1
|
Patra S, Saha S, Singh R, Tomar N, Gulati P. Biofilm battleground: Unveiling the hidden challenges, current approaches and future perspectives in combating biofilm associated bacterial infections. Microb Pathog 2025; 198:107155. [PMID: 39586337 DOI: 10.1016/j.micpath.2024.107155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 11/09/2024] [Accepted: 11/22/2024] [Indexed: 11/27/2024]
Abstract
A biofilm is a complex aggregation of microorganisms, either of the same or different species, that adhere to a surface and are encased in an extracellular polymeric substances (EPS) matrix. Quorum sensing (QS) and biofilm formation are closely linked, as QS genes regulate the development, maturation, and breakdown of biofilms. Inhibiting QS can be utilized as an effective approach to combat the impacts of biofilm infection. The impact of biofilms includes chronic infections, industrial biofouling, infrastructure corrosion, and environmental contamination as well. Therefore, a deep understanding of biofilms is crucial for enhancing public health, advancing industrial processes, safeguarding the environment, and deepening our knowledge of microbial life as well. This review aims to offer a comprehensive examination of challenges posed by bacterial biofilms, contemporary approaches and strategies for effectively eliminating biofilms, including the inhibition of quorum sensing pathways, while also focusing on emerging technologies and techniques for biofilm treatment. In addition, future research is projected to target the challenges associated with the bacterial biofilms, striving to develop new approaches and improve existing strategies for their effective control and eradication.
Collapse
Affiliation(s)
- Sandeep Patra
- School of Biotechnology, Jawaharlal Nehru University, New Delhi, India
| | - Sumana Saha
- Gujarat Biotechnology University, Gandhinagar, Gujarat, India
| | - Randhir Singh
- School of Biotechnology, Jawaharlal Nehru University, New Delhi, India
| | - Nandini Tomar
- Department of Biotechnology, South Asian University, New Delhi, India
| | - Pallavi Gulati
- Ram Lal Anand College, University of Delhi, New Delhi, India.
| |
Collapse
|
2
|
Huang YP, Huang YT, Wu HY, Chou LF, Tsai YS, Jiang YM, Chen WP, Lin TW, Chen CC, Lai CH. Armillaria mellea Mycelia Alleviate PM2.5-Induced Pulmonary Inflammation in Murine Models. Antioxidants (Basel) 2024; 13:1381. [PMID: 39594523 PMCID: PMC11590969 DOI: 10.3390/antiox13111381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 10/17/2024] [Accepted: 11/04/2024] [Indexed: 11/28/2024] Open
Abstract
Particulate matter (PM) with an aerodynamic diameter of ≤2.5 μm (PM2.5) significantly contributes to various disease-related respiratory inflammations. Armillaria mellea, recognized for its medicinal properties, could alleviate these respiratory ailments. However, its efficacy against PM2.5-induced inflammation remains elusive. In this study, we investigated whether A. mellea mycelia could mitigate PM2.5-induced respiratory inflammation and assessed the underlying mechanisms. Our results showed that A. mellea mycelia significantly reduced PM2.5-induced nitric oxide (NO) production and nuclear factor (NF)-κB activation in macrophages. Furthermore, A. mellea mycelia suppressed the expression of inflammatory mediators, indicating their potent antioxidant and anti-inflammatory properties. In murine models, A. mellea mycelia mitigated PM2.5-induced lung inflammation and cytokine secretion, restoring lung inflammatory status. Our results highlight the potential of A. mellea mycelia to treat PM2.5-induced respiratory inflammation. The antioxidant and anti-inflammatory effects of A. mellea mycelia demonstrated in vitro and in vivo hold promising potential for developing respiratory health improvement interventions upon PM2.5 exposure.
