 IU/ml) immunostimulatory response include serum IgG titer, mucosal sIgA titer and cytokines (IL-2 and IFN-γ) levels following peroral administration. CONCLUSION The positive findings of proposed strategy are expected to contribute significantly in the field of stable liposomes technology and peroral immunization.
Collapse
Affiliation(s)
- Harshad Harde
- Centre for Pharmaceutical Nanotechnology, Department of Pharmaceutics, National Institute of Pharmaceutical Education & Research, SAS Nagar, Punjab 160 062, India
| | | | | | | |
Collapse
|
7
|
Wang S, Liu H, Zhang X, Qian F. Intranasal and oral vaccination with protein-based antigens: advantages, challenges and formulation strategies. Protein Cell 2015; 6:480-503. [PMID: 25944045 PMCID: PMC4491048 DOI: 10.1007/s13238-015-0164-2] [Citation(s) in RCA: 97] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2015] [Accepted: 04/10/2015] [Indexed: 02/06/2023] Open
Abstract
Most pathogens initiate their infections at the human mucosal surface. Therefore, mucosal vaccination, especially through oral or intranasal administration routes, is highly desired for infectious diseases. Meanwhile, protein-based antigens provide a safer alternative to the whole pathogen or DNA based ones in vaccine development. However, the unique biopharmaceutical hurdles that intranasally or orally delivered protein vaccines need to overcome before they reach the sites of targeting, the relatively low immunogenicity, as well as the low stability of the protein antigens, require thoughtful and fine-tuned mucosal vaccine formulations, including the selection of immunostimulants, the identification of the suitable vaccine delivery system, and the determination of the exact composition and manufacturing conditions. This review aims to provide an up-to-date survey of the protein antigen-based vaccine formulation development, including the usage of immunostimulants and the optimization of vaccine delivery systems for intranasal and oral administrations.
Collapse
Affiliation(s)
- Shujing Wang
- Department of Pharmacology and Pharmaceutical Sciences, School of Medicine and Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Tsinghua University, Beijing, 100084, China
| | | | | | | |
Collapse
|
8
|
Abstract
Infectious agents generally use mucosal surfaces as entry port to the body thereby necessitating the need of development of mucosal vaccine as vaccination is important for disease avoidance and suppression. Vaccination through mucosal route is a promising strategy to elicit efficient immune response as parentally administered vaccines induce poor mucosal immunity in general. Safety, economy and stability are highly desired with vaccines and this can be achieved with use of delivery cargos. This review focuses on challenges related with mucosal vaccines and use of nanocarriers as suitable cargos to cater the antigen effectively to the desired site. The review also includes different factors which are to be considered regarding the performance of the nanocarriers and clinical status of these systems.
Collapse
|
9
|
Harde H, Agrawal AK, Jain S. Development of stabilized glucomannosylated chitosan nanoparticles using tandem crosslinking method for oral vaccine delivery. Nanomedicine (Lond) 2014; 9:2511-29. [DOI: 10.2217/nnm.13.225] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Aim: The aim of this study was to develop a novel platform technology, comprising of stable glucomannosylated chitosan nanoparticles, for oral immunization. Materials & methods: Chitosan nanoparticles were stabilized by tandem crosslinking using tripolyphosphate followed by glutaraldehyde. Process and formulation variables were optimized using a ‘Box–Behnken’ design. The in vitro and in vivo performances were established in RAW 264.7 and BALB/c mice, respectively. Results: The lyophilized formulation was exceptionally stable in simulated biological media and the enclosed antigen was conformationally stable. The mechanistic understanding of glucomannosylated chitosan nanoparticles in RAW 264.7 revealed transcellular uptake via both mannose and glucose transporter-mediated endocytosis. Glucomannan modification resulted in significantly higher systemic (serum IgG titer), mucosal (secretory IgA) and cell-mediated (IL-2 and IFN-γ) immune responses in comparison with nonmodified chitosan nanoparticles. Conclusion: The present strategy is expected to contribute some novel tools for the oral delivery of numerous biomacromolecules. Original submitted 8 August 2013; Revised submitted 15 December 2013
Collapse
Affiliation(s)
- Harshad Harde
- Center for Pharmaceutical Nanotechnology, Department of Pharmaceutics, National Institute of Pharmaceutical Education & Research, SAS Nagar, Punjab, 160062, India
| | - Ashish Kumar Agrawal
- Center for Pharmaceutical Nanotechnology, Department of Pharmaceutics, National Institute of Pharmaceutical Education & Research, SAS Nagar, Punjab, 160062, India
| | - Sanyog Jain
- Center for Pharmaceutical Nanotechnology, Department of Pharmaceutics, National Institute of Pharmaceutical Education & Research, SAS Nagar, Punjab, 160062, India
| |
Collapse
|
10
|
Cho WS, Dart K, Nowakowska DJ, Zheng X, Donaldson K, Howie SEM. Adjuvanticity and toxicity of cobalt oxide nanoparticles as an alternative vaccine adjuvant. Nanomedicine (Lond) 2012; 7:1495-505. [DOI: 10.2217/nnm.12.35] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Aim: There are very few adjuvants licensed for use in human vaccination, and alum-based adjuvants are the most widely used. Alum adjuvants predominantly boost Th2 immune responses and there is a need for new adjuvants that also stimulate Th1 immunity. We recently reported that cobalt oxide nanoparticles (Co3O4NPs) stimulate Th1-type immune responses in vivo. Here, we exploited this property to examine whether Co3O4NP could act as an adjuvant using the model antigen ovalbumin. Materials & methods: Female C57BL/6 mice were immunized subcutaneously twice with ovalbumin plus adjuvant (Co3O4NPs or Imject® Alum) followed by intraperitoneal stimulation with soluble ovalbumin. Results: Co3O4NPs induced a more balanced Th1- and Th2-type response, triggering higher specific Th1-dependent IgG2c production in addition to Th2-dependent IgG1 and less ‘allergic’ IgE production, and induced less inflammation at both the subcutaneous and intraperitoneal injection sites. Discussion: Co3O4NPs could be a very useful adjuvant where both Th1 and Th2 responses are needed to clear pathogens. Original submitted 22 August 2011; Revised submitted 28 February 2012; Published online 20 July 2012
