1
|
Kołodziej A, Rachwał M, Długoń E, Ziąbka M, Wesełucha-Birczyńska A. Spectroscopic Study of Micro-/Nano-Hydroxyapatite Polymer Composites Modified with Carbon Nanofibers. APPLIED SPECTROSCOPY 2025; 79:741-755. [PMID: 39956976 DOI: 10.1177/00037028251316290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/18/2025]
Abstract
Nowadays, novel biomaterials are under intense research because they are part of promising therapies for the treatment of age-related diseases such as osteoporosis and bone defects. In the presented study, composites of poly(ε-caprolactone) (PCL), micro and nano hydroxyapatite (µ-HAp and n-HAp) and carbon nanofibers (CNFs) were prepared. The influence of additives on polymeric matrix was analyzed using scanning electron microscopy (SEM), Raman micro-spectroscopy, Raman mapping, and two-dimensional correlation spectroscopy (2D-COS). The bioactivity in vitro was evaluated by a 21-day incubation of prepared membranes in simulated body fluid (SBF). It was concluded that additives can behave as crystallization nuclei of PCL, but they are also located across the entire surface of PCL spherulites, not only in the center. With an increasing content of HAp additives, polymeric spherulites become smaller. The type of HAp (µ-HAp or n-HAp) influences the PCL matrix differently, as confirmed by 2D-COS. The component whose addition leads to most significant changes in the polymer is CNFs; polymeric spherulites are small to the extent that they are not distinguishable, and the overall amorphousness of the polymer is the highest among all tested materials, as is its hydrophobicity. The bioactivity test indicated that the membrane with the greatest potential for use as a biomaterial in bone tissue engineering is one consisting of n-HAp (15 wt%) and CNFs, as very uniform coverage of the produced apatite was observed on the surface of this membrane after incubation in SBF.
Collapse
Affiliation(s)
- Anna Kołodziej
- Faculty of Chemistry, Jagiellonian University, Kraków, Poland
| | | | - Elżbieta Długoń
- Faculty of Materials Science and Ceramics, AGH-University of Science and Technology, Kraków, Poland
| | - Magdalena Ziąbka
- Faculty of Materials Science and Ceramics, AGH-University of Science and Technology, Kraków, Poland
| | | |
Collapse
|
2
|
Shao T, Noroozifar M, Kraatz HB. Divalent metal ion modulation of a simple peptide-based hydrogel: self-assembly and viscoelastic properties. SOFT MATTER 2024; 20:2720-2729. [PMID: 38454905 DOI: 10.1039/d3sm01544k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/09/2024]
Abstract
Peptide self-assembly has been highly studied to understand the pathways in forming higher order structures along with the development and application of resulting hydrogel materials. Driven by noncovalent interactions, peptide hydrogels are stimuli-responsive to any addition to its gelling conditions. Here, a Phe-His based peptide, C14-FH(Trt)-OH, was synthesized and characterized with 1H NMR, FT-IR, MS, UV-vis spectroscopies and elemental analysis. Based on SEM imaging, the dipeptide conjugate was capable of forming a nanofibrous, interconnected network encapsulating buffer to produce a supramolecular hydrogel. Through the addition of Zn2+ and Cu2+, there is a clear change in the self-assembled nanostructures characterized through SEM. With this effect on self-assembly follows a change in the viscoelastic properties of the material, as determined through rheological frequency sweeps, with 2 and 3 orders of magnitude decreases in the elastic modulus G' in the presence of Zn2+ and Cu2+ respectively. This highlights the tunability of soft material properties with peptide design and self-assembly, through metal ions and Nδ-directed coordination.
Collapse
Affiliation(s)
- Tsuimy Shao
- Department of Chemistry, University of Toronto, 80 St. George Street, M5S 3H6, Toronto, Canada
- Department of Physical and Environmental Sciences, University of Toronto Scarborough, 1065 Military Trail, M1C 1A4, Scarborough, Canada.
| | - Meissam Noroozifar
- Department of Physical and Environmental Sciences, University of Toronto Scarborough, 1065 Military Trail, M1C 1A4, Scarborough, Canada.
| | - Heinz-Bernhard Kraatz
- Department of Chemistry, University of Toronto, 80 St. George Street, M5S 3H6, Toronto, Canada
- Department of Physical and Environmental Sciences, University of Toronto Scarborough, 1065 Military Trail, M1C 1A4, Scarborough, Canada.
| |
Collapse
|
3
|
Giorgi Z, Veneruso V, Petillo E, Veglianese P, Perale G, Rossi F. Biomaterials and Cell Therapy Combination in Central Nervous System Treatments. ACS APPLIED BIO MATERIALS 2024; 7:80-98. [PMID: 38158393 PMCID: PMC10792669 DOI: 10.1021/acsabm.3c01058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 12/07/2023] [Accepted: 12/11/2023] [Indexed: 01/03/2024]
Abstract
Current pharmacological and surgical therapies for the central nervous system (CNS) show a limited capacity to reduce the damage progression; that together with the intrinsic limited capability of the CNS to regenerate greatly reduces the hopes of recovery. Among all the therapies proposed, the tissue engineering strategies supplemented with therapeutic stem cells remain the most promising. Neural tissue engineering strategies are based on the development of devices presenting optimal physical, chemical, and mechanical properties which, once inserted in the injured site, can support therapeutic cells, limiting the effect of a hostile environment and supporting regenerative processes. Thus, this review focuses on the employment of hydrogel and nanofibrous scaffolds supplemented with stem cells as promising therapeutic tools for the central and peripheral nervous systems in preclinical and clinical applications.
Collapse
Affiliation(s)
- Zoe Giorgi
- Department
of Chemistry, Materials and Chemical Engineering “Giulio Natta”, Politecnico di Milano, piazza Leonardo da Vinci 32, 20133, Milan, Italy
| | - Valeria Veneruso
- Istituto
di Ricerche Farmacologiche Mario Negri IRCCS, Via Mario Negri 2, 20156 Milan, Italy
- Faculty
of Biomedical Sciences, University of Southern
Switzerland (USI), Via
Buffi 13, 6900 Lugano, Switzerland
| | - Emilia Petillo
- Department
of Chemistry, Materials and Chemical Engineering “Giulio Natta”, Politecnico di Milano, piazza Leonardo da Vinci 32, 20133, Milan, Italy
- Istituto
di Ricerche Farmacologiche Mario Negri IRCCS, Via Mario Negri 2, 20156 Milan, Italy
| | - Pietro Veglianese
- Istituto
di Ricerche Farmacologiche Mario Negri IRCCS, Via Mario Negri 2, 20156 Milan, Italy
- Faculty
of Biomedical Sciences, University of Southern
Switzerland (USI), Via
Buffi 13, 6900 Lugano, Switzerland
| | - Giuseppe Perale
- Faculty
of Biomedical Sciences, University of Southern
Switzerland (USI), Via
Buffi 13, 6900 Lugano, Switzerland
- Ludwig
Boltzmann Institute for Experimental and Clinical Traumatology, Donaueschingenstrasse 13, 1200 Vienna, Austria
| | - Filippo Rossi
- Department
of Chemistry, Materials and Chemical Engineering “Giulio Natta”, Politecnico di Milano, piazza Leonardo da Vinci 32, 20133, Milan, Italy
- Faculty
of Biomedical Sciences, University of Southern
Switzerland (USI), Via
Buffi 13, 6900 Lugano, Switzerland
| |
Collapse
|
4
|
Baltaci E, Bilmenoglu C, Ozgur O, Ozveren N. Effect of three different remineralising agents on prevention against acidic erosion of primary teeth: an in vitro study. Eur Arch Paediatr Dent 2023; 24:651-659. [PMID: 37646903 DOI: 10.1007/s40368-023-00834-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 05/15/2023] [Indexed: 09/01/2023]
Abstract
PURPOSE This study aimed to evaluate and compare the protective effect of fluoride varnish (Enamelast™, Ultradent Inc., Cologne, Germany), casein phosphopeptide-amorphous calcium phosphate fluoride/CPP-ACPF (MI Paste Plus, GC Corp., Tokyo, Japan) and self-assembling P11-4 peptide (Curodont™ Protect, Credentis AG, Windisch, Switzerland), against acidic erosion of primary teeth. METHODS Forty primary anterior teeth were randomly assigned to four groups (n = 10): group 1: control, group 2: fluoride varnish, group 3: CPP-ACPF and group 4: self-assembling P11-4 peptide. After applying remineralising agents, except for the control group, all specimens underwent an erosive challenge of carbonated soft drink and artificial saliva for 15 cycles of 6 s each at 6-h intervals for a day. Groups were compared in terms of surface microhardness, roughness readings, and surface scanning with an extra-oral scanner (D800; 3Shape A/S) before and after the erosive process. RESULTS All experimental groups showed superior results than the control group regarding microhardness, surface roughness, and substance loss. The fluoride varnish group showed significantly favourable results in microhardness change. There was no significant difference between the experimental groups regarding surface roughness and enamel loss measurements. CONCLUSION 5% NaF fluoride varnish, CPP-ACPF and self-assembling P11-4 peptide protect the enamel of primary teeth against erosion compared to artificial saliva alone.
Collapse
Affiliation(s)
- E Baltaci
- Department of Pediatric Dentistry, Faculty of Dentistry, Trakya University, 22030, Edirne, Turkey.
| | - C Bilmenoglu
- Department of Prosthodontics, Faculty of Dentistry, Trakya University, Edirne, Turkey
| | - O Ozgur
- Department of Pediatric Dentistry, Faculty of Dentistry, Trakya University, 22030, Edirne, Turkey
| | - N Ozveren
- Department of Pediatric Dentistry, Faculty of Dentistry, Trakya University, 22030, Edirne, Turkey
| |
Collapse
|
5
|
Warren JP, Culbert MP, Miles DE, Maude S, Wilcox RK, Beales PA. Controlling the Self-Assembly and Material Properties of β-Sheet Peptide Hydrogels by Modulating Intermolecular Interactions. Gels 2023; 9:441. [PMID: 37367112 DOI: 10.3390/gels9060441] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 05/19/2023] [Accepted: 05/21/2023] [Indexed: 06/28/2023] Open
Abstract
Self-assembling peptides are a promising biomaterial with potential applications in medical devices and drug delivery. In the right combination of conditions, self-assembling peptides can form self-supporting hydrogels. Here, we describe how balancing attractive and repulsive intermolecular forces is critical for successful hydrogel formation. Electrostatic repulsion is tuned by altering the peptide's net charge, and intermolecular attractions are controlled through the degree of hydrogen bonding between specific amino acid residues. We find that an overall net peptide charge of +/-2 is optimal to facilitate the assembly of self-supporting hydrogels. If the net peptide charge is too low then dense aggregates form, while a high molecular charge inhibits the formation of larger structures. At a constant charge, altering the terminal amino acids from glutamine to serine decreases the degree of hydrogen bonding within the assembling network. This tunes the viscoelastic properties of the gel, reducing the elastic modulus by two to three orders of magnitude. Finally, hydrogels could be formed from glutamine-rich, highly charged peptides by mixing the peptides in combinations with a resultant net charge of +/-2. These results illustrate how understanding and controlling self-assembly mechanisms through modulating intermolecular interactions can be exploited to derive a range of structures with tuneable properties.