Collapse
Affiliation(s)
- Yi-Ping Huang
- Department of Physiology, School of Medicine, China Medical University, Taichung 404333, Taiwan
| | - Yu-Tsen Huang
- Department of Microbiology and Immunology, School of Medicine, China Medical University, Taichung 404333, Taiwan
- Department of Microbiology and Immunology, Graduate Institute of Biomedical Sciences, Chang Gung University, Taoyuan 333323, Taiwan
| | - Hui-Yu Wu
- Department of Microbiology and Immunology, Graduate Institute of Biomedical Sciences, Chang Gung University, Taoyuan 333323, Taiwan
| | - Li-Fang Chou
- Department of Microbiology and Immunology, Graduate Institute of Biomedical Sciences, Chang Gung University, Taoyuan 333323, Taiwan
- Kidney Research Center, Chang Gung Memorial Hospital at Linkou, Taoyuan 333423, Taiwan
| | - You-Shan Tsai
- Biotech Research Institute, Grape King Bio, Taoyuan 325002, Taiwan
| | - Yih-Min Jiang
- Biotech Research Institute, Grape King Bio, Taoyuan 325002, Taiwan
| | - Wan-Ping Chen
- Biotech Research Institute, Grape King Bio, Taoyuan 325002, Taiwan
| | - Ting-Wei Lin
- Biotech Research Institute, Grape King Bio, Taoyuan 325002, Taiwan
| | - Chin-Chu Chen
- Biotech Research Institute, Grape King Bio, Taoyuan 325002, Taiwan
- Institute of Food Science and Technology, National Taiwan University, Taipei 106216, Taiwan
- Department of Food Sciences, Nutrition, and Nutraceutical Biotechnology, Shih Chien University, Taipei 104336, Taiwan
- Department of Bioscience Technology, Chung Yuan Christian University, Taoyuan 320314, Taiwan
| | - Chih-Ho Lai
- Department of Microbiology and Immunology, School of Medicine, China Medical University, Taichung 404333, Taiwan
- Department of Microbiology and Immunology, Graduate Institute of Biomedical Sciences, Chang Gung University, Taoyuan 333323, Taiwan
- Department of Nursing, Asia University, Taichung 413305, Taiwan
- Research Center for Emerging Viral Infections, Institute of Immunology and Translational Medicine, Chang Gung University, Taoyuan 333323, Taiwan
- Molecular Infectious Disease Research Center, Chang Gung Memorial Hospital at Linkou, Taoyuan 333423, Taiwan
| |
Collapse
|
3
|
Zhou Y, Xu B, Wang L, Sun Q, Zhang C, Li S. Effects of inhaled fine particulate matter on the lung injury as well as gut microbiota in broilers. Poult Sci 2024; 103:103426. [PMID: 38335666 PMCID: PMC10869302 DOI: 10.1016/j.psj.2024.103426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 12/27/2023] [Accepted: 01/02/2024] [Indexed: 02/12/2024] Open
Abstract
Fine particulate matter (PM2.5) has been widely regarded as an important environmental risk factor that has widely influenced health of both animals and humans. Lung injury is the main cause of PM2.5 affecting respiratory tract health. Gut microbiota participates in the development of lung injury in many pathological processes. However, there is still unknown the specific effects of PM2.5 on the gut-lung axis in broilers. Thus, we conducted a broiler model based on 3-wk-old male Arbor Acres broiler to explore the underlying mechanism. Our results showed that PM2.5 exposure triggered TLR4 signaling pathway and induced the increase of IL-6, IFN-γ, TNF-α expression as well as the decrease of IL-10 expression in the lung. Inhaled PM2.5 exposure significantly altered the gut microbiota diversity and community. Specifically, PM2.5 exposure decreased α diversity and altered β diversity of gut microbiota, and reduced the abundance of DTU089, Oscillospirales, Staphylococcus, and increased the Escherichia-Shigella abundance, leading to the increase of gut-derived lipopolysaccharides (LPS). Moreover, PM2.5 significantly disrupted the intestinal epithelial barrier by reducing the expression of muc2 and claudin-1 to increase intestinal permeability, which possibly facilitated the LPS translocation into the blood. Spearman analysis revealed that gut microbiota dysbiosis was positively related to TLR4, TNF-α, and IFN-γ expression in the lung. In summary, our results showed that PM2.5 exposure induced lung injury by causing inflammation and triggering TLR4 signaling pathway, and also induced gut microbiota dysbiosis resulting in the overproduction of gut-derived LPS. And gut microbiota dysbiosis may be associated with lung injury. The above results provide basis data to comprehend the potential role of gut microbiota dysbiosis in the lung injury as well as providing a new regulatory target for alleviating lung injury associated with environmental pollutants.
Collapse
Affiliation(s)
- Ying Zhou
- Institute of Animal Husbandry and Veterinary Science, Henan Academy of Agricultural Sciences, Zhengzhou, China
| | - Bin Xu
- Institute of Animal Husbandry and Veterinary Science, Henan Academy of Agricultural Sciences, Zhengzhou, China
| | - Linyi Wang
- Institute of Animal Husbandry and Veterinary Science, Henan Academy of Agricultural Sciences, Zhengzhou, China
| | - Quanyou Sun
- Institute of Animal Husbandry and Veterinary Science, Henan Academy of Agricultural Sciences, Zhengzhou, China
| | - Chaoshuai Zhang
- Institute of Animal Husbandry and Veterinary Science, Henan Academy of Agricultural Sciences, Zhengzhou, China
| | - Shaoyu Li
- Institute of Animal Husbandry and Veterinary Science, Henan Academy of Agricultural Sciences, Zhengzhou, China.
