1
|
Obeidat WM, Lahlouh IK. Chitosan Nanoparticles: Approaches to Preparation, Key Properties, Drug Delivery Systems, and Developments in Therapeutic Efficacy. AAPS PharmSciTech 2025; 26:108. [PMID: 40244367 DOI: 10.1208/s12249-025-03100-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Accepted: 03/27/2025] [Indexed: 04/18/2025] Open
Abstract
The integration of nanotechnology into drug delivery systems holds great promise for enhancing pharmaceutical effectiveness. This approach enables precise targeting, controlled release, improved patient compliance, reduced side effects, and increased bioavailability. Nanoparticles are vital for transporting biomolecules-such as proteins, enzymes, genes, and vaccines-through various administration routes, including oral, intranasal, vaginal, buccal, and pulmonary. Among biodegradable polymers, chitosan, a linear polysaccharide derived from chitin, stands out due to its biocompatibility, safety, biodegradability, mucoadhesive properties, and ability to enhance permeation. Its cationic nature supports strong molecular interactions and provides antimicrobial, anti-inflammatory, and hemostatic benefits. However, its solubility, influenced by pH and ionic sensitivity, poses challenges requiring effective solutions. This review explores chitosan, its modified derivatives and chitosan nanoparticles mainly, focusing on nanoparticles physicochemical properties, drug release mechanisms, preparation methods, and factors affecting their mean hydrodynamic diameter (particle size). It highlights their application in drug delivery systems and disease treatments across various routes. Key considerations include drug loading capacity, zeta potential, and stability, alongside the impact of molecular weight, degree of deacetylation, and drug solubility on nanoparticle properties. Recent advancements and studies underscore chitosan's potential, emphasizing its modified derivatives'versatility in improving therapeutic outcomes.
Collapse
Affiliation(s)
- Wasfy M Obeidat
- Jordan University of Science and Technology, 3030, Irbid, 22110, Jordan.
| | - Ishraq K Lahlouh
- Jordan University of Science and Technology, 3030, Irbid, 22110, Jordan
| |
Collapse
|
2
|
Saadh MJ, Bishoyi AK, Ballal S, Singh A, Kareem RA, Devi A, Sharma GC, Naidu KS, Sead FF. MicroRNAs as behind-the-scenes molecules in breast cancer metastasis and their therapeutic role through novel microRNA-based delivery strategies. Gene 2025; 944:149272. [PMID: 39894085 DOI: 10.1016/j.gene.2025.149272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Accepted: 01/20/2025] [Indexed: 02/04/2025]
Abstract
Breast cancer is the primary cause of cancer-related death and the most frequent malignancy among women in Western countries. Although there have been advancements in combination treatments and targeted therapies for the metastatic diseases management, metastatic breast cancer is still the second most common cause of cancer-related deaths among U.S. women. The routes of metastasis encompass invasion, intravasation, circulation, extravasation, infiltration into a remote location to establish a metastatic niche, and the formation of micro-metastases in a new environment. Each of these processes is regulated by changes in gene expression. MicroRNAs (miRNAs) are widely expressed by a variety of organisms and have a key role in cell activities including suppressing or promoting cancer through regulating various pathways. Target gene expression is post-transcriptionally regulated by miRNAs, which contribute to the development, spread, and metastasis of breast cancer. In this study, we comprehensively discussed the role of miRNAs as predictors of breast cancer metastasis, their correlation with the spread of the disease to certain organs, and their potential application as targets for breast cancer treatment. We also provided molecular mechanisms of miRNAs in the progression of breast cancer, as well as current challenges in miRNA-based therapeutic approaches. Furthermore, as one of the primary issues with the treatment of solid malignancies is the efficient delivery of miRNAs, we examined a number of cutting-edge carriers for miRNA-based therapies and CRISPR/Cas9 as a targeted therapy for breast cancer.
Collapse
Affiliation(s)
- Mohamed J Saadh
- Faculty of Pharmacy, Middle East University, Amman 11831, Jordan.
| | - Ashok Kumar Bishoyi
- Marwadi University Research Center, Department of Microbiology, Faculty of Science, Marwadi University, Rajkot 360003, Gujarat, India
| | - Suhas Ballal
- Department of Chemistry and Biochemistry, School of Sciences, JAIN (Deemed to be University), Bangalore, Karnataka, India
| | - Abhayveer Singh
- Centre for Research Impact & Outcome, Chitkara University Institute of Engineering and Technology, Chitkara University, Rajpura 140401, Punjab, India
| | | | - Anita Devi
- Department of Chemistry Chandigarh Engineering College, Chandigarh Group of Colleges-Jhanjeri, Mohali 140307, Punjab, India
| | - Girish Chandra Sharma
- Department of Applied Sciences-Chemistry, NIMS Institute of Engineering & Technology, NIMS University Rajasthan, Jaipur, India
| | - K Satyam Naidu
- Department of Chemistry, Raghu Engineering College, Visakhapatnam, Andhra Pradesh 531162, India
| | - Fadhil Faez Sead
- Department of Dentistry, College of Dentistry, The Islamic University, Najaf, Iraq; Department of Medical Analysis, Medical Laboratory Technique College, the Islamic University of Al Diwaniyah, Al Diwaniyah, Iraq
| |
Collapse
|
3
|
Zhang G, Jiang X, Xia Y, Qi P, Li J, Wang L, Wang Z, Tian X. Hyaluronic acid-conjugated lipid nanocarriers in advancing cancer therapy: A review. Int J Biol Macromol 2025; 299:140146. [PMID: 39842601 DOI: 10.1016/j.ijbiomac.2025.140146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2024] [Revised: 01/03/2025] [Accepted: 01/20/2025] [Indexed: 01/24/2025]
Abstract
Lipid nanoparticles are obtaining significant attention in cancer treatment because of their efficacy at delivering drugs and reducing side effects. These things are like a flexible platform for getting anticancer drugs to the tumor site, especially upon HA modification, a polymer that is known to target tumors overexpressing CD44. HA is promising in cancer therapy because it taregtes tumor cells by binding onto CD44 receptors, which are often upregulated in cancer cells. Lipid nanoparticles are not only beneficial in improving solubility and stability of drugs; they also use the EPR effect, meaning they accumulate more in tumor tissue than in healthy tissue. Adding HA to these nanoparticles expands their biocompatibility and makes them more accurate and specific towards tumor cells. Studies show that HA-modified nanoparticles carrying drugs such as paclitaxel or doxorubicin improve how well cells absorb the drugs, reduce drug resistance, and make tumor shrinking. These nanoparticles can respond to tumor microenvironment stimuli in targeted delivery. This targeted delivery diminishes side effects and improves anti-cancer activity of drugs. Thus, lipid-based nanoparticles conjugated with HA are a promising way to treat cancer by delivering drugs effectively, minimizing side effects, and giving us better therapeutic results.
Collapse
Affiliation(s)
- Guifeng Zhang
- Department of Neurology, Liaocheng People's Hospital and Liaocheng Hospital Affiliated to Shandong First Medical University, Liaocheng, Shandong, China
| | - Xin Jiang
- Department of Clinical Pharmacy, Baoying People's Hospital, Affiliated Hospital of Medical School, Yangzhou University, Yangzhou, Jiangsu, China
| | - Yitong Xia
- Department of Oral Medicine, Jining Medical College, Jining, Shandong, China
| | - Pengpeng Qi
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Jie Li
- Department of Neurology, Liaocheng People's Hospital and Liaocheng Hospital Affiliated to Shandong First Medical University, Liaocheng, Shandong, China
| | - Lizhen Wang
- Department of Radiation Oncology Physics and Technology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan City, Shandong, China.
| | - Zheng Wang
- Department of Neurosurgery, Liaocheng City Hospital of Traditional Chinese Medicine, Liaocheng, Shandong, China.
| | - Xiuli Tian
- Department of Respiration, Liaocheng People's Hospital, Liaocheng, Shandong, China.
| |
Collapse
|
4
|
Baek K, Woo MR, ud Din F, Choi YS, Kang MJ, Kim JO, Choi HG, Jin SG. Comparison of Solid Self-Nanoemulsifying Systems and Surface-Coated Microspheres: Improving Oral Bioavailability of Niclosamide. Int J Nanomedicine 2024; 19:13857-13874. [PMID: 39735329 PMCID: PMC11681811 DOI: 10.2147/ijn.s494083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Accepted: 11/26/2024] [Indexed: 12/31/2024] Open
Abstract
Purpose This study aimed to develop a solid self-nanoemulsifying drug delivery system (SNEDDS) and surface-coated microspheres to improve the oral bioavailability of niclosamide. Methods A solubility screening study showed that liquid SNEDDS, prepared using an optimized volume ratio of corn oil, Cremophor RH40, and Tween 80 (20:24:56), formed nanoemulsions with the smallest droplet size. Niclosamide was incorporated into this liquid SNEDDS and spray-dried with calcium silicate to produce solid SNEDDS. Surface-coated microspheres were prepared using sodium alginate and poloxamer 407 and optimized through solubility and dissolution tests. Scanning electron microscopy, differential scanning calorimetry, and X-ray diffraction were used to evaluate the physicochemical properties of the prepared solid SNEDDS, surface-coated microspheres, and the drug alone. The solubility, dissolution, and oral bioavailability were also assessed. Results Physicochemical evaluation demonstrated that niclosamide was converted to an amorphous state in the Solid SNEDDS formulation, with enhanced solubility and oral bioavailability. In comparison to niclosamide alone, solid SNEDDS exhibited an increase in drug solubility (approximately 2500-fold vs 158-fold) and oral bioavailability (approximately 10-fold vs 1.65-fold), significantly outperforming surface-coated microspheres. Conclusion This solid SNEDDS formulation may be an excellent candidate for niclosamide with improved oral bioavailability for repurposing.
Collapse
Affiliation(s)
- Kyungho Baek
- Department of Pharmaceutical Engineering, Dankook University, Cheonan, South Korea
| | - Mi Ran Woo
- College of Pharmacy, Hanyang University, Ansan, South Korea
| | - Fakhar ud Din
- Department of Pharmacy, Quaid-I-Azam University, Islamabad, Pakistan
| | - Yong Seok Choi
- College of Pharmacy, Dankook University, Cheonan, South Korea
| | - Myung Joo Kang
- College of Pharmacy, Dankook University, Cheonan, South Korea
| | - Jong Oh Kim
- College of Pharmacy, Yeungnam University, Gyeongsan, South Korea
| | - Han-Gon Choi
- College of Pharmacy, Hanyang University, Ansan, South Korea
| | - Sung Giu Jin
- Department of Pharmaceutical Engineering, Dankook University, Cheonan, South Korea
| |
Collapse
|
5
|
Khaliulin M, Valiullina A, Petukhov A, Yuan Y, Spada S, Bulatov E. Breaking the shield of solid tumors: a combined approach for enhanced efficacy of CAR-T cells. Cancer Immunol Immunother 2024; 74:3. [PMID: 39487875 PMCID: PMC11531461 DOI: 10.1007/s00262-024-03817-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Accepted: 08/22/2024] [Indexed: 11/04/2024]
Abstract
The use of chimeric antigen receptor (CAR)-T cells has enhanced the range of available therapeutic modalities in the context of cancer treatment. CAR-T cells have demonstrated considerable efficacy in the targeted eradication of blood cancer cells, thereby stimulating substantial interest in the advancement of such therapeutic approaches. However, the efficacy of CAR-T cells against solid tumor cells has been limited due to the presence of various obstacles. Solid tumors exhibit antigenic diversity and an immunosuppressive microenvironment, which presents a challenge for immune cells attempting to penetrate the tumor. CAR-T cells also demonstrate decreased proliferative activity and cytotoxicity. Furthermore, concerns exist regarding tumor antigen loss and therapy-associated toxicity. Currently, scientists are working to enhance the structure of the CAR and improve the survival and efficiency of CAR-T cells in recognizing tumor antigens in solid tumors. Chemotherapy drugs are frequently employed in the treatment of malignant neoplasms and can also be used prior to cell therapy to enhance CAR-T cell engraftment. Recent studies have demonstrated that chemotherapy drugs can mitigate the suppressive impact of TME, eliminate the physical barrier by destroying the tumor stroma, and facilitate greater penetration of immune cells and CAR-T cells into the tumor. This, in turn, increases their survival, persistence, and cytotoxicity, as well as affects the metabolism of immune cells inside the tumor. However, the effectiveness of the combined approach against solid tumors depends on several factors, including the type of tumor, dosage, population of CAR-T cells, and individual characteristics of the body. This review examines the principal obstacles to the utilization of CAR-T cells against solid tumors, proposes solutions to these issues, and assesses the potential advantages of a combined approach to radiation exposure, which has the potential to enhance the sensitivity of the tumor to other agents.
Collapse
Affiliation(s)
- Marat Khaliulin
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia, 420008
| | - Aygul Valiullina
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia, 420008
| | - Alexey Petukhov
- Nazarbaev University, Qabanbay Batyr Ave 53, 010000, Astana, Kazakhstan
| | - Youyong Yuan
- School of Biomedical Sciences and Engineering, Guangzhou International Campus, South China University of Technology, Guangzhou, 511442, People's Republic of China
| | - Sheila Spada
- Tumor Immunology and Immunotherapy Unit, IRCCS-Regina Elena National Cancer Institute, Via E. Chianesi 53, 00144, Rome, Italy
| | - Emil Bulatov
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia, 420008.
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia, 117997.
- Federal State Autonomous Educational Institution of Higher Education I.M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University), Moscow, Russia, 119048.
| |
Collapse
|
6
|
Lu S, Wang C, Ma J, Wang Y. Metabolic mediators: microbial-derived metabolites as key regulators of anti-tumor immunity, immunotherapy, and chemotherapy. Front Immunol 2024; 15:1456030. [PMID: 39351241 PMCID: PMC11439727 DOI: 10.3389/fimmu.2024.1456030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 08/27/2024] [Indexed: 10/04/2024] Open
Abstract
The human microbiome has recently emerged as a focal point in cancer research, specifically in anti-tumor immunity, immunotherapy, and chemotherapy. This review explores microbial-derived metabolites, emphasizing their crucial roles in shaping fundamental aspects of cancer treatment. Metabolites such as short-chain fatty acids (SCFAs), Trimethylamine N-Oxide (TMAO), and Tryptophan Metabolites take the spotlight, underscoring their diverse origins and functions and their profound impact on the host immune system. The focus is on SCFAs' remarkable ability to modulate immune responses, reduce inflammation, and enhance anti-tumor immunity within the intricate tumor microenvironment (TME). The review critically evaluates TMAO, intricately tied to dietary choices and gut microbiota composition, assessing its implications for cancer susceptibility, progression, and immunosuppression. Additionally, the involvement of tryptophan and other amino acid metabolites in shaping immune responses is discussed, highlighting their influence on immune checkpoints, immunosuppression, and immunotherapy effectiveness. The examination extends to their dynamic interaction with chemotherapy, emphasizing the potential of microbial-derived metabolites to alter treatment protocols and optimize outcomes for cancer patients. A comprehensive understanding of their role in cancer therapy is attained by exploring their impacts on drug metabolism, therapeutic responses, and resistance development. In conclusion, this review underscores the pivotal contributions of microbial-derived metabolites in regulating anti-tumor immunity, immunotherapy responses, and chemotherapy outcomes. By illuminating the intricate interactions between these metabolites and cancer therapy, the article enhances our understanding of cancer biology, paving the way for the development of more effective treatment options in the ongoing battle against cancer.