Collapse
Affiliation(s)
- James P Warren
- School of Chemistry, University of Leeds, Leeds LS2 9JT, UK
- School of Mechanical Engineering, University of Leeds, Leeds LS2 9JT, UK
- Institute of Medical and Biological Engineering, University of Leeds, Leeds LS2 9JT, UK
- Bragg Centre for Materials Research, University of Leeds, Leeds LS2 9JT, UK
| | - Matthew P Culbert
- School of Chemistry, University of Leeds, Leeds LS2 9JT, UK
- School of Mechanical Engineering, University of Leeds, Leeds LS2 9JT, UK
- Institute of Medical and Biological Engineering, University of Leeds, Leeds LS2 9JT, UK
| | - Danielle E Miles
- School of Chemistry, University of Leeds, Leeds LS2 9JT, UK
- School of Mechanical Engineering, University of Leeds, Leeds LS2 9JT, UK
- Institute of Medical and Biological Engineering, University of Leeds, Leeds LS2 9JT, UK
| | - Steven Maude
- School of Chemistry, University of Leeds, Leeds LS2 9JT, UK
| | - Ruth K Wilcox
- School of Mechanical Engineering, University of Leeds, Leeds LS2 9JT, UK
- Institute of Medical and Biological Engineering, University of Leeds, Leeds LS2 9JT, UK
| | - Paul A Beales
- School of Chemistry, University of Leeds, Leeds LS2 9JT, UK
- Bragg Centre for Materials Research, University of Leeds, Leeds LS2 9JT, UK
- Astbury Centre for Structural Biology, University of Leeds, Leeds LS2 9JT, UK
| |
Collapse
|
6
|
Kumar A, Sood A, Han SS. Technological and structural aspects of scaffold manufacturing for cultured meat: recent advances, challenges, and opportunities. Crit Rev Food Sci Nutr 2022; 63:585-612. [PMID: 36239416 DOI: 10.1080/10408398.2022.2132206] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
In vitro cultured meat is an emerging area of research focus with an innovative approach through tissue engineering (i.e., cellular engineering) to meet the global food demand. The manufacturing of lab-cultivated meat is an innovative business that alleviates life-threatening environmental issues concerning public health and animal well-being on the global platform. There has been a noteworthy advancement in cultivating artificial meat, but still, there are numerous challenges that impede the swift headway of lab-grown meat production at a commercially large scale. In this review, we focus on the manufacturing of edible scaffolds for cultured meat production. In brief, first an introduction to cultivating artificial meat and its current scenario in the market is provided. Further, a discussion on the understanding of composition, cellular, and molecular communications in muscle tissue is presented, which are vital to scaling up the production of lab-grown meat. In continuation, the major components (e.g., cells, biomaterial scaffolds, and their manufacturing technologies, media, and potential bioreactors) for cultured meat production are conferred followed by a comprehensive discussion on the most recent advances in lab-cultured meat. Finally, existing challenges and opportunities including future research perspectives for scaling-up cultured meat production are discussed with conclusive interpretations.
Collapse
Affiliation(s)
- Anuj Kumar
- School of Chemical Engineering, Yeungnam University, Gyeongsan, South Korea.,Research Institute of Cell Culture, Yeungnam University, Gyeongsan, South Korea
| | - Ankur Sood
- School of Chemical Engineering, Yeungnam University, Gyeongsan, South Korea
| | - Sung Soo Han
- School of Chemical Engineering, Yeungnam University, Gyeongsan, South Korea.,Research Institute of Cell Culture, Yeungnam University, Gyeongsan, South Korea
| |
Collapse
|
7
|
NMR and vibrational spectroscopic studies on the structure and self-assembly of Two de novo dipeptides in methanol. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.133455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
8
|
Polysaccharides-based nanofibrils: From tissue engineering to biosensor applications. Carbohydr Polym 2022; 291:119670. [DOI: 10.1016/j.carbpol.2022.119670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 05/24/2022] [Accepted: 05/25/2022] [Indexed: 11/22/2022]
|
9
|
Nadine S, Chung A, Diltemiz SE, Yasuda B, Lee C, Hosseini V, Karamikamkar S, de Barros NR, Mandal K, Advani S, Zamanian BB, Mecwan M, Zhu Y, Mofidfar M, Zare MR, Mano J, Dokmeci MR, Alambeigi F, Ahadian S. Advances in microfabrication technologies in tissue engineering and regenerative medicine. Artif Organs 2022; 46:E211-E243. [PMID: 35349178 DOI: 10.1111/aor.14232] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 02/02/2022] [Accepted: 02/28/2022] [Indexed: 12/17/2022]
Abstract
BACKGROUND Tissue engineering provides various strategies to fabricate an appropriate microenvironment to support the repair and regeneration of lost or damaged tissues. In this matter, several technologies have been implemented to construct close-to-native three-dimensional structures at numerous physiological scales, which are essential to confer the functional characteristics of living tissues. METHODS In this article, we review a variety of microfabrication technologies that are currently utilized for several tissue engineering applications, such as soft lithography, microneedles, templated and self-assembly of microstructures, microfluidics, fiber spinning, and bioprinting. RESULTS These technologies have considerably helped us to precisely manipulate cells or cellular constructs for the fabrication of biomimetic tissues and organs. Although currently available tissues still lack some crucial functionalities, including vascular networks, innervation, and lymphatic system, microfabrication strategies are being proposed to overcome these issues. Moreover, the microfabrication techniques that have progressed to the preclinical stage are also discussed. CONCLUSIONS This article aims to highlight the advantages and drawbacks of each technique and areas of further research for a more comprehensive and evolving understanding of microfabrication techniques in terms of tissue engineering and regenerative medicine applications.
Collapse
Affiliation(s)
- Sara Nadine
- Terasaki Institute for Biomedical Innovation (TIBI), Los Angeles, California, USA.,CICECO - Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, Aveiro, Portugal
| | - Ada Chung
- Department of Psychology, University of California-Los Angeles, Los Angeles, California, USA
| | | | - Brooke Yasuda
- Terasaki Institute for Biomedical Innovation (TIBI), Los Angeles, California, USA.,Department of Psychology, University of California-Los Angeles, Los Angeles, California, USA
| | - Charles Lee
- Terasaki Institute for Biomedical Innovation (TIBI), Los Angeles, California, USA.,Department of Veterinary Pathobiology, Texas A&M University, College Station, Texas, USA.,Station 1, Lawrence, Massachusetts, USA
| | - Vahid Hosseini
- Terasaki Institute for Biomedical Innovation (TIBI), Los Angeles, California, USA
| | - Solmaz Karamikamkar
- Terasaki Institute for Biomedical Innovation (TIBI), Los Angeles, California, USA
| | | | - Kalpana Mandal
- Terasaki Institute for Biomedical Innovation (TIBI), Los Angeles, California, USA
| | - Shailesh Advani
- Terasaki Institute for Biomedical Innovation (TIBI), Los Angeles, California, USA
| | | | - Marvin Mecwan
- Terasaki Institute for Biomedical Innovation (TIBI), Los Angeles, California, USA
| | - Yangzhi Zhu
- Terasaki Institute for Biomedical Innovation (TIBI), Los Angeles, California, USA
| | - Mohammad Mofidfar
- Department of Chemistry, Stanford University, Palo Alto, California, USA
| | | | - João Mano
- CICECO - Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, Aveiro, Portugal
| | - Mehmet Remzi Dokmeci
- Terasaki Institute for Biomedical Innovation (TIBI), Los Angeles, California, USA
| | - Farshid Alambeigi
- Walker Department of Mechanical Engineering, University of Texas at Austin, Austin, Texas, USA
| | - Samad Ahadian
- Terasaki Institute for Biomedical Innovation (TIBI), Los Angeles, California, USA
| |
Collapse
|
10
|
He T, Qiao S, Ma C, Peng Z, Wu Z, Ma C, Han L, Deng Q, Zhang T, Zhu Y, Pan G. FEK self-assembled peptide hydrogels facilitate primary hepatocytes culture and pharmacokinetics screening. J Biomed Mater Res B Appl Biomater 2022; 110:2015-2027. [PMID: 35301798 DOI: 10.1002/jbm.b.35056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 09/11/2021] [Accepted: 10/05/2021] [Indexed: 11/10/2022]
Abstract
A FEFEFKFK (FEK, F, phenylalaninyl; E, glutamyl; K, lysinyl)-based self-assembling peptide hydrogel (FEK-SAPH) was developed to replace sandwich culture (SC) for improved culture of primary hepatocytes in vitro. Under neutral conditions, FEK self-assembles to form β-sheet nanofibers, which in turn form FEK-SAPH. For the culture of rat primary hepatocytes (RPH), the use of FEK-SAPH simplified operation steps and promoted excellent cell-cell interactions while maintaining the SC-related RPH polarity trend. Compared with SC, FEK-SAPH cultured RPH for 14 days, the bile duct network was formed, the secretion of albumin and urea was improved, and the metabolic clearance rate based on cytochrome P450 (CYPs) was comparable. In FEK-SAPH culture, the expression level of the biliary efflux transporter bile salt export pump increased by 230.7%, while the biliary excretion index value of deuterium-labeled sodium taurocholate (d8-TCA) differed slightly from the SC value (72% and 77%, respectively, p = .0195). The inhibitory effect of cholestasis drugs on FEK-SAPH was significantly higher than that of SC. In FEK-SAPH, hepatoprotective drugs were more effective in antagonizing hepatotoxicity induced by lithocholic acid (LCA). FEK-SAPH cultured RPH with hepatoprotective drugs can better recover from LCA-induced damage. In summary, FEK-SAPH can be used as a substitute for SC for pharmacokinetic screening to evaluate the drug absorption, disposition, metabolism, excretion, and toxicity (ADMET) in hepatocytes.
Collapse
Affiliation(s)
- Ting He
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing, China.,Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Shida Qiao
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Chen Ma
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Zhaoliang Peng
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Zhitao Wu
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China.,Nanjing University of Chinese Medicine, Nanjing, China
| | - Chenhui Ma
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Li Han
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Qiangqiang Deng
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Tianwei Zhang
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Yishen Zhu
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, China
| | - Guoyu Pan
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
11
|
Han L, Wang Z, Chen H, Li J, Zhang S, Zhang S, Shao S, Zhang Y, Shen C, Tao H. Sa12b-Modified Functional Self-Assembling Peptide Hydrogel Enhances the Biological Activity of Nucleus Pulposus Mesenchymal Stem Cells by Inhibiting Acid-Sensing Ion Channels. Front Cell Dev Biol 2022; 10:822501. [PMID: 35252187 PMCID: PMC8888415 DOI: 10.3389/fcell.2022.822501] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 01/26/2022] [Indexed: 01/08/2023] Open
Abstract
Various hydrogels have been studied for nucleus pulposus regeneration. However, they failed to overcome the changes in the acidic environment during intervertebral disc degeneration. Therefore, a new functionalized peptide RAD/SA1 was designed by conjugating Sa12b, an inhibitor of acid-sensing ion channels, onto the C-terminus of RADA16-I. Then, the material characteristics and biocompatibility of RAD/SA1, and the bioactivities and mechanisms of degenerated human nucleus pulposus mesenchymal stem cells (hNPMSCs) were evaluated. Atomic force microscopy (AFM) and scanning electron microscopy (SEM) confirmed that RAD/SA1 self-assembling into three-dimensional (3D) nanofiber hydrogel scaffolds under acidic conditions. Analysis of the hNPMSCs cultured in the 3D scaffolds revealed that both RADA16-I and RAD/SA1 exhibited reliable attachment and extremely low cytotoxicity, which were verified by SEM and cytotoxicity assays, respectively. The results also showed that RAD/SA1 increased the proliferation of hNPMSCs compared to that in culture plates and pure RADA16-I. Quantitative reverse transcription polymerase chain reaction, enzyme-linked immunosorbent assay, and western blotting demonstrated that the expression of collagen I was downregulated, while collagen II, aggrecan, and SOX-9 were upregulated. Furthermore, Ca2+ concentration measurement and western blotting showed that RAD/SA1 inhibited the expression of p-ERK through Ca2+-dependent p-ERK signaling pathways. Therefore, the functional self-assembling peptide nanofiber hydrogel designed with the short motif of Sa12b could be used as an excellent scaffold for nucleus pulposus tissue engineering. Moreover, RAD/SA1 exhibits great potential applications in the regeneration of mildly degenerated nucleus pulposus.
