1
|
Teimouri H, Taheri S, Saidabad FE, Nakazato G, Maghsoud Y, Babaei A. New insights into gold nanoparticles in virology: A review of their applications in the prevention, detection, and treatment of viral infections. Biomed Pharmacother 2025; 183:117844. [PMID: 39826358 DOI: 10.1016/j.biopha.2025.117844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2024] [Revised: 12/29/2024] [Accepted: 01/10/2025] [Indexed: 01/22/2025] Open
Abstract
Viral infections have led to the deaths of millions worldwide and come with significant economic and social burdens. Emerging viral infections, as witnessed with coronavirus disease 2019 (COVID-19), can profoundly affect all aspects of human life, highlighting the imperative need to develop diagnostic, therapeutic, and effective control strategies in response. Numerous studies highlight the diverse applications of nanoparticles in diagnosing, controlling, preventing, and treating viral infections. Due to favorable and flexible physicochemical properties, small size, immunogenicity, biocompatibility, high surface-to-volume ratio, and the ability to combine with antiviral agents, gold nanoparticles (AuNPs) have shown great potential in the fight against viruses. The physical and chemical properties, the adjustability of characteristics based on the type of application, the ability to cross the blood-brain barrier, the ability to infiltrate cells such as phagocytic and dendritic cells, and compatibility for complexing with various compounds, among other features, transform AuNPs into a suitable tool for combating and addressing pathogenic viral agents through multiple applications. In recent years, AuNPs have been employed in various applications to fight viral infections. However, a comprehensive review article on the applications of AuNPs against viral infections has yet to be available. Given their versatility, AuNPs present an appealing option to address various gaps in combating viral infections. Hence, this review explores the attributes, antiviral properties, contributions to drug delivery, vaccine development, and diagnostic uses of AuNPs.
Collapse
Affiliation(s)
- Hossein Teimouri
- Medical Microbiology Research Center, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Shiva Taheri
- Department of Bacteriology and Virology, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | - Gerson Nakazato
- Laboratory of Basic and Applied Bacteriology, Department of Microbiology, Center of Biological Sciences, Universidade Estadual de Londrina, Parana State CP6001, Brazil
| | - Yazdan Maghsoud
- Department of Biochemistry and Molecular Pharmacology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Abouzar Babaei
- Medical Microbiology Research Center, Qazvin University of Medical Sciences, Qazvin, Iran; Department of Microbiology and Immunology, School of Medicine, Qazvin University of Medical Sciences, Qazvin, Iran.
| |
Collapse
|
2
|
Hu C, Wang J, Gao X, Xia J, Li W, Song P, Zhang W, Ge F, Zhu L. Pluronic-Based Nanoparticles for Delivery of Doxorubicin to the Tumor Microenvironment by Binding to Macrophages. ACS NANO 2024; 18:14441-14456. [PMID: 38758604 DOI: 10.1021/acsnano.4c01120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2024]
Abstract
The active targeting drug delivery system based on special types of endogenous cells such as macrophages has emerged as a promising strategy for tumor therapy, owing to its tumor homing property and biocompatibility. In this work, the active tumor-targeting drug delivery system carrying doxorubicin-loaded nanoparticles (DOX@MPF127-MCP-1, DMPM) on macrophage (RAW264.7) surfaces via the mediation of interaction with the CCR2/MCP-1 axis was exploited. Initially, the amphiphilic block copolymer Pluronic F127 (PF127) was carboxylated to MPF127 at the hydroxyl terminus. Subsequently, MPF127 was modified with MCP-1 peptide to prepare MPF127-MCP-1 (MPM). The DOX was wrapped in MPM to form DMPM nanomicelles (approximately 100 nm) during the self-assembly process of MPM. The DMPM spontaneously bound to macrophages (RAW264.7), which resulted in the construction of an actively targeting delivery system (macrophage-DMPM, MA-DMPM) in vitro and in vivo. The DOX in MA-DMPM was released in the acidic tumor microenvironment (TME) in a pH-responsive manner to increase DOX accumulation and enhance the tumor treatment effect. The ratio of MA-DMPM homing reached 220% in vitro compared with the control group, indicating that the MA-DMPM was excellently capable of tumor-targeting delivery. In in vivo experiments, nonsmall cell lung cancer cell (NCI-H1299) tumor models were established. The results of the fluorescence imaging system (IVIS) showed that MA-DMPM demonstrated tremendous tumor-targeting ability in vivo. The antitumor effects of MA-DMPM in vivo indicated that the proportion of tumor cell apoptosis in the DMPM-treated group was 63.33%. The findings of the tumor-bearing mouse experiment proved that MA-DMPM significantly suppressed tumor cell growth, which confirmed its immense potential and promising applications in tumor therapy.
Collapse
Affiliation(s)
- Chengrui Hu
- School of Biological and Food Engineering, Anhui Polytechnic University, Wuhu, Anhui 241000, Peoples Republic of China
| | - Jun Wang
- School of Biological and Food Engineering, Anhui Polytechnic University, Wuhu, Anhui 241000, Peoples Republic of China
| | - Xinxing Gao
- College of Pharmacy and Chemistry & Chemical Engineering, Taizhou University, Taizhou, Jiangsu 225300, Peoples Republic of China
| | - Jie Xia
- School of Biological and Food Engineering, Anhui Polytechnic University, Wuhu, Anhui 241000, Peoples Republic of China
| | - Wanzhen Li
- School of Biological and Food Engineering, Anhui Polytechnic University, Wuhu, Anhui 241000, Peoples Republic of China
| | - Ping Song
- School of Biological and Food Engineering, Anhui Polytechnic University, Wuhu, Anhui 241000, Peoples Republic of China
| | - Weiwei Zhang
- School of Biological and Food Engineering, Anhui Polytechnic University, Wuhu, Anhui 241000, Peoples Republic of China
| | - Fei Ge
- School of Biological and Food Engineering, Anhui Polytechnic University, Wuhu, Anhui 241000, Peoples Republic of China
| | - Longbao Zhu
- School of Biological and Food Engineering, Anhui Polytechnic University, Wuhu, Anhui 241000, Peoples Republic of China
| |
Collapse
|
3
|
Gupta P, Rai N, Verma A, Gautam V. Microscopy based methods for characterization, drug delivery, and understanding the dynamics of nanoparticles. Med Res Rev 2024; 44:138-168. [PMID: 37294298 DOI: 10.1002/med.21981] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 05/04/2023] [Accepted: 05/23/2023] [Indexed: 06/10/2023]
Abstract
Nanomedicine is an emerging field that exploits nanotechnology for the development of novel therapeutic and diagnostic modalities. Researches are been focussed in nanoimaging to develop noninvasive, highly sensitive, and reliable tools for diagnosis and visualization in nanomedical field. The application of nanomedicine in healthcare requires in-depth understanding of their structural, physical and morphological properties, internalization inside living system, biodistribution and localization, stability, mode of action and possible toxic health effects. Microscopic techniques including fluorescence-based confocal laser scanning microscopy, super-resolution fluorescence microscopy and multiphoton microscopy; optical-based Raman microscopy, photoacoustic microscopy and optical coherence tomography; photothermal microscopy; electron microscopy (transmission electron microscope and scanning electron microscope); atomic force microscopy; X-ray microscopy and, correlative multimodal imaging are recognized as an indispensable tool in material research and aided in numerous discoveries. Microscopy holds great promise in detecting the fundamental structures of nanoparticles (NPs) that determines their performance and applications. Moreover, the intricate details that allows assessment of chemical composition, surface topology and interfacial properties, molecular, microstructure, and micromechanical properties are also elucidated. With plethora of applications, microscopy-based techniques have been used to characterize novel NPs alongwith their proficient designing and adoption of safe strategies to be exploited in nanomedicine. Consequently, microscopic techniques have been extensively used in the characterization of fabricated NPs, and their biomedical application in diagnostics and therapeutics. The present review provides an overview of the microscopy-based techniques for in vitro and in vivo application in nanomedical investigation alongwith their challenges and advancement to meet the limitations of conventional methods.
Collapse
Affiliation(s)
- Priyamvada Gupta
- Centre of Experimental Medicine and Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - Nilesh Rai
- Centre of Experimental Medicine and Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - Ashish Verma
- Centre of Experimental Medicine and Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - Vibhav Gautam
- Centre of Experimental Medicine and Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| |
Collapse
|
4
|
Piao CH, Fan Y, Nguyen TV, Song CH, Kim HT, Chai OH. PM2.5 exposure regulates Th1/Th2/Th17 cytokine production through NF-κB signaling in combined allergic rhinitis and asthma syndrome. Int Immunopharmacol 2023; 119:110254. [PMID: 37163921 DOI: 10.1016/j.intimp.2023.110254] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 04/12/2023] [Accepted: 04/26/2023] [Indexed: 05/12/2023]
Abstract
BACKGROUND Particulate matter (PM) is a major component of air pollution from emissions from anthropogenic and natural sources and is a serious problem worldwide due to its adverse effects on human health. Increased particulate air pollution increases respiratory disease-related mortality and morbidity. However, the impact of PM with an aerodynamic diameter of ≤ 2.5 μm (PM2.5) on combined allergic rhinitis and asthma syndrome (CARAS) remains to be elucidated. Accordingly, in the present study, we investigated the effect of PM2.5 in an ovalbumin (OVA)-induced CARAS mouse model with a focus on NF-κB signaling. METHODOLOGY We established an OVA-induced mouse model of CARAS to determine the effects of exposure to PM2.5. BALB/c mice were randomly divided into four groups: (1) naive, (2) PM2.5, (3) CARAS, and (4) CARAS/PM2.5. Mice were systemically sensitized with OVA and challenged with inhalation of ultrasonically nebulized 5% OVA three times by intranasal instillation of OVA in each nostril for 7 consecutive days. Mice in the PM2.5 and CARAS/PM2.5 groups were then exposed to PM2.5 by intranasal instillation of PM2.5 for several days. We then examined the impacts of PM2.5 exposure on histopathology and NF-κB signaling in our OVA-induced CARAS mouse model. RESULTS PM2.5 increased infiltration of eosinophils in bronchoalveolar lavage fluid (BALF) samples and inflammatory cells in lung tissue. It also increased production of GATA3, RORγ, IL-4, IL-5, IL-13, and IL-17 in nasal lavage fluid (NALF) and BALF samples in the CARAS mouse model, but secretion of IL-12 and IFN-γ was suppressed. Exposure to PM2.5 increased OVA-specific IgE and IgG1 levels in serum, inflammatory cell infiltration in the airways, and fibrosis in lung tissue. It also activated the NF-κB signaling pathway, increasing Th2/Th17 cytokine levels while decreasing Th1 cytokine expression, thereby inducing an inflammatory response and promoting inflammatory cell infiltration in nasal and lung tissue. CONCLUSION Our results demonstrate that PM2.5 can aggravate OVA-induced CARAS.