Collapse
Affiliation(s)
- Shan Lu
- Department of General Practice, The Second Hospital of Jilin University, Changchun, China
| | - Chunling Wang
- Medical Affairs Department, The Second Hospital of Jilin University, Changchun, China
| | - Jingru Ma
- Department of Clinical Laboratory, the Second Hospital of Jilin University, Changchun, China
| | - Yichao Wang
- Department of Obstetrics and Gynecology, the Second Hospital of Jilin University, Changchun, China
| |
Collapse
|
7
|
Santos JAV, Silva D, Marques MPM, Batista de Carvalho LAE. Platinum-based chemotherapy: trends in organic nanodelivery systems. NANOSCALE 2024; 16:14640-14686. [PMID: 39037425 DOI: 10.1039/d4nr01483a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/23/2024]
Abstract
Despite the investment in platinum drugs research, cisplatin, carboplatin and oxaliplatin are still the only Pt-based compounds used as first line treatments for several cancers, with a few other compounds being approved for administration in some Asian countries. However, due to the severe and worldwide impact of oncological diseases, there is an urge for improved chemotherapeutic approaches. Furthermore, the pharmaceutical application of platinum complexes is hindered by their inherent toxicity and acquired resistance. Nanodelivery systems rose as a key strategy to overcome these challenges, with recognized versatility and ability towards improving the safety, bioavailability and efficacy of the available drugs. Among the known nanocarriers, organic systems have been widely applied, taking advantage of their potential as drug vehicles. Researchers have mainly focused on the development of lipidic and polymeric carriers, including supramolecular structures, with an overall improvement of encapsulated platinum complexes. Herein, an overview of recent trends and strategies is presented, with the main focus on the encapsulation of platinum compounds into organic nanocarriers, showcasing the evolution in the design and development of these promising systems. This comprehensive review highlights formulation methods as well as characterization procedures, providing insights that may be helpful for the development of novel platinum nanocarriers aiming at future pharmaceutical applications.
Collapse
Affiliation(s)
- João A V Santos
- Molecular Physical-Chemistry R&D Unit, Department of Chemistry, University of Coimbra, 3004-535 Coimbra, Portugal.
| | - Daniela Silva
- Molecular Physical-Chemistry R&D Unit, Department of Chemistry, University of Coimbra, 3004-535 Coimbra, Portugal.
| | - Maria Paula M Marques
- Molecular Physical-Chemistry R&D Unit, Department of Chemistry, University of Coimbra, 3004-535 Coimbra, Portugal.
- Department of Life Sciences, University of Coimbra, 3000-456 Coimbra, Portugal
| | - Luís A E Batista de Carvalho
- Molecular Physical-Chemistry R&D Unit, Department of Chemistry, University of Coimbra, 3004-535 Coimbra, Portugal.
| |
Collapse
|
8
|
Liang T, Liu X, Tong Y, Ding Q, Yang M, Ning H. Recent Advances in Targeted Therapies for Infantile Hemangiomas. Int J Nanomedicine 2024; 19:6127-6143. [PMID: 38911507 PMCID: PMC11193998 DOI: 10.2147/ijn.s463119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 06/02/2024] [Indexed: 06/25/2024] Open
Abstract
Targeted therapy for infantile hemangiomas (IHs) has been extensively studied as they can concentrate drugs, increase therapeutic efficacy and reduce drug dosage. Meanwhile, they can extend drug release times, enhance drug stability, decrease dosing frequency, and improve patient compliance. Moreover, carriers made from biocompatible materials reduced drug immunogenicity, minimizing adverse reactions. However, current targeted formulations still face numerous challenges such as the non-absolute safety of carrier materials; the need to further increase drug loading capacity; the limitation of animal hemangioma models in fully replicating the biological properties of human infantile hemangiomas; the establishment of models for deep-seated hemangiomas with high incidence rates; and the development of more specific targets or markers. In this review, we provided a brief overview of the characteristics of IHs and summarized the past decade's advances, advantages, and targeting strategies of targeted drug delivery systems for IHs and discussed their applications in the treatment of IHs. Furthermore, the goal is to provide a reference for further research and application in this field.
Collapse
Affiliation(s)
- Tiantian Liang
- Department of Pharmacy, Mianyang Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Mianyang, Sichuan, People’s Republic of China
| | - Xianbin Liu
- Department of Pharmacy, Mianyang Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Mianyang, Sichuan, People’s Republic of China
| | - Yujun Tong
- Department of Breast Surgery, Mianyang Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Mianyang, Sichuan, People’s Republic of China
| | - Qian Ding
- Department of Clinical Pharmacy, The Third Hospital of Mianyang, Sichuan Mental Health Center, Mianyang, Sichuan, People’s Republic of China
| | - Min Yang
- Department of Pharmacy, Mianyang Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Mianyang, Sichuan, People’s Republic of China
| | - Hong Ning
- Department of Pharmacy, Mianyang Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Mianyang, Sichuan, People’s Republic of China
| |
Collapse
|
9
|
Ghaznavi H, Afzalipour R, Khoei S, Sargazi S, Shirvalilou S, Sheervalilou R. New insights into targeted therapy of glioblastoma using smart nanoparticles. Cancer Cell Int 2024; 24:160. [PMID: 38715021 PMCID: PMC11077767 DOI: 10.1186/s12935-024-03331-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Accepted: 04/18/2024] [Indexed: 05/12/2024] Open
Abstract
In recent times, the intersection of nanotechnology and biomedical research has given rise to nanobiomedicine, a captivating realm that holds immense promise for revolutionizing diagnostic and therapeutic approaches in the field of cancer. This innovative fusion of biology, medicine, and nanotechnology aims to create diagnostic and therapeutic agents with enhanced safety and efficacy, particularly in the realm of theranostics for various malignancies. Diverse inorganic, organic, and hybrid organic-inorganic nanoparticles, each possessing unique properties, have been introduced into this domain. This review seeks to highlight the latest strides in targeted glioblastoma therapy by focusing on the application of inorganic smart nanoparticles. Beyond exploring the general role of nanotechnology in medical applications, this review delves into groundbreaking strategies for glioblastoma treatment, showcasing the potential of smart nanoparticles through in vitro studies, in vivo investigations, and ongoing clinical trials.
Collapse
Affiliation(s)
- Habib Ghaznavi
- Pharmacology Research Center, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Reza Afzalipour
- Molecular Medicine Research Center, Hormozgan Health Institute, Hormozgan University of Medical Sciences, Bandar Abbas, Iran.
- Department of Radiology, Faculty of Para-Medicine, Hormozgan University of Medical Sciences, Bandar Abbas, Iran.
| | - Samideh Khoei
- Finetech in Medicine Research Center, Department of Medical Physics, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Saman Sargazi
- Cellular and Molecular Research Center, Research Institute of Cellular and Molecular Sciences in Infectious Diseases, Zahedan University of Medical Sciences, Zahedan, Iran
- Department of Clinical Biochemistry, School of Medicine, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Sakine Shirvalilou
- Finetech in Medicine Research Center, Department of Medical Physics, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Roghayeh Sheervalilou
- Pharmacology Research Center, Zahedan University of Medical Sciences, Zahedan, Iran.
| |
Collapse
|
10
|
Mugundhan SL, Mohan M. Nanoscale strides: exploring innovative therapies for breast cancer treatment. RSC Adv 2024; 14:14017-14040. [PMID: 38686289 PMCID: PMC11056947 DOI: 10.1039/d4ra02639j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 04/23/2024] [Indexed: 05/02/2024] Open
Abstract
Breast cancer (BC) is a predominant malignancy in women that constitutes approximately 30% of all cancer cases and has a mortality rate of 14% in recent years. The prevailing therapies include surgery, chemotherapy, and radiotherapy, each with its own limitations and challenges. Despite oral or intravenous administration, there are numerous barriers to accessing anti-BC agents before they reach the tumor site, including physical, physiological, and biophysical barriers. The complexity of BC pathogenesis, attributed to a combination of endogenous, chronic, intrinsic, extrinsic and genetic factors, further complicates its management. Due to the limitations of existing cancer treatment approaches, there is a need to explore novel, efficacious solutions. Nanodrug delivery has emerged as a promising avenue in cancer chemotherapy, aiming to enhance drug bioavailability while mitigating adverse effects. In contrast to conventional chemotherapy, cancer nanotechnology leverages improved permeability to achieve comprehensive disruption of cancer cells. This approach also presented superior pharmacokinetic profiles. The application of nanotechnology in cancer therapeutics includes nanotechnological tools, but a comprehensive review cannot cover all facets. Thus, this review concentrates specifically on BC treatment. The focus lies in the successful implementation of systematic nanotherapeutic strategies, demonstrating their superiority over conventional methods in delivering anti-BC agents. Nanotechnology-driven drug delivery holds immense potential in treating BC. By surmounting multiple barriers and capitalizing on improved permeability, nanodrug delivery has demonstrated enhanced efficacy and reduced adverse effects compared to conventional therapies. This review highlights the significance of systematic nanotherapy approaches, emphasizing the evolving landscape of BC management.
Collapse
Affiliation(s)
- Sruthi Laakshmi Mugundhan
- Department of Pharmaceutics, SRM College of Pharmacy, SRM Institute of Science and Technology SRM Nagar Kattankulathur 603203 Tamil Nadu India
| | - Mothilal Mohan
- Department of Pharmaceutics, SRM College of Pharmacy, SRM Institute of Science and Technology SRM Nagar Kattankulathur 603203 Tamil Nadu India
| |
Collapse
|
11
|
Khaliulin MR, Safin RN, Kunst MA, Bulatov ER. The use of T-cells with chimeric antigen receptor (CAR-T) in combination with chemotherapy and radiotherapy for the treatment of solid tumors. ADVANCES IN MOLECULAR ONCOLOGY 2024; 11:31-45. [DOI: 10.17650/2313-805x-2024-11-1-31-45] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Abstract
The introduction of chimeric antigen receptor (CAR) T-cell therapy has revolutionized the treatment of hematological diseases, particularly in combating blood cancer. The success of this cell therapy approach has led to the development of approximately seven commercial CAR-T based drugs. However, the application of CAR-T therapy for solid tumors has proven to be less effective due to challenges such as the varied antigens in solid tumors, an immunosuppressive tumor environment, limited immune cell infiltration, reduced CAR-T cell activity and toxicity issues. To solve these problems, scientists are making efforts to improve and improve the methods of treatment of solid tumors. Chemotherapy is the standard treatment for a large number of malignant neoplasms. It is also used before starting cell therapy for lymphodepletion and better engraftment of injected CAR-T cells. It has been shown that chemotherapy can reduce the immunosuppressive effect of the tumor microenvironment, destroy the stroma, and promote better infiltration of the tumor by CAR-T cells, improving their survival, persistence, cytotoxicity, and influencing the metabolism of immune cells inside the tumor. The effectiveness of combining chemotherapy and CAR-T cell therapy relies on various factors such as tumor type, dosage, treatment schedule, CAR-T cell composition, and individual biological traits. Similarly, radiation therapy can enhance tumor cell vulnerability to specific treatments while also supporting tumor cell survival.In this review, we discuss the use of CAR-T therapy to combat solid tumors, regarding the challenges of treating solid tumors, ways to overcome them, and also touch upon the possibility of using combination treatments to improve the effectiveness of cell therapy.
Collapse
Affiliation(s)
| | - R. N. Safin
- Republican Clinical Oncology Dispensary named after Prof. M.Z. Sigal Russia
| | - M. A. Kunst
- Republican Clinical Hospital of the Ministry of Health of the Republic of Tatarstan
| | - E. R. Bulatov
- Kazan (Volga Region) Federal University; Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences
| |
Collapse
|
12
|
Alhadidi MHA, Tabrizi MH, Ghobeh M. Evaluation of the effect of designed PLGA-arctiin nanoparticles modified with folic acid and chitosan on colon cancer cells. Biotechnol Appl Biochem 2024; 71:72-80. [PMID: 37817403 DOI: 10.1002/bab.2522] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Accepted: 10/01/2023] [Indexed: 10/12/2023]
Abstract
In this study, we designed nanoparticles (NPs) based on polylactic acid glycolic acid modified with chitosan and folic acid to optimize the anti-cancer, anti-inflammatory, and antioxidant effects of arctiin (ARC), and we measured its effects on cancer cells, including colon cancer. NPs were synthesized using the W1/O/W2 double-emulsion solvent evaporation method. Physicochemical characteristics of synthesized NPs (ARC-PCF-NPs), including average particle size, dispersity index (PDI), zeta potential (ZP), field emission scanning electron microscope figures, and encapsulation efficiency (EE), were evaluated. 2,2'-Azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS), 2,2-diphenyl-1-picrylhydrazyl (DPPH), and ferric reducing antioxidant power (FRAP) methods were carried out to determine the antioxidant properties of NPs. 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2H-tetrazolium bromide assay was performed to investigate cytotoxicity effects on cancer cells and normal fibroblasts. Quantitative polymerase chain reaction was also performed on inflammatory and antioxidant genes. The obtained results indicated that the synthesized NPs have a size of 100 nm, a DPI of 0.36, a ZP of 26.30 mV, and EE was calculated at about 87.5%. The antioxidant influence of ARC-PCF-NPs was confirmed by inhibiting ABTS and DPPH free radicals and ferrous reduction in the FRAP method. Moreover, the reduction of inflammatory and antioxidant genes confirmed the anti-inflammatory and antioxidant properties of NPs. These results indicate the modification of the surface of NPs in order to increase the bioavailability, stability, and effectiveness of medicinal compounds in therapeutic applications.
Collapse
Affiliation(s)
| | | | - Maryam Ghobeh
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| |
Collapse
|
13
|
Abd-Rabou AA, Abdelaziz AM, Shaker OG, Ayeldeen G. Hyaluronated nanoparticles deliver raloxifene to CD44-expressed colon cancer cells and regulate lncRNAs/miRNAs epigenetic cascade. Cancer Nanotechnol 2023; 14:32. [DOI: 10.1186/s12645-023-00183-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 03/27/2023] [Indexed: 09/02/2023] Open
Abstract
Abstract
Background
Colorectal malignant cells (CRC) are one of the world’s main causes of cancer mortality and morbidity. Notwithstanding the plenty of anti-CRC therapeutics, its prognosis remains not selective owing to cancer resistance to these therapeutics. Raloxifene (RX), a medication firstly used to treat osteoporosis, was recently licenced for the prevention of CRC. Unfortunately, due to medication resistance, many RX-based therapies are likely to become ineffective. Recently, we identified a novel method of administration to lengthen the half-life of RX by mixing it with chitosan (CS) and hyaluronic acid (HA). Thus, the rationale of the current study was to investigate how colon cancer cells were affected by RX-HA-CS nanoparticles (RX NPs) in terms of targetability, cytotoxicity, and epigenetic cascade alteration.