Collapse
Affiliation(s)
- Letian Han
- Department of Orthopedics, The First Affiliated Hospital of Anhui Medical University, Hefei, China.,Department of Spine Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Ziyu Wang
- Department of Clinical Laboratory, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Haoyu Chen
- Department of Orthopedics, The First Affiliated Hospital of Anhui Medical University, Hefei, China.,Department of Spine Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Jie Li
- Department of Clinical Laboratory, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Shengquan Zhang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Sumei Zhang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Shanzhong Shao
- Department of Orthopedics, The First Affiliated Hospital of Anhui Medical University, Hefei, China.,Department of Spine Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Yinshun Zhang
- Department of Orthopedics, The First Affiliated Hospital of Anhui Medical University, Hefei, China.,Department of Spine Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Cailiang Shen
- Department of Orthopedics, The First Affiliated Hospital of Anhui Medical University, Hefei, China.,Department of Spine Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Hui Tao
- Department of Orthopedics, The First Affiliated Hospital of Anhui Medical University, Hefei, China.,Department of Spine Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| |
Collapse
|
12
|
Peressotti S, Koehl GE, Goding JA, Green RA. Self-Assembling Hydrogel Structures for Neural Tissue Repair. ACS Biomater Sci Eng 2021; 7:4136-4163. [PMID: 33780230 PMCID: PMC8441975 DOI: 10.1021/acsbiomaterials.1c00030] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 03/10/2021] [Indexed: 12/12/2022]
Abstract
Hydrogel materials have been employed as biological scaffolds for tissue regeneration across a wide range of applications. Their versatility and biomimetic properties make them an optimal choice for treating the complex and delicate milieu of neural tissue damage. Aside from finely tailored hydrogel properties, which aim to mimic healthy physiological tissue, a minimally invasive delivery method is essential to prevent off-target and surgery-related complications. The specific class of injectable hydrogels termed self-assembling peptides (SAPs), provide an ideal combination of in situ polymerization combined with versatility for biofunctionlization, tunable physicochemical properties, and high cytocompatibility. This review identifies design criteria for neural scaffolds based upon key cellular interactions with the neural extracellular matrix (ECM), with emphasis on aspects that are reproducible in a biomaterial environment. Examples of the most recent SAPs and modification methods are presented, with a focus on biological, mechanical, and topographical cues. Furthermore, SAP electrical properties and methods to provide appropriate electrical and electrochemical cues are widely discussed, in light of the endogenous electrical activity of neural tissue as well as the clinical effectiveness of stimulation treatments. Recent applications of SAP materials in neural repair and electrical stimulation therapies are highlighted, identifying research gaps in the field of hydrogels for neural regeneration.
Collapse
Affiliation(s)
- Sofia Peressotti
- Department
of Bioengineering and Centre for Neurotechnology, Imperial College London, London SW72AS, United Kingdom
| | - Gillian E. Koehl
- Department
of Bioengineering and Centre for Neurotechnology, Imperial College London, London SW72AS, United Kingdom
| | - Josef A. Goding
- Department
of Bioengineering and Centre for Neurotechnology, Imperial College London, London SW72AS, United Kingdom
| | - Rylie A. Green
- Department
of Bioengineering and Centre for Neurotechnology, Imperial College London, London SW72AS, United Kingdom
| |
Collapse
|
13
|
Florio D, Di Natale C, Scognamiglio PL, Leone M, La Manna S, Di Somma S, Netti PA, Malfitano AM, Marasco D. Self-assembly of bio-inspired heterochiral peptides. Bioorg Chem 2021; 114:105047. [PMID: 34098256 DOI: 10.1016/j.bioorg.2021.105047] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 05/25/2021] [Accepted: 05/26/2021] [Indexed: 10/21/2022]
Abstract
Peptide hydrogels, deriving from natural protein fragments, present unique advantages as compatibility and low cost of production that allow their wide application in different fields as wound healing, cell delivery and tissue regeneration. To engineer new biomaterials, the change of the chirality of single amino acids demonstrated a powerful approach to modulate the self-assembly mechanism. Recently we unveiled that a small stretch spanning residues 268-273 in the C-terminal domain (CTD) of Nucleophosmin 1 (NPM1) is an amyloid sequence. Herein, we performed a systematic D-scan of this sequence and analyzed the structural properties of obtained peptides. The conformational and kinetic features of self-aggregates and the morphologies of derived microstructures were investigated by means of different biophysical techniques, as well as the compatibility of hydrogels was evaluated in HeLa cells. All the investigated hexapeptides formed hydrogels even if they exhibited different conformational intermediates during aggregation, and they structural featured are finely tuned by introduced chiralities.
Collapse
Affiliation(s)
- Daniele Florio
- Department of Pharmacy, University of Naples "Federico II", Italy
| | - Concetta Di Natale
- Center for Advanced Biomaterial for Health Care (CABHC), Istituto Italiano di Tecnologia, Naples, Italy; Interdisciplinary Research Centre on Biomaterials (CRIB), Department of Ingegneria Chimica del Materiali e della Produzione Industriale (DICMAPI), University "Federico II", Piazzale Tecchio 80, 80125 Naples, Italy
| | - Pasqualina Liana Scognamiglio
- Center for Advanced Biomaterial for Health Care (CABHC), Istituto Italiano di Tecnologia, Naples, Italy; Interdisciplinary Research Centre on Biomaterials (CRIB), Department of Ingegneria Chimica del Materiali e della Produzione Industriale (DICMAPI), University "Federico II", Piazzale Tecchio 80, 80125 Naples, Italy
| | - Marilisa Leone
- Institute of Biostructures and Bioimaging - CNR, 80134 Naples, Italy
| | - Sara La Manna
- Department of Pharmacy, University of Naples "Federico II", Italy
| | - Sarah Di Somma
- Department of Translational Medical Science, University of Naples Federico II, 80131 Napoli, Italy
| | - Paolo Antonio Netti
- Center for Advanced Biomaterial for Health Care (CABHC), Istituto Italiano di Tecnologia, Naples, Italy; Interdisciplinary Research Centre on Biomaterials (CRIB), Department of Ingegneria Chimica del Materiali e della Produzione Industriale (DICMAPI), University "Federico II", Piazzale Tecchio 80, 80125 Naples, Italy
| | - Anna Maria Malfitano
- Department of Translational Medical Science, University of Naples Federico II, 80131 Napoli, Italy
| | - Daniela Marasco
- Department of Pharmacy, University of Naples "Federico II", Italy.
| |
Collapse
|
14
|
Advances in the Fabrication of Scaffold and 3D Printing of Biomimetic Bone Graft. Ann Biomed Eng 2021; 49:1128-1150. [PMID: 33674908 DOI: 10.1007/s10439-021-02752-9] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 02/14/2021] [Indexed: 12/26/2022]
Abstract
The need for bone grafts is tremendous, and that leads to the use of autograft, allograft, and bone graft substitutes. The biology of the bone is quite complex regarding cellular composition and architecture, hence developing a mineralized connective tissue graft is challenging. Traditionally used bone graft substitutes including metals, biomaterial coated metals and biodegradable scaffolds, suffer from persistent limitations. With the advent and rise of additive manufacturing technologies, the future of repairing bone trauma and defects seems to be optimistic. 3D printing has significant advantages, the foremost of all being faster manipulation of various biocompatible materials and live cells or tissues into the complex natural geometries necessary to mimic and stimulate cellular bone growth. The advent of new-generation bioprinters working with high-precision, micro-dispensing and direct digital manufacturing is aiding in ground-breaking organ and tissue printing, including the bone. The future bone replacement for patients holds excellent promise as scientists are moving closer to the generation of better 3D printed bio-bone grafts that will be safer and more effective. This review aims to summarize the advances in scaffold fabrication techniques, emphasizing 3D printing of biomimetic bone grafts.
Collapse
|
15
|
Gelain F, Luo Z, Rioult M, Zhang S. Self-assembling peptide scaffolds in the clinic. NPJ Regen Med 2021; 6:9. [PMID: 33597509 PMCID: PMC7889856 DOI: 10.1038/s41536-020-00116-w] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 12/03/2020] [Indexed: 12/11/2022] Open
Abstract
Well-defined scaffold hydrogels made of self-assembling peptides have found their way into clinical products. By examining the properties and applications of two self-assembling peptides-EAK16 and RADA16-we highlight the potential for translating designer biological scaffolds into commercial products.
Collapse
Affiliation(s)
- Fabrizio Gelain
- Institute for Stem-Cell Biology, Regenerative Medicine and Innovative Therapies (ISBREMIT), IRCCS Casa Sollievo della Sofferenza, 71013, San Giovanni Rotondo, Italy.
- Center for Nanomedicine and Tissue Engineering (CNTE), ASST Grande Ospedale Metropolitano Niguarda, 20162, Milan, Italy.
| | - Zhongli Luo
- College of Basic Medical Sciences, Molecular Medicine and Cancer Research Centre, Chongqing Medical University, Chongqing, 400016, China.
| | | | - Shuguang Zhang
- Laboratory of Molecular Architecture, Media Lab, Massachusetts Institute of Technology, Cambridge, MA, 02139-4307, USA.
| |
Collapse
|
16
|
Lau CYJ, Mastrobattista E. Programming supramolecular peptide materials by modulating the intermediate steps in the complex assembly pathway: Implications for biomedical applications. Curr Opin Colloid Interface Sci 2021. [DOI: 10.1016/j.cocis.2020.101396] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
17
|
Braun GA, Ary BE, Dear AJ, Rohn MCH, Payson AM, Lee DSM, Parry RC, Friedman C, Knowles TPJ, Linse S, Åkerfeldt KS. On the Mechanism of Self-Assembly by a Hydrogel-Forming Peptide. Biomacromolecules 2020; 21:4781-4794. [PMID: 33170649 DOI: 10.1021/acs.biomac.0c00989] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Self-assembling peptide-based hydrogels are a class of tunable soft materials that have been shown to be highly useful for a number of biomedical applications. The dynamic formation of the supramolecular fibrils that compose these materials has heretofore remained poorly characterized. A better understanding of this process would provide important insights into the behavior of these systems and could aid in the rational design of new peptide hydrogels. Here, we report the determination of the microscopic steps that underpin the self-assembly of a hydrogel-forming peptide, SgI37-49. Using theoretical models of linear polymerization to analyze the kinetic self-assembly data, we show that SgI37-49 fibril formation is driven by fibril-catalyzed secondary nucleation and that all the microscopic processes involved in SgI37-49 self-assembly display an enzyme-like saturation behavior. Moreover, this analysis allows us to quantify the rates of the underlying processes at different peptide concentrations and to calculate the time evolution of these reaction rates over the time course of self-assembly. We demonstrate here a new mechanistic approach for the study of self-assembling hydrogel-forming peptides, which is complementary to commonly used materials science characterization techniques.
Collapse
Affiliation(s)
- Gabriel A Braun
- Department of Chemistry, Haverford College, Haverford, Pennsylvania 19041, United States.,Department of Biochemistry and Structural Biology, Centre for Molecular Protein Science, Lund University, Lund SE-22100, Sweden
| | - Beatrice E Ary
- Department of Chemistry, Haverford College, Haverford, Pennsylvania 19041, United States
| | - Alexander J Dear
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K.,Paulson School of Engineering and Applied Science, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Matthew C H Rohn
- Department of Chemistry, Haverford College, Haverford, Pennsylvania 19041, United States
| | - Abigail M Payson
- Department of Chemistry, Haverford College, Haverford, Pennsylvania 19041, United States
| | - David S M Lee
- Department of Chemistry, Haverford College, Haverford, Pennsylvania 19041, United States
| | - Robert C Parry
- Department of Chemistry, Haverford College, Haverford, Pennsylvania 19041, United States
| | - Connie Friedman
- Department of Chemistry, Haverford College, Haverford, Pennsylvania 19041, United States
| | - Tuomas P J Knowles
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K.,Cavendish Laboratory, University of Cambridge, J J Thomson Avenue, Cambridge CB3 0HE, U.K
| | - Sara Linse
- Department of Biochemistry and Structural Biology, Centre for Molecular Protein Science, Lund University, Lund SE-22100, Sweden
| | - Karin S Åkerfeldt
- Department of Chemistry, Haverford College, Haverford, Pennsylvania 19041, United States
| |
Collapse
|
18
|
Matsugami D, Murakami T, Yoshida W, Imamura K, Bizenjima T, Seshima F, Saito A. Treatment with functionalized designer self-assembling peptide hydrogels promotes healing of experimental periodontal defects. J Periodontal Res 2020; 56:162-172. [PMID: 33022075 DOI: 10.1111/jre.12807] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 08/12/2020] [Accepted: 09/08/2020] [Indexed: 12/24/2022]
Abstract
BACKGROUND/OBJECTIVES It has been reported that self-assembling peptide (SAP) hydrogels with functionalized motifs enhance proliferation and migration of host cells. How these designer SAP hydrogels perform in the treatment of periodontal defects remains unknown. This study aimed to test the potential of local application of designer SAP hydrogels with two different functionalized motifs in the treatment of experimental periodontal defects. MATERIAL AND METHODS In vitro, viability/proliferation of rat periodontal ligament-derived cells (PDLCs) cultured on an SAP hydrogel RADA16 and RADA16 with functionalized motifs, PRG (integrin binding sequence) and PDS (laminin cell adhesion motif), was assessed. Cell morphology was analyzed by scanning electron microscopy (SEM) and confocal laser scanning microscopy (CLSM). In vivo, standardized periodontal defects were made mesially in the maxillary first molars of Wistar rats. Defects received RADA16, PRG, PDS or left unfilled. At 2 or 4 weeks postoperatively, healing was assessed by microcomputed tomography, histological and immunohistochemical methods. RESULTS Viability/proliferation of PDLCs was significantly greater on PRG than on RADA16 or PDS at 72 hours. rPDLCs in the PRG group showed enhanced elongations and cell protrusions. In vivo, at 4 weeks, bone volume fractions in the PRG and PDS groups were significantly greater than the RADA16 group. Histologically, bone formation was more clearly observed in the PRG and PDS groups compared with the RADA16 group. At 4 weeks, epithelial downgrowth in the hydrogel groups was significantly reduced compared to the Unfilled group. In Azan-Mallory staining, PDL-like bundles ran in oblique direction in the hydrogel groups. At 2 weeks, in the area near the root, proliferating cell nuclear antigen (PCNA)-positive cells were detected significantly more in the PRG group than other groups. At 4 weeks, in the middle part of the defect, a significantly greater level of vascular endothelial growth factor (VEGF)-positive cells and α-smooth muscle actin (SMA)-positive blood vessels were observed in the PRG group than in other groups. CONCLUSION The results indicate that local application of the functionalized designer SAP hydrogels, especially PRG, promotes periodontal healing by increasing cell proliferation and angiogenesis.