Collapse
Affiliation(s)
- Chun Hua Piao
- Department of Pulmonary and Critical Care Medicine, The affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, Shandong 264000, PR China; Department of Anatomy, Jeonbuk National University Medical School, Jeonju, Jeonbuk 54896, Republic of Korea
| | - Yanjing Fan
- Department of Anatomy, Jeonbuk National University Medical School, Jeonju, Jeonbuk 54896, Republic of Korea; School of Medicine, Liaocheng University, Liaocheng, Shandong 252000, PR China
| | - Thi Van Nguyen
- Department of Anatomy, Jeonbuk National University Medical School, Jeonju, Jeonbuk 54896, Republic of Korea
| | - Chang Ho Song
- Department of Anatomy, Jeonbuk National University Medical School, Jeonju, Jeonbuk 54896, Republic of Korea; Institute for Medical Sciences, Jeonbuk National University, Jeonju, Jeonbuk 54896, Republic of Korea
| | - Hyoung Tae Kim
- Department of Anatomy, Jeonbuk National University Medical School, Jeonju, Jeonbuk 54896, Republic of Korea
| | - Ok Hee Chai
- Department of Anatomy, Jeonbuk National University Medical School, Jeonju, Jeonbuk 54896, Republic of Korea; Institute for Medical Sciences, Jeonbuk National University, Jeonju, Jeonbuk 54896, Republic of Korea; Biomedical Research Institute, Jeonbuk National University Hospital, Jeonju, Jeonbuk 54896, Republic of Korea.
| |
Collapse
|
5
|
Transmission Electron Microscopy as a Powerful Tool to Investigate the Interaction of Nanoparticles with Subcellular Structures. Int J Mol Sci 2021; 22:ijms222312789. [PMID: 34884592 PMCID: PMC8657944 DOI: 10.3390/ijms222312789] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 11/21/2021] [Accepted: 11/25/2021] [Indexed: 12/15/2022] Open
Abstract
Nanomedical research necessarily involves the study of the interactions between nanoparticulates and the biological environment. Transmission electron microscopy has proven to be a powerful tool in providing information about nanoparticle uptake, biodistribution and relationships with cell and tissue components, thanks to its high resolution. This article aims to overview the transmission electron microscopy techniques used to explore the impact of nanoconstructs on biological systems, highlighting the functional value of ultrastructural morphology, histochemistry and microanalysis as well as their fundamental contribution to the advancement of nanomedicine.
Collapse
|
6
|
Doryab A, Taskin MB, Stahlhut P, Schröppel A, Orak S, Voss C, Ahluwalia A, Rehberg M, Hilgendorff A, Stöger T, Groll J, Schmid O. A Bioinspired in vitro Lung Model to Study Particokinetics of Nano-/Microparticles Under Cyclic Stretch and Air-Liquid Interface Conditions. Front Bioeng Biotechnol 2021; 9:616830. [PMID: 33634087 PMCID: PMC7902031 DOI: 10.3389/fbioe.2021.616830] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 01/13/2021] [Indexed: 12/12/2022] Open
Abstract
Evolution has endowed the lung with exceptional design providing a large surface area for gas exchange area (ca. 100 m2) in a relatively small tissue volume (ca. 6 L). This is possible due to a complex tissue architecture that has resulted in one of the most challenging organs to be recreated in the lab. The need for realistic and robust in vitro lung models becomes even more evident as causal therapies, especially for chronic respiratory diseases, are lacking. Here, we describe the Cyclic InVItroCell-stretch (CIVIC) “breathing” lung bioreactor for pulmonary epithelial cells at the air-liquid interface (ALI) experiencing cyclic stretch while monitoring stretch-related parameters (amplitude, frequency, and membrane elastic modulus) under real-time conditions. The previously described biomimetic copolymeric BETA membrane (5 μm thick, bioactive, porous, and elastic) was attempted to be improved for even more biomimetic permeability, elasticity (elastic modulus and stretchability), and bioactivity by changing its chemical composition. This biphasic membrane supports both the initial formation of a tight monolayer of pulmonary epithelial cells (A549 and 16HBE14o−) under submerged conditions and the subsequent cell-stretch experiments at the ALI without preconditioning of the membrane. The newly manufactured versions of the BETA membrane did not improve the characteristics of the previously determined optimum BETA membrane (9.35% PCL and 6.34% gelatin [w/v solvent]). Hence, the optimum BETA membrane was used to investigate quantitatively the role of physiologic cyclic mechanical stretch (10% linear stretch; 0.33 Hz: light exercise conditions) on size-dependent cellular uptake and transepithelial transport of nanoparticles (100 nm) and microparticles (1,000 nm) for alveolar epithelial cells (A549) under ALI conditions. Our results show that physiologic stretch enhances cellular uptake of 100 nm nanoparticles across the epithelial cell barrier, but the barrier becomes permeable for both nano- and micron-sized particles (100 and 1,000 nm). This suggests that currently used static in vitro assays may underestimate cellular uptake and transbarrier transport of nanoparticles in the lung.
Collapse
Affiliation(s)
- Ali Doryab
- Comprehensive Pneumology Center Munich, Member of the German Center for Lung Research, Munich, Germany.,Helmholtz Zentrum München-German Research Center for Environmental Health, Institute of Lung Biology and Disease, Munich, Germany
| | - Mehmet Berat Taskin
- Department of Functional Materials in Medicine and Dentistry, Bavarian Polymer Institute, University of Würzburg, Würzburg, Germany
| | - Philipp Stahlhut
- Department of Functional Materials in Medicine and Dentistry, Bavarian Polymer Institute, University of Würzburg, Würzburg, Germany
| | - Andreas Schröppel
- Comprehensive Pneumology Center Munich, Member of the German Center for Lung Research, Munich, Germany.,Helmholtz Zentrum München-German Research Center for Environmental Health, Institute of Lung Biology and Disease, Munich, Germany
| | - Sezer Orak
- Comprehensive Pneumology Center Munich, Member of the German Center for Lung Research, Munich, Germany.,Helmholtz Zentrum München-German Research Center for Environmental Health, Institute of Lung Biology and Disease, Munich, Germany
| | - Carola Voss
- Comprehensive Pneumology Center Munich, Member of the German Center for Lung Research, Munich, Germany.,Helmholtz Zentrum München-German Research Center for Environmental Health, Institute of Lung Biology and Disease, Munich, Germany
| | - Arti Ahluwalia
- Research Center "E. Piaggio", University of Pisa, Pisa, Italy.,Department of Information Engineering, University of Pisa, Pisa, Italy
| | - Markus Rehberg
- Comprehensive Pneumology Center Munich, Member of the German Center for Lung Research, Munich, Germany.,Helmholtz Zentrum München-German Research Center for Environmental Health, Institute of Lung Biology and Disease, Munich, Germany
| | - Anne Hilgendorff
- Comprehensive Pneumology Center Munich, Member of the German Center for Lung Research, Munich, Germany.,Helmholtz Zentrum München-German Research Center for Environmental Health, Institute of Lung Biology and Disease, Munich, Germany.,Center for Comprehensive Developmental Care (CDeCLMU), Dr. von Haunersches Children's Hospital University, Hospital of the Ludwig-Maximilians University, Munich, Germany
| | - Tobias Stöger
- Comprehensive Pneumology Center Munich, Member of the German Center for Lung Research, Munich, Germany.,Helmholtz Zentrum München-German Research Center for Environmental Health, Institute of Lung Biology and Disease, Munich, Germany
| | - Jürgen Groll
- Department of Functional Materials in Medicine and Dentistry, Bavarian Polymer Institute, University of Würzburg, Würzburg, Germany
| | - Otmar Schmid
- Comprehensive Pneumology Center Munich, Member of the German Center for Lung Research, Munich, Germany.,Helmholtz Zentrum München-German Research Center for Environmental Health, Institute of Lung Biology and Disease, Munich, Germany
| |
Collapse
|
7
|
Radiom M, Sarkis M, Brookes O, Oikonomou EK, Baeza-Squiban A, Berret JF. Pulmonary surfactant inhibition of nanoparticle uptake by alveolar epithelial cells. Sci Rep 2020; 10:19436. [PMID: 33173147 PMCID: PMC7655959 DOI: 10.1038/s41598-020-76332-7] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 10/20/2020] [Indexed: 02/04/2023] Open
Abstract
Pulmonary surfactant forms a sub-micrometer thick fluid layer that covers the surface of alveolar lumen and inhaled nanoparticles therefore come in to contact with surfactant prior to any interaction with epithelial cells. We investigate the role of the surfactant as a protective physical barrier by modeling the interactions using silica-Curosurf-alveolar epithelial cell system in vitro. Electron microscopy displays that the vesicles are preserved in the presence of nanoparticles while nanoparticle-lipid interaction leads to formation of mixed aggregates. Fluorescence microscopy reveals that the surfactant decreases the uptake of nanoparticles by up to two orders of magnitude in two models of alveolar epithelial cells, A549 and NCI-H441, irrespective of immersed culture on glass or air-liquid interface culture on transwell. Confocal microscopy corroborates the results by showing nanoparticle-lipid colocalization interacting with the cells. Our work thus supports the idea that pulmonary surfactant plays a protective role against inhaled nanoparticles. The effect of surfactant should therefore be considered in predictive assessment of nanoparticle toxicity or drug nanocarrier uptake. Models based on the one presented in this work may be used for preclinical tests with engineered nanoparticles.