Results
RX NP had an entrapment efficiency (EE%) of 90.0 ± 8.12%. Compared to HCT 116 cells, Caco-2 cells were more susceptible to the cytotoxic effects of RX and its NP as well as they had a higher binding affinity to CD44 receptors compared to normal WI-38 cells. In comparison to the free RX, the RX NP’s cytotoxic fold changes in HCT 116 and Caco-2 cells were 2.16 and 2.52, respectively. Furthermore, the epigenetic cascade of some noncoding RNAs was examined. Moreover, particular protein concentrations were investigated in all tested cells after application of the proposed therapies. Our results showed that the RX NP recorded higher remarkable cytotoxic impact on CRC cells compared to the free RX. Intriguingly, it was hypothesized that RX nanoparticles attacked colon cancerous cells by up-regulating miR-944 and E-cadherin (ECN) expressions, while down-regulating the expressions of PPARγ, YKL-40, VEGF, H-19, LINC00641, HULC, HOTTIP, miR-92a, miR-200, and miR-21.
Conclusions
We may conclude that the RX NP effectively targets CRC cells in vitro via altering lncRNAs and miRNAs epigenetic cascade as well as cellular uptake through CD44-expressed CRC cells.
Collapse
|
14
|
Ghoreyshi N, Ghahremanloo A, Javid H, Homayouni Tabrizi M, Hashemy SI. Effect of folic acid-linked chitosan-coated PLGA-based curcumin nanoparticles on the redox system of glioblastoma cancer cells. PHYTOCHEMICAL ANALYSIS : PCA 2023; 34:950-958. [PMID: 37463671 DOI: 10.1002/pca.3263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 06/23/2023] [Accepted: 06/23/2023] [Indexed: 07/20/2023]
Abstract
OBJECTIVES Oxidative stress is one of the carcinogenic mechanisms underlying the development of glioblastoma multiforme (GBM), a highly aggressive brain tumor type associated with poor prognosis. Curcumin is known to be an efficient antioxidant, anti-inflammatory, and anticancer compound. However, its poor solubility in water, inappropriate pharmacokinetics, and low bioavailability limit its use as an antitumor drug. We prepared PLGA-based curcumin nanoparticles changed with folic acid and chitosan (curcumin-PLGA-CS-FA) and evaluated its effects on GBM tumor cells' redox status. METHODS The nanoprecipitation method was used to synthesize CU nanoparticles (CU-NPs). The size, morphology, and stability were characterized by DLS, SEM, and zeta potential analysis, respectively. The CU-NPs' toxic properties were studied by MTT assay and measuring the intracellular reactive oxygen species (ROS) and malondialdehyde (MDA) concentrations. The study was completed by measuring the gene expression levels and activity of superoxide dismutase, catalase, glutaredoxin, and thioredoxin antioxidant enzymes. RESULTS The size, polydispersity index, and zeta potential of CU-NPs were 77.27 nm, 0.29, and -22.45 mV, respectively. The encapsulation efficiency was approximately 98%. Intracellular ROS and MDA levels decreased after CU-NP treatment. Meanwhile, the CU-NPs increased gene expression and activity of superoxide dismutase, catalase, glutaredoxin, and thioredoxin antioxidant enzymes. CONCLUSION CU-NPs might be effective in the prevention and treatment of glioblastoma cancer by modulating the antioxidant-oxidant balance.
Collapse
Affiliation(s)
- Nima Ghoreyshi
- Clinical Biochemistry Department, Medical Faculty, Shahrood Azad University, Shahrood, Iran
| | - Atefeh Ghahremanloo
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hossein Javid
- Department of Medical Laboratory Sciences, Varastegan Institute for Medical Sciences, Mashhad, Iran
| | | | - Seyed Isaac Hashemy
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Surgical Oncology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
15
|
Han B, Zhang R, Li L, Hu C, Li M, Liu J, Sun X, Fan W, Xie J, Lei Y. Reduction-responsive polymeric micelles for trans-corneal targeted delivery of microRNA-21-5p and glaucoma-specific gene therapy. J Mater Chem B 2023; 11:10433-10445. [PMID: 37885402 DOI: 10.1039/d3tb01430d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2023]
Abstract
The therapeutic value of microRNA (miRNA) for the treatment of glaucoma has become a focus of attention. However, naked miRNA cannot cross the corneal barrier and reach the target tissue by itself. Thus, the precise transport of miRNA to the target sites is key to the success of gene therapy. Herein, we selected a miRNA, namely miR-21-5p, based on its unique intraocular pressure (IOP) mechano-sensing property. Moreover, a biocompatible polymeric poly(L-lysine) (PLL) micelle conjugated with collagenase and ABCA1 antibody was judiciously constructed to achieve the trans-corneal and target delivery of miR-21-5p to the trabecular meshwork (TM) and Schlemm's canal (SC) tissues inside the eye. The topically administrated PLL micelles as an eye drop successfully crossed the cornea with the help of collagenase and then preferentially accumulated in the target TM/SC tissues under the guidance of the ABCA1 antibody. When endocytosed by TM/SC cells, the PLL micelles could be decomposed in the reductive lysosomal environment to release miR-21-5p for successfully lowering the IOP by activating the miR-21-5p/eNOS/MMP9 signaling axis, which will open new prospects for glaucoma-specific gene therapy.
Collapse
Affiliation(s)
- Binze Han
- Department of Ophthalmology & Visual Science, Eye & ENT Hospital, Shanghai Medical College, Fudan University, Shanghai 200031, China.
| | - Rong Zhang
- Department of Ophthalmology & Visual Science, Eye & ENT Hospital, Shanghai Medical College, Fudan University, Shanghai 200031, China.
| | - Liping Li
- Department of Ophthalmology & Visual Science, Eye & ENT Hospital, Shanghai Medical College, Fudan University, Shanghai 200031, China.
| | - Chunchun Hu
- Department of Ophthalmology & Visual Science, Eye & ENT Hospital, Shanghai Medical College, Fudan University, Shanghai 200031, China.
| | - Mengwei Li
- Department of Ophthalmology & Visual Science, Eye & ENT Hospital, Shanghai Medical College, Fudan University, Shanghai 200031, China.
| | - Jiamin Liu
- Department of Ophthalmology & Visual Science, Eye & ENT Hospital, Shanghai Medical College, Fudan University, Shanghai 200031, China.
| | - Xinghuai Sun
- Department of Ophthalmology & Visual Science, Eye & ENT Hospital, Shanghai Medical College, Fudan University, Shanghai 200031, China.
- NHC Key Laboratory of Myopia, Chinese Academy of Medical Sciences, and Shanghai Key Laboratory of Visual Impairment and Restoration (Fudan University), Shanghai 200031, China.
| | - Wenpei Fan
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Center of Advanced Pharmaceuticals and Biomaterials, China Pharmaceutical University, Nanjing 210009, P. R. China.
| | - Jinbing Xie
- Jiangsu Key Laboratory of Molecular Imaging and Functional Imaging, Department of Radiology, Zhongda Hospital, Medical School of Southeast University, Nanjing 210009, P. R. China.
| | - Yuan Lei
- Department of Ophthalmology & Visual Science, Eye & ENT Hospital, Shanghai Medical College, Fudan University, Shanghai 200031, China.
- NHC Key Laboratory of Myopia, Chinese Academy of Medical Sciences, and Shanghai Key Laboratory of Visual Impairment and Restoration (Fudan University), Shanghai 200031, China.
| |
Collapse
|
16
|
Ashique S, Garg A, Mishra N, Raina N, Ming LC, Tulli HS, Behl T, Rani R, Gupta M. Nano-mediated strategy for targeting and treatment of non-small cell lung cancer (NSCLC). NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2023; 396:2769-2792. [PMID: 37219615 DOI: 10.1007/s00210-023-02522-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 05/04/2023] [Indexed: 05/24/2023]
Abstract
Lung cancer is the most common type of cancer, with over 2.1 million cases diagnosed annually worldwide. It has a high incidence and mortality rate, leading to extensive research into various treatment options, including the use of nanomaterial-based carriers for drug delivery. With regard to cancer treatment, the distinct biological and physico-chemical features of nano-structures have acquired considerable impetus as drug delivery system (DDS) for delivering medication combinations or combining diagnostics and targeted therapy. This review focuses on the use of nanomedicine-based drug delivery systems in the treatment of lung cancer, including the use of lipid, polymer, and carbon-based nanomaterials for traditional therapies such as chemotherapy, radiotherapy, and phototherapy. The review also discusses the potential of stimuli-responsive nanomaterials for drug delivery in lung cancer, and the limitations and opportunities for improving the design of nano-based materials for the treatment of non-small cell lung cancer (NSCLC).
Collapse
Affiliation(s)
- Sumel Ashique
- Department of Pharmaceutics, Bharat Institute of Technology (BIT), School of Pharmacy, Meerut, 250103, UP, India
| | - Ashish Garg
- Department of Pharmaceutics, Guru Ramdas Khalsa Institute of Science and Technology, Jabalpur, M.P, 483001, India
| | - Neeraj Mishra
- Amity Institute of Pharmacy, Amity University Madhya Pradesh, Gwalior, 474005, MP, India
| | - Neha Raina
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences and Research University, PushpVihar, New Delhi, 110017, India
| | - Long Chiau Ming
- Department of Pharmacy Practice, Faculty of Pharmacy, Universitas Airlangga, Surabaya, 60115, Indonesia
- School of Medical and Life Sciences, Sunway University, 47500, Sunway City, Malaysia
- PAPRSB Institute of Health Sciences, Universiti Brunei Darussalam, Gadong,, Brunei, Darussalam
| | - Hardeep Singh Tulli
- Department of Biotechnology, Maharishi Markandeshwar Engineering College, Maharishi Markandeshwar (Deemed to Be University), Mullana, Ambala, 133207, India
| | - Tapan Behl
- School of Health Sciences and Technology, University of Petroleum and Energy Studies, Bidholi, Dehradun, India
| | - Radha Rani
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences and Research University, PushpVihar, New Delhi, 110017, India
| | - Madhu Gupta
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences and Research University, PushpVihar, New Delhi, 110017, India.
| |
Collapse
|
17
|
Chandra J, Molugulu N, Annadurai S, Wahab S, Karwasra R, Singh S, Shukla R, Kesharwani P. Hyaluronic acid-functionalized lipoplexes and polyplexes as emerging nanocarriers for receptor-targeted cancer therapy. ENVIRONMENTAL RESEARCH 2023; 233:116506. [PMID: 37369307 DOI: 10.1016/j.envres.2023.116506] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 06/17/2023] [Accepted: 06/23/2023] [Indexed: 06/29/2023]
Abstract
Cancer is an intricate disease that develops as a response to a combination of hereditary and environmental risk factors, which then result in a variety of changes to the genome. The cluster of differentiation (CD44) is a type of transmembrane glycoprotein that serves as a potential biomarker for cancer stem cells (CSC) and viable targets for therapeutic intervention in the context of cancer therapy. Hyaluronic acid (HA) is a linear polysaccharide that exhibits a notable affinity for the CD44 receptor. This characteristic renders it a promising candidate for therapeutic interventions aimed at selectively targeting CD44-positive cancer cells. Treating cancer via non-viral vector-based gene delivery has changed the notion of curing illness through the incorporation of therapeutic genes into the organism. The objective of this review is to provide an overview of various hyaluronic acid-modified lipoplexes and polyplexes as potential drug delivery methods for specific forms of cancer by effectively targeting CD44.
Collapse
Affiliation(s)
- Jyoti Chandra
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India
| | - Nagashekhara Molugulu
- School of Pharmacy, Monash University, Bandar Sunway, Jalan Lagoon Selatan, 47500, Malaysia
| | - Sivakumar Annadurai
- Department of Pharmacognosy, College of Pharmacy, King Khalid University, Abha 62529, Saudi Arabia
| | - Shadma Wahab
- Department of Pharmacognosy, College of Pharmacy, King Khalid University, Abha 62529, Saudi Arabia
| | - Ritu Karwasra
- Central Council for Research in Unani Medicine (CCRUM), Ministry of AYUSH, Government of India, Janakpuri, New Delhi 110058, India
| | - Surender Singh
- Department of Pharmacology, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Rahul Shukla
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER-Raebareli), Bijnor-Sisendi Road, Sarojini Nagar, Near CRPF Base Camp, Lucknow, UP, 226002, India
| | - Prashant Kesharwani
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India; Department of Pharmacology, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India.
| |
Collapse
|
18
|
Lahooti B, Akwii RG, Zahra FT, Sajib MS, Lamprou M, Alobaida A, Lionakis MS, Mattheolabakis G, Mikelis CM. Targeting endothelial permeability in the EPR effect. J Control Release 2023; 361:212-235. [PMID: 37517543 DOI: 10.1016/j.jconrel.2023.07.039] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 07/19/2023] [Accepted: 07/23/2023] [Indexed: 08/01/2023]
Abstract
The characteristics of the primary tumor blood vessels and the tumor microenvironment drive the enhanced permeability and retention (EPR) effect, which confers an advantage towards enhanced delivery of anti-cancer nanomedicine and has shown beneficial effects in preclinical models. Increased vascular permeability is a landmark feature of the tumor vessels and an important driver of the EPR. The main focus of this review is the endothelial regulation of vascular permeability. We discuss current challenges of targeting vascular permeability towards clinical translation and summarize the structural components and mechanisms of endothelial permeability, the principal mediators and signaling players, the targeted approaches that have been used and their outcomes to date. We also critically discuss the effects of the tumor-infiltrating immune cells, their interplay with the tumor vessels and the impact of immune responses on nanomedicine delivery, the impact of anti-angiogenic and tumor-stroma targeting approaches, and desirable nanoparticle design approaches for greater translational benefit.