Collapse
Affiliation(s)
- Daisuke Matsugami
- Department of Periodontology, Tokyo Dental College, Tokyo, Japan.,Oral Health Science Center, Tokyo Dental College, Tokyo, Japan
| | - Tasuku Murakami
- Department of Periodontology, Tokyo Dental College, Tokyo, Japan
| | - Wataru Yoshida
- Department of Periodontology, Tokyo Dental College, Tokyo, Japan
| | - Kentaro Imamura
- Department of Periodontology, Tokyo Dental College, Tokyo, Japan.,Oral Health Science Center, Tokyo Dental College, Tokyo, Japan
| | | | - Fumi Seshima
- Department of Periodontology, Tokyo Dental College, Tokyo, Japan
| | - Atsushi Saito
- Department of Periodontology, Tokyo Dental College, Tokyo, Japan.,Oral Health Science Center, Tokyo Dental College, Tokyo, Japan
| |
Collapse
|
19
|
Surfactant-like peptides: From molecular design to controllable self-assembly with applications. Coord Chem Rev 2020. [DOI: 10.1016/j.ccr.2020.213418] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
20
|
Gharaei R, Tronci G, Goswami P, Davies RPW, Kirkham J, Russell SJ. Biomimetic peptide enriched nonwoven scaffolds promote calcium phosphate mineralisation. RSC Adv 2020; 10:28332-28342. [PMID: 35519117 PMCID: PMC9055731 DOI: 10.1039/d0ra02446e] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Accepted: 07/11/2020] [Indexed: 01/24/2023] Open
Abstract
Cell-free translational strategies are needed to accelerate the repair of mineralised tissues, particularly large bone defects, using minimally invasive approaches. Regenerative bone scaffolds should ideally mimic aspects of the tissue's ECM over multiple length scales and enable surgical handling and fixation during implantation in vivo. Leveraging the knowledge gained with bioactive self-assembling peptides (SAPs) and SAP-enriched electrospun fibres, we presented a cell free approach for promoting mineralisation via apatite deposition and crystal growth, in vitro, of SAP-enriched nonwoven scaffolds. The nonwoven scaffold was made by electrospinning poly(ε-caprolactone) (PCL) in the presence of either peptide P11-4 (Ac-QQRFEWEFEQQ-Am) or P11-8 (Ac QQRFOWOFEQQ-Am), in light of the polymer's fibre forming capability and its hydrolytic degradability as well as the well-known apatite nucleating capability of SAPs. The 11-residue family of peptides (P11-X) has the ability to self-assemble into β-sheet ordered structures at the nano-scale and to generate hydrogels at the macroscopic scale, some of which are capable of promoting biomineralisation due to their apatite-nucleating capability. Both variants of SAP-enriched nonwoven used in this study were proven to be biocompatible with murine fibroblasts and supported nucleation and growth of apatite minerals in simulated body fluid (SBF) in vitro. The fibrous nonwoven provided a structurally robust scaffold, with the capability to control SAP release behaviour. Up to 75% of P11-4 and 45% of P11-8 were retained in the fibres after 7 day incubation in aqueous solution at pH 7.4. The encapsulation of SAP in a nonwoven system with apatite-forming as well as localised and long-term SAP delivery capabilities is appealing as a potential means of achieving cost-effective bone repair therapy for critical size defects. A structurally robust electrospun peptide-enriched scaffold, with controlled peptide release behaviour, supports nucleation and growth of hydroxyapatite minerals in vitro.![]()
Collapse
Affiliation(s)
- Robabeh Gharaei
- Clothworkers' Centre for Textile Materials Innovation for Healthcare, University of Leeds UK
| | - Giuseppe Tronci
- Clothworkers' Centre for Textile Materials Innovation for Healthcare, University of Leeds UK .,Division of Oral Biology, School of Dentistry, St James' University Hospital Leeds UK
| | | | - Robert P Wynn Davies
- Division of Oral Biology, School of Dentistry, St James' University Hospital Leeds UK
| | - Jennifer Kirkham
- Division of Oral Biology, School of Dentistry, St James' University Hospital Leeds UK
| | - Stephen J Russell
- Clothworkers' Centre for Textile Materials Innovation for Healthcare, University of Leeds UK
| |
Collapse
|
21
|
Gupta S, Singh I, Sharma AK, Kumar P. Ultrashort Peptide Self-Assembly: Front-Runners to Transport Drug and Gene Cargos. Front Bioeng Biotechnol 2020; 8:504. [PMID: 32548101 PMCID: PMC7273840 DOI: 10.3389/fbioe.2020.00504] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Accepted: 04/29/2020] [Indexed: 12/18/2022] Open
Abstract
The translational therapies to promote interaction between cell and signal come with stringent eligibility criteria. The chemically defined, hierarchically organized, and simpler yet blessed with robust intermolecular association, the peptides, are privileged to make the cut-off for sensing the cell-signal for biologics delivery and tissue engineering. The signature service and insoluble network formation of the peptide self-assemblies as hydrogels have drawn a spell of research activity among the scientists all around the globe in the past decades. The therapeutic peptide market players are anticipating promising growth opportunities due to the ample technological advancements in this field. The presence of the other organic moieties, enzyme substrates and well-established protecting groups like Fmoc and Boc etc., bring the best of both worlds. Since the large sequences of peptides severely limit the purification and their isolation, this article reviews the account of last 5 years' efforts on novel approaches for formulation and development of single molecule amino acids, ultra-short peptide self-assemblies (di- and tri- peptides only) and their derivatives as drug/gene carriers and tissue-engineering systems.
Collapse
Affiliation(s)
- Seema Gupta
- Chemistry Department, Acharya Narendra Dev College, University of Delhi, New Delhi, India
| | - Indu Singh
- Chemistry Department, Acharya Narendra Dev College, University of Delhi, New Delhi, India
- Nucleic Acids Research Laboratory, CSIR-Institute of Genomics and Integrative Biology, New Delhi, India
| | - Ashwani K. Sharma
- Nucleic Acids Research Laboratory, CSIR-Institute of Genomics and Integrative Biology, New Delhi, India
| | - Pradeep Kumar
- Nucleic Acids Research Laboratory, CSIR-Institute of Genomics and Integrative Biology, New Delhi, India
| |
Collapse
|
22
|
Development of chitinous nanofiber-based flexible composite hydrogels capable of cell adhesion and detachment. Polym J 2020. [DOI: 10.1038/s41428-020-0324-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
23
|
Pandey G, Das PP, Ramakrishnan V. Directive Effect of Chain Length in Modulating Peptide Nano-assemblies. Protein Pept Lett 2020; 27:923-929. [PMID: 32091324 DOI: 10.2174/0929866527666200224114627] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2019] [Revised: 01/08/2020] [Accepted: 01/30/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND RADA-4 (Ac-RADARADARADARADA-NH2) is the most extensively studied and marketed self-assembling peptide, forming hydrogel, used to create defined threedimensional microenvironments for cell culture applications. OBJECTIVES In this work, we use various biophysical techniques to investigate the length dependency of RADA aggregation and assembly. METHODS We synthesized a series of RADA-N peptides, N ranging from 1 to 4, resulting in four peptides having 4, 8, 12, and 16 amino acids in their sequence. Through a combination of various biophysical methods including thioflavin T fluorescence assay, static right angle light scattering assay, Dynamic Light Scattering (DLS), electron microscopy, CD, and IR spectroscopy, we have examined the role of chain-length on the self-assembly of RADA peptide. RESULTS Our observations show that the aggregation of ionic, charge-complementary RADA motifcontaining peptides is length-dependent, with N less than 3 are not forming spontaneous selfassemblies. CONCLUSION The six biophysical experiments discussed in this paper validate the significance of chain-length on the epitaxial growth of RADA peptide self-assembly.
Collapse
Affiliation(s)
- Gaurav Pandey
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati-781039, India
| | - Prem Prakash Das
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati-781039, India
| | - Vibin Ramakrishnan
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati-781039, India
| |
Collapse
|
24
|
Kim H, Kim I, Hwang JH, Park J, Ahn H, Han EH, Lee E. Glutathione-adaptive peptide amphiphile vesicles rationally designed using positionable disulfide-bridges for effective drug transport. Polym Chem 2020. [DOI: 10.1039/d0py00504e] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The drug loading/releasing capability of GSH-responsive nanovesicles self-assembled from peptide amphiphiles was controlled by varying the location and number of disulfide-linkages in the peptide for the selective drug-release into tumor cells.
Collapse
Affiliation(s)
- Hayeon Kim
- School of Materials Science and Engineering
- Gwangju Institute of Science and Technology (GIST)
- Gwangju 61005
- Republic of Korea
| | - Inhye Kim
- School of Materials Science and Engineering
- Gwangju Institute of Science and Technology (GIST)
- Gwangju 61005
- Republic of Korea
| | - Jun Ho Hwang
- School of Materials Science and Engineering
- Gwangju Institute of Science and Technology (GIST)
- Gwangju 61005
- Republic of Korea
| | - Jaehyun Park
- School of Materials Science and Engineering
- Gwangju Institute of Science and Technology (GIST)
- Gwangju 61005
- Republic of Korea
| | - Hyungju Ahn
- Pohang Accelerator Laboratory
- Pohang University of Science and Technology
- Pohang 37673
- Republic of Korea
| | - Eun Hee Han
- Division of Bioconvergence Analysis
- Korea Basic Science Institute (KBSI)
- Cheongju 28119
- Republic of Korea
| | - Eunji Lee
- School of Materials Science and Engineering
- Gwangju Institute of Science and Technology (GIST)
- Gwangju 61005
- Republic of Korea
| |
Collapse
|
25
|
Tekin A. Towards the crystal structure of thymine: An intermolecular force field development and parallel global cluster optimizations. J Chem Phys 2019; 151:244302. [DOI: 10.1063/1.5131754] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Affiliation(s)
- Adem Tekin
- Informatics Institute, Istanbul Technical University, 34469 Maslak, Istanbul, Turkey
- Research Institute for Fundamental Sciences (TÜBİTAK-TBAE), 41470 Gebze, Kocaeli, Turkey
| |
Collapse
|
26
|
Yadav N, Chauhan MK, Chauhan VS. Short to ultrashort peptide-based hydrogels as a platform for biomedical applications. Biomater Sci 2019; 8:84-100. [PMID: 31696870 DOI: 10.1039/c9bm01304k] [Citation(s) in RCA: 81] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Short peptides have attracted significant attention from researchers in the past few years due to their easy design, synthesis and characterization, diverse functionalisation possibilities, low cost, possibility to make a large range of hierarchical nanostructures and most importantly their high biocompatibility and biodegradability. Generally, short peptides are also relatively more stable than their longer variants, non-immunogenic in nature and many of them self-assemble to provide an exciting range of nanostructures, including hydrogels. Thus, the development of short peptide-based hydrogels has become an area of intense investigation. Although these hydrogels have a water content of greater than 90%, they are surprisingly highly stable structures, and thus have been used for various biomedical applications, including cell therapeutics, drug delivery, tissue engineering and regeneration, contact lenses, biosensors, and wound healing, by different researchers. Herein, we review the progress of research in the rapidly expanding field of short to ultrashort peptide-based hydrogels and their possible applications. Special attention is paid to address and review this field with regard to the stability of peptide-based hydrogels, particularly to enzymatic degradation.