Collapse
Affiliation(s)
- M Radiom
- UMR CNRS 7057, Laboratoire Matière Et Systèmes Complexes, Université de Paris, Paris, France.
- Institute for Food, Nutrition and Health, D-HEST, ETH Zürich, Zürich, Switzerland.
| | - M Sarkis
- UMR CNRS 7057, Laboratoire Matière Et Systèmes Complexes, Université de Paris, Paris, France
| | - O Brookes
- UMR CNRS 8251, Unité de Biologie Fonctionnelle et Adaptative, Université de Paris, Paris, France
| | - E K Oikonomou
- UMR CNRS 7057, Laboratoire Matière Et Systèmes Complexes, Université de Paris, Paris, France
| | - A Baeza-Squiban
- UMR CNRS 8251, Unité de Biologie Fonctionnelle et Adaptative, Université de Paris, Paris, France
| | - J-F Berret
- UMR CNRS 7057, Laboratoire Matière Et Systèmes Complexes, Université de Paris, Paris, France.
| |
Collapse
|
8
|
Manshian BB, Pokhrel S, Mädler L, Soenen SJ. The impact of nanoparticle-driven lysosomal alkalinization on cellular functionality. J Nanobiotechnology 2018; 16:85. [PMID: 30382919 PMCID: PMC6208102 DOI: 10.1186/s12951-018-0413-7] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Accepted: 10/25/2018] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND The biomedical use of nanosized materials is rapidly gaining interest, which drives the quest to elucidate the behavior of nanoparticles (NPs) in a biological environment. Apart from causing direct cell death, NPs can affect cellular wellbeing through a wide range of more subtle processes that are often overlooked. Here, we aimed to study the effect of two biomedically interesting NP types on cellular wellbeing. RESULTS In the present work, gold and SiO2 NPs of similar size and surface charge are used and their interactions with cultured cells is studied. Initial screening shows that at subcytotoxic conditions gold NPs induces cytoskeletal aberrations while SiO2 NPs do not. However, these transformations are only transient. In-depth investigation reveals that Au NPs reduce lysosomal activity by alkalinization of the lysosomal lumen. This leads to an accumulation of autophagosomes, resulting in a reduced cellular degradative capacity and less efficient clearance of damaged mitochondria. The autophagosome accumulation induces Rac and Cdc42 activity, and at a later stage activates RhoA. These transient cellular changes also affect cell functionality, where Au NP-labelled cells display significantly impeded cell migration and invasion. CONCLUSIONS These data highlight the importance of in-depth understanding of bio-nano interactions to elucidate how one biological parameter (impact on cellular degradation) can induce a cascade of different effects that may have significant implications on the further use of labeled cells.
Collapse
Affiliation(s)
- Bella B Manshian
- NanoHealth and Optical Imaging Group, Department of Imaging and Pathology, KU Leuven, Leuven, Belgium.,Molecular Small Animal Imaging Center, KU Leuven, Leuven, Belgium
| | - Suman Pokhrel
- Foundation Institute of Materials Science (IWT), Department of Production Engineering, University of Bremen, 28359, Bremen, Germany.,Leibniz Institute for Materials Engineering IWT, Badgasteiner Str. 3, 28359, Bremen, Germany
| | - Lutz Mädler
- Foundation Institute of Materials Science (IWT), Department of Production Engineering, University of Bremen, 28359, Bremen, Germany.,Leibniz Institute for Materials Engineering IWT, Badgasteiner Str. 3, 28359, Bremen, Germany
| | - Stefaan J Soenen
- NanoHealth and Optical Imaging Group, Department of Imaging and Pathology, KU Leuven, Leuven, Belgium. .,Molecular Small Animal Imaging Center, KU Leuven, Leuven, Belgium.
| |
Collapse
|
9
|
Kreyling WG, Möller W, Holzwarth U, Hirn S, Wenk A, Schleh C, Schäffler M, Haberl N, Gibson N, Schittny JC. Age-Dependent Rat Lung Deposition Patterns of Inhaled 20 Nanometer Gold Nanoparticles and their Quantitative Biokinetics in Adult Rats. ACS NANO 2018; 12:7771-7790. [PMID: 30085651 DOI: 10.1021/acsnano.8b01826] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The increasing use of gold nanoparticles leads to a possible increase of exposure by inhalation. Therefore, we have studied the deposition patterns of inhaled 20 nm gold nanoparticles (AuNP) in 7-90 day old rats and their biokinetics in 60 day old ones. Wistar-Kyoto rats inhaled intratracheally 20 nm 195Au-radiolabeled AuNP by negative pressure ventilation over 2 h. Immediately afterward lungs were excised, inflated and microwave dried. AuNP deposition was analyzed by single-photon emission computed tomography, computed-tomography and autoradiography. Completely balanced, quantitative biodistributions in major organs and all body tissues and total excretion were analyzed from 1 h to 28 d after inhalation. Intratracheal inhalation caused AuNP deposition predominately in the caudal lungs, independent of age. About 30% AuNP were deposited on airway epithelia and rapidly cleared by mucociliary clearance. About 80% of AuNP deposited in alveoli was relocated from the epithelium into the interstitium within 24 h and was inaccessible to broncho-alveolar lavage. During interstitial long-term retention, re-entrainment within macrophages back onto the lung epithelium and to the larynx and gastrointestinal tract (GIT) dominated AuNP clearance (rate 0.03 d-1) In contrast, AuNP-translocation across the air-blood barrier was much smaller leading to persistent retention in secondary organs and tissues in the ranking order liver > soft issue > spleen > kidneys > skeleton > blood > uterus > heart > brain. The age-independent, inhomogeneous AuNP deposition was probably caused by the negative pressure ventilation. Long-term AuNP clearance was dominated by macrophage-mediated transport from the interstitium to the larynx and GIT. Translocation across the rat air-blood barrier appeared to be similar to that of humans for similar sized AuNP.
Collapse
Affiliation(s)
- Wolfgang G Kreyling
- Comprehensive Pneumology Center, Institute of Lung Biology and Disease , Helmholtz Zentrum München-German Research Center for Environmental Health , Ingolstaedter Landstrasse 1 , D-85764 Neuherberg/Munich , Germany
- Institute of Epidemiology , Helmholtz Center Munich-German Research Center for Environmental Health , Ingolstaedter Landstrasse 1 , D-85764 Neuherberg/Munich , Germany
| | - Winfried Möller
- Comprehensive Pneumology Center, Institute of Lung Biology and Disease , Helmholtz Zentrum München-German Research Center for Environmental Health , Ingolstaedter Landstrasse 1 , D-85764 Neuherberg/Munich , Germany
| | - Uwe Holzwarth
- Directorate for Health, Consumers and Reference Materials , Joint Research Centre, European Commission , Via E. Fermi 2749 , I-21027 Ispra , Varese , Italy
| | - Stephanie Hirn
- Comprehensive Pneumology Center, Institute of Lung Biology and Disease , Helmholtz Zentrum München-German Research Center for Environmental Health , Ingolstaedter Landstrasse 1 , D-85764 Neuherberg/Munich , Germany
| | - Alexander Wenk
- Comprehensive Pneumology Center, Institute of Lung Biology and Disease , Helmholtz Zentrum München-German Research Center for Environmental Health , Ingolstaedter Landstrasse 1 , D-85764 Neuherberg/Munich , Germany
| | - Carsten Schleh
- Comprehensive Pneumology Center, Institute of Lung Biology and Disease , Helmholtz Zentrum München-German Research Center for Environmental Health , Ingolstaedter Landstrasse 1 , D-85764 Neuherberg/Munich , Germany
| | - Martin Schäffler
- Comprehensive Pneumology Center, Institute of Lung Biology and Disease , Helmholtz Zentrum München-German Research Center for Environmental Health , Ingolstaedter Landstrasse 1 , D-85764 Neuherberg/Munich , Germany
| | - Nadine Haberl
- Comprehensive Pneumology Center, Institute of Lung Biology and Disease , Helmholtz Zentrum München-German Research Center for Environmental Health , Ingolstaedter Landstrasse 1 , D-85764 Neuherberg/Munich , Germany
| | - Neil Gibson
- Directorate for Health, Consumers and Reference Materials , Joint Research Centre, European Commission , Via E. Fermi 2749 , I-21027 Ispra , Varese , Italy
| | - Johannes C Schittny
- Institute of Anatomy , University of Bern , Baltzerstrasse 2 , CH-3012 Berne , Switzerland
| |
Collapse
|
10
|
Schneemilch M, Quirke N. Free energy of adhesion of lipid bilayers on silica surfaces. J Chem Phys 2018; 148:194704. [DOI: 10.1063/1.5028557] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- M. Schneemilch
- Department of Chemistry, Imperial College London, London SW7 2AY, United Kingdom
| | - N. Quirke
- Department of Chemistry, Imperial College London, London SW7 2AY, United Kingdom
| |
Collapse
|
11
|
In vivo Dynamic Phase-Contrast X-ray Imaging using a Compact Light Source. Sci Rep 2018; 8:6788. [PMID: 29717143 PMCID: PMC5931574 DOI: 10.1038/s41598-018-24763-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Accepted: 04/05/2018] [Indexed: 12/14/2022] Open
Abstract
We describe the first dynamic and the first in vivo X-ray imaging studies successfully performed at a laser-undulator-based compact synchrotron light source. The X-ray properties of this source enable time-sequence propagation-based X-ray phase-contrast imaging. We focus here on non-invasive imaging for respiratory treatment development and physiological understanding. In small animals, we capture the regional delivery of respiratory treatment, and two measures of respiratory health that can reveal the effectiveness of a treatment; lung motion and mucociliary clearance. The results demonstrate the ability of this set-up to perform laboratory-based dynamic imaging, specifically in small animal models, and with the possibility of longitudinal studies.