Collapse
Affiliation(s)
- Behnaz Lahooti
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX 79106, USA
| | - Racheal G Akwii
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX 79106, USA
| | - Fatema Tuz Zahra
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX 79106, USA
| | - Md Sanaullah Sajib
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX 79106, USA
| | - Margarita Lamprou
- Laboratory of Molecular Pharmacology, Department of Pharmacy, University of Patras, Patras 26504, Greece
| | - Ahmed Alobaida
- Department of Pharmaceutics, College of Pharmacy, University of Ha'il, Ha'il 81442, Saudi Arabia
| | - Michail S Lionakis
- Fungal Pathogenesis Section, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - George Mattheolabakis
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana at Monroe, Monroe, LA 71201, USA.
| | - Constantinos M Mikelis
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX 79106, USA; Laboratory of Molecular Pharmacology, Department of Pharmacy, University of Patras, Patras 26504, Greece.
| |
Collapse
|
19
|
Chen X, Guo L, Ma S, Sun J, Li C, Gu Z, Li W, Guo L, Wang L, Han B, Chang J. Construction of multi-program responsive vitamin E succinate-chitosan-histidine nanocarrier and its response strategy in tumor therapy. Int J Biol Macromol 2023; 246:125678. [PMID: 37414317 DOI: 10.1016/j.ijbiomac.2023.125678] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 06/29/2023] [Accepted: 07/02/2023] [Indexed: 07/08/2023]
Abstract
Multifunctional drug delivery carriers have emerged as a promising cancer drug delivery strategy. Here, we developed a vitamin E succinate-chitosan-histidine (VCH) multi-program responsive drug carrier. The structure was characterized by FT-IR and 1H NMR spectrum, and the DLS and SEM results showed typical nanostructures. The drug loading content was 21.0 % and the corresponding encapsulation efficiency was 66.6 %. The UV-vis and fluorescence spectra demonstrated the existence of the π-π stacking interaction between DOX and VCH. Drug release experiments implied good pH sensitivity and sustained-release effect. The DOX/VCH nanoparticles could be efficiently taken up by HepG2 cancer cells and the tumor inhibition rate was up to 56.27 %. The DOX/VCH reduced the tumor volume and weight efficiently with a TIR of 45.81 %. The histological analysis results showed that DOX/VCH could effectively inhibit tumor growth and proliferation, and there was no damage to normal organs. VCH nanocarriers could combine the advantages of VES, histidine and chitosan to achieve pH sensitivity and P-gp inhibition, and effectively improve the drug solubility, targeting and lysosomal escape. Through the program response of different micro-environment, the newly developed polymeric micelles could successfully be utilized as a multi-program responsive nanocarrier system for the treatment of cancers.
Collapse
Affiliation(s)
- Xiaotong Chen
- College of Marine Life Science, Ocean University of China, Qingdao 266003, PR China
| | - Lan Guo
- College of Marine Life Science, Ocean University of China, Qingdao 266003, PR China
| | - Saibo Ma
- College of Marine Life Science, Ocean University of China, Qingdao 266003, PR China
| | - Jishang Sun
- College of Marine Life Science, Ocean University of China, Qingdao 266003, PR China
| | - Cuiyao Li
- College of Marine Life Science, Ocean University of China, Qingdao 266003, PR China
| | - Zhiyang Gu
- College of Marine Life Science, Ocean University of China, Qingdao 266003, PR China
| | - Wenya Li
- College of Marine Life Science, Ocean University of China, Qingdao 266003, PR China
| | - Lili Guo
- College of Marine Life Science, Ocean University of China, Qingdao 266003, PR China
| | - Litong Wang
- College of Marine Life Science, Ocean University of China, Qingdao 266003, PR China
| | - Baoqin Han
- College of Marine Life Science, Ocean University of China, Qingdao 266003, PR China; Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266235, PR China
| | - Jing Chang
- College of Marine Life Science, Ocean University of China, Qingdao 266003, PR China; Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266235, PR China.
| |
Collapse
|
20
|
Anand U, Dey A, Chandel AKS, Sanyal R, Mishra A, Pandey DK, De Falco V, Upadhyay A, Kandimalla R, Chaudhary A, Dhanjal JK, Dewanjee S, Vallamkondu J, Pérez de la Lastra JM. Cancer chemotherapy and beyond: Current status, drug candidates, associated risks and progress in targeted therapeutics. Genes Dis 2023; 10:1367-1401. [PMID: 37397557 PMCID: PMC10310991 DOI: 10.1016/j.gendis.2022.02.007] [Citation(s) in RCA: 534] [Impact Index Per Article: 267.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Revised: 02/15/2022] [Accepted: 02/21/2022] [Indexed: 11/28/2022] Open
Abstract
Cancer is an abnormal state of cells where they undergo uncontrolled proliferation and produce aggressive malignancies that causes millions of deaths every year. With the new understanding of the molecular mechanism(s) of disease progression, our knowledge about the disease is snowballing, leading to the evolution of many new therapeutic regimes and their successive trials. In the past few decades, various combinations of therapies have been proposed and are presently employed in the treatment of diverse cancers. Targeted drug therapy, immunotherapy, and personalized medicines are now largely being employed, which were not common a few years back. The field of cancer discoveries and therapeutics are evolving fast as cancer type-specific biomarkers are progressively being identified and several types of cancers are nowadays undergoing systematic therapies, extending patients' disease-free survival thereafter. Although growing evidence shows that a systematic and targeted approach could be the future of cancer medicine, chemotherapy remains a largely opted therapeutic option despite its known side effects on the patient's physical and psychological health. Chemotherapeutic agents/pharmaceuticals served a great purpose over the past few decades and have remained the frontline choice for advanced-stage malignancies where surgery and/or radiation therapy cannot be prescribed due to specific reasons. The present report succinctly reviews the existing and contemporary advancements in chemotherapy and assesses the status of the enrolled drugs/pharmaceuticals; it also comprehensively discusses the emerging role of specific/targeted therapeutic strategies that are presently being employed to achieve better clinical success/survival rate in cancer patients.
Collapse
Affiliation(s)
- Uttpal Anand
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| | - Abhijit Dey
- Department of Life Sciences, Presidency University, Kolkata, West Bengal 700073, India
| | - Arvind K. Singh Chandel
- Center for Disease Biology and Integrative Medicine, Faculty of Medicine, The University of Tokyo, Tokyo 113-0033, Japan
| | - Rupa Sanyal
- Department of Botany, Bhairab Ganguly College (affiliated to West Bengal State University), Kolkata, West Bengal 700056, India
| | - Amarnath Mishra
- Faculty of Science and Technology, Amity Institute of Forensic Sciences, Amity University Uttar Pradesh, Noida 201313, India
| | - Devendra Kumar Pandey
- Department of Biotechnology, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab 144411, India
| | - Valentina De Falco
- Institute of Endocrinology and Experimental Oncology (IEOS), National Research Council (CNR), Department of Molecular Medicine and Medical Biotechnology (DMMBM), University of Naples Federico II, Naples 80131, Italy
| | - Arun Upadhyay
- Department of Biochemistry, School of Life Sciences, Central University of Rajasthan, Bandar Sindari, Kishangarh Ajmer, Rajasthan 305817, India
| | - Ramesh Kandimalla
- CSIR-Indian Institute of Chemical Technology, Hyderabad, Telangana 500007, India
- Department of Biochemistry, Kakatiya Medical College, Warangal, Telangana 506007, India
| | - Anupama Chaudhary
- Orinin-BioSystems, LE-52, Lotus Road 4, CHD City, Karnal, Haryana 132001, India
| | - Jaspreet Kaur Dhanjal
- Department of Computational Biology, Indraprastha Institute of Information Technology Delhi (IIIT-D), Okhla Industrial Estate, Phase III, New Delhi 110020, India
| | - Saikat Dewanjee
- Advanced Pharmacognosy Research Laboratory, Department of Pharmaceutical Technology, Jadavpur University, Kolkata 700032, India
| | - Jayalakshmi Vallamkondu
- Department of Physics, National Institute of Technology-Warangal, Warangal, Telangana 506004, India
| | - José M. Pérez de la Lastra
- Biotechnology of Macromolecules Research Group, Instituto de Productos Naturales y Agrobiología, IPNA-CSIC, San Cristóbal de La Laguna 38206, Tenerife, Spain
| |
Collapse
|
21
|
Bayraktar E, Bayraktar R, Oztatlici H, Lopez-Berestein G, Amero P, Rodriguez-Aguayo C. Targeting miRNAs and Other Non-Coding RNAs as a Therapeutic Approach: An Update. Noncoding RNA 2023; 9:27. [PMID: 37104009 PMCID: PMC10145226 DOI: 10.3390/ncrna9020027] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 03/29/2023] [Accepted: 04/07/2023] [Indexed: 04/28/2023] Open
Abstract
Since the discovery of the first microRNAs (miRNAs, miRs), the understanding of miRNA biology has expanded substantially. miRNAs are involved and described as master regulators of the major hallmarks of cancer, including cell differentiation, proliferation, survival, the cell cycle, invasion, and metastasis. Experimental data indicate that cancer phenotypes can be modified by targeting miRNA expression, and because miRNAs act as tumor suppressors or oncogenes (oncomiRs), they have emerged as attractive tools and, more importantly, as a new class of targets for drug development in cancer therapeutics. With the use of miRNA mimics or molecules targeting miRNAs (i.e., small-molecule inhibitors such as anti-miRS), these therapeutics have shown promise in preclinical settings. Some miRNA-targeted therapeutics have been extended to clinical development, such as the mimic of miRNA-34 for treating cancer. Here, we discuss insights into the role of miRNAs and other non-coding RNAs in tumorigenesis and resistance and summarize some recent successful systemic delivery approaches and recent developments in miRNAs as targets for anticancer drug development. Furthermore, we provide a comprehensive overview of mimics and inhibitors that are in clinical trials and finally a list of clinical trials based on miRNAs.
Collapse
Affiliation(s)
- Emine Bayraktar
- Department of Gynecologic Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- UTHealth Houston Graduate School of Biomedical Sciences, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Recep Bayraktar
- UTHealth Houston Graduate School of Biomedical Sciences, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Hulya Oztatlici
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- Department of Histology and Embryology, Gaziantep University, Gaziantep 27310, Turkey
| | - Gabriel Lopez-Berestein
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Paola Amero
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Cristian Rodriguez-Aguayo
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- Center for RNA Interference and Non-Coding RNA, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| |
Collapse
|
22
|
Lahooti B, Akwii RG, Patel D, ShahbaziNia S, Lamprou M, Madadi M, Abbruscato TJ, Astrinidis A, Bickel U, Al-Ahmad A, German NA, Mattheolabakis G, Mikelis CM. Endothelial-Specific Targeting of RhoA Signaling via CD31 Antibody-Conjugated Nanoparticles. J Pharmacol Exp Ther 2023; 385:35-49. [PMID: 36746610 PMCID: PMC10029826 DOI: 10.1124/jpet.122.001384] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 01/04/2023] [Accepted: 01/17/2023] [Indexed: 02/08/2023] Open
Abstract
Existing vascular endothelial growth factor-oriented antiangiogenic approaches are known for their high potency. However, significant side effects associated with their use drive the need for novel antiangiogenic strategies. The small GTPase RhoA is an established regulator of actin cytoskeletal dynamics. Previous studies have highlighted the impact of endothelial RhoA pathway on angiogenesis. Rho-associate kinase (ROCK), a direct RhoA effector, is potently inhibited by Fasudil, a clinically relevant ROCK inhibitor. Here, we aimed to target the RhoA signaling in endothelial cells by generating Fasudil-encapsulated CD31-targeting liposomes as a potential antiangiogenic therapy. The liposomes presented desirable characteristics, preferential binding to CD31-expressing HEK293T cells and to endothelial cells, inhibited stress fiber formation and cytoskeletal-related morphometric parameters, and inhibited in vitro angiogenic functions. Overall, this work shows that the nanodelivery-mediated endothelial targeting of RhoA signaling can offer a promising strategy for angiogenesis inhibition in vascular-related diseases. SIGNIFICANCE STATEMENT: Systemic administration of antiangiogenic therapeutics induces side effects to non-targeted tissues. This study, among others, has shown the impact of the RhoA signaling in the endothelial cells and their angiogenic functions. Here, to minimize potential toxicity, this study generated CD31-targeting liposomes with encapsulated Fasudil, a clinically relevant Rho kinase inhibitor, and successfully targeted endothelial cells. In this proof-of-principle study, the efficient Fasudil delivery, its impact on the endothelial signaling, morphometric alterations, and angiogenic functions verify the benefits of site-targeted antiangiogenic therapy.
Collapse
Affiliation(s)
- Behnaz Lahooti
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, Texas (B.L., R.G.A., D.P., S.S., T.J.A., U.B., A.A.-A., N.A.G., C.M.M.); Laboratory of Molecular Pharmacology, Department of Pharmacy, University of Patras, Patras, Greece(M.L., C.M.M.); Department of Marketing and Business Analytics, Lucas College and Graduate School of Business, San Jose State University, San Jose, California (M.M.); Department of Pediatrics, University of Tennessee Health Sciences Center and Le Bonheur Children's Hospital, Memphis, Tennessee (A.A.); and School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, Monroe, Louisiana (G.M.)
| | - Racheal G Akwii
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, Texas (B.L., R.G.A., D.P., S.S., T.J.A., U.B., A.A.-A., N.A.G., C.M.M.); Laboratory of Molecular Pharmacology, Department of Pharmacy, University of Patras, Patras, Greece(M.L., C.M.M.); Department of Marketing and Business Analytics, Lucas College and Graduate School of Business, San Jose State University, San Jose, California (M.M.); Department of Pediatrics, University of Tennessee Health Sciences Center and Le Bonheur Children's Hospital, Memphis, Tennessee (A.A.); and School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, Monroe, Louisiana (G.M.)
| | - Dhavalkumar Patel
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, Texas (B.L., R.G.A., D.P., S.S., T.J.A., U.B., A.A.-A., N.A.G., C.M.M.); Laboratory of Molecular Pharmacology, Department of Pharmacy, University of Patras, Patras, Greece(M.L., C.M.M.); Department of Marketing and Business Analytics, Lucas College and Graduate School of Business, San Jose State University, San Jose, California (M.M.); Department of Pediatrics, University of Tennessee Health Sciences Center and Le Bonheur Children's Hospital, Memphis, Tennessee (A.A.); and School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, Monroe, Louisiana (G.M.)
| | - Siavash ShahbaziNia
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, Texas (B.L., R.G.A., D.P., S.S., T.J.A., U.B., A.A.-A., N.A.G., C.M.M.); Laboratory of Molecular Pharmacology, Department of Pharmacy, University of Patras, Patras, Greece(M.L., C.M.M.); Department of Marketing and Business Analytics, Lucas College and Graduate School of Business, San Jose State University, San Jose, California (M.M.); Department of Pediatrics, University of Tennessee Health Sciences Center and Le Bonheur Children's Hospital, Memphis, Tennessee (A.A.); and School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, Monroe, Louisiana (G.M.)
| | - Margarita Lamprou
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, Texas (B.L., R.G.A., D.P., S.S., T.J.A., U.B., A.A.-A., N.A.G., C.M.M.); Laboratory of Molecular Pharmacology, Department of Pharmacy, University of Patras, Patras, Greece(M.L., C.M.M.); Department of Marketing and Business Analytics, Lucas College and Graduate School of Business, San Jose State University, San Jose, California (M.M.); Department of Pediatrics, University of Tennessee Health Sciences Center and Le Bonheur Children's Hospital, Memphis, Tennessee (A.A.); and School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, Monroe, Louisiana (G.M.)
| | - Mahboubeh Madadi
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, Texas (B.L., R.G.A., D.P., S.S., T.J.A., U.B., A.A.-A., N.A.G., C.M.M.); Laboratory of Molecular Pharmacology, Department of Pharmacy, University of Patras, Patras, Greece(M.L., C.M.M.); Department of Marketing and Business Analytics, Lucas College and Graduate School of Business, San Jose State University, San Jose, California (M.M.); Department of Pediatrics, University of Tennessee Health Sciences Center and Le Bonheur Children's Hospital, Memphis, Tennessee (A.A.); and School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, Monroe, Louisiana (G.M.)