| |
Collapse
|
4
|
Cary C, Stapleton P. Determinants and mechanisms of inorganic nanoparticle translocation across mammalian biological barriers. Arch Toxicol 2023; 97:2111-2131. [PMID: 37303009 PMCID: PMC10540313 DOI: 10.1007/s00204-023-03528-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 05/22/2023] [Indexed: 06/13/2023]
Abstract
Biological barriers protect delicate internal tissues from exposures to and interactions with hazardous materials. Primary anatomical barriers prevent external agents from reaching systemic circulation and include the pulmonary, gastrointestinal, and dermal barriers. Secondary barriers include the blood-brain, blood-testis, and placental barriers. The tissues protected by secondary barriers are particularly sensitive to agents in systemic circulation. Neurons of the brain cannot regenerate and therefore must have limited interaction with cytotoxic agents. In the testis, the delicate process of spermatogenesis requires a specific milieu distinct from the blood. The placenta protects the developing fetus from compounds in the maternal circulation that would impair limb or organ development. Many biological barriers are semi-permeable, allowing only materials or chemicals, with a specific set of properties, that easily pass through or between cells. Nanoparticles (particles less than 100 nm) have recently drawn specific concern due to the possibility of biological barrier translocation and contact with distal tissues. Current evidence suggests that nanoparticles translocate across both primary and secondary barriers. It is known that the physicochemical properties of nanoparticles can affect biological interactions, and it has been shown that nanoparticles can breach primary and some secondary barriers. However, the mechanism by which nanoparticles cross biological barriers has yet to be determined. Therefore, the purpose of this review is to summarize how different nanoparticle physicochemical properties interact with biological barriers and barrier products to govern translocation.
Collapse
Affiliation(s)
- Chelsea Cary
- Department of Pharmacology and Toxicology, Rutgers University, Piscataway, NJ, 08854, USA
| | - Phoebe Stapleton
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Environmental and Occupational Health Sciences Institute, Rutgers University, 170 Frelinghuysen Road, Piscataway, NJ, 08854, USA.
| |
Collapse
|
5
|
Geng S, Hao P, Wang D, Zhong P, Tian F, Zhang R, Qiao J, Qiu X, Bao P. Zinc oxide nanoparticles have biphasic roles on Mycobacterium-induced inflammation by activating autophagy and ferroptosis mechanisms in infected macrophages. Microb Pathog 2023; 180:106132. [PMID: 37201638 DOI: 10.1016/j.micpath.2023.106132] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 04/28/2023] [Accepted: 04/28/2023] [Indexed: 05/20/2023]
Abstract
The ability of zinc oxide nanoparticles (ZnONPs) to induce bacteriostasis in Mycobacterium tuberculosis (M. tb) and their roles in regulating the pathogenic activities of immune cells have been reported previously, but the specific mechanisms underlying these regulatory functions remain unclear. This work aimed to determine how ZnONPs play the antibacterial role against M. tb. In vitro activity assays were employed to determine the minimum inhibitory concentrations (MICs) of the ZnONPs against various strains of M. tb (BCG, H37Rv, and clinical susceptible MDR and XDR strains). The ZnONPs had MICs of 0.5-2 mg/L against all tested isolates. In addition, changes in the expression levels of autophagy and ferroptosis-related markers in BCG-infected macrophages exposed to ZnONPs were measured. BCG-infected mice that were administered ZnONPs were used to determine the ZnONPs functions in vivo. ZnONPs decreased the number of bacteria engulfed by the macrophages in a dose-dependent manner, while different doses of ZnONPs also affected inflammation in different directions. Although ZnONPs enhanced the BCG-induced autophagy of macrophages in a dose-dependent manner, only low doses of ZnONPs activated autophagy mechanisms by increasing the levels of pro-inflammatory factors. The ZnONPs also enhanced BCG-induced ferroptosis of macrophages at high doses. Co-administration of a ferroptosis inhibitor with the ZnONPs improved the anti-Mycobacterium activity of ZnONPs in an in vivo mouse model and alleviated acute lung injury caused by ZnONPs. Based on the above findings, we conclude that ZnONPs may act as potential antibacterial agents in future animal and clinical studies.