Collapse
|
12
|
Scott LL, Downing S, Downing TG. The Evaluation of BMAA Inhalation as a Potential Exposure Route Using a rat Model. Neurotox Res 2017; 33:6-14. [DOI: 10.1007/s12640-017-9742-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Revised: 04/12/2017] [Accepted: 04/21/2017] [Indexed: 11/25/2022]
|
13
|
Omlor AJ, Le DD, Schlicker J, Hannig M, Ewen R, Heck S, Herr C, Kraegeloh A, Hein C, Kautenburger R, Kickelbick G, Bals R, Nguyen J, Dinh QT. Local Effects on Airway Inflammation and Systemic Uptake of 5 nm PEGylated and Citrated Gold Nanoparticles in Asthmatic Mice. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2017; 13:1603070. [PMID: 28009478 DOI: 10.1002/smll.201603070] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Revised: 11/08/2016] [Indexed: 06/06/2023]
Abstract
Nanotechnology is showing promise in many medical applications such as drug delivery and hyperthermia. Nanoparticles administered to the respiratory tract cause local reactions and cross the blood-air barrier, thereby providing a means for easy systemic administration but also a potential source of toxicity. Little is known about how these effects are influenced by preexisting airway diseases such as asthma. Here, BALB/c mice are treated according to the ovalbumin (OVA) asthma protocol to promote allergic airway inflammation. Dispersions of polyethylene-glycol-coated (PEGylated) and citrate/tannic-acid-coated (citrated) 5 nm gold nanoparticles are applied intranasally to asthma and control groups, and (i) airway resistance and (ii) local tissue effects are measured as primary endpoints. Further, nanoparticle uptake into extrapulmonary organs is quantified by inductively coupled plasma mass spectrometry. The asthmatic precondition increases nanoparticle uptake. Moreover, systemic uptake is higher for PEGylated gold nanoparticles compared to citrated nanoparticles. Nanoparticles inhibit both inflammatory infiltrates and airway hyperreactivity, especially citrated gold nanoparticles. Although the antiinflammatory effects of gold nanoparticles might be of therapeutic benefit, systemic uptake and consequent adverse effects must be considered when designing and testing nanoparticle-based asthma therapies.
Collapse
Affiliation(s)
- Albert J Omlor
- Department of Experimental Pneumology and Allergology, Saarland University Faculty of Medicine, Kirrberger Str. 100, D-66421, Homburg/Saar, Germany
| | - Duc D Le
- Department of Experimental Pneumology and Allergology, Saarland University Faculty of Medicine, Kirrberger Str. 100, D-66421, Homburg/Saar, Germany
| | - Janine Schlicker
- Department of Experimental Pneumology and Allergology, Saarland University Faculty of Medicine, Kirrberger Str. 100, D-66421, Homburg/Saar, Germany
| | - Matthias Hannig
- Clinic of Operative Dentistry, Periodontology and Preventive Dentistry, Saarland University, Kirrberger Str. 100, D-66421, Homburg/Saar, Germany
| | - Raphael Ewen
- Department of Experimental Pneumology and Allergology, Saarland University Faculty of Medicine, Kirrberger Str. 100, D-66421, Homburg/Saar, Germany
| | - Sebastian Heck
- Department of Experimental Pneumology and Allergology, Saarland University Faculty of Medicine, Kirrberger Str. 100, D-66421, Homburg/Saar, Germany
| | - Christian Herr
- Department of Internal Medicine V, Pneumology, Allergology and Respiratory Critical Care Medicine, Saarland University Faculty of Medicine, Kirrberger Str. 100, D-66421, Homburg/Saar, Germany
| | - Annette Kraegeloh
- INM-Leibniz Institute for New Materials, Campus D2 2, D-66123, Saarbrücken, Germany
| | - Christina Hein
- Institute of Inorganic Solid State Chemistry, Saarland University, Campus Dudweiler, Am Markt Zeile 3-5, D-66125, Saarbrücken, Germany
| | - Ralf Kautenburger
- Institute of Inorganic Solid State Chemistry, Saarland University, Campus Dudweiler, Am Markt Zeile 3-5, D-66125, Saarbrücken, Germany
| | - Guido Kickelbick
- Institute of Inorganic Solid State Chemistry, Saarland University, Campus Dudweiler, Am Markt Zeile 3-5, D-66125, Saarbrücken, Germany
| | - Robert Bals
- Department of Internal Medicine V, Pneumology, Allergology and Respiratory Critical Care Medicine, Saarland University Faculty of Medicine, Kirrberger Str. 100, D-66421, Homburg/Saar, Germany
| | - Juliane Nguyen
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, 303 Kapoor Hall, SUNY Buffalo, NY, 14214, USA
| | - Q Thai Dinh
- Department of Experimental Pneumology and Allergology, Saarland University Faculty of Medicine, Kirrberger Str. 100, D-66421, Homburg/Saar, Germany
- Department of Internal Medicine V, Pneumology, Allergology and Respiratory Critical Care Medicine, Saarland University Faculty of Medicine, Kirrberger Str. 100, D-66421, Homburg/Saar, Germany
| |
Collapse
|
14
|
Kunz-Schughart LA, Dubrovska A, Peitzsch C, Ewe A, Aigner A, Schellenburg S, Muders MH, Hampel S, Cirillo G, Iemma F, Tietze R, Alexiou C, Stephan H, Zarschler K, Vittorio O, Kavallaris M, Parak WJ, Mädler L, Pokhrel S. Nanoparticles for radiooncology: Mission, vision, challenges. Biomaterials 2016; 120:155-184. [PMID: 28063356 DOI: 10.1016/j.biomaterials.2016.12.010] [Citation(s) in RCA: 76] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Revised: 12/08/2016] [Accepted: 12/09/2016] [Indexed: 12/29/2022]
Abstract
Cancer is one of the leading non-communicable diseases with highest mortality rates worldwide. About half of all cancer patients receive radiation treatment in the course of their disease. However, treatment outcome and curative potential of radiotherapy is often impeded by genetically and/or environmentally driven mechanisms of tumor radioresistance and normal tissue radiotoxicity. While nanomedicine-based tools for imaging, dosimetry and treatment are potential keys to the improvement of therapeutic efficacy and reducing side effects, radiotherapy is an established technique to eradicate the tumor cells. In order to progress the introduction of nanoparticles in radiooncology, due to the highly interdisciplinary nature, expertise in chemistry, radiobiology and translational research is needed. In this report recent insights and promising policies to design nanotechnology-based therapeutics for tumor radiosensitization will be discussed. An attempt is made to cover the entire field from preclinical development to clinical studies. Hence, this report illustrates (1) the radio- and tumor-biological rationales for combining nanostructures with radiotherapy, (2) tumor-site targeting strategies and mechanisms of cellular uptake, (3) biological response hypotheses for new nanomaterials of interest, and (4) challenges to translate the research findings into clinical trials.
Collapse
Affiliation(s)
- Leoni A Kunz-Schughart
- OncoRay-National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden and Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
| | - Anna Dubrovska
- OncoRay-National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden and Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
| | - Claudia Peitzsch
- OncoRay-National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden and Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
| | - Alexander Ewe
- Rudolf-Boehm-Institute for Pharmacology and Toxicology, Clinical Pharmacology, University of Leipzig, Germany
| | - Achim Aigner
- Rudolf-Boehm-Institute for Pharmacology and Toxicology, Clinical Pharmacology, University of Leipzig, Germany
| | - Samuel Schellenburg
- Institute of Pathology, University Hospital, Carl Gustav Carus, TU Dresden, Germany
| | - Michael H Muders
- Institute of Pathology, University Hospital, Carl Gustav Carus, TU Dresden, Germany
| | - Silke Hampel
- Leibniz Institute of Solid State and Material Research Dresden, 01171 Dresden, Germany
| | - Giuseppe Cirillo
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, CS, Italy
| | - Francesca Iemma
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, CS, Italy
| | - Rainer Tietze
- ENT-Department, Section for Experimental Oncology and Nanomedicine (SEON), Else Kröner-Fresenius Professorship, University Hospital Erlangen, Erlangen, Germany
| | - Christoph Alexiou
- ENT-Department, Section for Experimental Oncology and Nanomedicine (SEON), Else Kröner-Fresenius Professorship, University Hospital Erlangen, Erlangen, Germany
| | - Holger Stephan
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, 01314 Dresden, Germany
| | - Kristof Zarschler
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, 01314 Dresden, Germany
| | - Orazio Vittorio
- Children's Cancer Institute Australia, ARC Centre of Excellence in Convergent Bio-Nano Science and Technology and Australian Centre for NanoMedicine, Sydney, UNSW, Australia
| | - Maria Kavallaris
- Children's Cancer Institute Australia, ARC Centre of Excellence in Convergent Bio-Nano Science and Technology and Australian Centre for NanoMedicine, Sydney, UNSW, Australia
| | - Wolfgang J Parak
- Fachbereich Physik, Philipps Universität Marburg, 35037 Marburg, Germany; CIC Biomagune, 20009 San Sebastian, Spain
| | - Lutz Mädler
- Foundation Institute of Materials Science (IWT), Department of Production Engineering, University of Bremen, 28359 Bremen, Germany
| | - Suman Pokhrel
- Foundation Institute of Materials Science (IWT), Department of Production Engineering, University of Bremen, 28359 Bremen, Germany.
