1
|
Lhaglham P, Jiramonai L, Jia Y, Huang B, Huang Y, Gao X, Zhang J, Liang XJ, Zhu M. Drug nanocrystals: Surface engineering and its applications in targeted delivery. iScience 2024; 27:111185. [PMID: 39555405 PMCID: PMC11564948 DOI: 10.1016/j.isci.2024.111185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2024] Open
Abstract
Drug nanocrystals have received significant attention in drug development due to their enhanced dissolution rate and improved water solubility, making them effective in overcoming issues related to drug hydrophobicity, thereby improving drug bioavailability and treatment effectiveness. Recent advances in preparation techniques have facilitated research on drug surface properties, leading to valuable surface engineering strategies. Surface modification can stabilize drug nanocrystals, making them suitable for versatile drug delivery platforms. Functionalized ligands further enhance the potential for targeted delivery, enabling precision medicine. This review focuses on the surface engineering of drug nanocrystals, discussing various preparation methods, surface ligand design strategies, and their applications in targeted drug delivery, especially for cancer treatments. Finally, challenges and future directions are also discussed to promote the development of drug nanocrystals. The surface engineering of drug nanocrystals promises new opportunities for treating complex and chronic diseases while broadening the application of drug delivery systems.
Collapse
Affiliation(s)
- Phattalapol Lhaglham
- Chinese Academy of Sciences (CAS) Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Department of Manufacturing Pharmacy, Faculty of Pharmacy, Mahidol University, Sri-ayudhya Road, Bangkok 10400, Thailand
| | - Luksika Jiramonai
- Chinese Academy of Sciences (CAS) Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yaru Jia
- Chinese Academy of Sciences (CAS) Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, China
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, College of Chemistry & Environmental Science, Chemical Biology Key Laboratory of Hebei Province, Hebei University, Baoding 071002, China
| | - Baoying Huang
- MHC Key Laboratory of Biosafety, National Institute for Viral Disease Control and Prevention, China CDC, Beijing 102206, China
| | - Yuanyu Huang
- Advanced Research Institute of Multidisciplinary Science, School of Life Science, Key Laboratory of Molecular Medicine and Biotherapy, Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Xueyun Gao
- Center of Excellence for Environmental Safety and Biological Effects, Beijing Key Laboratory for Green Catalysis and Separation, Department of Chemistry, Beijing University of Technology, Beijing 100124, China
| | - Jinchao Zhang
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, College of Chemistry & Environmental Science, Chemical Biology Key Laboratory of Hebei Province, Hebei University, Baoding 071002, China
| | - Xing-Jie Liang
- Chinese Academy of Sciences (CAS) Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Mengliang Zhu
- Chinese Academy of Sciences (CAS) Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
2
|
BHATTACHARYYA S, Lakshmanan KT, MUTHUKUMAR A. Formulation and Evaluation of a Transferosomal Gel of Famciclovir for Transdermal Use. Turk J Pharm Sci 2024; 21:303-312. [PMID: 39224082 PMCID: PMC11589086 DOI: 10.4274/tjps.galenos.2023.46735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 08/18/2023] [Indexed: 09/04/2024]
Abstract
Objectives Famciclovir, the drug of choice for cold sores and recurrent genital herpes, has poor oral bioavailability and is associated with numerous side effects. The study aimed to explore the possibility of transdermal application of famciclovir through a transferosome-loaded gelling system to localize the drug at the site of application with improved penetrability, therapeutic effects, and comfort. Materials and Methods Transferosomes of famciclovir were prepared using tween 80, phospholipid, and cholesterol. To optimize drug entrapment and the vesicular size of the transferosomes, a central composite design was employed. The optimized formulation was evaluated for physicochemical characteristics, surface morphology, and degree of deformability. The optimized product was included in the Carbopol 940 gelling system. The gel was evaluated for ex vivo permeation, skin irritation, drug deposition at various skin layers, and histopathological analysis. Results The design optimization yielded an optimized product (FAMOPT) of nanosized (339 nm) stable vesicles of the transferosome of famciclovir. The surface morphology analysis revealed the formation of nanovesicles without aggregation. Compatibility between the drug and excipients was established. The elasticity of the vesicles demonstrated resistance to leakage. The permeation of the drug was enhanced by 2.8 times. The gel was found to be non-irritating and non-sensitizing to the animal skin. The drug deposition at various skin layers was remarkably improved, indicating effective drug penetration. The histopathological examination further demonstrated the penetration of nano-vesiculate drugs through deeper layers of the skin. Conclusion Hence, nano-vesicular famciclovir delivery is a promising alternative to conventional famciclovir delivery with enhanced local and systemic action for herpes treatment.
Collapse
|
3
|
Shinde A, Panchal K, Patra P, Singh S, Enakolla S, Paliwal R, Chaurasiya A. QbD Enabled Development and Evaluation of Pazopanib Loaded Nanoliposomes for PDAC Treatment. AAPS PharmSciTech 2024; 25:97. [PMID: 38710894 DOI: 10.1208/s12249-024-02806-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 04/10/2024] [Indexed: 05/08/2024] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is one of the highly fatal types of cancer with high mortality/incidence. Considering the crucial role of vascular endothelial growth factor (VEGF) in PDAC progression, its inhibition can be a viable strategy for the treatment. Pazopanib, a second-generation VEGF inhibitor, is approved for the treatment of various oncological conditions. However, due to associated limitations like low oral bioavailability (14-39%), high inter/intra-subject variability, stability issues, etc., high doses (800 mg) are required, which further lead to non-specific toxicities and also contribute toward cancer resistance. Thus, to overcome these challenges, pazopanib-loaded PEGylated nanoliposomes were developed and evaluated against pancreatic cancer cell lines. The nanoliposomes were prepared by thin-film hydration method, followed by characterization and stability studies. This QbD-enabled process design successfully led to the development of a suitable pazopanib liposomal formulation with desirable properties. The % entrapment of PZP-loaded non-PEGylated and PEGylated nanoliposomes was found to be 75.2% and 84.9%, respectively, whereas their particle size was found to be 129.7 nm and 182.0 nm, respectively. The developed liposomal formulations exhibited a prolonged release and showed desirable physicochemical properties. Furthermore, these liposomal formulations were also assessed for in vitro cell lines, such as cell cytotoxicity assay and cell uptake. These studies confirm the effectiveness of developed liposomal formulations against pancreatic cancer cell lines. The outcomes of this work provide encouraging results and a way forward to thoroughly investigate its potential for PDAC treatment.
Collapse
Affiliation(s)
- Aishwarya Shinde
- Translational Pharmaceutics Research Laboratory, Department of Pharmacy, Birla Institute of Technology and Science, Hyderabad, Pilani, India
| | - Kanan Panchal
- Translational Pharmaceutics Research Laboratory, Department of Pharmacy, Birla Institute of Technology and Science, Hyderabad, Pilani, India
| | - Parameswar Patra
- Translational Pharmaceutics Research Laboratory, Department of Pharmacy, Birla Institute of Technology and Science, Hyderabad, Pilani, India
| | - Sonali Singh
- Translational Pharmaceutics Research Laboratory, Department of Pharmacy, Birla Institute of Technology and Science, Hyderabad, Pilani, India
| | - Sucharitha Enakolla
- Translational Pharmaceutics Research Laboratory, Department of Pharmacy, Birla Institute of Technology and Science, Hyderabad, Pilani, India
| | - Rishi Paliwal
- Nanomedicine and Bioengineering Research Laboratory, Department of Pharmacy, Indira Gandhi National Tribal University, Amarkantak, India
| | - Akash Chaurasiya
- Translational Pharmaceutics Research Laboratory, Department of Pharmacy, Birla Institute of Technology and Science, Hyderabad, Pilani, India.