Collapse
Affiliation(s)
- SiJia Geng
- Graduate School, Hebei North University, Zhangjiakou, Hebei Province, 075000, PR China
| | - PengFei Hao
- Graduate School, Hebei North University, Zhangjiakou, Hebei Province, 075000, PR China
| | - Di Wang
- The Eighth Medical Center of Chinese PLA General Hospital, Pulmonary and Critical Care Medicine Faculty of Chinese PLA General Hospital, Beijing, 100093, PR China
| | - Pengfei Zhong
- Graduate School, Hebei North University, Zhangjiakou, Hebei Province, 075000, PR China
| | - Fangfang Tian
- The Eighth Medical Center of Chinese PLA General Hospital, Pulmonary and Critical Care Medicine Faculty of Chinese PLA General Hospital, Beijing, 100093, PR China
| | - Rui Zhang
- The Eighth Medical Center of Chinese PLA General Hospital, Pulmonary and Critical Care Medicine Faculty of Chinese PLA General Hospital, Beijing, 100093, PR China
| | - Juan Qiao
- The Eighth Medical Center of Chinese PLA General Hospital, Pulmonary and Critical Care Medicine Faculty of Chinese PLA General Hospital, Beijing, 100093, PR China.
| | - Xiaochen Qiu
- Department of General Surgery, The Eighth Medical Center of Chinese PLA General Hospital, Beijing, 100093, PR China.
| | - Pengtao Bao
- The Eighth Medical Center of Chinese PLA General Hospital, Pulmonary and Critical Care Medicine Faculty of Chinese PLA General Hospital, Beijing, 100093, PR China.
| |
Collapse
|
6
|
Dhillon MS, Hooda A, Moriarty TF, Sharma S. Biofilms-What Should the Orthopedic Surgeon know? Indian J Orthop 2023; 57:44-51. [PMID: 36660477 PMCID: PMC9789254 DOI: 10.1007/s43465-022-00782-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 11/18/2022] [Indexed: 12/24/2022]
Abstract
Background Musculoskeletal infections are a major source of morbidity for orthopedic and trauma patients, are associated with prolonged treatment times, and, unfortunately, suffer from poor functional outcomes. Further complicating the issue, antimicrobial resistance (AMR) is increasingly impacting the treatment of musculoskeletal infections with a diminishing repertoire of effective antibiotic agents for some highly resistant pathogens. Most orthopedic surgical procedures involve implants, and the formation of bacterial biofilms on these implants is now recognized as a major factor contributing to the failure of antibiotic therapy in orthopedic surgery. Methods This review presents an overview of the types, structure, formation, and pathogenesis of biofilms as they pertain to musculoskeletal infections. Furthermore, it describes the key concepts in the management of biofilms and future perspectives for the better treatment of patients with biofilm-related musculoskeletal infections. Results A bacterial biofilm is a dynamic, living conglomerate of bacteria encased in an extracapsular polysaccharide matrix (EPS). Biofilms are a natural mode of survival for virtually all bacterial species, including both Grampositive and Gram-negative bacteria, as well as fungi. The biofilm model of growth confers resistance by several well-defined mechanisms regardless of the species of the microorganism. In most cases, biofilm management often necessitates radical measures to ensure eradication including both surgical and medical interventions. Conclusions Orthopedic surgeons should be aware of the key concepts pertaining to biofilms, and the impact that these can have on clinical practice.
Collapse
Affiliation(s)
- Mandeep Singh Dhillon
- Foot & Ankle Biomechanics, Experimentation and Research Laboratory, Department of Orthopedics, Postgraduate Institute of Medical Education & Research, Chandigarh, India
| | - Aman Hooda
- Department of Emergency Medicine (Orthopedics), Ambedkar Institute of Medical Sciences, Mohali, Punjab India
| | | | - Siddhartha Sharma
- Foot & Ankle Biomechanics, Experimentation and Research Laboratory, Department of Orthopedics, Postgraduate Institute of Medical Education & Research, Chandigarh, India
| |
Collapse
|
7
|
Cameron SJ, Sheng J, Hosseinian F, Willmore WG. Nanoparticle Effects on Stress Response Pathways and Nanoparticle-Protein Interactions. Int J Mol Sci 2022; 23:7962. [PMID: 35887304 PMCID: PMC9323783 DOI: 10.3390/ijms23147962] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 07/01/2022] [Accepted: 07/11/2022] [Indexed: 12/12/2022] Open
Abstract
Nanoparticles (NPs) are increasingly used in a wide variety of applications and products; however, NPs may affect stress response pathways and interact with proteins in biological systems. This review article will provide an overview of the beneficial and detrimental effects of NPs on stress response pathways with a focus on NP-protein interactions. Depending upon the particular NP, experimental model system, and dose and exposure conditions, the introduction of NPs may have either positive or negative effects. Cellular processes such as the development of oxidative stress, the initiation of the inflammatory response, mitochondrial function, detoxification, and alterations to signaling pathways are all affected by the introduction of NPs. In terms of tissue-specific effects, the local microenvironment can have a profound effect on whether an NP is beneficial or harmful to cells. Interactions of NPs with metal-binding proteins (zinc, copper, iron and calcium) affect both their structure and function. This review will provide insights into the current knowledge of protein-based nanotoxicology and closely examines the targets of specific NPs.
