1
|
Kamachi Kobashigawa K, Franchi de Barros Sobrinho AA, Espírito Santo Silva P, Siqueira Vasconcelos CR, Cardoso Cristovam P, Pereira Gomes JÁ, Laus JL, Aldrovani Rodrigues M. Enhancing Ex Vivo Limbal Epithelial Cell Expansion on Amniotic Membrane: A Comparative Study of Monolayer (2D) Versus Sandwich (3D) Culture Configurations. Cornea 2024; 44:750-761. [PMID: 39509280 DOI: 10.1097/ico.0000000000003753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 10/01/2024] [Indexed: 11/15/2024]
Abstract
PURPOSE This study compared 2-dimensional (monolayer) and 3-dimensional (sandwich) systems for expanding ex vivo limbal epithelial cells on amniotic membrane and evaluated the outcomes after transplantation into rabbits with experimentally induced limbal stem cell deficiency. METHODS Evaluations included markers for progenitor cells, proliferation, apoptosis, and clinical monitoring for up to 63 days. In the monolayer culture, epithelial cells derived from limbal explants were expanded on amniotic membrane as the substrate. In the sandwich culture, the cells were cultured between 2 layers of amniotic membrane. Evaluations included markers for progenitor cells, proliferation, and apoptosis, along with clinical monitoring for up to 63 days. RESULTS Sandwich cultures demonstrated increased cellular proliferation and fewer progenitor cells compared with monolayer cultures. In treating limbal stem cell deficiency, the group receiving transplantation from sandwich cultures exhibited reduced neovascularization and decreased corneal ulceration compared with those treated with monolayer cultures, with similar clinical outcomes in corneal opacity. The configuration of the culture system did not affect the presence of apoptotic cells. Corneas treated with sandwich cultures showed a higher presence of progenitor cells compared with the monolayer group, suggesting a potential long-term viability advantage for these transplants. CONCLUSIONS In conclusion, although the sandwich culture system enhanced cellular proliferation, it also resulted in a decrease in progenitor cells within the cultures. Nevertheless, both systems demonstrated comparable therapeutic efficacy in treating limbal stem cell deficiency, with the sandwich approach potentially offering long-term benefits because of the increased presence of progenitor cells in the transplanted cornea.
Collapse
Affiliation(s)
- Karina Kamachi Kobashigawa
- Department of Veterinary Clinic and Surgery, São Paulo State University (UNESP), Jaboticabal, SP, Brazil
| | | | | | | | - Priscila Cardoso Cristovam
- Advanced Center of Ocular Surface (CASO), Department of Ophthalmology and Visual Science, Federal University of São Paulo (UNIFESP), São Paulo, SP, Brazil
| | - José Álvaro Pereira Gomes
- Advanced Center of Ocular Surface (CASO), Department of Ophthalmology and Visual Science, Federal University of São Paulo (UNIFESP), São Paulo, SP, Brazil
| | - José Luiz Laus
- Department of Veterinary Clinic and Surgery, São Paulo State University (UNESP), Jaboticabal, SP, Brazil
| | | |
Collapse
|
2
|
Ahn H, Cho Y, Yun GT, Jung KB, Jeong W, Kim Y, Son MY, Lee E, Im SG, Jung HT. Hierarchical Topography with Tunable Micro- and Nanoarchitectonics for Highly Enhanced Cardiomyocyte Maturation via Multi-Scale Mechanotransduction. Adv Healthc Mater 2023; 12:e2202371. [PMID: 36652539 DOI: 10.1002/adhm.202202371] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 01/12/2023] [Indexed: 01/19/2023]
Abstract
Enhancing cardiomyocyte (CM) maturation by topographical cues is a critical issue in cardiac tissue engineering. Thus far, single-scale topographies with a broad range of feature shapes and dimensions have been utilized including grooves, pillars, and fibers. This study reports for the first time a hierarchical structure composed of nano-pillars (nPs) on micro-wrinkles (µWs) for effective maturation of CMs. Through capillary force lithography followed by a wrinkling process, vast size ranges of topographies are fabricated, and the responses of CMs are systematically investigated. Maturation of CMs on the hierarchical structures is highly enhanced compared to a single-scale topography: cardiac differentiation of H9C2s (rat cardiomyocytes) on the hierarchical topography is ≈ 2.8 and ≈ 1.9 times higher than those consisting of single-scale µWs and nPs. Both nPs and µWs have important roles in cardiac maturation, and the aspect ratio (height/diameter) of the nPs and the wavelength of the µWs are important in CM maturation. This enhancement is caused by strong focal adhesion and nucleus mediated mechanotransduction of CMs from the confinement effects of the different wavelengths of µWs and the cellular membrane protrusion on the nPs. This study demonstrates how a large family of hierarchical structures is used for cardiac maturation.