| |
Collapse
|
4
|
Wang J, Zhao W, Zhang Z, Liu X, Xie T, Wang L, Xue Y, Zhang Y. A Journey of Challenges and Victories: A Bibliometric Worldview of Nanomedicine since the 21st Century. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2308915. [PMID: 38229552 DOI: 10.1002/adma.202308915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 11/18/2023] [Indexed: 01/18/2024]
Abstract
Nanotechnology profoundly affects the advancement of medicine. Limitations in diagnosing and treating cancer and chronic diseases promote the growth of nanomedicine. However, there are very few analytical and descriptive studies regarding the trajectory of nanomedicine, key research powers, present research landscape, focal investigative points, and future outlooks. Herein, articles and reviews published in the Science Citation Index Expanded of Web of Science Core Collection from first January 2000 to 18th July 2023 are analyzed. Herein, a bibliometric visualization of publication trends, countries/regions, institutions, journals, research categories, themes, references, and keywords is produced and elaborated. Nanomedicine-related academic output is increasing since the COVID-19 pandemic, solidifying the uneven global distribution of research performance. While China leads in terms of publication quantity and has numerous highly productive institutions, the USA has advantages in academic impact, commercialization, and industrial value. Nanomedicine integrates with other disciplines, establishing interdisciplinary platforms, in which drug delivery and nanoparticles remain focal points. Current research focuses on integrating nanomedicine and cell ferroptosis induction in cancer immunotherapy. The keyword "burst testing" identifies promising research directions, including immunogenic cell death, chemodynamic therapy, tumor microenvironment, immunotherapy, and extracellular vesicles. The prospects, major challenges, and barriers to addressing these directions are discussed.
Collapse
Affiliation(s)
- Jingyu Wang
- Renal Division, Peking University First Hospital, Peking University Institute of Nephrology, Key Laboratory of Renal Disease, Ministry of Health of China, Key Laboratory of Chronic Kidney Disease Prevention and Treatment (Peking University), Ministry of Education, Beijing, 100034, China
| | - Wenling Zhao
- Beijing National Laboratory for Molecular Sciences, CAS Laboratory of Colloid and Interface and Thermodynamics CAS Research/Education Center for Excellence in Molecular Sciences, Center for Carbon Neutral Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Zhao Zhang
- Renal Division, Peking University First Hospital, Peking University Institute of Nephrology, Key Laboratory of Renal Disease, Ministry of Health of China, Key Laboratory of Chronic Kidney Disease Prevention and Treatment (Peking University), Ministry of Education, Beijing, 100034, China
| | - Xingzi Liu
- Renal Division, Peking University First Hospital, Peking University Institute of Nephrology, Key Laboratory of Renal Disease, Ministry of Health of China, Key Laboratory of Chronic Kidney Disease Prevention and Treatment (Peking University), Ministry of Education, Beijing, 100034, China
| | - Tong Xie
- Renal Division, Peking University First Hospital, Peking University Institute of Nephrology, Key Laboratory of Renal Disease, Ministry of Health of China, Key Laboratory of Chronic Kidney Disease Prevention and Treatment (Peking University), Ministry of Education, Beijing, 100034, China
| | - Lan Wang
- Renal Division, Peking University First Hospital, Peking University Institute of Nephrology, Key Laboratory of Renal Disease, Ministry of Health of China, Key Laboratory of Chronic Kidney Disease Prevention and Treatment (Peking University), Ministry of Education, Beijing, 100034, China
| | - Yuzhou Xue
- Department of Cardiology, Institute of Vascular Medicine, NHC Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, State Key Laboratory of Vascular Homeostasis and Remodeling Peking University, Beijing Key Laboratory of Cardiovascular Receptors Research, Peking University Third Hospital, Beijing, 100191, China
| | - Yuemiao Zhang
- Renal Division, Peking University First Hospital, Peking University Institute of Nephrology, Key Laboratory of Renal Disease, Ministry of Health of China, Key Laboratory of Chronic Kidney Disease Prevention and Treatment (Peking University), Ministry of Education, Beijing, 100034, China
| |
Collapse
|
5
|
Shinde SS, Ahmed S, Malik JA, Hani U, Khanam A, Ashraf Bhat F, Ahmad Mir S, Ghazwani M, Wahab S, Haider N, Almehizia AA. Therapeutic Delivery of Tumor Suppressor miRNAs for Breast Cancer Treatment. BIOLOGY 2023; 12:467. [PMID: 36979159 PMCID: PMC10045434 DOI: 10.3390/biology12030467] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 03/10/2023] [Accepted: 03/16/2023] [Indexed: 03/30/2023]
Abstract
The death rate from breast cancer (BC) has dropped due to early detection and sophisticated therapeutic options, yet drug resistance and relapse remain barriers to effective, systematic treatment. Multiple mechanisms underlying miRNAs appear crucial in practically every aspect of cancer progression, including carcinogenesis, metastasis, and drug resistance, as evidenced by the elucidation of drug resistance. Non-coding RNAs called microRNAs (miRNAs) attach to complementary messenger RNAs and degrade them to inhibit the expression and translation to proteins. Evidence suggests that miRNAs play a vital role in developing numerous diseases, including cancer. They affect genes critical for cellular differentiation, proliferation, apoptosis, and metabolism. Recently studies have demonstrated that miRNAs serve as valuable biomarkers for BC. The contrast in the expression of miRNAs in normal tissue cells and tumors suggest that miRNAs are involved in breast cancer. The important aspect behind cancer etiology is the deregulation of miRNAs that can specifically influence cellular physiology. The main objective of this review is to emphasize the role and therapeutic capacity of tumor suppressor miRNAs in BC and the advancement in the delivery system that can deliver miRNAs specifically to cancerous cells. Various approaches are used to deliver these miRNAs to the cancer cells with the help of carrier molecules, like nanoparticles, poly D, L-lactic-co-glycolic acid (PLGA) particles, PEI polymers, modified extracellular vesicles, dendrimers, and liposomes. Additionally, we discuss advanced strategies of TS miRNA delivery techniques such as viral delivery, self-assembled RNA-triple-helix hydrogel drug delivery systems, and hyaluronic acid/protamine sulfate inter-polyelectrolyte complexes. Subsequently, we discuss challenges and prospects on TS miRNA therapeutic delivery in BC management so that miRNAs will become a routine technique in developing individualized patient profiles.