Collapse
Affiliation(s)
- Shana J. Cameron
- Department of Chemistry, Carleton University, Ottawa, ON K1S 5B6, Canada; (S.J.C.); (F.H.)
| | - Jessica Sheng
- Department of Biology, Carleton University, Ottawa, ON K1S 5B6, Canada;
| | - Farah Hosseinian
- Department of Chemistry, Carleton University, Ottawa, ON K1S 5B6, Canada; (S.J.C.); (F.H.)
| | - William G. Willmore
- Department of Chemistry, Carleton University, Ottawa, ON K1S 5B6, Canada; (S.J.C.); (F.H.)
- Department of Biology, Carleton University, Ottawa, ON K1S 5B6, Canada;
- Institute of Biochemistry, Carleton University, Ottawa, ON K1S 5B6, Canada
| |
Collapse
|
8
|
Unni V, Abishad P, Prasastha Ram V, Niveditha P, Yasur J, John L, Prejit N, Juliet S, Latha C, Vergis J, Kurkure NV, Barbuddhe SB, Rawool DB. Green synthesis, and characterization of zinc oxide nanoparticles using Piper longum catkin extract and its in vitro antimicrobial activity against multi-drug-resistant non-typhoidal Salmonella spp. INORG NANO-MET CHEM 2022. [DOI: 10.1080/24701556.2022.2078356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Varsha Unni
- Department of Veterinary Public Health, College of Veterinary and Animal Sciences, Pookode, Kerala Veterinary and Animal Sciences University, Wayanad, India
| | - Padikkamannil Abishad
- Department of Veterinary Public Health, College of Veterinary and Animal Sciences, Pookode, Kerala Veterinary and Animal Sciences University, Wayanad, India
| | | | | | | | - Lijo John
- Department of Veterinary Biochemistry, College of Veterinary and Animal Sciences, Pookode, Kerala Veterinary and Animal Sciences University, Wayanad, India
| | - Nambiar Prejit
- Department of Veterinary Public Health, College of Veterinary and Animal Sciences, Pookode, Kerala Veterinary and Animal Sciences University, Wayanad, India
| | - Sanis Juliet
- Department of Veterinary Pharmacology and Toxicology, College of Veterinary and Animal Sciences, Pookode, Kerala Veterinary and Animal Sciences University, Wayanad, India
| | - C. Latha
- Department of Veterinary Public Health, College of Veterinary and Animal Sciences, Mannuthy, Kerala Veterinary and Animal Sciences University, Wayanad, India
| | - Jess Vergis
- Department of Veterinary Public Health, College of Veterinary and Animal Sciences, Pookode, Kerala Veterinary and Animal Sciences University, Wayanad, India
| | - Nitin Vasantrao Kurkure
- Department of Veterinary Pathology, Nagpur Veterinary College, Maharashtra Animal and Fishery Sciences University, Nagpur, India
| | | | | |
Collapse
|
9
|
Ghaemi F, Amiri A, Bajuri MY, Yuhana NY, Ferrara M. Role of different types of nanomaterials against diagnosis, prevention and therapy of COVID-19. SUSTAINABLE CITIES AND SOCIETY 2021; 72:103046. [PMID: 34055576 PMCID: PMC8146202 DOI: 10.1016/j.scs.2021.103046] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 05/21/2021] [Accepted: 05/22/2021] [Indexed: 05/24/2023]
Abstract
In 2019, a novel type of coronavirus emerged in China called SARS-COV-2, known COVID-19, threatens global health and possesses negative impact on people's quality of life, leading to an urgent need for its diagnosis and remedy. On the other hand, the presence of hazardous infectious waste led to the increase of the risk of transmitting the virus by individuals and by hospitals during the COVID-19 pandemic. Hence, in this review, we survey previous researches on nanomaterials that can be effective for guiding strategies to deal with the current COVID-19 pandemic and also decrease the hazardous infectious waste in the environment. We highlight the contribution of nanomaterials that possess potential to therapy, prevention, detect targeted virus proteins and also can be useful for large population screening, for the development of environmental sensors and filters. Besides, we investigate the possibilities of employing the nanomaterials in antiviral research and treatment development, examining the role of nanomaterials in antiviral- drug design, including the importance of nanomaterials in drug delivery and vaccination, and for the production of medical equipment. Nanomaterials-based technologies not only contribute to the ongoing SARS- CoV-2 research efforts but can also provide platforms and tools for the understanding, protection, detection and treatment of future viral diseases.