Collapse
Affiliation(s)
- Nitin Yadav
- Molecular Medicine Group, International Centre for Genetic Engineering & Biotechnology, Aruna Asaf Ali Marg, New Delhi-110067, India. and Delhi Institute of Pharmaceutical Sciences and Research, Mehrauli-Badarpur Road, Sector-3, Pushpvihar, New Delhi-110017, India
| | - Meenakshi K Chauhan
- Delhi Institute of Pharmaceutical Sciences and Research, Mehrauli-Badarpur Road, Sector-3, Pushpvihar, New Delhi-110017, India
| | - Virander S Chauhan
- Molecular Medicine Group, International Centre for Genetic Engineering & Biotechnology, Aruna Asaf Ali Marg, New Delhi-110067, India.
| |
Collapse
|
27
|
Cirillo G, Spizzirri UG, Curcio M, Nicoletta FP, Iemma F. Injectable Hydrogels for Cancer Therapy over the Last Decade. Pharmaceutics 2019; 11:E486. [PMID: 31546921 PMCID: PMC6781516 DOI: 10.3390/pharmaceutics11090486] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 09/10/2019] [Accepted: 09/17/2019] [Indexed: 01/07/2023] Open
Abstract
The interest in injectable hydrogels for cancer treatment has been significantly growing over the last decade, due to the availability of a wide range of starting polymer structures with tailored features and high chemical versatility. Many research groups are working on the development of highly engineered injectable delivery vehicle systems suitable for combined chemo-and radio-therapy, as well as thermal and photo-thermal ablation, with the aim of finding out effective solutions to overcome the current obstacles of conventional therapeutic protocols. Within this work, we have reviewed and discussed the most recent injectable hydrogel systems, focusing on the structure and properties of the starting polymers, which are mainly classified into natural or synthetic sources. Moreover, mapping the research landscape of the fabrication strategies, the main outcome of each system is discussed in light of possible clinical applications.
Collapse
Affiliation(s)
- Giuseppe Cirillo
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende (CS), Italy
| | - Umile Gianfranco Spizzirri
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende (CS), Italy.
| | - Manuela Curcio
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende (CS), Italy.
| | - Fiore Pasquale Nicoletta
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende (CS), Italy.
| | - Francesca Iemma
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende (CS), Italy.
| |
Collapse
|
28
|
Schnaider L, Ghosh M, Bychenko D, Grigoriants I, Ya'ari S, Shalev Antsel T, Matalon S, Sarig R, Brosh T, Pilo R, Gazit E, Adler-Abramovich L. Enhanced Nanoassembly-Incorporated Antibacterial Composite Materials. ACS APPLIED MATERIALS & INTERFACES 2019; 11:21334-21342. [PMID: 31134790 DOI: 10.1021/acsami.9b02839] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
The rapid advancement of peptide- and amino-acid-based nanotechnology offers new approaches for the development of biomedical materials. The utilization of fluorenylmethyloxycarbonyl (Fmoc)-decorated self-assembling building blocks for antibacterial and anti-inflammatory purposes represents promising advancements in this field. Here, we present the antibacterial capabilities of the nanoassemblies formed by Fmoc-pentafluoro-l-phenylalanine-OH, their substantial effect on bacterial morphology, as well as new methods developed for the functional incorporation of these nanoassemblies within resin-based composites. These amalgamated materials inhibit and hinder bacterial growth and viability and are not cytotoxic toward mammalian cell lines. Importantly, due to the low dosage required to confer antibacterial activity, the integration of the nanoassemblies does not affect their mechanical and optical properties. This approach expands on the growing number of accounts on the intrinsic antibacterial capabilities of self-assembling building blocks and serves as a basis for further design and development of enhanced composite materials for biomedical applications.
Collapse
|
29
|
Mahzoon S, Detamore MS. Chondroinductive Peptides: Drawing Inspirations from Cell–Matrix Interactions. TISSUE ENGINEERING PART B-REVIEWS 2019; 25:249-257. [DOI: 10.1089/ten.teb.2018.0003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Salma Mahzoon
- School of Aerospace and Mechanical Engineering, University of Oklahoma, Norman, Oklahoma
| | - Michael S. Detamore
- Stephenson School of Biomedical Engineering, University of Oklahoma, Norman, Oklahoma
| |
Collapse
|
30
|
Millar-Haskell CS, Dang AM, Gleghorn JP. Coupling synthetic biology and programmable materials to construct complex tissue ecosystems. MRS COMMUNICATIONS 2019; 9:421-432. [PMID: 31485382 PMCID: PMC6724541 DOI: 10.1557/mrc.2019.69] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Accepted: 05/15/2019] [Indexed: 05/17/2023]
Abstract
Synthetic biology combines engineering and biology to produce artificial systems with programmable features. Specifically, engineered microenvironments have advanced immensely over the past few decades, owing in part to the merging of materials with biological mimetic structures. In this review, we adapt a traditional definition of community ecology to describe "cellular ecology", or the study of the distribution of cell populations and interactions within their microenvironment. We discuss two exemplar hydrogel platforms: (1) self-assembling peptide (SAP) hydrogels and (2) Poly(ethylene) glycol (PEG) hydrogels and describe future opportunities for merging smart material design and synthetic biology within the scope of multicellular platforms.
Collapse
Affiliation(s)
| | - Allyson M. Dang
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE 19716
| | - Jason P. Gleghorn
- Department of Biomedical Engineering, University of Delaware, Newark, DE 19716
| |
Collapse
|
31
|
Panek M, Antunović M, Pribolšan L, Ivković A, Gotić M, Vukasović A, Caput Mihalić K, Pušić M, Jurkin T, Marijanović I. Bone Tissue Engineering in a Perfusion Bioreactor Using Dexamethasone-Loaded Peptide Hydrogel. MATERIALS 2019; 12:ma12060919. [PMID: 30893951 PMCID: PMC6470940 DOI: 10.3390/ma12060919] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 03/10/2019] [Accepted: 03/18/2019] [Indexed: 01/08/2023]
Abstract
The main goal of this study was the formation of bone tissue using dexamethasone (DEX)-loaded [COCH₃]-RADARADARADARADA-[CONH₂] (RADA 16-I) scaffold that has the ability to release optimal DEX concentration under perfusion force. Bone-marrow samples were collected from three patients during a hip arthroplasty. Human mesenchymal stem cells (hMSCs) were isolated and propagated in vitro in order to be seeded on scaffolds made of DEX-loaded RADA 16-I hydrogel in a perfusion bioreactor. DEX concentrations were as follows: 4 × 10-3, 4 × 10-4 and 4 × 10-5 M. After 21 days in a perfusion bioreactor, tissue was analyzed by scanning electron microscopy (SEM) and histology. Markers of osteogenic differentiation were quantified by real-time polymerase chain reaction (RT-PCR) and immunocytochemistry. Minerals were quantified and detected by the von Kossa method. In addition, DEX release from the scaffold in a perfusion bioreactor was assessed. The osteoblast differentiation was confirmed by the expression analysis of osteoblast-related genes (alkaline phosphatase (ALP), collagen I (COL1A1) and osteocalcin (OC). The hematoxylin/eosin staining confirmed the presence of cells and connective tissue, while SEM revealed morphological characteristics of cells, extracellular matrix and minerals-three main components of mature bone tissue. Immunocytochemical detection of collagen I is in concordance with given results, supporting the conclusion that scaffold with DEX concentration of 4 × 10-4 M has the optimal engineered tissue morphology. The best-engineered bone tissue is produced on scaffold loaded with 4 × 10-4 M DEX with a perfusion rate of 0.1 mL/min for 21 days. Differentiation of hMSCs on DEX-loaded RADA 16-I scaffold under perfusion force has a high potential for application in regenerative orthopedics.
Collapse
Affiliation(s)
- Marina Panek
- Department of Biology, Faculty of Science, University of Zagreb, 10 000 Zagreb, Croatia.
- Center for Translational and Clinical Research, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia.
| | - Maja Antunović
- Department of Biology, Faculty of Science, University of Zagreb, 10 000 Zagreb, Croatia.
| | - Lidija Pribolšan
- Department of Biology, Faculty of Science, University of Zagreb, 10 000 Zagreb, Croatia.
| | - Alan Ivković
- Department of Histology and Embryology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia.
- Department of Orthopaedic Surgery, University Hospital Sveti Duh, 10000 Zagreb, Croatia.
- Department of Biotechnology, University of Rijeka, 51000 Rijeka, Croatia.
| | - Marijan Gotić
- Department of Material Chemistry, Rudjer Boskovic Institute, 10000 Zagreb, Croatia.
| | - Andreja Vukasović
- Department of Histology and Embryology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia.
| | - Katarina Caput Mihalić
- Department of Biology, Faculty of Science, University of Zagreb, 10 000 Zagreb, Croatia.
| | - Maja Pušić
- Department of Biology, Faculty of Science, University of Zagreb, 10 000 Zagreb, Croatia.
| | - Tanja Jurkin
- Department of Material Chemistry, Rudjer Boskovic Institute, 10000 Zagreb, Croatia.
| | - Inga Marijanović
- Department of Biology, Faculty of Science, University of Zagreb, 10 000 Zagreb, Croatia.