Collapse
Affiliation(s)
- Sonali S. Shinde
- Department of Chemical Technology, Dr. Babasaheb Ambedkar Marathwada University, Aurangabad 431004, India
| | - Sakeel Ahmed
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Ahmedabad 382355, India
| | - Jonaid Ahmad Malik
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Guwahati 781101, India
- Department of Biomedical Engineering, Indian Institute of Technology, Rupnagar 140001, India
| | - Umme Hani
- Department of Pharmaceutics, College of Pharmacy, King Khalid University, Abha 62529, Saudi Arabia
| | - Afreen Khanam
- Department of Pharmacognosy and Phytochemistry, Jamia Hamdard, New Delhi 110062, India
| | | | - Suhail Ahmad Mir
- Department of Pharmaceutical Sciences, University of Kashmir, Jammu and Kashmir, Hazratbal, Srinagar 190006, India
| | - Mohammed Ghazwani
- Department of Pharmaceutics, College of Pharmacy, King Khalid University, Abha 62529, Saudi Arabia
| | - Shadma Wahab
- Department of Pharmacognosy, College of Pharmacy, King Khalid University, Abha 62529, Saudi Arabia
| | - Nazima Haider
- Department of Pathology, College of Medicine, King Khalid University, Abha 62529, Saudi Arabia
| | - Abdulrahman A. Almehizia
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| |
Collapse
|
6
|
Lopes LB, Apolinário AC, Salata GC, Malagó ID, Passos JS. Lipid Nanocarriers for Breast Cancer Treatment. Cancer Nanotechnol 2023. [DOI: 10.1007/978-3-031-17831-3_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
|
7
|
Naman S, Naryal S, Palliwal R, Paliwal SR, Baldi A. Combating atherosclerosis with nanodrug delivery approaches: from bench side to commercialization. DRUG DELIVERY SYSTEMS FOR METABOLIC DISORDERS 2022:97-136. [DOI: 10.1016/b978-0-323-99616-7.00021-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
8
|
Rizwanullah M, Ahmad MZ, Ghoneim MM, Alshehri S, Imam SS, Md S, Alhakamy NA, Jain K, Ahmad J. Receptor-Mediated Targeted Delivery of Surface-ModifiedNanomedicine in Breast Cancer: Recent Update and Challenges. Pharmaceutics 2021; 13:2039. [PMID: 34959321 PMCID: PMC8708551 DOI: 10.3390/pharmaceutics13122039] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 11/15/2021] [Accepted: 11/17/2021] [Indexed: 12/24/2022] Open
Abstract
Breast cancer therapeutic intervention continues to be ambiguous owing to the lack of strategies for targeted transport and receptor-mediated uptake of drugs by cancer cells. In addition to this, sporadic tumor microenvironment, prominent restrictions with conventional chemotherapy, and multidrug-resistant mechanisms of breast cancer cells possess a big challenge to even otherwise optimal and efficacious breast cancer treatment strategies. Surface-modified nanomedicines can expedite the cellular uptake and delivery of drug-loaded nanoparticulate constructs through binding with specific receptors overexpressed aberrantly on the tumor cell. The present review elucidates the interesting yet challenging concept of targeted delivery approaches by exploiting different types of nanoparticulate systems with multiple targeting ligands to target overexpressed receptors of breast cancer cells. The therapeutic efficacy of these novel approaches in preclinical models is also comprehensively discussed in this review. It is concluded from critical analysis of related literature that insight into the translational gap between laboratories and clinical settings would provide the possible future directions to plug the loopholes in the process of development of these receptor-targeted nanomedicines for the treatment of breast cancer.
Collapse
Affiliation(s)
- Md. Rizwanullah
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India;
| | - Mohammad Zaki Ahmad
- Department of Pharmaceutics, College of Pharmacy, Najran University, Najran 11001, Saudi Arabia;
| | - Mohammed M. Ghoneim
- Department of Pharmacy Practice, College of Pharmacy, AlMaarefa University, Ad Diriyah 13713, Saudi Arabia;
| | - Sultan Alshehri
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia; (S.A.); (S.S.I.)
| | - Syed Sarim Imam
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia; (S.A.); (S.S.I.)
| | - Shadab Md
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (S.M.); (N.A.A.)
| | - Nabil A. Alhakamy
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (S.M.); (N.A.A.)
| | - Keerti Jain
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER)—Raebareli, Lucknow 226002, India;
| | - Javed Ahmad
- Department of Pharmaceutics, College of Pharmacy, Najran University, Najran 11001, Saudi Arabia;
| |
Collapse
|
9
|
Yang B, Song BP, Shankar S, Guller A, Deng W. Recent advances in liposome formulations for breast cancer therapeutics. Cell Mol Life Sci 2021; 78:5225-5243. [PMID: 33974093 PMCID: PMC11071878 DOI: 10.1007/s00018-021-03850-6] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 03/31/2021] [Accepted: 04/30/2021] [Indexed: 12/18/2022]
Abstract
Among many nanoparticle-based delivery platforms, liposomes have been particularly successful with many formulations passed into clinical applications. They are well-established and effective gene and/or drug delivery systems, widely used in cancer therapy including breast cancer. In this review we discuss liposome design with the targeting feature and triggering functions. We also summarise the recent progress (since 2014) in liposome-based therapeutics for breast cancer including chemotherapy and gene therapy. We finally identify some challenges on the liposome technology development for the future clinical translation.
Collapse
Affiliation(s)
- Biyao Yang
- ARC Centre of Excellence for Nanoscale Biophotonics, the Graduate School of Biomedical Engineering, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Bo-Ping Song
- ARC Centre of Excellence for Nanoscale Biophotonics, the Graduate School of Biomedical Engineering, University of New South Wales, Sydney, NSW, 2052, Australia
- School of Mechatronic Engineering, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Shaina Shankar
- ARC Centre of Excellence for Nanoscale Biophotonics, the Graduate School of Biomedical Engineering, University of New South Wales, Sydney, NSW, 2052, Australia
- School of Chemical Engineering, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Anna Guller
- ARC Centre of Excellence for Nanoscale Biophotonics, the Graduate School of Biomedical Engineering, University of New South Wales, Sydney, NSW, 2052, Australia
- Institute for Regenerative Medicine, Sechenov First Moscow State Medical University (Sechenov University), Moscow, 119991, Russia
| | - Wei Deng
- ARC Centre of Excellence for Nanoscale Biophotonics, the Graduate School of Biomedical Engineering, University of New South Wales, Sydney, NSW, 2052, Australia.
| |
Collapse
|
10
|
Paliwal SR, Kenwat R, Maiti S, Paliwal R. Nanotheranostics for Cancer Therapy and Detection: State of the Art. Curr Pharm Des 2020; 26:5503-5517. [PMID: 33200696 DOI: 10.2174/1381612826666201116120422] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Accepted: 08/09/2020] [Indexed: 11/22/2022]
Abstract
Nanotheranostics, an approach of combining both diagnosis and therapy, is one of the latest advances in cancer therapy particularly. Nanocarriers designed and derived from inorganic materials such as like gold nanoparticles, silica nanoparticles, magnetic nanoparticles and carbon nanotubes have been explored for tremendous applications in this area. Similarly, nanoparticles composed of some organic material alone or in combination with inorganic nano-cargos have been developed pre-clinically and possess excellent features desired. Photothermal therapy, MRI, simultaneous imaging and delivery, and combination chemotherapy with a diagnosis are a few of the known methods exploring cancer therapy and detection at organ/tissue/molecular/sub-cellular level. This review comprises an overview of the recent reports meant for nano theranostics purposes. Targeted cancer nanotheranostics have been included for understating tumor micro-environment or cell-specific targeting approach employed. A brief account of various strategies is also included for the readers highlighting the mechanism of cancer therapy.