Collapse
Affiliation(s)
- Wan-Seob Cho
- ELEGI/Colt Laboratory, Center for Inflammation Research, University of Edinburgh, Edinburgh, EH16 4TJ, UK
- Department of Medicinal Biotechnology, College of Natural Resources and Life Science, Dong-A University, Busan 604–714, South Korea
| | - Kenneth Dart
- ELEGI/Colt Laboratory, Center for Inflammation Research, University of Edinburgh, Edinburgh, EH16 4TJ, UK
- Immunity and Chronic Inflammation Group, Center for Inflammation Research, University of Edinburgh, Edinburgh, EH16 4TJ, UK
| | - Dominika J Nowakowska
- Immunity and Chronic Inflammation Group, Center for Inflammation Research, University of Edinburgh, Edinburgh, EH16 4TJ, UK
| | - Xiaozhong Zheng
- Immunity and Chronic Inflammation Group, Center for Inflammation Research, University of Edinburgh, Edinburgh, EH16 4TJ, UK
| | - Ken Donaldson
- ELEGI/Colt Laboratory, Center for Inflammation Research, University of Edinburgh, Edinburgh, EH16 4TJ, UK
| | - Sarah EM Howie
- ELEGI/Colt Laboratory, Center for Inflammation Research, University of Edinburgh, Edinburgh, EH16 4TJ, UK
| |
Collapse
|
11
|
Kar UK, Jiang J, Champion CI, Salehi S, Srivastava M, Sharma S, Rabizadeh S, Niazi K, Kickhoefer V, Rome LH, Kelly KA. Vault nanocapsules as adjuvants favor cell-mediated over antibody-mediated immune responses following immunization of mice. PLoS One 2012; 7:e38553. [PMID: 22808011 PMCID: PMC3394761 DOI: 10.1371/journal.pone.0038553] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2011] [Accepted: 05/11/2012] [Indexed: 01/12/2023] Open
Abstract
Background Modifications of adjuvants that induce cell-mediated over antibody-mediated immunity is desired for development of vaccines. Nanocapsules have been found to be viable adjuvants and are amenable to engineering for desired immune responses. We previously showed that natural nanocapsules called vaults can be genetically engineered to elicit Th1 immunity and protection from a mucosal bacterial infection. The purpose of our study was to characterize immunity produced in response to OVA within vault nanoparticles and compare it to another nanocarrier. Methodology and Principal Findings We characterized immunity resulting from immunization with the model antigen, ovalbumin (OVA) encased in vault nanocapsules and liposomes. We measured OVA responsive CD8+ and CD4+ memory T cell responses, cytokine production and antibody titers in vitro and in vivo. We found that immunization with OVA contain in vaults induced a greater number of anti-OVA CD8+ memory T cells and production of IFNγ plus CD4+ memory T cells. Also, modification of the vault body could change the immune response compared to OVA encased in liposomes. Conclusions/Significance These experiments show that vault nanocapsules induced strong anti-OVA CD8+ and CD4+ T cell memory responses and modest antibody production, which markedly differed from the immune response induced by liposomes. We also found that the vault nanocapsule could be modified to change antibody isotypes in vivo. Thus it is possible to create a vault nanocapsule vaccine that can result in the unique combination of immunogen-responsive CD8+ and CD4+ T cell immunity coupled with an IgG1 response for future development of vault nanocapsule-based vaccines against antigens for human pathogens and cancer.
Collapse
Affiliation(s)
- Upendra K. Kar
- Department of Biological Chemistry, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, United States of America
| | - Janina Jiang
- Department of Pathology and Lab Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, United States of America
| | - Cheryl I. Champion
- Department of Pathology and Lab Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, United States of America
| | - Sahar Salehi
- Department of Pathology and Lab Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, United States of America
| | - Minu Srivastava
- Molecular Medicine Laboratory, Veteran’s Affairs Greater Los Angeles Healthcare System, Los Angeles, California, United States of America
| | - Sherven Sharma
- Molecular Medicine Laboratory, Veteran’s Affairs Greater Los Angeles Healthcare System, Los Angeles, California, United States of America
| | - Shahrooz Rabizadeh
- Department of Bioengineering, Samueli School of Engineering, University of California Los Angeles, Los Angeles, California, United States of America
- California NanoSystems Institute, University of California Los Angeles, Los Angeles, California, United States of America
| | - Kayvan Niazi
- Department of Bioengineering, Samueli School of Engineering, University of California Los Angeles, Los Angeles, California, United States of America
- California NanoSystems Institute, University of California Los Angeles, Los Angeles, California, United States of America
| | - Valerie Kickhoefer
- Department of Biological Chemistry, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, United States of America
- California NanoSystems Institute, University of California Los Angeles, Los Angeles, California, United States of America
| | - Leonard H. Rome
- Department of Biological Chemistry, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, United States of America
- California NanoSystems Institute, University of California Los Angeles, Los Angeles, California, United States of America
| | - Kathleen A. Kelly
- Department of Pathology and Lab Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, United States of America
- California NanoSystems Institute, University of California Los Angeles, Los Angeles, California, United States of America
- * E-mail:
| |
Collapse
|