| | - Thomas J Abbruscato
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, Texas (B.L., R.G.A., D.P., S.S., T.J.A., U.B., A.A.-A., N.A.G., C.M.M.); Laboratory of Molecular Pharmacology, Department of Pharmacy, University of Patras, Patras, Greece(M.L., C.M.M.); Department of Marketing and Business Analytics, Lucas College and Graduate School of Business, San Jose State University, San Jose, California (M.M.); Department of Pediatrics, University of Tennessee Health Sciences Center and Le Bonheur Children's Hospital, Memphis, Tennessee (A.A.); and School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, Monroe, Louisiana (G.M.)
| | - Aristotelis Astrinidis
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, Texas (B.L., R.G.A., D.P., S.S., T.J.A., U.B., A.A.-A., N.A.G., C.M.M.); Laboratory of Molecular Pharmacology, Department of Pharmacy, University of Patras, Patras, Greece(M.L., C.M.M.); Department of Marketing and Business Analytics, Lucas College and Graduate School of Business, San Jose State University, San Jose, California (M.M.); Department of Pediatrics, University of Tennessee Health Sciences Center and Le Bonheur Children's Hospital, Memphis, Tennessee (A.A.); and School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, Monroe, Louisiana (G.M.)
| | - Ulrich Bickel
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, Texas (B.L., R.G.A., D.P., S.S., T.J.A., U.B., A.A.-A., N.A.G., C.M.M.); Laboratory of Molecular Pharmacology, Department of Pharmacy, University of Patras, Patras, Greece(M.L., C.M.M.); Department of Marketing and Business Analytics, Lucas College and Graduate School of Business, San Jose State University, San Jose, California (M.M.); Department of Pediatrics, University of Tennessee Health Sciences Center and Le Bonheur Children's Hospital, Memphis, Tennessee (A.A.); and School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, Monroe, Louisiana (G.M.)
| | - Abraham Al-Ahmad
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, Texas (B.L., R.G.A., D.P., S.S., T.J.A., U.B., A.A.-A., N.A.G., C.M.M.); Laboratory of Molecular Pharmacology, Department of Pharmacy, University of Patras, Patras, Greece(M.L., C.M.M.); Department of Marketing and Business Analytics, Lucas College and Graduate School of Business, San Jose State University, San Jose, California (M.M.); Department of Pediatrics, University of Tennessee Health Sciences Center and Le Bonheur Children's Hospital, Memphis, Tennessee (A.A.); and School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, Monroe, Louisiana (G.M.)
| | - Nadezhda A German
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, Texas (B.L., R.G.A., D.P., S.S., T.J.A., U.B., A.A.-A., N.A.G., C.M.M.); Laboratory of Molecular Pharmacology, Department of Pharmacy, University of Patras, Patras, Greece(M.L., C.M.M.); Department of Marketing and Business Analytics, Lucas College and Graduate School of Business, San Jose State University, San Jose, California (M.M.); Department of Pediatrics, University of Tennessee Health Sciences Center and Le Bonheur Children's Hospital, Memphis, Tennessee (A.A.); and School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, Monroe, Louisiana (G.M.)
| | - George Mattheolabakis
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, Texas (B.L., R.G.A., D.P., S.S., T.J.A., U.B., A.A.-A., N.A.G., C.M.M.); Laboratory of Molecular Pharmacology, Department of Pharmacy, University of Patras, Patras, Greece(M.L., C.M.M.); Department of Marketing and Business Analytics, Lucas College and Graduate School of Business, San Jose State University, San Jose, California (M.M.); Department of Pediatrics, University of Tennessee Health Sciences Center and Le Bonheur Children's Hospital, Memphis, Tennessee (A.A.); and School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, Monroe, Louisiana (G.M.)
| | - Constantinos M Mikelis
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, Texas (B.L., R.G.A., D.P., S.S., T.J.A., U.B., A.A.-A., N.A.G., C.M.M.); Laboratory of Molecular Pharmacology, Department of Pharmacy, University of Patras, Patras, Greece(M.L., C.M.M.); Department of Marketing and Business Analytics, Lucas College and Graduate School of Business, San Jose State University, San Jose, California (M.M.); Department of Pediatrics, University of Tennessee Health Sciences Center and Le Bonheur Children's Hospital, Memphis, Tennessee (A.A.); and School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, Monroe, Louisiana (G.M.)
| |
Collapse
|
23
|
Shi W, Sethi G. Long noncoding RNAs induced control of ferroptosis: Implications in cancer progression and treatment. J Cell Physiol 2023; 238:880-895. [PMID: 36924057 DOI: 10.1002/jcp.30992] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Revised: 02/19/2023] [Accepted: 02/27/2023] [Indexed: 03/18/2023]
Abstract
A novel kind of nonapoptotic, iron-dependent cell death brought on by lipid peroxidation is known as ferroptosis. Numerous pathological processes, including neurotoxicity, neurological disorders, ischemia-reperfusion damage, and particularly cancer, have been demonstrated to be influenced by changes in the ferroptosis-regulating network. Recent studies have established the critical roles that ferroptosis can play in cancer development and the evolution of resistance to standard chemoradiotherapy, thus suggesting that ferroptosis may be a feasible therapeutic strategy for cancer management. Gene expression may be regulated at the transcriptional and posttranscriptional levels by long noncoding RNAs (lncRNAs). They have been implicated in tumorigenesis. Some lncRNAs participate in the biological process of ferroptosis, which represents an exciting alternative to regulate ferroptosis as a means of cancer therapy. Even though there is evidence that lncRNAs have a mechanistic role in the ferroptosis of cancer cells, research on the mechanism and potential treatments for these lncRNAs is still lacking. We elucidate the potential mechanisms by which lncRNAs modulate ferroptosis in cancer and examine the promise and challenges of employing lncRNAs as novel therapeutic targets in cancer.
Collapse
Affiliation(s)
- Wei Shi
- Laboratory of NF-κB Signaling, Institute of Molecular and Cell Biology (IMCB), A*STAR (Agency for Science, Technology and Research), Singapore, Singapore
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| |
Collapse
|
24
|
Yang M, Zhang Y, Li M, Liu X, Darvishi M. The various role of microRNAs in breast cancer angiogenesis, with a special focus on novel miRNA-based delivery strategies. Cancer Cell Int 2023; 23:24. [PMID: 36765409 PMCID: PMC9912632 DOI: 10.1186/s12935-022-02837-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 12/20/2022] [Indexed: 02/12/2023] Open
Abstract
After skin malignancy, breast cancer is the most widely recognized cancer detected in women in the United States. Breast cancer (BCa) can happen in all kinds of people, but it's much more common in women. One in four cases of cancer and one in six deaths due to cancer are related to breast cancer. Angiogenesis is an essential factor in the growth of tumors and metastases in various malignancies. An expanded level of angiogenesis is related to diminished endurance in BCa patients. This function assumes a fundamental part inside the human body, from the beginning phases of life to dangerous malignancy. Various factors, referred to as angiogenic factors, work to make a new capillary. Expanding proof demonstrates that angiogenesis is managed by microRNAs (miRNAs), which are small non-coding RNA with 19-25 nucleotides. MiRNA is a post-transcriptional regulator of gene expression that controls many critical biological processes. Endothelial miRNAs, referred to as angiomiRs, are probably concerned with tumor improvement and angiogenesis via regulation of pro-and anti-angiogenic factors. In this article, we reviewed therapeutic functions of miRNAs in BCa angiogenesis, several novel delivery carriers for miRNA-based therapeutics, as well as CRISPR/Cas9 as a targeted therapy in breast cancer.
Collapse
Affiliation(s)
- Min Yang
- College of Traditional Chinese Medicine, Jilin Agricultural Science and Technology University, Jilin, 132101 China
| | - Ying Zhang
- College of Traditional Chinese Medicine, Jilin Agricultural Science and Technology University, Jilin, 132101 China
| | - Min Li
- College of Traditional Chinese Medicine, Jilin Agricultural Science and Technology University, Jilin, 132101 China
| | - Xinglong Liu
- College of Traditional Chinese Medicine, Jilin Agricultural Science and Technology University, Jilin, 132101 China
| | - Mohammad Darvishi
- Infectious Diseases and Tropical Medicine Research Center (IDTMRC), Department of Aerospace and Subaquatic Medicine, AJA University of Medical Sciences, Tehran, Iran
| |
Collapse
|
25
|
Lopes LB, Apolinário AC, Salata GC, Malagó ID, Passos JS. Lipid Nanocarriers for Breast Cancer Treatment. Cancer Nanotechnol 2023. [DOI: 10.1007/978-3-031-17831-3_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
|
26
|
Sadeghzadeh F, Ziaratnia AS, Homayouni Tabrizi M, Torshizi GH, Alhajamee M, Khademi D. Nanofabrication of PLGA-PEG-chitosan-folic acid systems for delivery of colchicine to HT-29 cancer cells. JOURNAL OF BIOMATERIALS SCIENCE. POLYMER EDITION 2023; 34:1-17. [PMID: 35864733 DOI: 10.1080/09205063.2022.2105103] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
This survey was conducted to fabrication of PLGA-based nanosystems modified with PEG, chitosan and folic acid to delivery colchicine to cancer cells and to investigate its antioxidant and pro-apoptotic effects. The dual emulsion-evaporation solvent method was used for loading of colchicine on PEGylated PLGA nanoparticles (COL-PP-NPs) and after surface modification with chitosan and folic acid (COL-PPCF-NPs), the nanoparticles were characterized by DLS, SEM and FTIR methods. The HPLC procedure was used to assess the amount of FA binding and COL loading. Antioxidant capacity (ABTS and DPPH free radical scavenging) and toxicity (MTT) of COL-PPCF-NPs were evaluated and then cell inhibition mechanism was assessed by AO/PI staining, flow cytometry and qPCR assay. COL-PPCF-NPs with a size of 250 nm were synthesized in a stable (zeta potential: +34 mV) and mono-dispersed (PDI: 0.32) manner. FA binding and COL loading were reported to be 55% and 89.5%, respectively. COL-PPCF-NPs showed antioxidant effects by inhibiting the free radicals ABTS (108.07 µg/ml) and DPPH (361.61 µg/ml). The selective toxicity of COL-PPCF-NPs against HT-29 cancer cells (118.5 µg/ml) compared to HFF cells was confirmed by MTT data. Increased apoptotic cells (red color) in AO/PI staining, cell arrest in phase SubG1 and G2-M, and altered expression of apoptosis genes confirmed the occurrence of apoptosis in HT-29 treated cells. The use of PPCF-NPs system for delivery of COL can lead to selective toxicity against cancer cells and induction of apoptosis in these cells by folate-mediated binding mechanism at folate receptor positive HT-29 cancer cells.
Collapse
Affiliation(s)
- Farzaneh Sadeghzadeh
- Department of Biochemistry, Neyshabur Branch, Islamic Azad University, Neyshabur, Iran
| | | | | | | | - Maitham Alhajamee
- Department of Biology, Mashhad Branch, Islamic Azad University, Mashhad, Iran
| | - Davoud Khademi
- Department of Materials Science and Engineering, Faculty of Engineering, Ferdowsi University of Mashhad, Mashhad, Iran
| |
Collapse
|
27
|
Zhang X, Han Y, Liu S, Guo B, Xu S, He Y, Liu L. MF-094 nanodelivery inhibits oral squamous cell carcinoma by targeting USP30. Cell Mol Biol Lett 2022; 27:107. [PMID: 36474192 PMCID: PMC9724415 DOI: 10.1186/s11658-022-00407-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 11/14/2022] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Oral squamous cell carcinoma (OSCC) is a common head and neck cancer, and the incidence of OSCC is increasing. As the mortality of OSCC keeps increasing, it is crucial to clarify its pathogenesis and develop new therapeutic strategies. METHODS Confocal laser scanning microscopy was used to evaluate the uptake of nanoparticles (NPs). The potential functions of USP30 were evaluated by cell counting kit (CCK)-8, flow cytometry, biochemical assay, coimmunoprecipitation, qRT-PCR, and immunoblotting. The antitumor effect of NP-loaded USP30 inhibitor MF-094 was evaluated in vitro and in vivo. RESULTS In this study, increased USP30 expression was found in OSCC specimens and cell lines through qRT-PCR and immunoblotting. CCK-8, flow cytometry, and biochemical assay revealed that the deubiquitylated catalytic activity of USP30 contributed to cell viability and glutamine consumption of OSCC. Subsequently, USP30 inhibitor MF-094 was loaded in ZIF-8-PDA and PEGTK to fabricate ZIF-8-PDA-PEGTK nanoparticles, which exhibited excellent inhibition of cell viability and glutamine consumption of OSCC, both in vitro and in vivo. CONCLUSION The results indicated the clinical significance of USP30 and showed that nanocomposites provide a targeted drug delivery system for treating OSCC.
Collapse
Affiliation(s)
- Xinyu Zhang
- grid.16821.3c0000 0004 0368 8293Department of Oral and Maxillofacial-Head and Neck Oncology, Shanghai Ninth People’s Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, No.639 Zhizaoju Road, Huangpu District, Shanghai, 200011 China ,grid.412523.30000 0004 0386 9086National Clinical Research Center for Oral Diseases, Shanghai, China ,grid.16821.3c0000 0004 0368 8293Shanghai Key Laboratory of Stomatology and Shanghai, Research Institute of Stomatology, Shanghai, China
| | - Yong Han
- grid.16821.3c0000 0004 0368 8293Department of Oral and Maxillofacial-Head and Neck Oncology, Shanghai Ninth People’s Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, No.639 Zhizaoju Road, Huangpu District, Shanghai, 200011 China ,grid.412523.30000 0004 0386 9086National Clinical Research Center for Oral Diseases, Shanghai, China ,grid.16821.3c0000 0004 0368 8293Shanghai Key Laboratory of Stomatology and Shanghai, Research Institute of Stomatology, Shanghai, China
| | - Shuli Liu
- grid.16821.3c0000 0004 0368 8293Department of Oral and Maxillofacial-Head and Neck Oncology, Shanghai Ninth People’s Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, No.639 Zhizaoju Road, Huangpu District, Shanghai, 200011 China ,grid.412523.30000 0004 0386 9086National Clinical Research Center for Oral Diseases, Shanghai, China ,grid.16821.3c0000 0004 0368 8293Shanghai Key Laboratory of Stomatology and Shanghai, Research Institute of Stomatology, Shanghai, China
| | - Bing Guo
- grid.16821.3c0000 0004 0368 8293Department of Plastic and Reconstructive Surgery, Shanghai Key Laboratory of Tissue Engineering, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shengming Xu
- grid.16821.3c0000 0004 0368 8293Department of Oral and Maxillofacial-Head and Neck Oncology, Shanghai Ninth People’s Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, No.639 Zhizaoju Road, Huangpu District, Shanghai, 200011 China ,grid.412523.30000 0004 0386 9086National Clinical Research Center for Oral Diseases, Shanghai, China ,grid.16821.3c0000 0004 0368 8293Shanghai Key Laboratory of Stomatology and Shanghai, Research Institute of Stomatology, Shanghai, China
| | - Yue He
- grid.16821.3c0000 0004 0368 8293Department of Oral and Maxillofacial-Head and Neck Oncology, Shanghai Ninth People’s Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, No.639 Zhizaoju Road, Huangpu District, Shanghai, 200011 China ,grid.412523.30000 0004 0386 9086National Clinical Research Center for Oral Diseases, Shanghai, China ,grid.16821.3c0000 0004 0368 8293Shanghai Key Laboratory of Stomatology and Shanghai, Research Institute of Stomatology, Shanghai, China
| | - Liu Liu
- grid.16821.3c0000 0004 0368 8293Department of Oral and Maxillofacial-Head and Neck Oncology, Shanghai Ninth People’s Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, No.639 Zhizaoju Road, Huangpu District, Shanghai, 200011 China ,grid.412523.30000 0004 0386 9086National Clinical Research Center for Oral Diseases, Shanghai, China ,grid.16821.3c0000 0004 0368 8293Shanghai Key Laboratory of Stomatology and Shanghai, Research Institute of Stomatology, Shanghai, China
| |
Collapse
|
28
|
Shrestha A, Lahooti B, Mikelis CM, Mattheolabakis G. Chlorotoxin and Lung Cancer: A Targeting Perspective for Drug Delivery. Pharmaceutics 2022; 14:pharmaceutics14122613. [PMID: 36559106 PMCID: PMC9786857 DOI: 10.3390/pharmaceutics14122613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 11/11/2022] [Accepted: 11/22/2022] [Indexed: 11/29/2022] Open
Abstract
In the generational evolution of nano-based drug delivery carriers, active targeting has been a major milestone for improved and selective drug accumulation in tissues and cell types beyond the existing passive targeting capabilities. Among the various active targeting moieties, chlorotoxin, a peptide extracted from scorpions, demonstrated promising tumor cell accumulation and selection. With lung cancer being among the leading diagnoses of cancer-related deaths in both men and women, novel therapeutic methodologies utilizing nanotechnology for drug delivery emerged. Given chlorotoxin's promising biological activity, we explore its potential against lung cancer and its utilization for active targeting against this cancer's tumor cells. Our analysis indicates that despite the extensive chlorotoxin's research against glioblastoma, lung cancer research with the molecule has been limited, despite some promising early results.