Collapse
Affiliation(s)
- Shivani Rai Paliwal
- SLT Institute of Pharmaceutical Sciences, Guru Ghasidas University, Bilapsur, CG, India
| | - Rameshroo Kenwat
- Nanomedicine and Bioengineering Research Laboratory, Department of Pharmacy, Indira Gandhi National Tribal University, Amarkantak, MP, India
| | - Sabyasachi Maiti
- Department of Pharmacy, Indira Gandhi National Tribal University, Amarkantak, MP, India
| | - Rishi Paliwal
- Nanomedicine and Bioengineering Research Laboratory, Department of Pharmacy, Indira Gandhi National Tribal University, Amarkantak, MP, India
| |
Collapse
|
11
|
Tekchandani P, Kurmi BD, Paliwal R, Paliwal SR. Galactosylated TPGS Micelles for Docetaxel Targeting to Hepatic Carcinoma: Development, Characterization, and Biodistribution Study. AAPS PharmSciTech 2020; 21:174. [PMID: 32548786 DOI: 10.1208/s12249-020-01690-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Accepted: 04/13/2020] [Indexed: 02/08/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is a foremost type of cancer problem in which asialoglycoprotein receptors are overexpressed. In this study, asialoglycoprotein receptor-targeted nanoformulation (galactose-conjugated TPGS micelles) loaded with docetaxel (DTX) was developed to achieve its site-specific delivery for HCC therapy. The pharmaceutical characteristics like shape morphology, average particle size and zeta potential, drug entrapment efficiency, and in vitro release kinetics of developed system were evaluated. DTX-loaded galactosylated TPGS (DTX-TPGS-Gal) micelles and TPGS micelles (DTX-TPGS) were having 58.76 ± 1.82% and 54.76 ± 1.42% entrapment of the DTX, respectively. In vitro drug release behavior from micelles was controlled release. Cytotoxicitiy (IC50) of DTX-TPGS-Gal formulation on HepG2 cell lines was significantly (p ≤ 0.01) lower (6.3 ± 0.86 μg/ml) than DTX-TPGS (9.06 ± 0.82 μg/ml) and plain DTX (16.06 ± 0.98 μg/ml) indicating higher efficacy of targeted formulation. Further, in vivo biodistribution studies in animal model showed maximum drug accumulation at target site, i.e., the liver in the case of DTX-TPGS-Gal as compared with non-targeted one. It is concluded from the findings that TPGS-Gal micelles can be utilized for targeted drug delivery of cytotoxic drugs towards HCC with minimized side effects. Graphical abstract.
Collapse
|
12
|
Paliwal R, Paliwal SR, Kenwat R, Kurmi BD, Sahu MK. Solid lipid nanoparticles: a review on recent perspectives and patents. Expert Opin Ther Pat 2020; 30:179-194. [DOI: 10.1080/13543776.2020.1720649] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Rishi Paliwal
- Nanomedicine and Bioengineering Research Laboratory, Department of Pharmacy, Indira Gandhi National Tribal University, Amarkantak, India
| | - Shivani Rai Paliwal
- SLT Institute of Pharmaceutical Sciences, Guru Ghasidas University, Bilaspur, India
| | - Rameshroo Kenwat
- Nanomedicine and Bioengineering Research Laboratory, Department of Pharmacy, Indira Gandhi National Tribal University, Amarkantak, India
| | - Balak Das Kurmi
- SLT Institute of Pharmaceutical Sciences, Guru Ghasidas University, Bilaspur, India
| | - Mukesh Kumar Sahu
- Department of Pharmaceutics, Columbia Institute of Pharmacy, Raipur, India
| |
Collapse
|
13
|
Han HJ, Ekweremadu C, Patel N. Advanced drug delivery system with nanomaterials for personalised medicine to treat breast cancer. J Drug Deliv Sci Technol 2019. [DOI: 10.1016/j.jddst.2019.05.024] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
14
|
Hu SCS, Su YS, Lai YC, Tseng CH, Yen FL. Liposomal Avicequinone-B formulations: Aqueous solubility, physicochemical properties and apoptotic effects on cutaneous squamous cell carcinoma cells. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2019; 58:152870. [PMID: 30903942 DOI: 10.1016/j.phymed.2019.152870] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Revised: 02/02/2019] [Accepted: 02/17/2019] [Indexed: 06/09/2023]
Abstract
BACKGROUND Avicequinone-B (Naphtho[2,3-b]furan-4,9-dione) is a furanonaphthoquinone derivative. It is a hydrophobic compound with poor aqueous solubility, which may restrict its potential pharmaceutical and biomedical applications. PURPOSE We synthesized different liposomal formulations of Avicequinone-B, and measured their particle size, aqueous solubility, and physicochemical properties. In addition, we investigated the anticancer activity of liposomal Avicequinone-B in human cutaneous squamous cell carcinoma (SCC) cells. METHODS Liposomal Avicequinone-B formulations were synthesized using the thin-film hydration method. Drug yield, encapsulation efficiency and aqueous solubility were determined by high performance liquid chromatography. Particle size and polydispersity index were measured by submicron particle size analyzer, and ultrastructural morphology was visualized by transmission electron microscopy. Thermal transitions were determined by differential scanning calorimetry. Anti-skin cancer activity was determined in HSC-1 cells (human cutaneous SCC cell line) using the MTS cytotoxicity assay, apoptosis was assessed by caspase-3/7 activity assay, mitochondrial membrane potential was determined by JC-10 assay, and signal transduction pathways were evaluated by Western blot analysis. RESULTS Liposomal Avicequinone-B formulations showed adequate yield and high encapsulation efficiency. These liposomal formulations produced small, uniformly sized nanoparticles, and greatly increased the aqueous solubility of Avicequinone-B. Differential scanning calorimetry showed loss of thermal phase transitions. In addition, liposomal Avicequinone-B showed significant cytotoxic effect on HSC-1 cells, through reduction of mitochondrial membrane potential, increased cytosolic cytochrome-c level, increased cleaved caspase 8 level, and induction of apoptosis. This was mediated through activation of ERK, p38 and JNK signaling pathways. CONCLUSION Liposomal Avicequinone-B demonstrated improved aqueous solubility and physicochemical characteristics, and induced apoptosis in cutaneous SCC cells. Therefore, liposomal Avicequinone-B may have potential uses as a topical anti-skin cancer drug formulation in the future.
Collapse
Affiliation(s)
- Stephen Chu-Sung Hu
- Department of Dermatology, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan; Department of Dermatology, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan; Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan; Translational Research Center, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Yung-Shun Su
- Department of Dermatology, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan; Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan; Department of Dermatology, E-Da Dachang Hospital, I-Shou University, Kaohsiung, Taiwan
| | - Yi-Chien Lai
- Department of Dermatology, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Chih-Hua Tseng
- School of Pharmacy, College of Pharmacy, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Feng-Lin Yen
- Department of Fragrance and Cosmetic Science, College of Pharmacy, Kaohsiung Medical University, Kaohsiung, Taiwan; Institute of Biomedical Sciences, National Sun Yat-Sen University, Kaohsiung, Taiwan.
| |
Collapse
|
15
|
Carter KA, Luo D, Geng J, Stern ST, Lovell JF. Blood Interactions, Pharmacokinetics, and Depth-Dependent Ablation of Rat Mammary Tumors with Photoactivatable, Liposomal Doxorubicin. Mol Cancer Ther 2018; 18:592-601. [PMID: 30587558 DOI: 10.1158/1535-7163.mct-18-0549] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Revised: 09/28/2018] [Accepted: 12/13/2018] [Indexed: 11/16/2022]
Abstract
Photosensitizers can be integrated with drug delivery vehicles to develop chemophototherapy agents with antitumor synergy between chemo- and photocomponents. Long-circulating doxorubicin (Dox) in porphyrin-phospholipid (PoP) liposomes (LC-Dox-PoP) incorporates a phospholipid-like photosensitizer (2 mole %) in the bilayer of Dox-loaded stealth liposomes. Hematological effects of endotoxin-minimized LC-Dox-PoP were characterized via standardized assays. In vitro interaction with erythrocytes, platelets, and plasma coagulation cascade were generally unremarkable, whereas complement activation was found to be similar to that of commercial Doxil. Blood partitioning suggested that both the Dox and PoP components of LC-Dox-PoP were stably entrapped or incorporated in liposomes. This was further confirmed with pharmacokinetic studies in Fischer rats, which showed the PoP and Dox components of the liposomes both had nearly identical, long circulation half-lives (25-26 hours). In a large orthotopic mammary tumor model in Fischer rats, following intravenous dosing (2 mg/kg Dox), the depth of enhanced Dox delivery in response to 665 nm laser irradiation was over 1 cm. LC-Dox-PoP with laser treatment cured or potently suppressed tumor growth, with greater efficacy observed in tumors 0.8 to 1.2 cm, compared with larger ones. The skin at the treatment site healed within approximately 30 days. Taken together, these data provide insight into nanocharacterization and photo-ablation parameters for a chemophototherapy agent.