Collapse
Affiliation(s)
- Hyunah Ahn
- National Laboratory for Organic Opto-Electronic Material, Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Korea
| | - Younghak Cho
- Functional Thin Film Laboratory, Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Korea.,KI for NanoCentury, KAIST, 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Korea
| | - Geun-Tae Yun
- National Nanofab Center, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Korea
| | - Kwang Bo Jung
- Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Korea
| | - Wonji Jeong
- Functional Thin Film Laboratory, Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Korea.,KI for NanoCentury, KAIST, 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Korea
| | - Yesol Kim
- Functional Thin Film Laboratory, Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Korea.,KI for NanoCentury, KAIST, 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Korea
| | - Mi-Young Son
- Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Korea
| | - Eunjung Lee
- Functional Thin Film Laboratory, Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Korea.,KI for NanoCentury, KAIST, 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Korea
| | - Sung Gap Im
- Functional Thin Film Laboratory, Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Korea.,KI for NanoCentury, KAIST, 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Korea
| | - Hee-Tae Jung
- National Laboratory for Organic Opto-Electronic Material, Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Korea
| |
Collapse
|
3
|
Bjørge IM, Salmeron-Sanchez M, Correia CR, Mano JF. Cell Behavior within Nanogrooved Sandwich Culture Systems. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e2001975. [PMID: 32603002 DOI: 10.1002/smll.202001975] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 05/11/2020] [Indexed: 06/11/2023]
Abstract
Grooved topography and inherent cell contact guidance has shown promising results regarding cell proliferation, morphology, and lineage-specific differentiation. Yet these approaches are limited to 2D applications. Sandwich-culture conditions are developed to bridge the gap between 2D and 3D culture, enabling both ventral and dorsal cell surface stimulation. The effect of grooved surface topography is accessed on cell orientation and elongation in a highly controlled manner, with simultaneous and independent stimuli on two cell sides. Nanogrooved and non-nanogrooved substrates are assembled into quasi-3D systems with variable relative orientations. A plethora of sandwich-culture conditions are created by seeding cells on lower, upper, or both substrates. Software image analysis demonstrates that F-actin of cells acquires the orientation of the substrate on which cells are initially seeded, independently from the orientation of the second top substrate. Contrasting cell morphologies are observed, with a higher elongation for nanogrooved 2D substrates than nanogrooved sandwich-culture conditions. Correlated with an increased pFAK activity and vinculin staining for sandwich-culture conditions, these results point to an enhanced cell surface stimulation versus control conditions. The pivotal role of initial cell-biomaterial contact on cellular alignment is highlighted, providing important insights for tissue engineering strategies aiming to guide cellular response through mechanotransduction approaches.
Collapse
Affiliation(s)
- Isabel M Bjørge
- CICECO-Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, Aveiro, 3810-193, Portugal
| | | | - Clara R Correia
- CICECO-Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, Aveiro, 3810-193, Portugal
| | - João F Mano
- CICECO-Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, Aveiro, 3810-193, Portugal
| |
Collapse
|
4
|
Zhong J, Yang Y, Liao L, Zhang C. Matrix stiffness-regulated cellular functions under different dimensionalities. Biomater Sci 2020; 8:2734-2755. [DOI: 10.1039/c9bm01809c] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The microenvironments that cells encounter with in vitro.