Collapse
Affiliation(s)
- Archana Shrestha
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana at Monroe, Monroe, LA 71209, USA
| | - Behnaz Lahooti
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX 79106, USA
| | - Constantinos M. Mikelis
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX 79106, USA
- Laboratory of Molecular Pharmacology, Department of Pharmacy, University of Patras, 26504 Patras, Greece
| | - George Mattheolabakis
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana at Monroe, Monroe, LA 71209, USA
- Correspondence:
| |
Collapse
|
29
|
Lei Q, Yang Y, Zhou W, Liu W, Li Y, Qi N, Li Q, Wen Z, Ding L, Huang X, Li Y, Wu J. MicroRNA-based therapy for glioblastoma: Opportunities and challenges. Eur J Pharmacol 2022; 938:175388. [PMID: 36403686 DOI: 10.1016/j.ejphar.2022.175388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 10/26/2022] [Accepted: 11/10/2022] [Indexed: 11/18/2022]
Abstract
Glioblastoma (GBM) is the most common and aggressive primary malignant brain tumor and is characterized by high mortality and morbidity rates and unpredictable clinical behavior. The disappointing prognosis for patients with GBM even after surgery and postoperative radiation and chemotherapy has fueled the search for specific targets to provide new insights into the development of modern therapies. MicroRNAs (miRNAs/miRs) act as oncomirs and tumor suppressors to posttranscriptionally regulate the expression of various genes and silence many target genes involved in cell proliferation, the cell cycle, apoptosis, invasion, stem cell behavior, angiogenesis, the microenvironment and chemo- and radiotherapy resistance, which makes them attractive candidates as prognostic biomarkers and therapeutic targets or agents to advance GBM therapeutics. However, one of the major challenges of successful miRNA-based therapy is the need for an effective and safe system to deliver therapeutic compounds to specific tumor cells or tissues in vivo, particularly systems that can cross the blood-brain barrier (BBB). This challenge has shifted gradually as progress has been achieved in identifying novel tumor-related miRNAs and their targets, as well as the development of nanoparticles (NPs) as new carriers to deliver therapeutic compounds. Here, we provide an up-to-date summary (in recent 5 years) of the current knowledge of GBM-related oncomirs, tumor suppressors and microenvironmental miRNAs, with a focus on their potential applications as prognostic biomarkers and therapeutic targets, as well as recent advances in the development of carriers for nontoxic miRNA-based therapy delivery systems and how they can be adapted for therapy.
Collapse
Affiliation(s)
- Qingchun Lei
- Department of Neurosurgery, Pu'er People's Hospital, Pu'er, 665000, Yunnan, PR China
| | - Yongmin Yang
- School of Life Sciences, Yunnan University, Kunming, 650091, Yunnan, PR China
| | - Wenhui Zhou
- School of Life Sciences, Yunnan University, Kunming, 650091, Yunnan, PR China
| | - Wenwen Liu
- School of Life Sciences, Yunnan University, Kunming, 650091, Yunnan, PR China; School of Medicine, Yunnan University, Kunming, 650091, Yunnan, PR China
| | - Yixin Li
- School of Life Sciences, Yunnan University, Kunming, 650091, Yunnan, PR China
| | - Nanchang Qi
- Clinical Laboratory, The First People's Hospital of Kunming, Kunming, 650021, Yunnan, PR China
| | - Qiangfeng Li
- Department of Neurosurgery, Pu'er People's Hospital, Pu'er, 665000, Yunnan, PR China
| | - Zhonghui Wen
- Department of Neurosurgery, Pu'er People's Hospital, Pu'er, 665000, Yunnan, PR China
| | - Lei Ding
- School of Life Sciences, Yunnan University, Kunming, 650091, Yunnan, PR China
| | - Xiaobin Huang
- Department of Neurosurgery, The Second Affiliated Hospital of Kunming Medical University, Kunming, 650000, Yunnan, PR China
| | - Yu Li
- Yunnan Provincial Key Lab of Agricultural Biotechnology, Biotechnology and Germplasm Resources Institute, Yunnan Academy of Agricultural Sciences, Kunming, Yunnan, 650223, PR China.
| | - Jin Wu
- Department of Neurosurgery, Pu'er People's Hospital, Pu'er, 665000, Yunnan, PR China.
| |
Collapse
|
30
|
Sadeghi S, Homayouni Tabrizi M, Farhadi A. Folic acid-Chitosan Coated Stylosin Nanostructured Lipid Carriers: Fabrication, In Vitro-In Vivo Assessment in Breast Malignant Cells. JOURNAL OF BIOMATERIALS SCIENCE, POLYMER EDITION 2022; 34:791-809. [PMID: 36345914 DOI: 10.1080/09205063.2022.2145868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Synthesis of targeted nanostructure lipid carriers for stylosin (STY-CFN-NPs) delivery to MCF-7 cells. STY-CFN-NPs were formulated via the homogenization and ultra-sonication technique. After evaluating the amount of drug encapsulation and FA binding, the toxicity effect of the STY and STY-CFN-NPs on MCF-7 cells was measured by the MTT method. Cell cycle analysis, AO/PI staining and qPCR to assess the inducing of apoptosis as well as Tubo cancer cell inoculated mouse model for antitumor properties of STY-CFN-NPs were used. Significant increases in nanoparticle size and changes in zeta potential were observed after FA-CS coating on nanoparticles. Slow release of the STY within 144 h as well as the acceptable rate for STY encapsulation efficiency (92.4% and FA binding (52.5%) to the STY-CFN-NPs (PS: 66.26 ± 3.02 nm, ZP: 29.54 ± 1.01 mV and PDI: 0.32 ± 0.01) was reported. STY-CFN-NPs exhibited higher toxicity compared to STY suspension and treatment with STY-CFN-NPs was lead to increased apoptotic cells, stopped cells in the SubG1 phase, and also increased caspase and BAX expression and decreased BCL-2 and BCL-XL expression in in vitro and decreased the size of murine tumors (54.57% in 16 days) in in vivo. The results showed STY-CFN-NPs have good potential for breast cancer management.
Collapse
Affiliation(s)
- Soroush Sadeghi
- Department of Biology, Mashhad Branch, Islamic Azad University, Mashhad, Iran
| | | | - Amin Farhadi
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| |
Collapse
|
31
|
Alirezaei M, Ghobeh M, Es-haghi A. Poly(lactic-co-glycolic acid)(PLGA)-based nanoparticles modified with chitosan-folic acid to delivery of Artemisia vulgaris L. essential oil to HT-29 cancer cells. Process Biochem 2022. [DOI: 10.1016/j.procbio.2022.06.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
32
|
Cheng Y, Bo H, Qin R, Chen F, Xue F, An L, Huang G, Tian Q. Hyaluronic acid-coated Bi:Cu 2O: an H 2S-responsive agent for colon cancer with targeted delivery and enhanced photothermal performance. J Nanobiotechnology 2022; 20:346. [PMID: 35883134 PMCID: PMC9327345 DOI: 10.1186/s12951-022-01555-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 07/12/2022] [Indexed: 11/17/2022] Open
Abstract
Background Endogenous hydrogen sulfide (H2S)-responsive theranostic agents have attracted extensive attention due to their specificity for colon cancer. However, the development of such agents with high enrichment in tumors and excellent photothermal performance remains challenging. Results We prepared hyaluronic acid (HA)-coated Bi-doped cuprous oxide (Bi:Cu2O@HA) via a one-pot method. The HA specifically targets colon cancer tumor cells to improve the enrichment of Bi:Cu2O@HA at tumor sites, while the doped Bi both enhances the photothermal performance of the H2S-triggered Cu2O and serves as an agent for tumor imaging. The results in this work demonstrated that the Bi:Cu2O@HA nanoparticles exhibit good biocompatibility, target colon cancer tumor cells, facilitate computed tomography imaging, and enhanced H2S-responsive photothermal therapy performance, resulting in an excellent therapeutic effect in colon cancer. Conclusions The novel Bi:Cu2O@HA nanoparticles exhibit excellent tumor targeting and photothermal therapeutic effects, which provide new strategies and insights for colon cancer therapy. Graphical Abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s12951-022-01555-x.
Collapse
Affiliation(s)
- Yuying Cheng
- Shanghai Key Laboratory of Molecular Imaging, Shanghai University of Medicine and Health Sciences Affiliated Zhoupu Hospital, Shanghai University of Medicine and Health Sciences, Shanghai, 201318, China.,Shanghai Municipal Education Committee Key Laboratory of Molecular Imaging Probes and Sensors, Shanghai Normal University, Shanghai, 200234, China
| | - Haiji Bo
- Department of Pathology, Naval Medical Center of PLA, No. 338 Huaihai West Road, Shanghai, 200052, China
| | - Ruomeng Qin
- Shanghai Key Laboratory of Molecular Imaging, Shanghai University of Medicine and Health Sciences Affiliated Zhoupu Hospital, Shanghai University of Medicine and Health Sciences, Shanghai, 201318, China
| | - Fulai Chen
- Shanghai Key Laboratory of Molecular Imaging, Shanghai University of Medicine and Health Sciences Affiliated Zhoupu Hospital, Shanghai University of Medicine and Health Sciences, Shanghai, 201318, China
| | - Fengfeng Xue
- Shanghai Key Laboratory of Molecular Imaging, Shanghai University of Medicine and Health Sciences Affiliated Zhoupu Hospital, Shanghai University of Medicine and Health Sciences, Shanghai, 201318, China.
| | - Lu An
- Shanghai Municipal Education Committee Key Laboratory of Molecular Imaging Probes and Sensors, Shanghai Normal University, Shanghai, 200234, China
| | - Gang Huang
- Shanghai Key Laboratory of Molecular Imaging, Shanghai University of Medicine and Health Sciences Affiliated Zhoupu Hospital, Shanghai University of Medicine and Health Sciences, Shanghai, 201318, China.
| | - Qiwei Tian
- Shanghai Key Laboratory of Molecular Imaging, Shanghai University of Medicine and Health Sciences Affiliated Zhoupu Hospital, Shanghai University of Medicine and Health Sciences, Shanghai, 201318, China.
| |
Collapse
|
33
|
Rahmati A, Homayouni Tabrizi M, Karimi E, Zarei B. Fabrication and assessment of folic acid conjugated-chitosan modified PLGA nanoparticle for delivery of alpha terpineol in colon cancer. JOURNAL OF BIOMATERIALS SCIENCE. POLYMER EDITION 2022; 33:1289-1307. [PMID: 35260045 DOI: 10.1080/09205063.2022.2051693] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The objective of this study was to fabrication of α-terpineol-PLGA nanoparticles coated with folic acid-chitosan (αT-PCF-NPs) as well as evaluates their anticancer effects. αT-PCF-NPs were synthesized using the nanoprecipitation method and characterized by Dynamic light scattering (DLS), zeta potential (ZP), scanning electron microscope (SEM), Fourier transform infrared spectroscopy (FTIR) analysis. Folic acid (FA) binding rate and entrapment efficiency of α-T were assessed by HPLC method. MTT assay was performed for cytotoxicity assessment. Quantitative polymerase chain reaction (qPCR) analysis, acridine orange and propodium iodide (AO/PI) staining and cell cycle analysis were done to assess the pro-apoptotic properties of αT-PCF-NPs. Molecular analysis for angiogenesis and antioxidant properties and murine colon cancer model for antitumor effects of αT-PCF-NPs were used. The % FA-binding and encapsulation efficiency of α-T in αT-PCF-NPs (particle size of 263.95 nm, polydispersity index (PDI) of 0.25, and surface charge of +38.20 mV) was reported to be 67% and 88.1% respectively. The higher inhibitory effect of αT-PCF-NPs on cancer cells compared to HFF cells was confirmed. The pro-apoptotic effect of αT-PCF-NPs was showed by increased SubG1 phase cells, AO/PI staining results and up and down regulation Bax and Bcl-2 as pro and anti-apoptotic genes in HT-29 cells. Antioxidant (SOD) and angiogenesis genes (VEGF and VEGF-R) were inhibited by αT-PCF-NPs exposure in HT-29 cells and also decreased the size of murine tumors was confirmed in exposure of αT-PCF-NPs. αT-PCF-NPs can be considered as a promising anticancer drug for colon cancer.