Collapse
Affiliation(s)
- Kevin A Carter
- Department of Biomedical Engineering, University at Buffalo, State University of New York, Buffalo, New York
| | - Dandan Luo
- Department of Biomedical Engineering, University at Buffalo, State University of New York, Buffalo, New York
| | - Jumin Geng
- Department of Biomedical Engineering, University at Buffalo, State University of New York, Buffalo, New York
| | - Stephan T Stern
- Nanotechnology Characterization Laboratory, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research sponsored by the National Cancer Institute, Frederick, Maryland
| | - Jonathan F Lovell
- Department of Biomedical Engineering, University at Buffalo, State University of New York, Buffalo, New York.
| |
Collapse
|
16
|
Fang YP, Chuang CH, Wu YJ, Lin HC, Lu YC. SN38-loaded <100 nm targeted liposomes for improving poor solubility and minimizing burst release and toxicity: in vitro and in vivo study. Int J Nanomedicine 2018; 13:2789-2802. [PMID: 29785106 PMCID: PMC5955381 DOI: 10.2147/ijn.s158426] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Background SN38 (7-ethyl-10-hydroxycamptothecin) is a camptothecin derivative acts against various tumors. However, SN38 is hydrolyzed in the physiological environment (pH 7.4), and this instability interferes with its potential therapeutic effect. Our objective was to investigate SN38-loaded liposomes to overcome the poor solubility of SN38 and its biodistribution, which further diminish its toxicity. Materials and methods The sub-100 nm targeted liposomes was employed to deliver SN-38 and evaluate the characterization, release behaviors, cytotoxicity, in vivo pharmacokinetics and biochemical assay. Results The SN38-loaded targeted liposomes consisted of small (100.49 nm) spherical nanoparticles with negative charge (−37.93 mV) and high entrapment efficiency (92.47%). The release behavior of the SN38-loaded targeted liposomes was fitted with Higuchi kinetics (R2=0.9860). Free SN38 presented initial burst release. The IC50 for the SN38-loaded targeted liposomes (0.11 μM) was significantly lower than for the SN38 solution (0.37 μM) in the MCF7 cell line (P<0.01). Confocal laser scanning microscopy also confirmed highly efficient accumulation in the MCF7 cells. Pharmacokinetics demonstrated that the SN38-loaded targeted liposomes had a slightly increased half-life and mean residence time and decreased area under the concentration–time curve and maximum concentration. The results suggested that retention was achieved while the exposure of SN38 was significantly decreased. A noninvasive in vivo imaging system also showed that the targeted liposomes selectively targeted MCF7 tumors. In vivo toxicity data demonstrated that the decrease in platelets was significantly improved by SN38-loaded targeted liposomes, and diarrhea was not observed in BALB/c mice. Conclusion In summary, SN38-loaded targeted liposomes could be a good candidate for application in human breast cancer.
Collapse
Affiliation(s)
- Yi-Ping Fang
- School of Pharmacy, College of Pharmacy, Kaohsiung Medical University.,Department of Medical Research, Kaohsiung Medical University Hospital
| | - Chih-Hung Chuang
- Department of Medical Laboratory Science and Biotechnology, College of Health Sciences, Kaohsiung Medical University
| | - Yi-Jhun Wu
- School of Pharmacy, College of Pharmacy, Kaohsiung Medical University
| | - Hsin-Che Lin
- School of Pharmacy, College of Pharmacy, Kaohsiung Medical University
| | - Yun-Chi Lu
- Graduate Institute of Medicine, Collage of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| |
Collapse
|
17
|
Jang MH, Kim CH, Yoon HY, Sung SW, Goh MS, Lee ES, Shin DJ, Choi YW. Steric stabilization of RIPL peptide-conjugated liposomes and in vitro assessment. JOURNAL OF PHARMACEUTICAL INVESTIGATION 2018. [DOI: 10.1007/s40005-018-0392-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
18
|
Jing H, Sinha S, Das S. Elasto-electro-capillarity: drop equilibrium on a charged, elastic solid. SOFT MATTER 2017; 13:554-566. [PMID: 27935004 DOI: 10.1039/c6sm02463g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
We present a study here on elasto-electro-capillarity - for the first time, the matter of drop equilibrium on a soft (elastic and incompressible) and charged solid has been studied. Charges on the elastic solid induce an electric double layer or EDL at the solid-drop interface. Our analysis accounts for the electrostatic wetting contribution of the EDL in the overall energy balance. Our results reveal that (a) with an increase in "softness", the equilibrium solid-liquid contact angles show transition from the EDL-modified Young's law (rigid limit) to the EDL-modified Neumann's law (soft limit); (b) the EDL effects invariably enhance solid deformation and lower the apparent contact angle made by the drop with the undeformed solid; (c) the solid contact angles increase and the cusp made by the deformed solid undergoes enhanced rotation due to the EDL effects; and (d) the EDL effects are more prominent for the case where the solid-vapor surface energy exceeds the solid-liquid surface energy. The fact that the EDL effects invariably decrease the overall wetting energy of the system, thereby supporting a larger increase in the elastic energy associated with a larger solid deformation, explains all these findings and establishes that surface charges enhance the "softness" of a soft surface in the context of elastocapillarity.
Collapse
Affiliation(s)
- Haoyuan Jing
- Department of Mechanical Engineering, University of Maryland, College Park, MD-20742, USA.
| | - Shayandev Sinha
- Department of Mechanical Engineering, University of Maryland, College Park, MD-20742, USA.
| | - Siddhartha Das
- Department of Mechanical Engineering, University of Maryland, College Park, MD-20742, USA.
| |
Collapse
|
19
|
Li F, Snow-Davis C, Du C, Bondarev ML, Saulsbury MD, Heyliger SO. Preparation and Characterization of Lipophilic Doxorubicin Pro-drug Micelles. J Vis Exp 2016. [PMID: 27584689 DOI: 10.3791/54338] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Micelles have been successfully used for the delivery of anticancer drugs. Amphiphilic polymers form core-shell structured micelles in an aqueous environment through self-assembly. The hydrophobic core of micelles functions as a drug reservoir and encapsulates hydrophobic drugs. The hydrophilic shell prevents the aggregation of micelles and also prolongs their systemic circulation in vivo. In this protocol, we describe a method to synthesize a doxorubicin lipophilic pro-drug, doxorubicin-palmitic acid (DOX-PA), which will enhance drug loading into micelles. A pH-sensitive hydrazone linker was used to conjugate doxorubicin with the lipid, which facilitates the release of free doxorubicin inside cancer cells. Synthesized DOX-PA was purified with a silica gel column using dichloromethane/methanol as the eluent. Purified DOX-PA was analyzed with thin layer chromatography (TLC) and (1)H-Nuclear Magnetic Resonance Spectroscopy ((1)H-NMR). A film dispersion method was used to prepare DOX-PA loaded DSPE-PEG micelles. In addition, several methods for characterizing micelle formulations are described, including determination of DOX-PA concentration and encapsulation efficiency, measurement of particle size and distribution, and assessment of in vitro anticancer activities. This protocol provides useful information regarding the preparation and characterization of drug-loaded micelles and thus will facilitate the research and development of novel micelle-based cancer nanomedicines.