Collapse
Affiliation(s)
- Jiajun Zhong
- Guangdong Provincial Key Laboratory of Sensor Technology and Biomedical Instruments (Sun Yat-sen University)
- School of Biomedical Engineering
- Sun Yat-Sen University
- Guangzhou
- P. R. China
| | - Yuexiong Yang
- Guangdong Provincial Key Laboratory of Sensor Technology and Biomedical Instruments (Sun Yat-sen University)
- School of Biomedical Engineering
- Sun Yat-Sen University
- Guangzhou
- P. R. China
| | - Liqiong Liao
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering
- Biomaterials Research Center
- School of Biomedical Engineering
- Southern Medical University
- Guangzhou
| | - Chao Zhang
- Guangdong Provincial Key Laboratory of Sensor Technology and Biomedical Instruments (Sun Yat-sen University)
- School of Biomedical Engineering
- Sun Yat-Sen University
- Guangzhou
- P. R. China
| |
Collapse
|
5
|
Morss Clyne A, Swaminathan S, Díaz Lantada A. Biofabrication strategies for creating microvascular complexity. Biofabrication 2019; 11:032001. [PMID: 30743247 DOI: 10.1088/1758-5090/ab0621] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Design and fabrication of effective biomimetic vasculatures constitutes a relevant and yet unsolved challenge, lying at the heart of tissue repair and regeneration strategies. Even if cell growth is achieved in 3D tissue scaffolds or advanced implants, tissue viability inevitably requires vascularization, as diffusion can only transport nutrients and eliminate debris within a few hundred microns. This engineered vasculature may need to mimic the intricate branching geometry of native microvasculature, referred to herein as vascular complexity, to efficiently deliver blood and recreate critical interactions between the vascular and perivascular cells as well as parenchymal tissues. This review first describes the importance of vascular complexity in labs- and organs-on-chips, the biomechanical and biochemical signals needed to create and maintain a complex vasculature, and the limitations of current 2D, 2.5D, and 3D culture systems in recreating vascular complexity. We then critically review available strategies for design and biofabrication of complex vasculatures in cell culture platforms, labs- and organs-on-chips, and tissue engineering scaffolds, highlighting their advantages and disadvantages. Finally, challenges and future directions are outlined with the hope of inspiring researchers to create the reliable, efficient and sustainable tools needed for design and biofabrication of complex vasculatures.
Collapse
Affiliation(s)
- Alisa Morss Clyne
- Vascular Kinetics Laboratory, Mechanical Engineering & Mechanics, Drexel University, 3141 Chestnut Street, Philadelphia, PA 19104, United States of America
| | | | | |
Collapse
|
6
|
Ballester-Beltrán J, Trujillo S, Alakpa EV, Compañ V, Gavara R, Meek D, West CC, Péault B, Dalby MJ, Salmerón-Sánchez M. Confined Sandwichlike Microenvironments Tune Myogenic Differentiation. ACS Biomater Sci Eng 2017; 3:1710-1718. [PMID: 28824958 PMCID: PMC5558191 DOI: 10.1021/acsbiomaterials.7b00109] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Accepted: 06/09/2017] [Indexed: 12/29/2022]
Abstract
Sandwichlike (SW) cultures are engineered as a multilayer technology to simultaneously stimulate dorsal and ventral cell receptors, seeking to mimic cell adhesion in three-dimensional (3D) environments in a reductionist manner. The effect of this environment on cell differentiation was investigated for several cell types cultured in standard growth media, which promotes proliferation on two-dimensional (2D) surfaces and avoids any preferential differentiation. First, murine C2C12 myoblasts showed specific myogenic differentiation. Human mesenchymal stem cells (hMSCs) of adipose and bone marrow origin, which can differentiate toward a wider variety of lineages, showed again myodifferentiation. Overall, this study shows myogenic differentiation in normal growth media for several cell types under SW conditions, avoiding the use of growth factors and cytokines, i.e., solely by culturing cells within the SW environment. Mechanistically, it provides further insights into the balance between integrin adhesion to the dorsal substrate and the confinement imposed by the SW system.