| |
Collapse
|
15
|
Ng CT, Li JJ, Balasubramanian SK, You F, Yung LYL, Bay BH. Inflammatory Changes in Lung Tissues Associated with Altered Inflammation-Related MicroRNA Expression after Intravenous Administration of Gold Nanoparticles in Vivo. ACS Biomater Sci Eng 2016; 2:1959-1967. [PMID: 33440531 DOI: 10.1021/acsbiomaterials.6b00358] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Potential adverse effects of gold nanoparticles (AuNPs) are gaining attention due to their wide industrial, consumer, and biomedical applications. This may give rise to possible health risks from direct exposure to the NPs. Excessive inflammatory response is known to be one of the main effects induced by NPs. In this study, inflammatory and miRNA expression changes in lung tissues were evaluated in rats following intravenous administration of AuNPs. AuNPs (20 nm) at a mass concentration of 256 μg/mL were intravenously injected into 6-8 week old male Wistar rats at single doses of 0.025, 0.05, 0.1, and 0.2 mg/kg and sacrificed at 1 week, 1 month, and 2 months, respectively. The biodistribution of AuNPs in the lungs of the rats was determined by inductively coupled plasma mass spectrometry. There were no apparent changes observed in the body weight of the experimental rats. Histopathological examination revealed the presence of infiltrating lymphocytes in lung interstitial tissues and enhanced IL-1α immunostaining in the lung tissues. Out of 84 rat microRNAs (miRNAs) analyzed, the expression of three miRNAs in rat lungs were dysregulated by more than 2-fold in the 0.1 and 0.2 mg/kg AuNP-treated rats 1 week after exposure. In particular, miR-327 was significantly down-regulated in both groups of treated rats. Taken together, it would seem that miRNAs may regulate inflammatory changes in the lungs after exposure to AuNPs in vivo.
Collapse
Affiliation(s)
- Cheng-Teng Ng
- Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
| | - Jia'En Jasmine Li
- Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore.,Department of Chemical & Biomolecular Engineering, Faculty of Engineering, National University of Singapore, Singapore 117585, Singapore
| | - Suresh Kumar Balasubramanian
- Department of Civil and Environmental Engineering, National University of Singapore, Singapore 117576, Singapore
| | - Fang You
- Department of Chemical & Biomolecular Engineering, Faculty of Engineering, National University of Singapore, Singapore 117585, Singapore
| | - Lin-Yue Lanry Yung
- Department of Chemical & Biomolecular Engineering, Faculty of Engineering, National University of Singapore, Singapore 117585, Singapore
| | - Boon-Huat Bay
- Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
| |
Collapse
|
16
|
Costa A, Pinheiro M, Magalhães J, Ribeiro R, Seabra V, Reis S, Sarmento B. The formulation of nanomedicines for treating tuberculosis. Adv Drug Deliv Rev 2016; 102:102-115. [PMID: 27108703 DOI: 10.1016/j.addr.2016.04.012] [Citation(s) in RCA: 72] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Revised: 03/08/2016] [Accepted: 04/13/2016] [Indexed: 12/30/2022]
Abstract
Recent estimates indicate that tuberculosis (TB) is the leading cause of death worldwide, alongside the human immunodeficiency virus (HIV) infection. The current treatment is effective, but is associated with severe adverse-effects and noncompliance to prescribed regimens. An alternative route of drug delivery may improve the performance of existing drugs, which may have a key importance in TB control and eradication. Recent advances and emerging technologies in nanoscale systems, particularly nanoparticles (NPs), have the potential to transform such approach to human health and disease. Until now, several nanodelivery systems for the pulmonary administration of anti-TB drugs have been intensively studied and their utility as an alternative to the classical TB treatment has been suggested. In this context, this review provides a comprehensive analysis of recent progress in nanodelivery systems for pulmonary administration of anti-TB drugs. Additionally, more convenient and cost-effective alternatives for the lung delivery, different types of NPs for oral and topical are also being considered, and summarized in this review. Lastly, the future of this growing field and its potential impact will be discussed.
Collapse
Affiliation(s)
- Ana Costa
- ICBAS - Instituto Ciências Biomédicas Abel Salazar,University of Porto,Rua de Jorge Viterbo Ferreira 228,4050-313 Porto,Portugal; I3S,Instituto de Investigação e Inovação em Saúde, INEB-Instituto de Engenharia Biomédica,Universidade do Porto,Rua Alfredo Allen 208,4200-135 Porto,Portugal; CESPU,Instituto de Investigação e Formação Avançada em Ciências e Tecnologias da Saúde,Rua Central de Gandra 1317,4585-116 Gandra,Portugal
| | - Marina Pinheiro
- REQUIMTE,Department of Chemical Sciences - Applied Chemistry Lab,Faculty of Pharmacy,University of Porto,Rua de Jorge Viterbo Ferreira 228,4050-313 Porto,Portugal
| | - Joana Magalhães
- REQUIMTE,Department of Chemical Sciences - Applied Chemistry Lab,Faculty of Pharmacy,University of Porto,Rua de Jorge Viterbo Ferreira 228,4050-313 Porto,Portugal
| | - Ricardo Ribeiro
- REQUIMTE,Department of Chemical Sciences - Applied Chemistry Lab,Faculty of Pharmacy,University of Porto,Rua de Jorge Viterbo Ferreira 228,4050-313 Porto,Portugal
| | - Vitor Seabra
- CESPU,Instituto de Investigação e Formação Avançada em Ciências e Tecnologias da Saúde,Rua Central de Gandra 1317,4585-116 Gandra,Portugal
| | - Salette Reis
- REQUIMTE,Department of Chemical Sciences - Applied Chemistry Lab,Faculty of Pharmacy,University of Porto,Rua de Jorge Viterbo Ferreira 228,4050-313 Porto,Portugal
| | - Bruno Sarmento
- I3S,Instituto de Investigação e Inovação em Saúde, INEB-Instituto de Engenharia Biomédica,Universidade do Porto,Rua Alfredo Allen 208,4200-135 Porto,Portugal; CESPU,Instituto de Investigação e Formação Avançada em Ciências e Tecnologias da Saúde,Rua Central de Gandra 1317,4585-116 Gandra,Portugal; Universidade Estadual do Oeste do Paraná,Centro de Ciências Médicas e Farmacêuticas,Rua Universitária,2069 Cascavel,Paraná, Brazil.
| |
Collapse
|
17
|
Chen S, Yin R, Mutze K, Yu Y, Takenaka S, Königshoff M, Stoeger T. No involvement of alveolar macrophages in the initiation of carbon nanoparticle induced acute lung inflammation in mice. Part Fibre Toxicol 2016; 13:33. [PMID: 27328634 PMCID: PMC4915176 DOI: 10.1186/s12989-016-0144-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Accepted: 06/10/2016] [Indexed: 12/25/2022] Open
Abstract
Background Carbonaceous nanoparticles (CNP) represent a major constituent of urban particulate air pollution, and inhalation of high CNP levels has been described to trigger a pro-inflammatory response of the lung. While several studies identified specific particle characteristics driving respiratory toxicity of low-solubility and low-toxicity particles such as CNP, the major lung cell type, which initiates and drives that response, remains still uncertain. Since alveolar macrophages (AM) are known to effectively phagocytose inhaled particles and play a crucial role for the initiation of pulmonary inflammation caused by invading microbes, we aimed to determine their role for sterile stimuli such as CNP by profiling the primary alveolar cell compartments of the lung. We exposed C57BL/6 mice to 20 μg CNP by intratracheal instillation and comprehensively investigated the expression of the underlying mediators during a time span of 3 to 72 h in three different lung cell populations: CD45- (negative) structural cells, CD45+ (positive) leukocytes, and by BAL recovered cells. Results Bronchoalveolar lavage (BAL) analysis revealed an acute inflammatory response characterized by the most prominent culmination of neutrophil granulocytes from 12 to 24 h after instillation, which declined to basal levels by day 7. As early as 3 h after CNP exposure 50 % of the AM revealed particle laden. BAL concentrations and lung gene expression profiles of TNFα, and the neutrophil chemoattractants CXCL1,-2 and-5 preceded the neutrophil recruitment and showed highest levels after 12 h of CNP exposure, pointing to a significant activation of the inflammation-evoking lung cells at this point of time. AM, isolated from lungs 3 to 12 h after CNP instillation, however, did not show a pro-inflammatory signature. On the contrary, gene expression analysis of different lung cell populations isolated 12 h after CNP instillation revealed CD45-, mainly representing alveolar epithelial type II (ATII) cells as major producer of inflammatory CXCL cytokines. Particularly by CD45- cells expressed Cxcl5 proved to be the most abundant chemokine, being 12 h after CNP exposure 24 (±11) fold induced. Conclusion Our data suggests that AM are noninvolved in the initiation of the inflammatory response. ATII cells, which induced highest CXCL levels early on, might in contrast be the driver of acute neutrophilic inflammation upon pulmonary CNP exposure. Electronic supplementary material The online version of this article (doi:10.1186/s12989-016-0144-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Shanze Chen
- Comprehensive Pneumology Center, Institute of Lung Biology and Disease, Helmholtz Zentrum München, Member of the German Center for Lung Research (DZL), Munich, Germany.,Department of Pathophysiology, West China School of Preclinical Sciences and Forensic Medicine, Sichuan University, Chengdu, 610041, Sichuan Province, People's Republic of China
| | - Renfu Yin
- Comprehensive Pneumology Center, Institute of Lung Biology and Disease, Helmholtz Zentrum München, Member of the German Center for Lung Research (DZL), Munich, Germany.,Department of Veterinary Preventive Medicine, College of Veterinary Medicine, Jilin University, Changchun, Jilin, China
| | - Kathrin Mutze
- Comprehensive Pneumology Center, Institute of Lung Biology and Disease, Helmholtz Zentrum München, Member of the German Center for Lung Research (DZL), Munich, Germany
| | - Youjia Yu
- Comprehensive Pneumology Center, Institute of Lung Biology and Disease, Helmholtz Zentrum München, Member of the German Center for Lung Research (DZL), Munich, Germany
| | - Shinji Takenaka
- Comprehensive Pneumology Center, Institute of Lung Biology and Disease, Helmholtz Zentrum München, Member of the German Center for Lung Research (DZL), Munich, Germany
| | - Melanie Königshoff
- Comprehensive Pneumology Center, Institute of Lung Biology and Disease, Helmholtz Zentrum München, Member of the German Center for Lung Research (DZL), Munich, Germany
| | - Tobias Stoeger
- Comprehensive Pneumology Center, Institute of Lung Biology and Disease, Helmholtz Zentrum München, Member of the German Center for Lung Research (DZL), Munich, Germany.