Collapse
Affiliation(s)
- Feng Li
- School of Pharmacy, Hampton University;
| | | | | | | | | | | |
Collapse
|
20
|
Wang H, Gauthier M, Kelly JR, Miller RJ, Xu M, O'Brien WD, Cheng J. Targeted Ultrasound-Assisted Cancer-Selective Chemical Labeling and Subsequent Cancer Imaging using Click Chemistry. Angew Chem Int Ed Engl 2016; 55:5452-6. [PMID: 27010510 PMCID: PMC4918225 DOI: 10.1002/anie.201509601] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Revised: 01/29/2016] [Indexed: 01/01/2023]
Abstract
Metabolic sugar labeling followed by the use of reagent-free click chemistry is an established technique for in vitro cell targeting. However, selective metabolic labeling of the target tissues in vivo remains a challenge to overcome, which has prohibited the use of this technique for targeted in vivo applications. Herein, we report the use of targeted ultrasound pulses to induce the release of tetraacetyl N-azidoacetylmannosamine (Ac4 ManAz) from microbubbles (MBs) and its metabolic expression in the cancer area. Ac4 ManAz-loaded MBs showed great stability under physiological conditions, but rapidly collapsed in the presence of tumor-localized ultrasound pulses. The released Ac4 ManAz from MBs was able to label 4T1 tumor cells with azido groups and significantly improved the tumor accumulation of dibenzocyclooctyne (DBCO)-Cy5 by subsequent click chemistry. We demonstrated for the first time that Ac4 ManAz-loaded MBs coupled with the use of targeted ultrasound could be a simple but powerful tool for in vivo cancer-selective labeling and targeted cancer therapies.
Collapse
Affiliation(s)
- Hua Wang
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, USA
| | - Marianne Gauthier
- Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Jamie R Kelly
- Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Rita J Miller
- Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Ming Xu
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, USA
| | - William D O'Brien
- Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA.
| | - Jianjun Cheng
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, USA.
| |
Collapse
|
21
|
Wang H, Gauthier M, Kelly JR, Miller RJ, Xu M, O'Brien WD, Cheng J. Targeted Ultrasound‐Assisted Cancer‐Selective Chemical Labeling and Subsequent Cancer Imaging using Click Chemistry. Angew Chem Int Ed Engl 2016. [DOI: 10.1002/ange.201509601] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Hua Wang
- Department of Materials Science and Engineering University of Illinois at Urbana-Champaign USA
| | - Marianne Gauthier
- Department of Electrical and Computer Engineering University of Illinois at Urbana-Champaign Urbana IL 61801 USA
| | - Jamie R. Kelly
- Department of Electrical and Computer Engineering University of Illinois at Urbana-Champaign Urbana IL 61801 USA
| | - Rita J. Miller
- Department of Electrical and Computer Engineering University of Illinois at Urbana-Champaign Urbana IL 61801 USA
| | - Ming Xu
- Department of Materials Science and Engineering University of Illinois at Urbana-Champaign USA
| | - William D. O'Brien
- Department of Electrical and Computer Engineering University of Illinois at Urbana-Champaign Urbana IL 61801 USA
| | - Jianjun Cheng
- Department of Materials Science and Engineering University of Illinois at Urbana-Champaign USA
| |
Collapse
|
22
|
Vaidya B, Gupta V. Novel therapeutic approaches for pulmonary arterial hypertension: Unique molecular targets to site-specific drug delivery. J Control Release 2015; 211:118-33. [PMID: 26036906 DOI: 10.1016/j.jconrel.2015.05.287] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2015] [Revised: 05/26/2015] [Accepted: 05/28/2015] [Indexed: 01/07/2023]
Abstract
Pulmonary arterial hypertension (PAH) is a cardiopulmonary disorder characterized by increased blood pressure in the small arterioles supplying blood to lungs for oxygenation. Advances in understanding of molecular and cellular biology techniques have led to the findings that PAH is indeed a cascade of diseases exploiting multi-faceted complex pathophysiology, with cellular proliferation and vascular remodeling being the key pathogenic events along with several cellular pathways involved. While current therapies for PAH do provide for amelioration of disease symptoms and acute survival benefits, their full therapeutic potential is hindered by patient incompliance and off-target side effects. To overcome the issues related with current therapy and to devise a more selective therapy, various novel pathways are being investigated for PAH treatment. In addition, inability to deliver anti-PAH drugs to the disease site i.e., distal pulmonary arterioles has been one of the major challenges in achieving improved patient outcomes and improved therapeutic efficacy. Several novel carriers have been explored to increase the selectivity of currently approved anti-PAH drugs and to act as suitable carriers for the delivery of investigational drugs. In the present review, we have discussed potential of various novel molecular pathways/targets including RhoA/Rho kinase, tyrosine kinase, endothelial progenitor cells, vasoactive intestinal peptide, and miRNA in PAH therapeutics. We have also discussed various techniques for site-specific drug delivery of anti-PAH therapeutics so as to improve the efficacy of approved and investigational drugs. This review will provide gainful insights into current advances in PAH therapeutics with an emphasis on site-specific drug payload delivery.
Collapse
Affiliation(s)
- Bhuvaneshwar Vaidya
- School of Pharmacy, Keck Graduate Institute, 535 Watson Drive, Claremont, CA 91711, United States
| | - Vivek Gupta
- School of Pharmacy, Keck Graduate Institute, 535 Watson Drive, Claremont, CA 91711, United States.
| |
Collapse
|
23
|
Kanwar JR, Roy K, Patel Y, Zhou SF, Singh MR, Singh D, Nasir M, Sehgal R, Sehgal A, Singh RS, Garg S, Kanwar RK. Multifunctional iron bound lactoferrin and nanomedicinal approaches to enhance its bioactive functions. Molecules 2015; 20:9703-31. [PMID: 26016555 PMCID: PMC6272382 DOI: 10.3390/molecules20069703] [Citation(s) in RCA: 82] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Accepted: 05/13/2015] [Indexed: 02/08/2023] Open
Abstract
Lactoferrin (Lf), an iron-binding protein from the transferrin family has been reported to have numerous functions. Even though Lf was first isolated from milk, it is also found in most exocrine secretions and in the secondary granules of neutrophils. Antimicrobial and anti-inflammatory activity reports on lactoferrin identified its significance in host defense against infection and extreme inflammation. Anticarcinogenic reports on lactoferrin make this protein even more valuable. This review is focused on the structural configuration of iron-containing and iron-free forms of lactoferrin obtained from different sources such as goat, camel and bovine. Apart for emphasizing on the specific beneficial properties of lactoferrin from each of these sources, the general antimicrobial, immunomodulatory and anticancer activities of lactoferrin are discussed here. Implementation of nanomedicinial strategies that enhance the bioactive function of lactoferrin are also discussed, along with information on lactoferrin in clinical trials.
Collapse
Affiliation(s)
- Jagat R Kanwar
- Nanomedicine-Laboratory of Immunology and Molecular Biomedical Research (NLIMBR), School of Medicine (SoM), Molecular and Medical Research (MMR) Strategic Research Centre, Faculty of Health, Deakin University, Waurn Ponds, Victoria 3217, Australia.
| | - Kislay Roy
- Nanomedicine-Laboratory of Immunology and Molecular Biomedical Research (NLIMBR), School of Medicine (SoM), Molecular and Medical Research (MMR) Strategic Research Centre, Faculty of Health, Deakin University, Waurn Ponds, Victoria 3217, Australia.
| | - Yogesh Patel
- Nanomedicine-Laboratory of Immunology and Molecular Biomedical Research (NLIMBR), School of Medicine (SoM), Molecular and Medical Research (MMR) Strategic Research Centre, Faculty of Health, Deakin University, Waurn Ponds, Victoria 3217, Australia.
| | - Shu-Feng Zhou
- Department of Pharmaceutical Sciences, College of Pharmacy, University of South Florida, Tampa, FL 33612, USA.