| |
Collapse
|
32
|
Jain A, Globisch C, Verma S, Peter C. Coarse-Grained Simulations of Peptide Nanoparticle Formation: Role of Local Structure and Nonbonded Interactions. J Chem Theory Comput 2019; 15:1453-1462. [DOI: 10.1021/acs.jctc.8b01138] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Alok Jain
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research, Ahmedabad, Gujarat 380054, India
- Department of Chemistry, University of Konstanz, Konstanz 78464, Germany
| | - Christoph Globisch
- Department of Chemistry, University of Konstanz, Konstanz 78464, Germany
| | - Sandeep Verma
- Department of Chemistry and Center for Nanoscience, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh 208016, India
| | - Christine Peter
- Department of Chemistry, University of Konstanz, Konstanz 78464, Germany
| |
Collapse
|
33
|
Chen C, Wang J, Hao R, Wang Z, Hou Z, Zhao Y, Zong C, Xu H. Transglutaminase-Triggered Gelation and Functionalization of Designed Self-Assembling Peptides for Guiding Cell Migration. ACS APPLIED BIO MATERIALS 2018; 1:2110-2119. [PMID: 34996272 DOI: 10.1021/acsabm.8b00557] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Cuixia Chen
- State Key Laboratory of Heavy Oil Processing and the Centre for Bioengineering and Biotechnology, China University of Petroleum (East China), 66 Changjiang West Road, Qingdao 266580, China
| | - Jingxin Wang
- State Key Laboratory of Heavy Oil Processing and the Centre for Bioengineering and Biotechnology, China University of Petroleum (East China), 66 Changjiang West Road, Qingdao 266580, China
| | - Ruirui Hao
- State Key Laboratory of Heavy Oil Processing and the Centre for Bioengineering and Biotechnology, China University of Petroleum (East China), 66 Changjiang West Road, Qingdao 266580, China
| | - Zheng Wang
- State Key Laboratory of Heavy Oil Processing and the Centre for Bioengineering and Biotechnology, China University of Petroleum (East China), 66 Changjiang West Road, Qingdao 266580, China
| | - Zhe Hou
- State Key Laboratory of Heavy Oil Processing and the Centre for Bioengineering and Biotechnology, China University of Petroleum (East China), 66 Changjiang West Road, Qingdao 266580, China
| | - Yurong Zhao
- State Key Laboratory of Heavy Oil Processing and the Centre for Bioengineering and Biotechnology, China University of Petroleum (East China), 66 Changjiang West Road, Qingdao 266580, China
| | - Cheng Zong
- State Key Laboratory of Heavy Oil Processing and the Centre for Bioengineering and Biotechnology, China University of Petroleum (East China), 66 Changjiang West Road, Qingdao 266580, China
| | - Hai Xu
- State Key Laboratory of Heavy Oil Processing and the Centre for Bioengineering and Biotechnology, China University of Petroleum (East China), 66 Changjiang West Road, Qingdao 266580, China
| |
Collapse
|
34
|
Koch F, Wolff A, Mathes S, Pieles U, Saxer SS, Kreikemeyer B, Peters K. Amino acid composition of nanofibrillar self-assembling peptide hydrogels affects responses of periodontal tissue cells in vitro. Int J Nanomedicine 2018; 13:6717-6733. [PMID: 30425485 PMCID: PMC6204879 DOI: 10.2147/ijn.s173702] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Background The regeneration of tissue defects at the interface between soft and hard tissue, eg, in the periodontium, poses a challenge due to the divergent tissue requirements. A class of biomaterials that may support the regeneration at the soft-to-hard tissue interface are self-assembling peptides (SAPs), as their physicochemical and mechanical properties can be rationally designed to meet tissue requirements. Materials and methods In this work, we investigated the effect of two single-component and two complementary β-sheet forming SAP systems on their hydrogel properties such as nanofibrillar architecture, surface charge, and protein adsorption as well as their influence on cell adhesion, morphology, growth, and differentiation. Results We showed that these four 11-amino acid SAP (P11-SAP) hydrogels possessed physico-chemical characteristics dependent on their amino acid composition that allowed variabilities in nanofibrillar network architecture, surface charge, and protein adsorption (eg, the single-component systems demonstrated an ~30% higher porosity and an almost 2-fold higher protein adsorption compared with the complementary systems). Cytocompatibility studies revealed similar results for cells cultured on the four P11-SAP hydrogels compared with cells on standard cell culture surfaces. The single-component P11-SAP systems showed a 1.7-fold increase in cell adhesion and cellular growth compared with the complementary P11-SAP systems. Moreover, significantly enhanced osteogenic differentiation of human calvarial osteoblasts was detected for the single-component P11-SAP system hydrogels compared with standard cell cultures. Conclusion Thus, single-component system P11-SAP hydrogels can be assessed as suitable scaffolds for periodontal regeneration therapy, as they provide adjustable, extracellular matrix-mimetic nanofibrillar architecture and favorable cellular interaction with periodontal cells.
Collapse
Affiliation(s)
- Franziska Koch
- Institute for Chemistry and Bioanalytics, School of Life Sciences, University of Applied Sciences and Arts Northwestern Switzerland, Muttenz, Switzerland.,Department of Cell Biology, University Medicine Rostock, Rostock, Germany, .,Institute of Medical Microbiology, Virology and Hygiene, University Medicine Rostock, Rostock, Germany
| | - Anne Wolff
- Department of Cell Biology, University Medicine Rostock, Rostock, Germany,
| | - Stephanie Mathes
- Department for Chemistry and Biotechnology, Tissue Engineering, Zurich University of Applied Sciences, Wädenswil, Switzerland
| | - Uwe Pieles
- Institute for Chemistry and Bioanalytics, School of Life Sciences, University of Applied Sciences and Arts Northwestern Switzerland, Muttenz, Switzerland
| | - Sina S Saxer
- Institute for Chemistry and Bioanalytics, School of Life Sciences, University of Applied Sciences and Arts Northwestern Switzerland, Muttenz, Switzerland
| | - Bernd Kreikemeyer
- Institute of Medical Microbiology, Virology and Hygiene, University Medicine Rostock, Rostock, Germany
| | - Kirsten Peters
- Department of Cell Biology, University Medicine Rostock, Rostock, Germany,
| |
Collapse
|
35
|
Barco A, Ingham E, Fisher J, Fermor H, Davies R. On the design and efficacy assessment of self-assembling peptide-based hydrogel-glycosaminoglycan mixtures for potential repair of early stage cartilage degeneration. J Pept Sci 2018; 24:e3114. [DOI: 10.1002/psc.3114] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Revised: 06/15/2018] [Accepted: 06/19/2018] [Indexed: 01/07/2023]
Affiliation(s)
- A. Barco
- Institute of Medical and Biological Engineering; Leeds UK
| | - E. Ingham
- Institute of Medical and Biological Engineering; Leeds UK
| | - J. Fisher
- Institute of Medical and Biological Engineering; Leeds UK
| | - H. Fermor
- Institute of Medical and Biological Engineering; Leeds UK
| | | |
Collapse
|
36
|
Dao HM, Chen J, Tucker BS, Thomas V, Jun HW, Li XC, Jo S. Hemopressin-Based pH-Sensitive Hydrogel: A Potential Bioactive Platform for Drug Delivery. ACS Biomater Sci Eng 2018; 4:2435-2442. [DOI: 10.1021/acsbiomaterials.8b00423] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Huy Minh Dao
- Department of Pharmaceutics and Drug Delivery, University of Mississippi, Oxford, Mississippi 38677, United States
| | - Jun Chen
- Department of Biomedical Engineering, University of Alabama at Birmingham, Birmingham, Alabama 35294, United States
| | - Bernabe S. Tucker
- Department of Materials Science and Engineering, University of Alabama at Birmingham, Birmingham, Alabama 35294, United States
| | - Vinoy Thomas
- Department of Materials Science and Engineering, University of Alabama at Birmingham, Birmingham, Alabama 35294, United States
| | - Ho-Wook Jun
- Department of Biomedical Engineering, University of Alabama at Birmingham, Birmingham, Alabama 35294, United States
| | - Xing-Cong Li
- National Center for Natural Products Research, University of Mississippi, Oxford, Mississippi 38677, United States
| | - Seongbong Jo
- Department of Pharmaceutics and Drug Delivery, University of Mississippi, Oxford, Mississippi 38677, United States
| |
Collapse
|
37
|
Abstract
Self-assembled peptide nanostructures have been increasingly exploited as functional materials for applications in biomedicine and energy. The emergent properties of these nanomaterials determine the applications for which they can be exploited. It has recently been appreciated that nanomaterials composed of multicomponent coassembled peptides often display unique emergent properties that have the potential to dramatically expand the functional utility of peptide-based materials. This review presents recent efforts in the development of multicomponent peptide assemblies. The discussion includes multicomponent assemblies derived from short low molecular weight peptides, peptide amphiphiles, coiled coil peptides, collagen, and β-sheet peptides. The design, structure, emergent properties, and applications for these multicomponent assemblies are presented in order to illustrate the potential of these formulations as sophisticated next-generation bio-inspired materials.
Collapse
Affiliation(s)
- Danielle M Raymond
- Department of Chemistry, University of Rochester, Rochester, NY 14627-0216, USA.
| | | |
Collapse
|
38
|
Yamada Y, Chowdhury A, Schneider JP, Stetler-Stevenson WG. Macromolecule-Network Electrostatics Controlling Delivery of the Biotherapeutic Cell Modulator TIMP-2. Biomacromolecules 2018; 19:1285-1293. [PMID: 29505725 PMCID: PMC6329387 DOI: 10.1021/acs.biomac.8b00107] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Tissue inhibitor of metalloproteinase 2 (TIMP-2) is an endogenous 22 kDa proteinase inhibitor, demonstrating antitumorigenic, antimetastatic and antiangiogenic activities in vitro and in vivo. Recombinant TIMP-2 is currently undergoing preclinical testing in multiple, murine tumor models. Here we report the development of an inert, injectable peptide hydrogel matrix enabling encapsulation and sustained release of TIMP-2. We studied the TIMP-2 release profile from four β-hairpin peptide gels of varying net electrostatic charge. A negatively charged peptide gel (designated AcVES3) enabling encapsulation of 4 mg/mL of TIMP-2, without effects on rheological properties, facilitated the slow sustained release (0.9%/d) of TIMP-2 over 28 d. Released TIMP-2 is structurally intact and maintains the ability to inhibit MMP activity, as well as suppress lung cancer cell proliferation in vitro. These findings suggest that the AcVES3 hydrogel will be useful as an injectable vehicle for systemic delivery of TIMP-2 in vivo for ongoing preclinical development.
Collapse
Affiliation(s)
- Yuji Yamada
- Chemical Biology Laboratory, National Cancer Institute, National Institutes of Health, Frederick, Maryland 21701, United States
| | - Ananda Chowdhury
- Radiation Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Joel P. Schneider
- Chemical Biology Laboratory, National Cancer Institute, National Institutes of Health, Frederick, Maryland 21701, United States
| | - William G. Stetler-Stevenson
- Radiation Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, United States
| |
Collapse
|
39
|
Koch F, Müller M, König F, Meyer N, Gattlen J, Pieles U, Peters K, Kreikemeyer B, Mathes S, Saxer S. Mechanical characteristics of beta sheet-forming peptide hydrogels are dependent on peptide sequence, concentration and buffer composition. ROYAL SOCIETY OPEN SCIENCE 2018; 5:171562. [PMID: 29657766 PMCID: PMC5882690 DOI: 10.1098/rsos.171562] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Accepted: 02/09/2018] [Indexed: 06/08/2023]
Abstract
Self-assembling peptide hydrogels can be modified regarding their biodegradability, their chemical and mechanical properties and their nanofibrillar structure. Thus, self-assembling peptide hydrogels might be suitable scaffolds for regenerative therapies and tissue engineering. Owing to the use of various peptide concentrations and buffer compositions, the self-assembling peptide hydrogels might be influenced regarding their mechanical characteristics. Therefore, the mechanical properties and stability of a set of self-assembling peptide hydrogels, consisting of 11 amino acids, made from four beta sheet self-assembling peptides in various peptide concentrations and buffer compositions were studied. The formed self-assembling peptide hydrogels exhibited stiffnesses ranging from 0.6 to 205 kPa. The hydrogel stiffness was mostly affected by peptide sequence followed by peptide concentration and buffer composition. All self-assembling peptide hydrogels examined provided a nanofibrillar network formation. A maximum self-assembling peptide hydrogel dissolution of 20% was observed for different buffer solutions after 7 days. The stability regarding enzymatic and bacterial digestion showed less degradation in comparison to the self-assembling peptide hydrogel dissolution rate in buffer. The tested set of self-assembling peptide hydrogels were able to form stable scaffolds and provided a broad spectrum of tissue-specific stiffnesses that are suitable for a regenerative therapy.