Collapse
Affiliation(s)
- Ferial Ghaemi
- Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia (UKM), 43600, Bangi, Selangor, Malaysia
| | - Amirhassan Amiri
- Department of Chemistry, Faculty of Science, Ferdowsi University of Mashhad, Mashhad 9177948974, Iran
| | - Mohd Yazid Bajuri
- Department of Orthopaedics and Traumatology, Faculty of Medicine, Universiti Kebangsaan Malaysia(UKM), Kuala Lumpur, Malaysia
| | - Nor Yuliana Yuhana
- Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia (UKM), 43600, Bangi, Selangor, Malaysia
| | - Massimiliano Ferrara
- ICRIOS - The Invernizzi Centre for Research in Innovation, Organization, Strategy and Entrepreneurship, Bocconi University, Department of Management and Technology Via Sarfatti, 25 20136, Milano (MI), Italy
| |
Collapse
|
10
|
Huang X, Huang D, Zhu T, Yu X, Xu K, Li H, Qu H, Zhou Z, Cheng K, Wen W, Ye Z. Sustained zinc release in cooperation with CaP scaffold promoted bone regeneration via directing stem cell fate and triggering a pro-healing immune stimuli. J Nanobiotechnology 2021; 19:207. [PMID: 34247649 PMCID: PMC8274038 DOI: 10.1186/s12951-021-00956-8] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 07/05/2021] [Indexed: 12/21/2022] Open
Abstract
Metal ions have been identified as important bone metabolism regulators and widely used in the field of bone tissue engineering, however their exact role during bone regeneration remains unclear. Herein, the aim of study was to comprehensively explore the interactions between osteoinductive and osteo-immunomodulatory properties of these metal ions. In particular, the osteoinductive role of zinc ions (Zn2+), as well as its interactions with local immune microenvironment during bone healing process, was investigated in this study using a sustained Zn2+ delivery system incorporating Zn2+ into β-tricalcium phosphate/poly(L-lactic acid) (TCP/PLLA) scaffolds. The presence of Zn2+ largely enhanced osteogenic differentiation of periosteum-derived progenitor cells (PDPCs), which was coincident with increased transition from M1 to M2 macrophages (M\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\varphi $$\end{document}φs). We further confirmed that induction of M2 polarization by Zn2+ was realized via PI3K/Akt/mTOR pathway, whereas marker molecules on this pathway were strictly regulated by the addition of Zn2+. Synergically, this favorable immunomodulatory effect of Zn2+ further improved the osteogenic differentiation of PDPCs induced by Zn2+ in vitro. Consistently, the spontaneous osteogenesis and pro-healing osteoimmunomodulation of the scaffolds were thoroughly identified in vivo using a rat air pouch model and a calvarial critical-size defect model. Taken together, Zn2+-releasing bioactive ceramics could be ideal scaffolds in bone tissue engineering due to their reciprocal interactions between osteoinductive and immunomodulatory characteristics. Clarification of this synergic role of Zn2+ during osteogenesis could pave the way to develop more sophisticated metal-ion based orthopedic therapeutic strategies.![]()
Collapse
Affiliation(s)
- Xin Huang
- Department of Orthopedics, Musculoskeletal Tumor Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, 88# Jiefang Road, Hangzhou, 310009, China
| | - Donghua Huang
- Department of Orthopedics, Musculoskeletal Tumor Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, 88# Jiefang Road, Hangzhou, 310009, China
| | - Ting Zhu
- Department of Thoracic Surgery, Shaoxing People's Hospital, Shaoxing Hospital, Zhejiang University School of Medicine, No. 568 Zhongxing North Road, Yuecheng District, Shaoxing, 312000, China
| | - Xiaohua Yu
- Department of Orthopedics, Musculoskeletal Tumor Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, 88# Jiefang Road, Hangzhou, 310009, China
| | - Kaicheng Xu
- Department of Orthopedics, Musculoskeletal Tumor Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, 88# Jiefang Road, Hangzhou, 310009, China
| | - Hengyuan Li
- Department of Orthopedics, Musculoskeletal Tumor Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, 88# Jiefang Road, Hangzhou, 310009, China
| | - Hao Qu
- Department of Orthopedics, Musculoskeletal Tumor Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, 88# Jiefang Road, Hangzhou, 310009, China
| | - Zhiyuan Zhou
- School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Kui Cheng
- School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Wenjian Wen
- School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Zhaoming Ye
- Department of Orthopedics, Musculoskeletal Tumor Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, 88# Jiefang Road, Hangzhou, 310009, China.