| | - Manju Rawat Singh
- University Institute of Pharmacy, Pt. Ravishankar Shukla University, Raipur 492 010, India.
| | - Deependra Singh
- University Institute of Pharmacy, Pt. Ravishankar Shukla University, Raipur 492 010, India.
| | - Muhammad Nasir
- Department of Food Science & Human Nutrition, Faculty of Bio-Sciences, University of Veterinary & Animal Sciences, Lahore, Punjab 54000, Pakistan.
| | - Rakesh Sehgal
- Department of Medical Parasitology, Postgraduate Institute of Medical Education & Research, Chandigarh 160012, India.
| | - Alka Sehgal
- Department of Obstetrics & Gynecology, Government Medical College & Hospital, Sector 32, Chandigarh 160031, India.
| | - Ram Sarup Singh
- Carbohydrate and Protein Biotechnology Laboratory, Department of Biotechnology, Punjabi University, Patiala 147002, India.
| | - Sanjay Garg
- Centre for Pharmaceutical Innovation and Development (CPID), School of Pharmacy and Medical Sciences, University of South Australia, Adelaide SA 5000, Australia.
| | - Rupinder K Kanwar
- Nanomedicine-Laboratory of Immunology and Molecular Biomedical Research (NLIMBR), School of Medicine (SoM), Molecular and Medical Research (MMR) Strategic Research Centre, Faculty of Health, Deakin University, Waurn Ponds, Victoria 3217, Australia.
| |
Collapse
|
24
|
Abstract
Disease heterogeneity within and between patients necessitates a patient-focused approach to cancer treatment. This exigency forms the basis for the medical practice termed personalized medicine. An emerging, important component of personalized medicine is theranostics. Theranostics describes the co-delivery of therapeutic and imaging agents in a single formulation. Co-delivery enables noninvasive, real-time visualization of drug fate, including drug pharmacokinetic and biodistribution profiles and intratumoral accumulation. These technological advances assist drug development and ultimately may translate to improved treatment planning at the bedside. Nanocarriers are advantageous for theranostics as their size and versatility enables integration of multiple functional components in a single platform. This chapter focuses on recent developments in advanced lipid theranostic nanomedicine from the perspective of the "all-in-one" or the "one-for-all" approach. The design paradigm of "all-in-one" is the most common approach for assembling theranostic lipid nanoparticles, where the advantages of theranostics are achieved by combining multiple components that each possesses a specific singular function for therapeutic activity or imaging contrast. We will review lipoprotein nanoparticles and liposomes as representatives of the "all-in-one" approach. Complementary to the "all-in-one" approach is the emerging paradigm of the "one-for-all" approach where nanoparticle components are intrinsically multifunctional. We will discuss the "one-for-all" approach using porphysomes as a representative. We will further discuss how the concept of "one-for-all" might overcome the regulatory hurdles facing theranostic lipid nanomedicine.
Collapse
|
25
|
Short-chain glycoceramides promote intracellular mitoxantrone delivery from novel nanoliposomes into breast cancer cells. Pharm Res 2014; 32:1354-67. [PMID: 25319103 DOI: 10.1007/s11095-014-1539-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2014] [Accepted: 09/29/2014] [Indexed: 12/20/2022]
Abstract
PURPOSE To improve therapeutic activity of mitoxantrone (MTO)-based chemotherapy by reducing toxicity through encapsulation in nanoliposomes and enhancing intracellular drug delivery using short-chain sphingolipid (SCS) mediated tumor cell membrane permeabilization. METHODS Standard (MTOL) and nanoliposomes enriched with the SCS, C8-Glucosylceramide or C8-Galactosylceramide (SCS-MTOL) were loaded by a transmembrane ammonium sulphate gradient and characterized by DLS and cryo-TEM. Intracellular MTO delivery was measured by flow cytometry and imaged by fluorescence microscopy. In vitro cytotoxicity was studied in breast carcinoma cell lines. Additionally, live cell confocal microscopy addressed the drug delivery mechanism by following the intracellular fate of the nanoliposomes, the SCS and MTO. Intratumoral MTO localization in relation to CD31-positive tumor vessels and CD11b positive cells was studied in an orthotopic MCF-7 breast cancer xenograft. RESULTS Stable SCS-MTOL were developed increasing MTO delivery and cytotoxicity to tumor cells compared to standard MTOL. This effect was much less pronounced in normal cells. The drug delivery mechanism involved a transfer of SCS to the cell membrane, independently of drug transfer and not involving nanoliposome internalization. MTO was detected intratumorally upon MTOL and SCS-MTOL treatment, but not after free MTO, suggesting an important improvement in tumor drug delivery by nanoliposomal formulation. Nanoliposomal MTO delivery and cellular uptake was heterogeneous throughout the tumor and clearly correlated with CD31-positive tumor vessels. Yet, MTO uptake by CD11b positive cells in tumor stroma was minor. CONCLUSIONS Nanoliposomal encapsulation improves intratumoral MTO delivery over free drug. Liposome bilayer-incorporated SCS preferentially permeabilize tumor cell membranes enhancing intracellular MTO delivery.
Collapse
|
26
|
Battistini L, Burreddu P, Sartori A, Arosio D, Manzoni L, Paduano L, D’Errico G, Sala R, Reia L, Bonomini S, Rassu G, Zanardi F. Enhancement of the Uptake and Cytotoxic Activity of Doxorubicin in Cancer Cells by Novel cRGD-Semipeptide-Anchoring Liposomes. Mol Pharm 2014; 11:2280-93. [DOI: 10.1021/mp400718j] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Lucia Battistini
- Dipartimento
di Farmacia, Università degli Studi di Parma, Parma 43124, Italy
| | - Paola Burreddu
- Istituto
di Chimica Biomolecolare, Consiglio Nazionale delle Ricerche, Li Punti Sassari 07100, Italy
| | - Andrea Sartori
- Dipartimento
di Farmacia, Università degli Studi di Parma, Parma 43124, Italy
| | - Daniela Arosio
- Istituto
di Scienze e Tecnologie Molecolari, Consiglio Nazionale delle Ricerche, Milano 20133, Italy
| | - Leonardo Manzoni
- Istituto
di Scienze e Tecnologie Molecolari, Consiglio Nazionale delle Ricerche, Milano 20133, Italy
| | - Luigi Paduano
- Dipartimento
di Scienze Chimiche, Università degli Studi di Napoli “Federico II”, Napoli 80126, Italy
- CSGI−Consorzio interuniversitario per lo sviluppo dei Sistemi a Grande Interfase, Sesto Fiorentino 50019, Italy
| | - Gerardino D’Errico
- Dipartimento
di Scienze Chimiche, Università degli Studi di Napoli “Federico II”, Napoli 80126, Italy
- CSGI−Consorzio interuniversitario per lo sviluppo dei Sistemi a Grande Interfase, Sesto Fiorentino 50019, Italy
| | - Roberto Sala
- Dipartimento
di Scienze Biomediche, Biotecnologiche e Traslazionali, Università degli Studi di Parma, Parma 43126, Italy
| | - Laura Reia
- Dipartimento
di Scienze Biomediche, Biotecnologiche e Traslazionali, Università degli Studi di Parma, Parma 43126, Italy
| | - Sabrina Bonomini
- Dipartimento
di Medicina Clinica e Sperimentale, Università degli Studi di Parma, Parma 43126, Italy
| | - Gloria Rassu
- Istituto
di Chimica Biomolecolare, Consiglio Nazionale delle Ricerche, Li Punti Sassari 07100, Italy
| | - Franca Zanardi
- Dipartimento
di Farmacia, Università degli Studi di Parma, Parma 43124, Italy
| |
Collapse
|
27
|
Paliwal SR, Paliwal R, Vyas SP. A review of mechanistic insight and application of pH-sensitive liposomes in drug delivery. Drug Deliv 2014; 22:231-42. [PMID: 24524308 DOI: 10.3109/10717544.2014.882469] [Citation(s) in RCA: 125] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The pH-sensitive liposomes have been extensively used as an alternative to conventional liposomes in effective intracellular delivery of therapeutics/antigen/DNA/diagnostics to various compartments of the target cell. Such liposomes are destabilized under acidic conditions of the endocytotic pathway as they usually contain pH-sensitive lipid components. Therefore, the encapsulated content is delivered into the intracellular bio-environment through destabilization or its fusion with the endosomal membrane. The therapeutic efficacy of pH-sensitive liposomes enables them as biomaterial with commercial utility especially in cancer treatment. In addition, targeting ligands including antibodies can be anchored on the surface of pH-sensitive liposomes to target specific cell surface receptors/antigen present on tumor cells. These vesicles have also been widely explored for antigen delivery and serve as immunological adjuvant to enhance the immune response to antigens. The present review deals with recent research updates on application of pH-sensitive liposomes in chemotherapy/diagnostics/antigen/gene delivery etc.