Collapse
Affiliation(s)
- Franziska Koch
- School of Life Sciences, Institute for Chemistry and Bioanalytics, University of Applied Sciences and Arts Northwestern Switzerland, Muttenz, Switzerland
| | - Michael Müller
- Department for Health Science and Technology, Cartilage Engineering and Regeneration Laboratory, ETH Zurich, Zurich, Switzerland
| | - Finja König
- Master Program of Protein Science and Technology, Linköping University, Linköping, Sweden
| | - Nina Meyer
- Department for Chemistry and Biotechnology, Tissue Engineering, Zurich University of Applied Sciences, Wädenswil, Switzerland
| | - Jasmin Gattlen
- Department for Chemistry and Biotechnology, Tissue Engineering, Zurich University of Applied Sciences, Wädenswil, Switzerland
| | - Uwe Pieles
- School of Life Sciences, Institute for Chemistry and Bioanalytics, University of Applied Sciences and Arts Northwestern Switzerland, Muttenz, Switzerland
| | - Kirsten Peters
- Department of Cell Biology, University Medicine Rostock, Rostock, Germany
| | - Bernd Kreikemeyer
- Institute of Medical Microbiology, Virology and Hygiene, University Medicine Rostock, Rostock, Germany
| | - Stephanie Mathes
- Department for Chemistry and Biotechnology, Tissue Engineering, Zurich University of Applied Sciences, Wädenswil, Switzerland
| | - Sina Saxer
- School of Life Sciences, Institute for Chemistry and Bioanalytics, University of Applied Sciences and Arts Northwestern Switzerland, Muttenz, Switzerland
| |
Collapse
|
40
|
Betush RJ, Urban JM, Nilsson BL. Balancing hydrophobicity and sequence pattern to influence self-assembly of amphipathic peptides. Biopolymers 2018; 110. [PMID: 29292825 DOI: 10.1002/bip.23099] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Revised: 12/01/2017] [Accepted: 12/04/2017] [Indexed: 01/25/2023]
Abstract
Amphipathic peptides with alternating polar and nonpolar amino acid sequences efficiently self-assemble into functional β-sheet fibrils as long as the nonpolar residues have sufficient hydrophobicity. For example, the Ac-(FKFE)2 -NH2 peptide rapidly self-assembles into β-sheet bilayer nanoribbons, while Ac-(AKAE)2 -NH2 fails to self-assemble under similar conditions due to the significantly reduced hydrophobicity and β-sheet propensity of Ala relative to Phe. Herein, we systematically explore the effect of substituting only two of the four Ala residues at various positions in the Ac-(AKAE)2 -NH2 peptide with amino acids of increasing hydrophobicity, β-sheet potential, and surface area (including Phe, 1-naphthylalanine (1-Nal), 2-naphthylalanine (2-Nal), cyclohexylalanine (Cha), and pentafluorophenylalanine (F5 -Phe)) on the self-assembly propensity of the resulting sequences. It was found that double Phe variants, regardless of the position of substitution, failed to self-assemble under the conditions used in this study. In contrast, all double 1-Nal and 2-Nal variants readily self-assembled, albeit at differing rates depending on the substitution patterns. To determine whether this was due to hydrophobicity or side chain surface area, we also prepared double Cha and F5 -Phe variant peptides (both side chain groups are more hydrophobic than Phe). Each of these variants also underwent effective self-assembly, with the aromatic F5 -Phe peptides doing so with greater efficiency. These findings provide insight into the role of amino acid hydrophobicity and sequence pattern on self-assembly proclivity of amphipathic peptides and on how targeted substitutions of nonpolar residues in these sequences can be exploited to tune the characteristics of the resulting self-assembled materials.
Collapse
Affiliation(s)
- Ria J Betush
- Department of Chemistry, Gannon University, Erie, Pennsylvania
| | - Jennifer M Urban
- Department of Chemistry, University of Rochester, Rochester, New York
| | - Bradley L Nilsson
- Department of Chemistry, University of Rochester, Rochester, New York
| |
Collapse
|
41
|
Kumar K, Penugurti V, Levi G, Mastai Y, Manavathi B, Paik P. Bio-inspired synthesis of a hierarchical self-assembled zinc phosphate nanostructure in the presence of cowpea mosaic virus: in vitro cell cycle, proliferation and prospects for tissue regeneration. ACTA ACUST UNITED AC 2017; 13:015013. [PMID: 29216013 DOI: 10.1088/1748-605x/aa84e9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Self-assembly is an important auto-organization process used in designing structural biomaterials which have the potential capability to heal tissues after traumatic injury. Although various materials having the ability to heal after injury are available, there is still a substantial need to develop new improved materials. To address this issue, we have developed hierarchical three-dimensional (3D) self-assembled zinc phosphate (Zn3(PO4)2) in the presence of cowpea mosaic virus (CPMV). Zn3(PO4)2 nanoparticles are self-assembled into nanosheets with a high degree of isotropy and then self-organized into a 3D structure that can enhance surface interactions with biological entities. The self-assembled structure is formed through the auto-organization of nanoparticles of size ∼50 nm under the influence of CPMV. The cellular response of self-assembled Zn3(PO4)2 and cell-particle adhesion behavior have been investigated through in vitro studies using modeled osteoblast-like MG63 cells. Self-assembled Zn3(PO4)2 resulted in proliferation of MG63 cells of up to 310% within 7 days of incubation. A 15% higher proliferation was obtained than with commercially available hydroxyapatite (HAp). Immunofluorescent analysis of MG63 cells after co-culturing with self-assembled Zn3(PO4)2 confirmed the healthy cytoskeletal organization and dense proliferation of MG63 cells. Further, Zn3(PO4)2 exhibited ∼28% cell-cycle progression in S phase, which is higher than obtained with commercially available HAp. Overall, these results demonstrate the multiple functions of hierarchical self-assembled Zn3(PO4)2 in the regeneration of bone tissue without defects and increasing the formation of cellular networks, and suggest its use in bone tissue engineering.
Collapse
Affiliation(s)
- Koushi Kumar
- School of Engineering Sciences and Technology, University of Hyderabad, Hyderabad, India
| | | | | | | | | | | |
Collapse
|
42
|
Ling K, Men F, Wang WC, Zhou YQ, Zhang HW, Ye DW. Carbon Monoxide and Its Controlled Release: Therapeutic Application, Detection, and Development of Carbon Monoxide Releasing Molecules (CORMs). J Med Chem 2017; 61:2611-2635. [PMID: 28876065 DOI: 10.1021/acs.jmedchem.6b01153] [Citation(s) in RCA: 204] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Carbon monoxide (CO) is attracting increasing attention because of its role as a gasotransmitter with cytoprotective and homeostatic properties. Carbon monoxide releasing molecules (CORMs) are spatially and temporally controlled CO releasers that exhibit superior and more effective pharmaceutical traits than gaseous CO because of their chemistry and structure. Experimental and preclinical research in animal models has shown the therapeutic potential of inhaled CO and CORMs, and the biological effects of CO and CORMs have also been observed in preclinical trials via the genetic modulation of heme oxygenase-1 (HO-1). In this review, we describe the pharmaceutical use of CO and CORMs, methods of detecting CO release, and developments in CORM design and synthesis. Many valuable clinical CORMs formulated using macromolecules and nanomaterials are also described.
Collapse
Affiliation(s)
- Ken Ling
- Cancer Center, Tongji Hospital, Tongji Medical College , Huazhong University of Science and Technology , Wuhan 430030 , China.,Department of Anesthesiology, Union Hospital, Tongji Medical College , Huazhong University of Science and Technology , Wuhan 430030 , China
| | - Fang Men
- College of Chemistry and Molecular Sciences , Wuhan University , Wuhan 430072 , China
| | - Wei-Ci Wang
- Department of Vascular Surgery, Union Hospital, Tongji Medical College , Huazhong University of Science and Technology , Wuhan 430030 , China
| | - Ya-Qun Zhou
- Anesthesiology Institute, Tongji Hospital, Tongji Medical College , Huazhong University of Science and Technology , Wuhan 430030 , China
| | - Hao-Wen Zhang
- Cancer Center, Tongji Hospital, Tongji Medical College , Huazhong University of Science and Technology , Wuhan 430030 , China
| | - Da-Wei Ye
- Cancer Center, Tongji Hospital, Tongji Medical College , Huazhong University of Science and Technology , Wuhan 430030 , China
| |
Collapse
|
43
|
Beyond mouse cancer models: Three-dimensional human-relevant in vitro and non-mammalian in vivo models for photodynamic therapy. MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH 2017; 773:242-262. [DOI: 10.1016/j.mrrev.2016.09.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Accepted: 09/09/2016] [Indexed: 02/08/2023]
|
44
|
Nagy-Smith K, Beltramo PJ, Moore E, Tycko R, Furst EM, Schneider JP. Molecular, Local, and Network-Level Basis for the Enhanced Stiffness of Hydrogel Networks Formed from Coassembled Racemic Peptides: Predictions from Pauling and Corey. ACS CENTRAL SCIENCE 2017; 3:586-597. [PMID: 28691070 PMCID: PMC5492410 DOI: 10.1021/acscentsci.7b00115] [Citation(s) in RCA: 105] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Indexed: 05/20/2023]
Abstract
Hydrogels prepared from self-assembling peptides are promising materials for medical applications, and using both l- and d-peptide isomers in a gel's formulation provides an intuitive way to control the proteolytic degradation of an implanted material. In the course of developing gels for delivery applications, we discovered that a racemic mixture of the mirror-image β-hairpin peptides, named MAX1 and DMAX1, provides a fibrillar hydrogel that is four times more rigid than gels formed by either peptide alone-a puzzling observation. Herein, we use transmission electron microscopy, small angle neutron scattering, solid state NMR, diffusing wave, infrared, and fluorescence spectroscopies, and modeling to determine the molecular basis for the increased mechanical rigidity of the racemic gel. We find that enantiomeric peptides coassemble in an alternating fashion along the fibril long axis, forming an extended heterochiral pleat-like β-sheet, a structure predicted by Pauling and Corey in 1953. Hydrogen bonding between enantiomers within the sheet dictates the placement of hydrophobic valine side chains in the fibrils' dry interior in a manner that allows the formation of nested hydrophobic interactions between enantiomers, interactions not accessible within enantiomerically pure fibrils. Importantly, this unique molecular arrangement of valine side chains maximizes inter-residue contacts within the core of the fibrils resulting in their local stiffening, which in turn, gives rise to the significant increase in bulk mechanical rigidity observed for the racemic hydrogel.
Collapse
Affiliation(s)
- Katelyn Nagy-Smith
- Chemical
Biology Laboratory, National Cancer Institute, Frederick, Maryland 21702, United States
- Department of Chemistry and Biochemistry and Department of Chemical
and Biomolecular
Engineering, University of Delaware, Newark, Delaware 19716, United States
| | - Peter J. Beltramo
- Department of Chemistry and Biochemistry and Department of Chemical
and Biomolecular
Engineering, University of Delaware, Newark, Delaware 19716, United States
| | - Eric Moore
- Laboratory
of Chemical Physics, National Institute of Diabetes and Digestive
and Kidney Diseases, National Institutes
of Health, Bethesda, Maryland 20892-0520, United States
| | - Robert Tycko
- Laboratory
of Chemical Physics, National Institute of Diabetes and Digestive
and Kidney Diseases, National Institutes
of Health, Bethesda, Maryland 20892-0520, United States
| | - Eric M. Furst
- Department of Chemistry and Biochemistry and Department of Chemical
and Biomolecular
Engineering, University of Delaware, Newark, Delaware 19716, United States
| | - Joel P. Schneider
- Chemical
Biology Laboratory, National Cancer Institute, Frederick, Maryland 21702, United States
| |
Collapse
|
45
|
Garriga R, Jurewicz I, Seyedin S, Bardi N, Totti S, Matta-Domjan B, Velliou EG, Alkhorayef MA, Cebolla VL, Razal JM, Dalton AB, Muñoz E. Multifunctional, biocompatible and pH-responsive carbon nanotube- and graphene oxide/tectomer hybrid composites and coatings. NANOSCALE 2017; 9:7791-7804. [PMID: 28186213 DOI: 10.1039/c6nr09482a] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Here we present a route for non-covalent functionalization of carboxylated multi-walled carbon nanotubes and graphene oxide with novel two-dimensional peptide assemblies. We show that self-assembled amino-terminated biantennary and tetraantennary oligoglycine peptides (referred to as tectomers) effectively coat carboxylated multi-walled carbon nanotubes and also strongly interact with graphene oxide due to electrostatic interactions and hydrogen bonding as the driving force, respectively. The resulting hybrids can be made into free-standing conducting composites or applied in the form of thin, pH-switchable bioadhesive coatings onto graphene oxide fibers. Monitoring of cell viability of pancreatic cell lines, seeded on those CNT hybrids, show that they can be used as two- and three-dimensional scaffolds to tissue engineer tumour models for studying ex vivo the tumour development and response to treatment. This highly versatile method in producing pH-responsive hybrids and coatings offers an attractive platform for a variety of biomedical applications and for the development of functional materials such as smart textiles, sensors and bioelectronic devices.