Collapse
Affiliation(s)
- Amir Rahmati
- Department of Biology, Mashhad Branch, Islamic Azad University, Mashhad, Iran
| | | | - Ehsan Karimi
- Department of Biology, Mashhad Branch, Islamic Azad University, Mashhad, Iran
| | - Bahar Zarei
- Department of Biology, Mashhad Branch, Islamic Azad University, Mashhad, Iran
| |
Collapse
|
34
|
Tabatabaeain SF, Karimi E, Hashemi M. Satureja khuzistanica Essential Oil-Loaded Solid Lipid Nanoparticles Modified With Chitosan-Folate: Evaluation of Encapsulation Efficiency, Cytotoxic and Pro-apoptotic Properties. Front Chem 2022; 10:904973. [PMID: 35815210 PMCID: PMC9257980 DOI: 10.3389/fchem.2022.904973] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 05/27/2022] [Indexed: 11/23/2022] Open
Abstract
The study aimed to synthesize Satureja khuzistanica essential oil-loaded SLN nanoparticles and to modify the surface of nanoparticles with folate-bound chitosan (SEO-SCF-NPs), and finally to investigate the effects of its toxicity and pro-apoptosis. For this purpose, the SEO-SLN nanoparticles were prepared using stearic acid, lecithin, tween 80, and water by high-pressure homogenization method. After characterization by FTIR, SEM, DLS, and ZETA potential methods, its toxicity effect against normal (HFF) and cancer (MCF-7) cells were evaluated by MTT assay. The occurrence of apoptosis in MCF-7 cells was assessed by flow cytometry and molecular analysis. The obtained results revealed the formation of round nanoparticles with a size of 279.40 nm, single dispersed (PDI: 0.3) and stable (ζ–potential: +31.69 mV). SEO-SCF-NPs indicated the effect of selective toxicity against MCF-7 cells (IC50: 88 μg/ml). Molecular analysis showed that SEO-SCF-NPs could inhibit cancer cells by activating the internal pathway of apoptosis as well as cell cycle disruption. Our finding suggests that SEO-SCF-NPs is a suitable candidate for preclinical cancer studies.
Collapse
Affiliation(s)
| | - Ehsan Karimi
- Department of Biology, Mashhad Branch, Islamic Azad University, Mashhad, Iran
- *Correspondence: Ehsan Karimi,
| | - Mehrdad Hashemi
- Department Genetics, Islamic Azad University, Tehran Medical Branch, Tehran, Iran
- Farhikhtegan Medical Convergence Science Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| |
Collapse
|
35
|
Chu S, Shi X, Tian Y, Gao F. pH-Responsive Polymer Nanomaterials for Tumor Therapy. Front Oncol 2022; 12:855019. [PMID: 35392227 PMCID: PMC8980858 DOI: 10.3389/fonc.2022.855019] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 02/24/2022] [Indexed: 12/24/2022] Open
Abstract
The complexity of the tumor microenvironment presents significant challenges to cancer therapy, while providing opportunities for targeted drug delivery. Using characteristic signals of the tumor microenvironment, various stimuli-responsive drug delivery systems can be constructed for targeted drug delivery to tumor sites. Among these, the pH is frequently utilized, owing to the pH of the tumor microenvironment being lower than that of blood and healthy tissues. pH-responsive polymer carriers can improve the efficiency of drug delivery in vivo, allow targeted drug delivery, and reduce adverse drug reactions, enabling multifunctional and personalized treatment. pH-responsive polymers have gained increasing interest due to their advantageous properties and potential for applicability in tumor therapy. In this review, recent advances in, and common applications of, pH-responsive polymer nanomaterials for drug delivery in cancer therapy are summarized, with a focus on the different types of pH-responsive polymers. Moreover, the challenges and future applications in this field are prospected.
Collapse
Affiliation(s)
- Shunli Chu
- Department of Implantology, Hospital of Stomatology, Jilin University, Changchun, China
| | - Xiaolu Shi
- Department of Implantology, Hospital of Stomatology, Jilin University, Changchun, China
| | - Ye Tian
- Department of Implantology, Hospital of Stomatology, Jilin University, Changchun, China
| | - Fengxiang Gao
- Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, China
| |
Collapse
|
36
|
Zhou J, Chen L, Chen L, Zeng X, Zhang Y, Yuan Y. Emerging role of nanoparticles in the diagnostic imaging of gastrointestinal cancer. Semin Cancer Biol 2022; 86:580-594. [DOI: 10.1016/j.semcancer.2022.04.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 04/21/2022] [Accepted: 04/25/2022] [Indexed: 12/11/2022]
|
37
|
Farhoudi L, Kesharwani P, Majeed M, Johnston TP, Sahebkar A. Polymeric nanomicelles of curcumin: Potential applications in cancer. Int J Pharm 2022; 617:121622. [PMID: 35227805 DOI: 10.1016/j.ijpharm.2022.121622] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 02/10/2022] [Accepted: 02/23/2022] [Indexed: 02/06/2023]
|
38
|
Oseghe EO, Akpotu SO, Mombeshora ET, Oladipo AO, Ombaka LM, Maria BB, Idris AO, Mamba G, Ndlwana L, Ayanda OS, Ofomaja AE, Nyamori VO, Feleni U, Nkambule TT, Msagati TA, Mamba BB, Bahnemann DW. Multi-dimensional applications of graphitic carbon nitride nanomaterials – A review. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.117820] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
39
|
Xiao Z, You Y, Liu Y, He L, Zhang D, Cheng Q, Wang D, Chen T, Shi C, Luo L. NIR-Triggered Blasting Nanovesicles for Targeted Multimodal Image-Guided Synergistic Cancer Photothermal and Chemotherapy. ACS APPLIED MATERIALS & INTERFACES 2021; 13:35376-35388. [PMID: 34313109 DOI: 10.1021/acsami.1c08339] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Escorting therapeutics for malignancies by nano-encapsulation to ameliorate treatment effects and mitigate side effects has been pursued in precision medicine. However, the majority of drug delivery systems suffer from uncontrollable drug release kinetics and thus lead to unsatisfactory triggered-release efficiency along with severe side effects. Herein, we developed a unique nanovesicle delivery system that shows near-infrared (NIR) light-triggered drug release behavior and minimal premature drug release. By co-encapsulation of superparamagnetic iron oxide (SPIO) nanoparticles, the ultrasound contrast agent perfluorohexane (PFH), and cisplatin in a silicate-polyaniline vesicle, we achieved the controllable release of cisplatin in a thermal-responsive manner. Specifically, vaporization of PFH triggered by the heat generated from NIR irradiation imparts high inner vesicle pressure on the nanovesicles, leading to pressure-induced nanovesicle collapse and subsequent cisplatin release. Moreover, the multimodal imaging capability can track tumor engagement of the nanovesicles and assess their therapeutic effects. Due to its precise inherent NIR-triggered drug release, our system shows excellent tumor eradication efficacy and biocompatibility in vivo, empowering it with great prospects for future clinical translation.
Collapse
Affiliation(s)
- Zeyu Xiao
- Medical Imaging Center, The First Affiliated Hospital, and Department of Chemistry, Jinan University, Guangzhou 510632, P. R. China
- The Guangzhou Key Laboratory of Molecular and Functional Imaging for Clinical Translation, Jinan University, Guangzhou 510632, P. R. China
| | - Yuanyuan You
- Medical Imaging Center, The First Affiliated Hospital, and Department of Chemistry, Jinan University, Guangzhou 510632, P. R. China
- The Guangzhou Key Laboratory of Molecular and Functional Imaging for Clinical Translation, Jinan University, Guangzhou 510632, P. R. China
| | - Yiyong Liu
- Medical Imaging Center, The First Affiliated Hospital, and Department of Chemistry, Jinan University, Guangzhou 510632, P. R. China
- The Guangzhou Key Laboratory of Molecular and Functional Imaging for Clinical Translation, Jinan University, Guangzhou 510632, P. R. China
| | - Lizhen He
- Medical Imaging Center, The First Affiliated Hospital, and Department of Chemistry, Jinan University, Guangzhou 510632, P. R. China
- The Guangzhou Key Laboratory of Molecular and Functional Imaging for Clinical Translation, Jinan University, Guangzhou 510632, P. R. China
| | - Dong Zhang
- Medical Imaging Center, The First Affiliated Hospital, and Department of Chemistry, Jinan University, Guangzhou 510632, P. R. China
- The Guangzhou Key Laboratory of Molecular and Functional Imaging for Clinical Translation, Jinan University, Guangzhou 510632, P. R. China
| | - Qingqing Cheng
- Medical Imaging Center, The First Affiliated Hospital, and Department of Chemistry, Jinan University, Guangzhou 510632, P. R. China
- The Guangzhou Key Laboratory of Molecular and Functional Imaging for Clinical Translation, Jinan University, Guangzhou 510632, P. R. China
| | - Dan Wang
- Medical Imaging Center, The First Affiliated Hospital, and Department of Chemistry, Jinan University, Guangzhou 510632, P. R. China
- The Guangzhou Key Laboratory of Molecular and Functional Imaging for Clinical Translation, Jinan University, Guangzhou 510632, P. R. China
| | - Tianfeng Chen
- Medical Imaging Center, The First Affiliated Hospital, and Department of Chemistry, Jinan University, Guangzhou 510632, P. R. China
- The Guangzhou Key Laboratory of Molecular and Functional Imaging for Clinical Translation, Jinan University, Guangzhou 510632, P. R. China
| | - Changzheng Shi
- Medical Imaging Center, The First Affiliated Hospital, and Department of Chemistry, Jinan University, Guangzhou 510632, P. R. China
- The Guangzhou Key Laboratory of Molecular and Functional Imaging for Clinical Translation, Jinan University, Guangzhou 510632, P. R. China
| | - Liangping Luo
- Medical Imaging Center, The First Affiliated Hospital, and Department of Chemistry, Jinan University, Guangzhou 510632, P. R. China
- The Guangzhou Key Laboratory of Molecular and Functional Imaging for Clinical Translation, Jinan University, Guangzhou 510632, P. R. China
| |
Collapse
|
40
|
Li W, Little N, Park J, Foster CA, Chen J, Lu J. Tumor-Associated Fibroblast-Targeting Nanoparticles for Enhancing Solid Tumor Therapy: Progress and Challenges. Mol Pharm 2021; 18:2889-2905. [PMID: 34260250 DOI: 10.1021/acs.molpharmaceut.1c00455] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Even though nanoparticle drug delivery systems (nanoDDSs) have improved antitumor efficacy by delivering more drugs to tumor sites compared to free and unencapsulated therapeutics, achieving satisfactory distribution and penetration of nanoDDSs inside solid tumors, especially in stromal fibrous tumors, remains challenging. As one of the most common stromal cells in solid tumors, tumor-associated fibroblasts (TAFs) not only promote tumor growth and metastasis but also reduce the drug delivery efficiency of nanoparticles through the tumor's inherent physical and physiological barriers. Thus, TAFs have been emerging as attractive targets, and TAF-targeting nanotherapeutics have been extensively explored to enhance the tumor delivery efficiency and efficacy of various anticancer agents. The purpose of this Review is to opportunely summarize the underlying mechanisms of TAFs on obstructing nanoparticle-mediated drug delivery into tumors and discuss the current advances of a plethora of nanotherapeutic approaches for effectively targeting TAFs.
Collapse
Affiliation(s)
- Wenpan Li
- Skaggs Pharmaceutical Sciences Center, Department of Pharmacology & Toxicology, College of Pharmacy, The University of Arizona, Tucson, Arizona 85721, United States
| | - Nicholas Little
- Skaggs Pharmaceutical Sciences Center, Department of Pharmacology & Toxicology, College of Pharmacy, The University of Arizona, Tucson, Arizona 85721, United States
| | - Jonghan Park
- Skaggs Pharmaceutical Sciences Center, Department of Pharmacology & Toxicology, College of Pharmacy, The University of Arizona, Tucson, Arizona 85721, United States
| | - Cole Alexander Foster
- Skaggs Pharmaceutical Sciences Center, Department of Pharmacology & Toxicology, College of Pharmacy, The University of Arizona, Tucson, Arizona 85721, United States
| | - Jiawei Chen
- Michigan Institute for Clinical & Health Research, College of Pharmacy, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Jianqin Lu
- Skaggs Pharmaceutical Sciences Center, Department of Pharmacology & Toxicology, College of Pharmacy, The University of Arizona, Tucson, Arizona 85721, United States.,BIO5 Institute, The University of Arizona, Tucson, Arizona 85721, United States.,NCI-designated University of Arizona Comprehensive Cancer Center, Tucson, Arizona 85721, United States.,Southwest Environmental Health Sciences Center, The University of Arizona, Tucson, Arizona 85721, United States
| |
Collapse
|
41
|
Oral Delivery of Nucleic Acids with Passive and Active Targeting to the Intestinal Tissue Using Polymer-Based Nanocarriers. Pharmaceutics 2021; 13:pharmaceutics13071075. [PMID: 34371766 PMCID: PMC8309160 DOI: 10.3390/pharmaceutics13071075] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 06/28/2021] [Accepted: 07/09/2021] [Indexed: 12/13/2022] Open
Abstract
Despite the apparent advantages for long-term treatment and local therapies against intestinal diseases, the oral delivery of nucleic acids has been challenging due to unfavorable physiological conditions for their stability. In this study, a novel nanodelivery system of PEG-PCL nanoparticles with encapsulated nucleic acids–mannosylated PEI (Man-PEI) complexes was developed for intestinal delivery. We complexed model nucleic acids with Man-PEI at the optimal N/P ratio of 20:1 for in vitro and in vivo analyses. Cells were transfected in vitro and analyzed for gene expression, receptor-mediated uptake, and PEG-PCL nanoparticles’ toxicity. We also evaluated the nucleic acid’s stability in the nanocarrier during formulation, and under simulated gastrointestinal environments or the presence of nucleases. Finally, we assessed the biodistribution for the PEG-PCL nanoparticles with encapsulated complexes and their ability to transfect intestinal cells in vivo. Nucleic acids complexed with Man-PEI were protected from degradation against nucleases. In comparison to the parent compound PEI, Man-PEI transfected the cells with an overall higher potency. Competition assay indicated receptor-mediated endocytosis promoted by mannose receptors. The PEG-PCL nanoparticles with Man-PEI/plasmid complexes indicated minimal cytotoxicity. The nanocarrier successfully protected the complexes in a simulated gastric fluid environment and released them in a simulated intestinal fluid environment, promoted by the presence of lipases. The oral administration of the PEG-PCL nanoparticles with encapsulated Man-PEI/plasmid complexes transfected intestinal cells with the plasmid in vivo, while presenting a time-dependent progression through the intestines. Conclusively, our carrier system can deliver genetic material to the GI tract and actively target mannose receptor overexpressing cells.
Collapse
|
42
|
|
43
|
Gan D, Chen Y, Wu Z, Luo L, Yirga SK, Zhang N, Ye F, Chen H, Hu J, Chen Y. Doxorubicin/Nucleophosmin Binding Protein-Conjugated Nanoparticle Enhances Anti-leukemia Activity in Acute Lymphoblastic Leukemia Cells in vitro and in vivo. Front Pharmacol 2021; 12:607755. [PMID: 34122059 PMCID: PMC8193937 DOI: 10.3389/fphar.2021.607755] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 05/07/2021] [Indexed: 12/22/2022] Open
Abstract
Acute lymphoblastic leukemia (ALL) is an aggressive malignancy. Adults with ALL have more than 50% relapse rates. We have previously validated that overexpression of nucleophosmin (NPM) is involved in the multidrug resistance (MDR) development during ALL; and a synthetically engineered recombinant NPM binding protein (NPMBP) has been developed in our group; NPMBP and doxorubicin (DOX) can be conjugated in a nanoparticle-based drug delivery system named DOX-PMs-NPMBP to counteract MDR during ALL. Here, we evaluated the antileukemia potential of DOX-PMs-NPMBP in resistant ALL cells. This study demonstrates that DOX-PMs-NPMBP significantly enhances chemosensitivity to DOX in ALL cells. Despite at variable concentrations, both resistant and primary ALL cells from relapsed patients were sensitive to DOX-PMs-NPMBP. In detail, the half maximal inhibitory concentration (IC50) values of DOX-PMs-NPMBP were between 1.6- and 7.0-fold lower than those of DOX in cell lines and primary ALL cells, respectively; and apoptotic cells ratio was over 2-fold higher in DOX-PMs-NPMBP than DOX. Mechanistically, p53-driven apoptosis induction and cell cycle arrest played essential role in DOX-PMs-NPMBP-induced anti-leukemia effects. Moreover, DOX-PMs-NPMBP significantly inhibited tumor growth and prolonged mouse survival of ALL xenograft models; and no systemic toxicity occurrence was observed after treatment during follow-up. In conclusion, these data indicate that DOX-PMs-NPMBP may significantly exert growth inhibition and apoptosis induction, and markedly improve DOX antileukemia activity in resistant ALL cells. This novel drug delivery system may be valuable to develop as a new therapeutic strategy against multidrug resistant ALL.