Collapse
Affiliation(s)
- Shivani Rai Paliwal
- Department of Pharmaceutics, SLT Institute of Pharmaceutical Sciences, Guru Ghasidas Vishwavidyalaya Bilaspur , Chhattisgarh , India
| | | | | |
Collapse
|
28
|
|
29
|
Rai Paliwal S, Paliwal R, Vyas SP. pH-sensitive Liposomes in Drug Delivery. SMART MATERIALS FOR DRUG DELIVERY 2013. [DOI: 10.1039/9781849736800-00080] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The pH-sensitive liposomes have been extensively studied in recent years as an advantageous alternative to conventional liposomes in effective targeting and accumulation of anticancer drugs in tumors. pH-sensitive liposomes usually contain phosphatidylethanolamine and stabilizing amphiphiles and can destabilize under acidic conditions of the endocytotic pathway. The drug loaded is thought to be delivered into the cytoplasm, probably through destabilization of or fusion with the endosome membrane. This fusogenic property makes the pH-sensitive liposomes more efficient in delivering anticancer drugs than conventional liposomes. The intra-cellular release of drug/gene/diagnostic agents can be achieved without altering their therapeutic efficacy by means of the endosomal escape phenomenon. Cell surface targeting ligands, including antibodies, can be appended on the surface of pH-sensitive liposomes to target specific receptors on tumor cells. This chapter provides an introduction to pH-sensitive liposomes and examples of their therapeutic interest as smart drug-delivery systems.
Collapse
Affiliation(s)
- Shivani Rai Paliwal
- Drug Delivery Research Laboratory Department of Pharmaceutical Sciences, Dr H. S. Gour Vishwavidyalaya (A Central University), Sagar M.P. India, 470003
- Department of Pharmaceutics SLT Institute of Pharmaceutical Sciences, Guru Ghasidas Vishwavidyalaya (A Central University), Bilaspur, C.G. India, 495009
| | - Rishi Paliwal
- Drug Delivery Research Laboratory Department of Pharmaceutical Sciences, Dr H. S. Gour Vishwavidyalaya (A Central University), Sagar M.P. India, 470003
| | - Suresh P Vyas
- Drug Delivery Research Laboratory Department of Pharmaceutical Sciences, Dr H. S. Gour Vishwavidyalaya (A Central University), Sagar M.P. India, 470003
| |
Collapse
|
30
|
Nagao A, Abu Lila AS, Ishida T, Kiwada H. Abrogation of the accelerated blood clearance phenomenon by SOXL regimen: promise for clinical application. Int J Pharm 2012; 441:395-401. [PMID: 23174409 DOI: 10.1016/j.ijpharm.2012.11.015] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2012] [Revised: 10/26/2012] [Accepted: 11/11/2012] [Indexed: 12/14/2022]
Abstract
We recently proposed an S-1 combined with oxaliplatin (SOXL) regimen, a combination treatment consisting of oral metronomic S-1 dosing and intravenous administration of oxaliplatin (l-OHP) containing PEGylated liposomes, which showed potent antitumor activity in vivo. PEGylated liposomes induce what is referred to as the "accelerated blood clearance (ABC) phenomenon" upon repeated administration and consequently lose their long-circulating characteristics. This phenomenon seems to pose an impediment for the clinical application and use of PEGylated liposomal formulations. In the present study, l-OHP-containing PEGylated liposomes in the SOXL regimen significantly attenuated the ABC phenomenon in a dose-dependent manner through suppression of the anti-PEG IgM response, which allowed an enhanced hepatic uptake of subsequently injected test PEGylated liposomes. In tumor-bearing mice, the abrogation of the ABC phenomenon restored intratumor accumulation of subsequently injected PEGylated liposomes. Consequently, the therapeutic efficacy of the SOXL regimen over the combination of the free form of the drugs was credited not only with the selective delivery of drugs to the tumor tissue but also with ensuring an adequate accumulation of subsequent doses within the tumor tissue. The SOXL regimen we proposed may hold promise as a safe and effective treatment regimen for advanced colorectal cancer.
Collapse
Affiliation(s)
- Ai Nagao
- Department of Pharmacokinetics and Biopharmaceutics, Institute of Health Biosciences, The University of Tokushima, Tokushima, Japan
| | | | | | | |
Collapse
|
31
|
Multiple administration of PEG-coated liposomal oxaliplatin enhances its therapeutic efficacy: A possible mechanism and the potential for clinical application. Int J Pharm 2012; 438:176-83. [DOI: 10.1016/j.ijpharm.2012.08.030] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2012] [Revised: 07/14/2012] [Accepted: 08/18/2012] [Indexed: 12/11/2022]
|
32
|
Paliwal SR, Paliwal R, Pal HC, Saxena AK, Sharma PR, Gupta PN, Agrawal GP, Vyas SP. Estrogen-Anchored pH-Sensitive Liposomes as Nanomodule Designed for Site-Specific Delivery of Doxorubicin in Breast Cancer Therapy. Mol Pharm 2011; 9:176-86. [DOI: 10.1021/mp200439z] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Shivani R. Paliwal
- Drug Delivery
Research Laboratory, Department of Pharmaceutical Sciences, Dr. H. S. Gour Viswavidyalaya, Sagar (M.P.), 470003,
India
| | - Rishi Paliwal
- Drug Delivery
Research Laboratory, Department of Pharmaceutical Sciences, Dr. H. S. Gour Viswavidyalaya, Sagar (M.P.), 470003,
India
| | - Harish C. Pal
- Cancer Pharmacology Division, Indian Institute of Integrative Medicine, Canal Road, Jammu (J&K), 180001, India
| | - Ajeet K. Saxena
- Cancer Pharmacology Division, Indian Institute of Integrative Medicine, Canal Road, Jammu (J&K), 180001, India
| | - Pradyumana R. Sharma
- Cancer Pharmacology Division, Indian Institute of Integrative Medicine, Canal Road, Jammu (J&K), 180001, India
| | - Prem N. Gupta
- Cancer Pharmacology Division, Indian Institute of Integrative Medicine, Canal Road, Jammu (J&K), 180001, India
| | - Govind P. Agrawal
- Pharmaceutics Research Laboratory, Department
of Pharmaceutical Sciences, Dr. H. S. Gour Viswavidyalaya, Sagar (M.P.), 470003, India
| | - Suresh P. Vyas
- Drug Delivery
Research Laboratory, Department of Pharmaceutical Sciences, Dr. H. S. Gour Viswavidyalaya, Sagar (M.P.), 470003,
India
| |
Collapse
|