Collapse
Affiliation(s)
- Rosa Garriga
- Departamento de Química Física, Universidad de Zaragoza, 50009 Zaragoza, Spain
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Antanavičiūtė I, Šimatonis L, Ulčinas O, Gadeikytė A, Abakevičienė B, Tamulevičius S, Mikalayeva V, Skeberdis VA, Stankevičius E, Tamulevičius T. Femtosecond laser micro-machined polyimide films for cell scaffold applications. J Tissue Eng Regen Med 2017; 12:e760-e773. [PMID: 27943611 DOI: 10.1002/term.2376] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Revised: 10/07/2016] [Accepted: 12/06/2016] [Indexed: 01/08/2023]
Abstract
Engineering of sophisticated synthetic 3D scaffolds that allow controlling behaviour and location of the cells requires advanced micro/nano-fabrication techniques. Ultrafast laser micro-machining employing a 1030-nm wavelength Yb:KGW femtosecond laser and a micro-fabrication workstation for micro-machining of commercially available 12.7 and 25.4 μm thickness polyimide (PI) film was applied. Mechanical properties of the fabricated scaffolds, i.e. arrays of differently spaced holes, were examined via custom-built uniaxial micro-tensile testing and finite element method simulations. We demonstrate that experimental micro-tensile testing results could be numerically simulated and explained by two-material model, assuming that 2-6 μm width rings around the holes possessed up to five times higher Young's modulus and yield stress compared with the rest of the laser intacted PI film areas of 'dog-bone'-shaped specimens. That was attributed to material modification around the micro-machined holes in the vicinity of the position of the focused laser beam track during trepanning drilling. We demonstrate that virgin PI films provide a suitable environment for the mobility, proliferation and intercellular communication of human bone marrow mesenchymal stem cells, and discuss how cell behaviour varies on the micro-machined PI films with holes of different diameters (3.1, 8.4 and 16.7 μm) and hole spacing (30, 35, 40 and 45 μm). We conclude that the holes of 3.1 μm diameter were sufficient for metabolic and genetic communication through membranous tunneling tubes between cells residing on the opposite sides of PI film, but prevented the trans-migration of cells through the holes. Copyright © 2016 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Ieva Antanavičiūtė
- Institute of Cardiology of Lithuanian University of Health Sciences, Sukilėlių Ave. 17, LT-50009, Lithuania
| | - Linas Šimatonis
- Institute of Materials Science of Kaunas University of Technology, K. Baršausko, Str. 59, LT-51423, Kaunas, Lithuania
| | - Orestas Ulčinas
- Institute of Materials Science of Kaunas University of Technology, K. Baršausko, Str. 59, LT-51423, Kaunas, Lithuania
| | - Aušra Gadeikytė
- Institute of Materials Science of Kaunas University of Technology, K. Baršausko, Str. 59, LT-51423, Kaunas, Lithuania
| | - Brigita Abakevičienė
- Institute of Materials Science of Kaunas University of Technology, K. Baršausko, Str. 59, LT-51423, Kaunas, Lithuania
| | - Sigitas Tamulevičius
- Institute of Materials Science of Kaunas University of Technology, K. Baršausko, Str. 59, LT-51423, Kaunas, Lithuania
| | - Valeryia Mikalayeva
- Institute of Cardiology of Lithuanian University of Health Sciences, Sukilėlių Ave. 17, LT-50009, Lithuania
| | - Vytenis Arvydas Skeberdis
- Institute of Cardiology of Lithuanian University of Health Sciences, Sukilėlių Ave. 17, LT-50009, Lithuania
| | - Edgaras Stankevičius
- Institute of Physiology and Pharmacology of Lithuanian University of Health Sciences, A. Mickevičiaus Str. 9, LT-44307, Kaunas, Lithuania
| | - Tomas Tamulevičius
- Institute of Materials Science of Kaunas University of Technology, K. Baršausko, Str. 59, LT-51423, Kaunas, Lithuania
| |
Collapse
|
47
|
Holt BD, Arnold AM, Sydlik SA. Peptide-functionalized reduced graphene oxide as a bioactive mechanically robust tissue regeneration scaffold. POLYM INT 2017. [DOI: 10.1002/pi.5375] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Brian D Holt
- Department of Chemistry; Carnegie Mellon University; Pittsburgh USA
| | - Anne M Arnold
- Department of Chemistry; Carnegie Mellon University; Pittsburgh USA
| | - Stefanie A Sydlik
- Department of Chemistry; Carnegie Mellon University; Pittsburgh USA
- Department of Biomedical Engineering; Carnegie Mellon University; Pittsburgh USA
| |
Collapse
|
48
|
Ozgur B, Sayar M. Role of Hydrophobic/Aromatic Residues on the Stability of Double-Wall β-Sheet Structures Formed by a Triblock Peptide. J Phys Chem B 2017; 121:4115-4128. [PMID: 28399374 DOI: 10.1021/acs.jpcb.7b00650] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Bioinspired self-assembling peptides serve as powerful building blocks in the manufacturing of nanomaterials with tailored features. Because of their ease of synthesis, biocompatibility, and tunable activity, this emerging branch of biomolecules has become very popular. The triblock peptide architecture designed by the Hartgerink group is a versatile system that allows control over its assembly and has been shown to demonstrate tunable bioactivity. Three main forces, Coulomb repulsion, hydrogen bonding and hydrophobicity act together to guide the triblock peptides' assembly into one-dimensional objects and hydrogels. It was shown previously that both the nanofiber morphology (e.g., intersheet spacing, formation of antiparallel/parallel β-sheets) and hydrogel rheology strictly depend on the choice of the core residue where the triblock peptide fibers with aromatic cores in general form shorter fibers and yield poor hydrogels with respect to the ones with aliphatic cores. However, an elaborate understanding of the molecular reasons behind these changes remained unclear. In this study, by using carefully designed computer based free energy calculations, we analyzed the influence of the core residue on the formation of double-wall fibers and single-wall β-sheets. Our results demonstrate that the aromatic substitution impairs the fiber cores and this impairment is mainly associated with a reduced hydrophobic character of the aromatic side chains. Such weakening is most obvious in tryptophan containing peptides where the fiber core absorbs a significant amount of water. We also show that the ability of tyrosine to form side chain hydrogen bonds plays an indispensable role in the fiber stability. As opposed to the impairment of the fiber cores, single-wall β-sheets with aromatic faces become more stable compared to the ones with aliphatic faces suggesting that the choice of the core residue can also affect the underlying assembly mechanism. We also provide an in-depth comparison of competing structures (zero-dimensional aggregates, short and long fibers) in the triblock peptides' assembly and show that by adjusting the length of the terminal blocks, the fiber growth can be turned on or off while keeping the nanofiber morphology intact.
Collapse
Affiliation(s)
| | - Mehmet Sayar
- College of Engineering, Koc University , Istanbul, Turkey.,Chemical & Biological Engineering and Mechanical Engineering Departments, Koc University , Istanbul, Turkey
| |
Collapse
|
49
|
Moore AN, Hartgerink JD. Self-Assembling Multidomain Peptide Nanofibers for Delivery of Bioactive Molecules and Tissue Regeneration. Acc Chem Res 2017; 50:714-722. [PMID: 28191928 PMCID: PMC5462487 DOI: 10.1021/acs.accounts.6b00553] [Citation(s) in RCA: 197] [Impact Index Per Article: 24.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
![]()
Multidomain peptides (MDPs) are a class of self-assembling
peptides
that are organized in a β-sheet motif, resulting in a nanofibrous
architecture. This structure is stabilized by hydrophobic packing
in the fiber core and a hydrogen-bonding network down the fiber long
axis. Under easily controllable conditions, regulated by electrostatic
interactions between the peptides and the pH and salt composition
of the solvent, the nanofiber length can be dramatically extended,
resulting in fiber entanglement and hydrogel formation. One of the
chief strengths of this supramolecular material is that the design
criteria governing its structure and assembly are robust and permit
a wide range of modifications without disruption. This allows the
MDPs to be tailored to suit a wide range of applications, particularly
in biomedical engineering. For example, delivery of small molecules,
proteins, and cells is easily achievable. These materials can be trapped
within the matrices of the hydrogel or trapped within the hydrophobic
core of the nanofiber, depending on the cargo and the design of the
MDP. Interactions between the nanofibers and their cargo can be tailored
to alter the release profile, and in the most sophisticated cases,
different cargos can be released in a cascading time-dependent fashion.
The MDP hydrogel and its cargo can be targeted to specific locations,
as the thixotropic nature of the hydrogel allows it to be easily aspirated
into a syringe and then delivered from a narrow-bore needle. The sequence
of amino acids making up the MDP can also be modified to permit cross-linking
or enzymatic degradation. Selection of sequences with or without these
modifications allows one to control the rate of degradation in vivo
from as rapidly as 1 week to well over 6 weeks as the MDP nanofibers
are degraded to their amino acid components. MDP sequences can also
be modified to add biomimetic sequences derived from growth factors
and other signaling proteins. These chemical signals are displayed
at a very high density on the fibers’ surface, where they contribute
to the modification of cellular behavior. We have used this approach
to drive blood vessel formation, which is critical for tissue regeneration
generally and more specifically for the treatment of diseases related
to poor blood flow. MDPs represent an ideal case of bottom-up design
where control of chemical structure leads to control of self-assembly
and nanostructure and thereby control of material properties that
collectively can control biological function.
Collapse
Affiliation(s)
- Amanda N. Moore
- Department
of Chemistry, Rice University, 6500 Main Street, Houston, Texas 77005, United States
| | - Jeffrey D. Hartgerink
- Department
of Chemistry, Rice University, 6500 Main Street, Houston, Texas 77005, United States
- Department
of Bioengineering, Rice University, 6500 Main Street, Houston, Texas 77005, United States
| |
Collapse
|
50
|
Kind L, Stevanovic S, Wuttig S, Wimberger S, Hofer J, Müller B, Pieles U. Biomimetic Remineralization of Carious Lesions by Self-Assembling Peptide. J Dent Res 2017; 96:790-797. [PMID: 28346861 DOI: 10.1177/0022034517698419] [Citation(s) in RCA: 92] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Caries is the most common disease in the world. Great efforts have been undertaken for prevention and to identify a regenerative treatment solution for dental caries. Self-assembling β-sheet forming peptides have previously shown to form 3-dimensional fiber networks supporting tissue regeneration. In particular, the self-assembling peptide P11-4 has shown potential in the treatment and prevention of dental caries. It has previously been shown that application of monomeric P11-4 solution to early carious lesions can increase net mineral gain by forming de novo hydroxyapatite crystals. The hypothesis for the mode of action was that monomeric self-assembling peptide P11-4 diffuses into the subsurface lesion body and assembles therein into higher order fibrils, facilitating mineralization of the subsurface volume by mimicking the natural biomineralization of the tooth enamel, and it remains within the lesion body as a scaffold built-in by the newly formed hydroxyapatite. The aim of the present study was to investigate the mechanism of action of the self-assembling peptide P11-4 supporting mineralization of carious enamel. By various analytical methods, it could be shown that the self-assembling peptide P11-4 diffuses into the subsurface lesion, assembles into higher formed aggregates throughout the whole volume of the lesion, and supports nucleation of de novo hydroxyapatite nanocrystals and consequently results in increased mineral density within the subsurface carious lesion. The results showed that the application of self-assembling peptide P11-4 can facilitate the subsurface regeneration of the enamel lesion by supporting de novo mineralization in a similar mode of action as has been shown for the natural formation of dental enamel.
Collapse
Affiliation(s)
- L Kind
- 1 School of Life Sciences, Department of Chemistry and Bioanalytics, University of Applied Sciences and Arts Northwestern Switzerland (FHNW), Muttenz, Switzerland
| | - S Stevanovic
- 1 School of Life Sciences, Department of Chemistry and Bioanalytics, University of Applied Sciences and Arts Northwestern Switzerland (FHNW), Muttenz, Switzerland
| | - S Wuttig
- 1 School of Life Sciences, Department of Chemistry and Bioanalytics, University of Applied Sciences and Arts Northwestern Switzerland (FHNW), Muttenz, Switzerland
| | - S Wimberger
- 1 School of Life Sciences, Department of Chemistry and Bioanalytics, University of Applied Sciences and Arts Northwestern Switzerland (FHNW), Muttenz, Switzerland
| | - J Hofer
- 1 School of Life Sciences, Department of Chemistry and Bioanalytics, University of Applied Sciences and Arts Northwestern Switzerland (FHNW), Muttenz, Switzerland
| | - B Müller
- 2 Department of Biomedical Engineering, University of Basel, Biomaterials Science Center (BMC), Allschwil, Switzerland
| | - U Pieles
- 1 School of Life Sciences, Department of Chemistry and Bioanalytics, University of Applied Sciences and Arts Northwestern Switzerland (FHNW), Muttenz, Switzerland
| |
Collapse
|