| |
Collapse
|
18
|
Johnston HJ, Mouras R, Brown DM, Elfick A, Stone V. Exploring the cellular and tissue uptake of nanomaterials in a range of biological samples using multimodal nonlinear optical microscopy. NANOTECHNOLOGY 2015; 26:505102. [PMID: 26584818 DOI: 10.1088/0957-4484/26/50/505102] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
The uptake of nanomaterials (NMs) by cells is critical in determining their potential biological impact, whether beneficial or detrimental. Thus, investigation of NM internalization by cells is a common consideration in hazard and efficacy studies. There are currently a number of approaches that are routinely used to investigate NM-cell interactions, each of which have their own advantages and limitations. Ideally, imaging modalities used to investigate NM uptake by cells should not require the NM to be labelled (e.g. with fluorophores) to facilitate its detection. We present a multimodal imaging approach employing a combination of label-free microscopies that can be used to investigate NM-cell interactions. Coherent anti-Stokes Raman scattering microscopy was used in combination with either two-photon photoluminescence or four-wave mixing (FWM) to visualize the uptake of gold or titanium dioxide NMs respectively. Live and fixed cell imaging revealed that NMs were internalized by J774 macrophage and C3A hepatocyte cell lines (15-31 μg ml(-1)). Sprague Dawley rats were exposed to NMs (intratracheal instillation, 62 μg) and NMs were detected in blood and lung leucocytes, lung and liver tissue, demonstrating that NMs could translocate from the exposure site. Obtained data illustrate that multimodal nonlinear optical microscopy may help overcome current challenges in the assessment of NM cellular uptake and biodistribution. It is therefore a powerful tool that can be used to investigate unlabelled NM cellular and tissue uptake in three dimensions, requires minimal sample preparation, and is applicable to live and fixed cells.
Collapse
Affiliation(s)
- Helinor J Johnston
- Nano Safety Research Group, School of Life Sciences, Heriot-Watt University, Edinburgh EH14 4AS, UK
| | | | | | | | | |
Collapse
|
19
|
De Backer L, Cerrada A, Pérez-Gil J, De Smedt SC, Raemdonck K. Bio-inspired materials in drug delivery: Exploring the role of pulmonary surfactant in siRNA inhalation therapy. J Control Release 2015; 220:642-50. [PMID: 26363301 DOI: 10.1016/j.jconrel.2015.09.004] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Revised: 08/31/2015] [Accepted: 09/04/2015] [Indexed: 01/13/2023]
Abstract
Many pathologies of the respiratory tract are inadequately treated with existing small molecule-based therapies. The emergence of RNA interference (RNAi) enables the post-transcriptional silencing of key molecular disease factors that cannot readily be targeted with conventional small molecule drugs. Pulmonary administration of RNAi effectors, such as small interfering RNA (siRNA), allows direct delivery into the lung tissue, hence reducing systemic exposure. Unfortunately, the clinical translation of RNAi is severely hampered by inefficient delivery of siRNA therapeutics towards the cytoplasm of the target cells. In order to have a better control of the siRNA delivery process, both extra- and intracellular, siRNAs are typically formulated in nanosized delivery vehicles (nanoparticles, NPs). In the lower airways, which are the targeted sites of action for multiple pulmonary disorders, these siRNA-loaded NPs will encounter the pulmonary surfactant (PS) layer, covering the entire alveolar surface. The interaction between the instilled siRNA-loaded NPs and the PS at this nano-bio interface results in the adsorption of PS components onto the surface of the NPs. The formation of this so-called biomolecular corona conceals the original NP surface and will therefore profoundly determine the biological efficacy of the NP. Though this interplay has initially been regarded as a barrier towards efficient siRNA delivery to the respiratory target cell, recent reports have illustrated that the interaction with PS might also be beneficial for local pulmonary siRNA delivery.
Collapse
Affiliation(s)
- Lynn De Backer
- Laboratory for General Biochemistry and Physical Pharmacy, Faculty of Pharmacy, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium.
| | - Alejandro Cerrada
- Departamento de Bioquimica y Biologia Molecular, Facultad de Biologia, and Research Institute Hospital 12 Octubre, Universidad Complutense, José Antonio Novais 2, 28040 Madrid, Spain.
| | - Jesús Pérez-Gil
- Departamento de Bioquimica y Biologia Molecular, Facultad de Biologia, and Research Institute Hospital 12 Octubre, Universidad Complutense, José Antonio Novais 2, 28040 Madrid, Spain.
| | - Stefaan C De Smedt
- Laboratory for General Biochemistry and Physical Pharmacy, Faculty of Pharmacy, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium.
| | - Koen Raemdonck
- Laboratory for General Biochemistry and Physical Pharmacy, Faculty of Pharmacy, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium.
| |
Collapse
|
20
|
De Backer L, Naessens T, De Koker S, Zagato E, Demeester J, Grooten J, De Smedt SC, Raemdonck K. Hybrid pulmonary surfactant-coated nanogels mediate efficient in vivo delivery of siRNA to murine alveolar macrophages. J Control Release 2015; 217:53-63. [PMID: 26307350 DOI: 10.1016/j.jconrel.2015.08.030] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2015] [Accepted: 08/15/2015] [Indexed: 12/31/2022]
Abstract
The local delivery of small interfering RNA (siRNA) to the lungs may provide a therapeutic solution to a range of pulmonary disorders. Resident alveolar macrophages (rAM) in the bronchoalveolar lumen play a critical role in lung inflammatory responses and therefore constitute a particularly attractive target for siRNA therapeutics. However, achieving efficient gene silencing in the lung while avoiding pulmonary toxicity requires appropriate formulation of siRNA in functional nanocarriers. In this study, we evaluated pulmonary surfactant-coated dextran nanogels for the delivery of siRNA to rAM upon pharyngeal aspiration in BALB/c mice. Both the surfactant-coated and uncoated nanogels achieved high levels of siRNA uptake in rAM, yet only the surfactant-coated formulation could significantly reduce gene expression on the protein level. Surfactant-coated nanogels induced a profound downregulation of target mRNA levels, reaching 70% knockdown with ~1mgkg(-1) siRNA dose. In addition, only mild acute pro-inflammatory cytokine and chemokine responses were detected one day after nanoparticle aspiration, accompanied by a moderate neutrophil infiltration in the bronchoalveolar lumen. The latter could be substantially reduced by removal of excess surfactant from the formulation. Overall, our hybrid core-shell nanoparticles have demonstrated safe and effective siRNA delivery to rAM, providing a new therapeutic approach for treatment of inflammatory pathologies in the lung.