Collapse
Affiliation(s)
- José Ballester-Beltrán
- Division
of Biomedical Engineering, School of Engineering, University of Glasgow. Rankine Building, Oakfield Avenue, Glasgow G12 8LT, United Kingdom
| | - Sara Trujillo
- Division
of Biomedical Engineering, School of Engineering, University of Glasgow. Rankine Building, Oakfield Avenue, Glasgow G12 8LT, United Kingdom
| | - Enateri V. Alakpa
- Centre
for Cell Engineering, Institute of Molecular, Cell and Systems Biology, University of Glasgow. Joseph Black Building, University Avenue, Glasgow G12 8QQ, United Kingdom
| | - Vicente Compañ
- Escuela
Técnica Superior de Ingenieros Industriales, Departamento de
Termodinámica Aplicada, Universitat
Politècnica de València, Camino de Vera s/n, Valencia, Valencia 46022, Spain
| | - Rafael Gavara
- Instituto
de Agroquímica y Tecnología de Alimentos. Consejo Superior
de Investigaciones Científicas (IATA-CSIC), Departamento de Investigación: Conservación y Calidad
de Alimentos,Calle Agustín
Escardino 7, Paterna, Valencia 46980, Spain
| | - Dominic Meek
- Centre
for Cell Engineering, Institute of Molecular, Cell and Systems Biology, University of Glasgow. Joseph Black Building, University Avenue, Glasgow G12 8QQ, United Kingdom
| | - Christopher C. West
- Centre for
Regenerative Medicine and Centre for Cardiovascular Science, University of Edinburgh. 47 Little France Crescent, Edinburgh EH16 4TJ, United
Kingdom
| | - Bruno Péault
- Centre for
Regenerative Medicine and Centre for Cardiovascular Science, University of Edinburgh. 47 Little France Crescent, Edinburgh EH16 4TJ, United
Kingdom
| | - Matthew J. Dalby
- Centre
for Cell Engineering, Institute of Molecular, Cell and Systems Biology, University of Glasgow. Joseph Black Building, University Avenue, Glasgow G12 8QQ, United Kingdom
| | - Manuel Salmerón-Sánchez
- Division
of Biomedical Engineering, School of Engineering, University of Glasgow. Rankine Building, Oakfield Avenue, Glasgow G12 8LT, United Kingdom
| |
Collapse
|
7
|
Ballester-Beltrán J, Lebourg M, Salmerón-Sánchez M. Sandwich-like Microenvironments to Harness Cell/Material Interactions. J Vis Exp 2015:e53090. [PMID: 26274867 PMCID: PMC4545160 DOI: 10.3791/53090] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
Cell culture has been traditionally carried out on bi-dimensional (2D) substrates where cells adhere using ventral receptors to the biomaterial surface. However in vivo, most of the cells are completely surrounded by the extracellular matrix (ECM), resulting in a three-dimensional (3D) distribution of receptors. This may trigger differences in the outside-in signaling pathways and thus in cell behavior. This article shows that stimulating the dorsal receptors of cells already adhered to a 2D substrate by overlaying a film of a new material (a sandwich-like culture) triggers important changes with respect to standard 2D cultures. Furthermore, the simultaneous excitation of ventral and dorsal receptors shifts cell behavior closer to that found in 3D environments. Additionally, due to the nature of the system, a sandwich-like culture is a versatile tool that allows the study of different parameters in cell/material interactions, e.g., topography, stiffness and different protein coatings at both the ventral and dorsal sides. Finally, since sandwich-like cultures are based on 2D substrates, several analysis procedures already developed for standard 2D cultures can be used normally, overcoming more complex procedures needed for 3D systems.
Collapse
Affiliation(s)
- José Ballester-Beltrán
- Center for Biomaterials and Tissue Engineering, Universitat Politècnica de València; Division of Biomedical Engineering, School of Engineering, University of Glasgow
| | - Myriam Lebourg
- Center for Biomaterials and Tissue Engineering, Universitat Politècnica de València; Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN)
| | | |
Collapse
|
8
|
Affiliation(s)
- Matthew J Dalby
- Centre for Cell Engineering, Institute of Molecular, Cell & Systems Biology, CMVLS, Joseph Black Building, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Manus JP Biggs
- Network of Excellence for Functional Biomaterials, National University of Ireland, Galway, Ireland
| |
Collapse
|