Collapse
Affiliation(s)
- Donghui Gan
- Department of Hematology, Fujian Institute of Hematology, Fujian Provincial Key Laboratory of Hematology, Fujian Medical University Union Hospital, Fuzhou, China
| | - Yuwen Chen
- Department of Hematology, Fujian Institute of Hematology, Fujian Provincial Key Laboratory of Hematology, Fujian Medical University Union Hospital, Fuzhou, China
| | - Zhengjun Wu
- Department of Hematology, Fujian Institute of Hematology, Fujian Provincial Key Laboratory of Hematology, Fujian Medical University Union Hospital, Fuzhou, China
| | - Liping Luo
- Department of Hematology, Fujian Institute of Hematology, Fujian Provincial Key Laboratory of Hematology, Fujian Medical University Union Hospital, Fuzhou, China
| | - Shimuye Kalayu Yirga
- Department of Hematology, Fujian Institute of Hematology, Fujian Provincial Key Laboratory of Hematology, Fujian Medical University Union Hospital, Fuzhou, China
| | - Na Zhang
- Department of Hematology, Fujian Institute of Hematology, Fujian Provincial Key Laboratory of Hematology, Fujian Medical University Union Hospital, Fuzhou, China
| | - Fu Ye
- College of Chemistry, Fuzhou University, Fuzhou, China
| | - Haijun Chen
- College of Chemistry, Fuzhou University, Fuzhou, China
| | - Jianda Hu
- Department of Hematology, Fujian Institute of Hematology, Fujian Provincial Key Laboratory of Hematology, Fujian Medical University Union Hospital, Fuzhou, China
| | - Yingyu Chen
- Department of Hematology, Fujian Institute of Hematology, Fujian Provincial Key Laboratory of Hematology, Fujian Medical University Union Hospital, Fuzhou, China
| |
Collapse
|
44
|
Liang Q, Zhou L, Li Y, Liu J, Liu Y. Nano drug delivery system reconstruct tumour vasculature for the tumour vascular normalisation. J Drug Target 2021; 30:119-130. [PMID: 33960252 DOI: 10.1080/1061186x.2021.1927056] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The abnormal structure and function of blood vessels in the TME are obvious characteristics of the tumour. Abnormal blood vessels with high leakage support the occurrence of malignant tumours and increase the possibility of tumour cell invasion and metastasis. The formation of abnormal vascular also enhances immunosuppression and prevents the delivery of chemotherapy drugs to deeper tumours. Therefore, the normalisation of tumour blood vessels is a very promising approach to improve anti-tumour efficacy, aiming to restore the structural integrity of vessels and improve drug delivery efficiency and anti-tumour immunity. In this review, we have summarised strategies to improve cancer treatment that via nano drug delivery technology regulates the normalisation of tumour blood vessels. The treatment strategies related to the structure and function of tumour blood vessels such as angiogenesis factors, tumour-associated macrophages, tumour vascular endothelial cells, tumour-associated fibroblasts and immune checkpoints in the TME were mainly discussed. The normalisation of tumour blood vessels presents new opportunities and challenges for the more efficient delivery of nanoparticles to tumour tissues and cells and an innovative combination of treatments for cancer.
Collapse
Affiliation(s)
- Qiangwei Liang
- Department of Pharmaceutics, School of Pharmacy, Ningxia Medical University, Yinchuan, China
| | - Liyue Zhou
- Department of Pharmaceutics, School of Pharmacy, Ningxia Medical University, Yinchuan, China
| | - Yifan Li
- Department of Pharmaceutics, School of Pharmacy, Ningxia Medical University, Yinchuan, China
| | - Jinxia Liu
- Department of Pharmaceutics, School of Pharmacy, Ningxia Medical University, Yinchuan, China
| | - Yanhua Liu
- Department of Pharmaceutics, School of Pharmacy, Ningxia Medical University, Yinchuan, China.,Key Laboratory of Hui Ethnic Medicine Modernization, Ministry of Education, Ningxia Medical University, Yinchuan, China
| |
Collapse
|
45
|
Lammari N, Louaer O, Meniai AH, Fessi H, Elaissari A. Plant oils: From chemical composition to encapsulated form use. Int J Pharm 2021; 601:120538. [PMID: 33781879 DOI: 10.1016/j.ijpharm.2021.120538] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 03/05/2021] [Accepted: 03/22/2021] [Indexed: 12/16/2022]
Abstract
The last decade has witnessed a burgeoning global movement towards essential and vegetable oils in the food, agriculture, pharmaceutical, cosmetic, and textile industries thanks to their natural and safe status, broad acceptance by consumers, and versatile functional properties. However, efforts to develop new therapy or functional agents based on plant oils have met with challenges of limited stability and/or reduced efficacy. As a result, there has been increased research interest in the encapsulation of plant oils, whereby the nanocarriers serve as barrier between plant oils and the environment and control oil release leading to improved efficacy, reduced toxicity and enhanced patient compliance and convenience. In this review, special concern has been addressed to the encapsulation of essential and vegetable oils in three types of nanocarriers: polymeric nanoparticles, liposomes and solid lipid nanoparticles. First, the chemical composition of essential and vegetable oils was handled. Moreover, we gather together the research findings reported by the literature regarding the different techniques used to generate these nanocarriers with their significant findings. Finally, differences and similarities between these nanocarriers are discussed, along with current and future applications that are warranted by their structures and properties.
Collapse
Affiliation(s)
- Narimane Lammari
- Univ Lyon, University Claude Bernard Lyon-1, CNRS, ISA-UMR 5280, 69622 Villeurbanne, France; Environmental Process Engineering Laboratory, University Constantine 3, Salah Boubnider, Constantine, Algeria
| | - Ouahida Louaer
- Environmental Process Engineering Laboratory, University Constantine 3, Salah Boubnider, Constantine, Algeria
| | - Abdeslam Hassen Meniai
- Environmental Process Engineering Laboratory, University Constantine 3, Salah Boubnider, Constantine, Algeria
| | - Hatem Fessi
- Univ Lyon, Université Claude Bernard Lyon-1, CNRS, LAGEP UMR 5007, F-69622 Lyon, France
| | - Abdelhamid Elaissari
- Univ Lyon, University Claude Bernard Lyon-1, CNRS, ISA-UMR 5280, 69622 Villeurbanne, France.
| |
Collapse
|
46
|
Drillis G, Goulielmaki M, Spandidos DA, Aggelaki S, Zoumpourlis V. Non-coding RNAs (miRNAs and lncRNAs) and their roles in lymphogenesis in all types of lymphomas and lymphoid malignancies. Oncol Lett 2021; 21:393. [PMID: 33777216 PMCID: PMC7988683 DOI: 10.3892/ol.2021.12654] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 02/26/2021] [Indexed: 12/16/2022] Open
Abstract
Contemporary developments in molecular biology have been combined with discoveries on the analysis of the role of all non-coding RNAs (ncRNAs) in human diseases, particularly in cancer, by examining their roles in cells. Currently, included among these common types of cancer, are all the lymphomas and lymphoid malignancies, which represent a diverse group of neoplasms and malignant disorders. Initial data suggest that non-coding RNAs, particularly long ncRNAs (lncRNAs), play key roles in oncogenesis and that lncRNA-mediated biology is an important key pathway to cancer progression. Other non-coding RNAs, termed microRNAs (miRNAs or miRs), are very promising cancer molecular biomarkers. They can be detected in tissues, cell lines, biopsy material and all biological fluids, such as blood. With the number of well-characterized cancer-related lncRNAs and miRNAs increasing, the study of the roles of non-coding RNAs in cancer is bringing forth new hypotheses of the biology of cancerous cells. For the first time, to the best of our knowledge, the present review provides an up-to-date summary of the recent literature referring to all diagnosed ncRNAs that mediate the pathogenesis of all types of lymphomas and lymphoid malignancies.
Collapse
Affiliation(s)
- Georgios Drillis
- 1st Internal Medicine Clinic, Medical School, Laiko University Hospital of Athens, 115 27 Athens, Greece
| | - Maria Goulielmaki
- Biomedical Applications Unit, Institute of Chemical Biology, National Hellenic Research Foundation (NHRF), 116 35 Athens, Greece
| | - Demetrios A Spandidos
- Laboratory of Clinical Virology, Medical School, University of Crete, 71003 Heraklion, Greece
| | - Sofia Aggelaki
- Oncology Unit, Medical School, University of Crete, 71003 Heraklion, Greece
| | - Vassilios Zoumpourlis
- Biomedical Applications Unit, Institute of Chemical Biology, National Hellenic Research Foundation (NHRF), 116 35 Athens, Greece
| |
Collapse
|
47
|
Xu K, Zhang L, Gu Y, Yang H, Du B, Liu H, Li Y. Increased the TMZ concentration in brain by poly(2-ethyl-2-oxazoline) conjugated temozolomide prodrug micelles for glioblastoma treatment. Eur Polym J 2021. [DOI: 10.1016/j.eurpolymj.2020.110232] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
48
|
Maity S, Adhikari M, Banerjee S, Guchhait R, Chatterjee A, Pramanick K. Critical analysis of biophysicochemical parameters for qualitative improvement of phytogenic nanoparticles. Biotechnol Prog 2020; 37:e3114. [PMID: 33345468 DOI: 10.1002/btpr.3114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Revised: 12/01/2020] [Accepted: 12/14/2020] [Indexed: 11/10/2022]
Abstract
Conventional chemical approaches for synthesizing nanoparticles (NPs) may restrict their applicability as they are not eco-friendly, energetically efficient and often involve toxic reducing/capping agents; but phytonanotechnology enabled the synthesis of safe, inexpensive, highly biocompatible NPs. In this regard, thorough understanding of green components and the modulatory effects of different reaction conditions on the physicochemical parameters of green synthesized NPs would be a prerequisite, which is not depicted elsewhere. This review critically analyzes the relevant reaction conditions from their mechanistic viewpoints in plant-based synthesis of NPs arising fundamental issues which need to be determined carefully. The size, stability and surface chemistry of phytogenic NPs may be fabricated as a function of multiple interconnected reaction parameters and the plant species used. The therapeutic potential of phytogenic NPs may depend on the plant species used; and so the meticulous understanding of physicochemical parameters and the family wise shorting of elite plant species may potentially benefit the theranostic future of plant-based NPs.
Collapse
Affiliation(s)
- Sukhendu Maity
- Integrative Biology Research Unit, Department of Life Sciences, Presidency University, Kolkata, India
| | - Madhuchhanda Adhikari
- Integrative Biology Research Unit, Department of Life Sciences, Presidency University, Kolkata, India
| | - Sambuddha Banerjee
- Integrative Biology Research Unit, Department of Life Sciences, Presidency University, Kolkata, India
| | - Rajkumar Guchhait
- Integrative Biology Research Unit, Department of Life Sciences, Presidency University, Kolkata, India
| | - Ankit Chatterjee
- Integrative Biology Research Unit, Department of Life Sciences, Presidency University, Kolkata, India
| | - Kousik Pramanick
- Integrative Biology Research Unit, Department of Life Sciences, Presidency University, Kolkata, India
| |
Collapse
|
49
|
Drug Delivery Systems of Natural Products in Oncology. Molecules 2020; 25:molecules25194560. [PMID: 33036240 PMCID: PMC7582809 DOI: 10.3390/molecules25194560] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 09/30/2020] [Accepted: 10/03/2020] [Indexed: 02/07/2023] Open
Abstract
In recent decades, increasing interest in the use of natural products in anticancer therapy field has been observed, mainly due to unsolved drug-resistance problems. The antitumoral effect of natural compounds involving different signaling pathways and cellular mechanisms has been largely demonstrated in in vitro and in vivo studies. The encapsulation of natural products into different delivery systems may lead to a significant enhancement of their anticancer efficacy by increasing in vivo stability and bioavailability, reducing side adverse effects and improving target-specific activity. This review will focus on research studies related to nanostructured systems containing natural compounds for new drug delivery tools in anticancer therapies.
Collapse
|
50
|
Hossian AKMN, Jois SD, Jonnalagadda SC, Mattheolabakis G. Nucleic Acid Delivery with α-Tocopherol-Polyethyleneimine-Polyethylene Glycol Nanocarrier System. Int J Nanomedicine 2020; 15:6689-6703. [PMID: 32982227 PMCID: PMC7494428 DOI: 10.2147/ijn.s259724] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 07/30/2020] [Indexed: 12/27/2022] Open
Abstract
Purpose Nucleic acid-based therapies are a promising therapeutic tool. The major obstacle in their clinical translation is their efficient delivery to the desired tissue. We developed a novel nanosized delivery system composed of conjugates of α-tocopherol, polyethyleneimine, and polyethylene glycol (TPP) to deliver nucleic acids. Methods We synthesized a panel of TPP molecules using different molecular weights of PEG and PEI and analyzed with various analytical approaches. The optimized version of TPP (TPP111 - the 1:1:1 molecular ratio) was self-assembled in water to produce nanostructures and then evaluated in diversified in vitro and in vivo studies. Results Through a panel of synthesized molecules, TPP111 conjugate components self-assembled in water, forming globular shaped nanostructures of ~90 nm, with high nucleic acid entrapment efficiency. The polymer had low cytotoxicity in vitro and protected nucleic acids from nucleases. Using a luciferase-expressing plasmid, TPP111-plasmid nano-complexes were rapidly up-taken by cancer cells in vitro and induced strong transfection, comparable to PEI. Colocalization of the nano-complexes and endosomes/lysosomes suggested an endosome-mediated uptake. Using a subcutaneous tumor model, intravenously injected nano-complexes preferentially accumulated to the tumor area over 24 h. Conclusion These results indicate that we successfully synthesized the TPP111 nanocarrier system, which can deliver nucleic acids in vitro and in vivo and merits further evaluation.
Collapse
Affiliation(s)
- A K M Nawshad Hossian
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, Monroe, LA, USA
| | - Seetharama D Jois
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, Monroe, LA, USA
| | | | - George Mattheolabakis
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, Monroe, LA, USA
| |
Collapse
|