Collapse
Affiliation(s)
- Lynn De Backer
- Laboratory of General Biochemistry and Physical Pharmacy, Department of Pharmaceutics, Ghent University, Ottergemsesteenweg 460, Ghent 9000, Belgium.
| | - Thomas Naessens
- Laboratory of Molecular Immunology, Department of Biomedical Molecular Biology, Ghent University, Technologiepark 927, Zwijnaarde 9052, Belgium.
| | - Stefaan De Koker
- Laboratory of Molecular Immunology, Department of Biomedical Molecular Biology, Ghent University, Technologiepark 927, Zwijnaarde 9052, Belgium.
| | - Elisa Zagato
- Laboratory of General Biochemistry and Physical Pharmacy, Department of Pharmaceutics, Ghent University, Ottergemsesteenweg 460, Ghent 9000, Belgium.
| | - Jo Demeester
- Laboratory of General Biochemistry and Physical Pharmacy, Department of Pharmaceutics, Ghent University, Ottergemsesteenweg 460, Ghent 9000, Belgium.
| | - Johan Grooten
- Laboratory of Molecular Immunology, Department of Biomedical Molecular Biology, Ghent University, Technologiepark 927, Zwijnaarde 9052, Belgium.
| | - Stefaan C De Smedt
- Laboratory of General Biochemistry and Physical Pharmacy, Department of Pharmaceutics, Ghent University, Ottergemsesteenweg 460, Ghent 9000, Belgium.
| | - Koen Raemdonck
- Laboratory of General Biochemistry and Physical Pharmacy, Department of Pharmaceutics, Ghent University, Ottergemsesteenweg 460, Ghent 9000, Belgium.
| |
Collapse
|
21
|
Wang P, Wang X, Wang L, Hou X, Liu W, Chen C. Interaction of gold nanoparticles with proteins and cells. SCIENCE AND TECHNOLOGY OF ADVANCED MATERIALS 2015; 16:034610. [PMID: 27877797 PMCID: PMC5099834 DOI: 10.1088/1468-6996/16/3/034610] [Citation(s) in RCA: 117] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/05/2015] [Revised: 05/23/2015] [Accepted: 05/25/2015] [Indexed: 05/17/2023]
Abstract
Gold nanoparticles (Au NPs) possess many advantages such as facile synthesis, controllable size and shape, good biocompatibility, and unique optical properties. Au NPs have been widely used in biomedical fields, such as hyperthermia, biocatalysis, imaging, and drug delivery. The broad application range may result in hazards to the environment and human health. Therefore, it is important to predict safety and evaluate therapeutic efficiency of Au NPs. It is necessary to establish proper approaches for the study of toxicity and biomedical effects. In this review, we first focus on the recent progress in biological effects of Au NPs at the molecular and cellular levels, and then introduce key techniques to study the interaction between Au NPs and proteins. Knowledge of the biomedical effects of Au NPs is significant for the rational design of functional nanomaterials and will help predict their safety and potential applications.
Collapse
Affiliation(s)
- Pengyang Wang
- School of Materials and Architectural Engineering, Guizhou Normal University, Guiyang, People’s Republic of China
- CAS Key Lab for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics and National Center for Nanoscience and Technology, Chinese Academy of Science, Beijing, People’s Republic of China
| | - Xin Wang
- CAS Key Lab for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics and National Center for Nanoscience and Technology, Chinese Academy of Science, Beijing, People’s Republic of China
| | - Liming Wang
- CAS Key Lab for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics and National Center for Nanoscience and Technology, Chinese Academy of Science, Beijing, People’s Republic of China
| | - Xiaoyang Hou
- CAS Key Lab for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics and National Center for Nanoscience and Technology, Chinese Academy of Science, Beijing, People’s Republic of China
- Jiangsu Key Laboratory of Biological Cancer Therapy, Xuzhou Medical College, Xuzhou, People’s Republic of China
| | - Wei Liu
- School of Materials and Architectural Engineering, Guizhou Normal University, Guiyang, People’s Republic of China
| | - Chunying Chen
- CAS Key Lab for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics and National Center for Nanoscience and Technology, Chinese Academy of Science, Beijing, People’s Republic of China
| |
Collapse
|
22
|
Pöschl U, Shiraiwa M. Multiphase chemistry at the atmosphere-biosphere interface influencing climate and public health in the anthropocene. Chem Rev 2015; 115:4440-75. [PMID: 25856774 DOI: 10.1021/cr500487s] [Citation(s) in RCA: 248] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Ulrich Pöschl
- Multiphase Chemistry Department, Max Planck Institute for Chemistry, 55128 Mainz, Germany
| | - Manabu Shiraiwa
- Multiphase Chemistry Department, Max Planck Institute for Chemistry, 55128 Mainz, Germany
| |
Collapse
|
23
|
Kuempel ED, Sweeney LM, Morris JB, Jarabek AM. Advances in Inhalation Dosimetry Models and Methods for Occupational Risk Assessment and Exposure Limit Derivation. JOURNAL OF OCCUPATIONAL AND ENVIRONMENTAL HYGIENE 2015; 12 Suppl 1:S18-40. [PMID: 26551218 PMCID: PMC4685615 DOI: 10.1080/15459624.2015.1060328] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
The purpose of this article is to provide an overview and practical guide to occupational health professionals concerning the derivation and use of dose estimates in risk assessment for development of occupational exposure limits (OELs) for inhaled substances. Dosimetry is the study and practice of measuring or estimating the internal dose of a substance in individuals or a population. Dosimetry thus provides an essential link to understanding the relationship between an external exposure and a biological response. Use of dosimetry principles and tools can improve the accuracy of risk assessment, and reduce the uncertainty, by providing reliable estimates of the internal dose at the target tissue. This is accomplished through specific measurement data or predictive models, when available, or the use of basic dosimetry principles for broad classes of materials. Accurate dose estimation is essential not only for dose-response assessment, but also for interspecies extrapolation and for risk characterization at given exposures. Inhalation dosimetry is the focus of this paper since it is a major route of exposure in the workplace. Practical examples of dose estimation and OEL derivation are provided for inhaled gases and particulates.
Collapse
Affiliation(s)
- Eileen D. Kuempel
- National Institute for Occupational Safety and Health, Education and Information Division, Cincinnati, Ohio
| | - Lisa M. Sweeney
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Naval Medical Research Unit Dayton, Wright-Patterson Air Force Base, Ohio
| | - John B. Morris
- School of Pharmacy, University of Connecticut, Storrs, Connecticut
| | - Annie M. Jarabek
- U.S. Environmental Protection Agency, National Center for Environmental Assessment, Research Triangle Park, North Carolina
| |
Collapse
|
24
|
Geiser M, Wigge C, Conrad ML, Eigeldinger-Berthou S, Künzi L, Garn H, Renz H, Mall MA. Nanoparticle uptake by airway phagocytes after fungal spore challenge in murine allergic asthma and chronic bronchitis. BMC Pulm Med 2014; 14:116. [PMID: 25027175 PMCID: PMC4110072 DOI: 10.1186/1471-2466-14-116] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2013] [Accepted: 07/10/2014] [Indexed: 11/10/2022] Open
Abstract
Background In healthy lungs, deposited micrometer-sized particles are efficiently phagocytosed by macrophages present on airway surfaces; however, uptake of nanoparticles (NP) by macrophages appears less effective and is largely unstudied in lung disease. Using mouse models of allergic asthma and chronic obstructive pulmonary disease (COPD), we investigated NP uptake after challenge with common biogenic ambient air microparticles. Methods Bronchoalveolar lavage (BAL) cells from diseased mice (allergic asthma: ovalbumin [OVA] sensitized and COPD: Scnn1b-transgenic [Tg]) and their respective healthy controls were exposed ex vivo first to 3-μm fungal spores of Calvatia excipuliformis and then to 20-nm gold (Au) NP. Electron microscopic imaging was performed and NP uptake was assessed by quantitative morphometry. Results Macrophages from diseased mice were significantly larger compared to controls in OVA-allergic versus sham controls and in Scnn1b-Tg versus wild type (WT) mice. The percentage of macrophages containing AuNP tended to be lower in Scnn1b-Tg than in WT mice. In all animal groups, fungal spores were localized in macrophage phagosomes, the membrane tightly surrounding the spore, whilst AuNP were found in vesicles largely exceeding NP size, co-localized in spore phagosomes and occasionally, in the cytoplasm. AuNP in vesicles were located close to the membrane. In BAL from OVA-allergic mice, 13.9 ± 8.3% of all eosinophils contained AuNP in vesicles exceeding NP size and close to the membrane. Conclusions Overall, AuNP uptake by BAL macrophages occurred mainly by co-uptake together with other material, including micrometer-sized ambient air particles like fungal spores. The lower percentage of NP containing macrophages in BAL from Scnn1b-Tg mice points to a change in the macrophage population from a highly to a less phagocytic phenotype. This likely contributes to inefficient macrophage clearance of NP in lung disease. Finally, the AuNP containing eosinophils in OVA-allergic mice show that other inflammatory cells present on airway surfaces may substantially contribute to NP uptake.
Collapse
Affiliation(s)
- Marianne Geiser
- Institute of Anatomy, University of Bern, Bern, Switzerland.
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Kreyling WG, Hirn S, Möller W, Schleh C, Wenk A, Celik G, Lipka J, Schäffler M, Haberl N, Johnston BD, Sperling R, Schmid G, Simon U, Parak WJ, Semmler-Behnke M. Air-blood barrier translocation of tracheally instilled gold nanoparticles inversely depends on particle size. ACS NANO 2014; 8:222-33. [PMID: 24364563 PMCID: PMC3960853 DOI: 10.1021/nn403256v] [Citation(s) in RCA: 189] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Gold nanoparticles (AuNP) provide many opportunities in imaging, diagnostics, and therapy in nanomedicine. For the assessment of AuNP biokinetics, we intratracheally instilled into rats a suite of (198)Au-radio-labeled monodisperse, well-characterized, negatively charged AuNP of five different sizes (1.4, 2.8, 5, 18, 80, 200 nm) and 2.8 nm AuNP with positive surface charges. At 1, 3, and 24 h, the biodistribution of the AuNP was quantitatively measured by gamma-spectrometry to be used for comprehensive risk assessment. Our study shows that as AuNP get smaller, they are more likely to cross the air-blood barrier (ABB) depending strongly on the inverse diameter d(-1) of their gold core, i.e., their specific surface area (SSA). So, 1.4 nm AuNP (highest SSA) translocated most, while 80 nm AuNP (lowest SSA) translocated least, but 200 nm particles did not follow the d(-1) relation translocating significantly higher than 80 nm AuNP. However, relative to the AuNP that had crossed the ABB, their retention in most of the secondary organs and tissues was SSA-independent. Only renal filtration, retention in blood, and excretion via urine further declined with d(-1) of AuNP core. Translocation of 5, 18, and 80 nm AuNP is virtually complete after 1 h, while 1.4 nm AuNP continue to translocate until 3 h. Translocation of negatively charged 2.8 nm AuNP was significantly higher than for positively charged 2.8 nm AuNP. Our study shows that translocation across the ABB and accumulation and retention in secondary organs and tissues are two distinct processes, both depending specifically on particle characteristics such as SSA and surface charge.