| |
Collapse
|
11
|
Chen YW, Li SW, Lin CD, Huang MZ, Lin HJ, Chin CY, Lai YR, Chiu CH, Yang CY, Lai CH. Fine Particulate Matter Exposure Alters Pulmonary Microbiota Composition and Aggravates Pneumococcus-Induced Lung Pathogenesis. Front Cell Dev Biol 2020; 8:570484. [PMID: 33195201 PMCID: PMC7649221 DOI: 10.3389/fcell.2020.570484] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 09/14/2020] [Indexed: 12/11/2022] Open
Abstract
Exposure to fine particulate matter (PM) with aerodynamic diameter ≤2.5 μm (PM2. 5) is closely correlated with respiratory diseases. Microbiota plays a key role in maintaining body homeostasis including regulation of host immune status and metabolism. As reported recently, PM2. 5 exposure causes microbiota dysbiosis and thus promotes disease progression. However, whether PM2. 5 alters pulmonary microbiota distribution and aggravates bacteria-induced pathogenesis remains unknown. In this study, we used mouse experimental models of PM2. 5 exposure combined with Streptococcus pneumonia infection. We characterized the airway microbiota of bronchoalveolar lavage fluid (BALF) by sequencing the 16S rRNA V3-V4 amplicon on the Illumina MiSeq platform, followed by a combination of bioinformatics and statistical analyses. Shannon-diversity index, observed ASVs, and Fisher's diversity index indicated that microbiota richness was significantly decreased in the mice treated with either PM2. 5 or pneumococcus when compared with the control group. The genera Streptococcus, Prevotella, Leptotrichia, and Granulicatella were remarkably increased in mice exposed to PM2. 5 combined with pneumococcal infection as compared to mice with pneumococcal infection alone. Histopathological examination exhibited that a more pronounced inflammation was present in lungs of mice treated with PM2. 5 and pneumococcus than that in mouse groups exposed to either PM2. 5 or pneumococcal infection alone. Our results demonstrate that PM2. 5 alters the microbiota composition, thereby enhancing susceptibility to pneumococcal infection and exacerbating lung pathogenesis.
Collapse
Affiliation(s)
- Yu-Wen Chen
- Department of Microbiology and Immunology, Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Shiao-Wen Li
- Molecular Medicine Research Center, Chang Gung University, Taoyuan, Taiwan
| | - Chia-Der Lin
- Department of Otolaryngology-Head and Neck Surgery, School of Medicine, China Medical University and Hospital, Taichung, Taiwan
| | - Mei-Zi Huang
- Department of Microbiology and Immunology, Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Hwai-Jeng Lin
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Shuang-Ho Hospital, New Taipei, Taiwan
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Chia-Yin Chin
- Molecular Medicine Research Center, Chang Gung University, Taoyuan, Taiwan
| | - Yi-Ru Lai
- Department of Microbiology and Immunology, Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Cheng-Hsun Chiu
- Department of Microbiology and Immunology, Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Molecular Infectious Disease Research Center, Department of Pediatrics, Chang Gung Memorial Hospital, Linkou, Taiwan
| | - Chia-Yu Yang
- Department of Microbiology and Immunology, Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Molecular Medicine Research Center, Chang Gung University, Taoyuan, Taiwan
- Department of Otolaryngology-Head and Neck Surgery, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Chih-Ho Lai
- Department of Microbiology and Immunology, Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Department of Otolaryngology-Head and Neck Surgery, School of Medicine, China Medical University and Hospital, Taichung, Taiwan
- Molecular Infectious Disease Research Center, Department of Pediatrics, Chang Gung Memorial Hospital, Linkou, Taiwan
- Department of Nursing, Asia University, Taichung, Taiwan
| |
Collapse
|
12
|
Feng R, Yu F, Xu J, Hu X. Knowledge gaps in immune response and immunotherapy involving nanomaterials: Databases and artificial intelligence for material design. Biomaterials 2020; 266:120469. [PMID: 33120200 DOI: 10.1016/j.biomaterials.2020.120469] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Revised: 10/07/2020] [Accepted: 10/18/2020] [Indexed: 12/18/2022]
Abstract
Exploring the interactions between the immune system and nanomaterials (NMs) is critical for designing effective and safe NMs, but large knowledge gaps remain to be filled prior to clinical applications (e.g., immunotherapy). The lack of databases on interactions between the immune system and NMs affects the discovery of new NMs for immunotherapy. Complement activation and inhibition by NMs have been widely studied, but the general rules remain unclear. Biomimetic nanocoating to promote the clearance of NMs by the immune system is an alternative strategy for the immune response mediation of the biological corona. Immune response predictions based on NM properties can facilitate the design of NMs for immunotherapy, and artificial intelligences deserve much attention in the field. This review addresses the knowledge gaps regarding immune response and immunotherapy in relation to NMs, effective immunotherapy and material design without adverse immune responses.