Collapse
Affiliation(s)
- Wolfgang G Kreyling
- Institute of Lung Biology and Disease and Institute of Epidemiology II, Helmholtz Zentrum München – German Research Center for Environmental Health, 85764 Neuherberg / Munich, Germany
- Corresponding Author. Wolfgang G. Kreyling, Institute of Epidemiology II, Helmholtz Zentrum München – German Research Center for Environmental Health, Ingolstaedter Landstrasse 1, 85764 Neuherberg / Munich, Germany, Tel.: +49/(0)89-2351 4817,
| | - Stephanie Hirn
- Institute of Lung Biology and Disease and Institute of Epidemiology II, Helmholtz Zentrum München – German Research Center for Environmental Health, 85764 Neuherberg / Munich, Germany
| | - Winfried Möller
- Institute of Lung Biology and Disease and Institute of Epidemiology II, Helmholtz Zentrum München – German Research Center for Environmental Health, 85764 Neuherberg / Munich, Germany
| | - Carsten Schleh
- Institute of Lung Biology and Disease and Institute of Epidemiology II, Helmholtz Zentrum München – German Research Center for Environmental Health, 85764 Neuherberg / Munich, Germany
| | - Alexander Wenk
- Institute of Lung Biology and Disease and Institute of Epidemiology II, Helmholtz Zentrum München – German Research Center for Environmental Health, 85764 Neuherberg / Munich, Germany
| | - Gülnaz Celik
- Institute of Lung Biology and Disease and Institute of Epidemiology II, Helmholtz Zentrum München – German Research Center for Environmental Health, 85764 Neuherberg / Munich, Germany
| | - Jens Lipka
- Institute of Lung Biology and Disease and Institute of Epidemiology II, Helmholtz Zentrum München – German Research Center for Environmental Health, 85764 Neuherberg / Munich, Germany
| | - Martin Schäffler
- Institute of Lung Biology and Disease and Institute of Epidemiology II, Helmholtz Zentrum München – German Research Center for Environmental Health, 85764 Neuherberg / Munich, Germany
| | - Nadine Haberl
- Institute of Lung Biology and Disease and Institute of Epidemiology II, Helmholtz Zentrum München – German Research Center for Environmental Health, 85764 Neuherberg / Munich, Germany
| | - Blair D Johnston
- Institute of Lung Biology and Disease and Institute of Epidemiology II, Helmholtz Zentrum München – German Research Center for Environmental Health, 85764 Neuherberg / Munich, Germany
| | - Ralph Sperling
- Fachbereich Physik, Philipps Universität Marburg, 35037 Marburg, Germany
| | - Günter Schmid
- Institute of Lung Biology and Disease and Institute of Epidemiology II, Helmholtz Zentrum München – German Research Center for Environmental Health, 85764 Neuherberg / Munich, Germany
| | - Ulrich Simon
- Institute of Inorganic Chemistry, RWTH Aachen University, Aachen, Germany
| | - Wolfgang J Parak
- Fachbereich Physik, Philipps Universität Marburg, 35037 Marburg, Germany
| | - Manuela Semmler-Behnke
- Institute of Lung Biology and Disease and Institute of Epidemiology II, Helmholtz Zentrum München – German Research Center for Environmental Health, 85764 Neuherberg / Munich, Germany
| |
Collapse
|
26
|
Blank F, Stumbles PA, Seydoux E, Holt PG, Fink A, Rothen-Rutishauser B, Strickland DH, von Garnier C. Size-dependent uptake of particles by pulmonary antigen-presenting cell populations and trafficking to regional lymph nodes. Am J Respir Cell Mol Biol 2013; 49:67-77. [PMID: 23492193 DOI: 10.1165/rcmb.2012-0387oc] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
The respiratory tract is an attractive target organ for novel diagnostic and therapeutic applications with nano-sized carriers, but their immune effects and interactions with key resident antigen-presenting cells (APCs) such as dendritic cells (DCs) and alveolar macrophages (AMs) in different anatomical compartments remain poorly understood. Polystyrene particles ranging from 20 nm to 1,000 nm were instilled intranasally in BALB/c mice, and their interactions with APC populations in airways, lung parenchyma, and lung-draining lymph nodes (LDLNs) were examined after 2 and 24 hours by flow cytometry and confocal microscopy. In the main conducting airways and lung parenchyma, DC subpopulations preferentially captured 20-nm particles, compared with 1,000-nm particles that were transported to the LDLNs by migratory CD11blow DCs and that were observed in close proximity to CD3⁺ T cells. Generally, the uptake of particles increased the expression of CD40 and CD86 in all DC populations, independent of particle size, whereas 20-nm particles induced enhanced antigen presentation to CD4⁺ T cells in LDLNs in vivo. Despite measurable uptake by DCs, the majority of particles were taken up by AMs, irrespective of size. Confocal microscopy and FACS analysis showed few particles in the main conducting airways, but a homogeneous distribution of all particle sizes was evident in the lung parenchyma, mostly confined to AMs. Particulate size as a key parameter determining uptake and trafficking therefore determines the fate of inhaled particulates, and this may have important consequences in the development of novel carriers for pulmonary diagnostic or therapeutic applications.
Collapse
Affiliation(s)
- Fabian Blank
- Department of Respiratory Medicine, Bern University Hospital, Bern, Switzerland.
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Geiser M, Quaile O, Wenk A, Wigge C, Eigeldinger-Berthou S, Hirn S, Schäffler M, Schleh C, Möller W, Mall MA, Kreyling WG. Cellular uptake and localization of inhaled gold nanoparticles in lungs of mice with chronic obstructive pulmonary disease. Part Fibre Toxicol 2013; 10:19. [PMID: 23680060 PMCID: PMC3660288 DOI: 10.1186/1743-8977-10-19] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2013] [Accepted: 05/09/2013] [Indexed: 12/04/2022] Open
Abstract
Background Inhalative nanocarriers for local or systemic therapy are promising. Gold nanoparticles (AuNP) have been widely considered as candidate material. Knowledge about their interaction with the lungs is required, foremost their uptake by surface macrophages and epithelial cells. Diseased lungs are of specific interest, since these are the main recipients of inhalation therapy. We, therefore, used Scnn1b-transgenic (Tg) mice as a model of chronic obstructive pulmonary disease (COPD) and compared uptake and localization of inhaled AuNP in surface macrophages and lung tissue to wild-type (Wt) mice. Methods Scnn1b-Tg and Wt mice inhaled a 21-nm AuNP aerosol for 2 h. Immediately (0 h) or 24 h thereafter, bronchoalveolar lavage (BAL) macrophages and whole lungs were prepared for stereological analysis of AuNP by electron microscopy. Results AuNP were mainly found as singlets or small agglomerates of ≤ 100 nm diameter, at the epithelial surface and within lung-surface structures. Macrophages contained also large AuNP agglomerates (> 100 nm). At 0 h after aerosol inhalation, 69.2±4.9% AuNP were luminal, i.e. attached to the epithelial surface and 24.0±5.9% in macrophages in Scnn1b-Tg mice. In Wt mice, 35.3±32.2% AuNP were on the epithelium and 58.3±41.4% in macrophages. The percentage of luminal AuNP decreased from 0 h to 24 h in both groups. At 24 h, 15.5±4.8% AuNP were luminal, 21.4±14.2% within epithelial cells and 63.0±18.9% in macrophages in Scnn1b-Tg mice. In Wt mice, 9.5±5.0% AuNP were luminal, 2.2±1.6% within epithelial cells and 82.8±0.2% in macrophages. BAL-macrophage analysis revealed enhanced AuNP uptake in Wt animals at 0 h and in Scnn1b-Tg mice at 24 h, confirming less efficient macrophage uptake and delayed clearance of AuNP in Scnn1b-Tg mice. Conclusions Inhaled AuNP rapidly bound to the alveolar epithelium in both Wt and Scnn1b-Tg mice. Scnn1b-Tg mice showed less efficient AuNP uptake by surface macrophages and concomitant higher particle internalization by alveolar type I epithelial cells compared to Wt mice. This likely promotes AuNP depth translocation in Scnn1b-Tg mice, including enhanced epithelial targeting. These results suggest AuNP nanocarrier delivery as successful strategy for therapeutic targeting of alveolar epithelial cells and macrophages in COPD.
Collapse
|
28
|
Wang X, Reece SP, Brown JM. Immunotoxicological impact of engineered nanomaterial exposure: mechanisms of immune cell modulation. Toxicol Mech Methods 2013; 23:168-77. [PMID: 23256453 DOI: 10.3109/15376516.2012.757686] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Abstract Engineered nanomaterials (ENMs) are increasingly being utilized in many consumer products and various medical applications, thereby leading to the potentiality of increased human exposures. Assessment of the adverse effects on the immune system is an important component for evaluating the overall health and safety of ENM. Tasked with eliminating pathogens and removing cancerous cells, the immune system is constantly functioning to maintain homeostasis. Small modifications to the immune system, which may occur following ENM exposure, could lead to impaired protection or an inappropriate immune response resulting in autoimmunity and damage to the host. This review seeks to survey and evaluate the current literature to better understand the impact of ENM exposure on cells critical to the innate and adaptive immune systems.
Collapse
Affiliation(s)
- Xiaojia Wang
- Department of Pharmacology & Toxicology, Brody School of Medicine, East Carolina University, Greenville, NC 27834, USA.
| | | | | |
Collapse
|