Collapse
Affiliation(s)
- Ruihong Feng
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education)/Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China
| | - Fubo Yu
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education)/Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China
| | - Jing Xu
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education)/Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China
| | - Xiangang Hu
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education)/Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China.
| |
Collapse
|
13
|
Lee YL, Chang YD, Liu CW, Lee CC. Extract of Pyrus nivalis enhances phagocytosis in lungs after particles matter exposure in BALB/c mice. J Food Biochem 2020; 44:e13469. [PMID: 32964451 DOI: 10.1111/jfbc.13469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 07/27/2020] [Accepted: 08/17/2020] [Indexed: 11/26/2022]
Abstract
During past few decades, studies have demonstrated that particulate matter (PM) is the most serious environmental pollutant in industrial countries which mainly contributes for increasing prevalence of chronic respiratory inflammatory diseases. Healthy food supplements to prevent the inflammatory diseases are common and show notable effects. The effects of the extract of Pyrus nivalis, a common fruit and herbal medicine in Taiwan, on PM-induced airway inflammation in mice were investigated by feeding the extract orally for 21 days. Results obtained from lung histology and bronchial alveolar lavage fluid (BALF) cell profile showed that oral feeding of P. nivalis extract did not affect the airway inflammation. However, it increased the phagocytic activity in BALF cells and induced M1-dominant macrophage differentiation in lungs. Our study showed that extract of P. nivalis might present the beneficial and therapeutic potential for clearance of PM and pathogens in airway. PRACTICAL APPLICATIONS: Pyrus nivalis is a common fruit and also used extensively in Chinese herbology. The pharmacological effects of P. nivalis have been reported in ancient Chinese Medical literature and known to possess anti-asthma and anti-cough properties as well as to enhance function of lungs. In this study, we found that orally feeding the extract of P. nivalis did not induce airway inflammation and affect particulate matter (PM)-induced inflammatory cells infiltration in lungs but increased phagocytosis with or without PM treatment which might indicate its therapeutic potential for clearance of PM and pathogens in airway.
Collapse
Affiliation(s)
- Yueh-Lun Lee
- Department of Microbiology and Immunology, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Yu-Di Chang
- Department of Microbiology and Immunology, School of Medicine, China Medicine University, Taichung, Taiwan
| | - Chen-Wei Liu
- Department of Basic Medical Sciences, University of Arizona College of Medicine, Phoenix, AZ, USA
| | - Chen-Chen Lee
- Department of Microbiology and Immunology, School of Medicine, China Medicine University, Taichung, Taiwan
| |
Collapse
|
14
|
Chen YW, Huang MZ, Chen CL, Kuo CY, Yang CY, Chiang-Ni C, Chen YYM, Hsieh CM, Wu HY, Kuo ML, Chiu CH, Lai CH. PM 2.5 impairs macrophage functions to exacerbate pneumococcus-induced pulmonary pathogenesis. Part Fibre Toxicol 2020; 17:37. [PMID: 32753046 PMCID: PMC7409448 DOI: 10.1186/s12989-020-00362-2] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 07/03/2020] [Indexed: 02/06/2023] Open
Abstract
Background Pneumococcus is one of the most common human airway pathogens that causes life-threatening infections. Ambient fine particulate matter (PM) with aerodynamic diameter ≤ 2.5 μm (PM2.5) is known to significantly contribute to respiratory diseases. PM2.5-induced airway inflammation may decrease innate immune defenses against bacterial infection. However, there is currently limited information available regarding the effect of PM2.5 exposure on molecular interactions between pneumococcus and macrophages. Results PM2.5 exposure hampered macrophage functions, including phagocytosis and proinflammatory cytokine production, in response to pneumococcal infection. In a PM2.5-exposed pneumococcus-infected mouse model, PM2.5 subverted the pulmonary immune response and caused leukocyte infiltration. Further, PM2.5 exposure suppressed the levels of CXCL10 and its receptor, CXCR3, by inhibiting the PI3K/Akt and MAPK pathways. Conclusions The effect of PM2.5 exposure on macrophage activity enhances pneumococcal infectivity and aggravates pulmonary pathogenesis.
Collapse
Affiliation(s)
- Yu-Wen Chen
- Graduate Institute of Biomedical Sciences, Department of Microbiology and Immunology, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Mei-Zi Huang
- Graduate Institute of Biomedical Sciences, Department of Microbiology and Immunology, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Chyi-Liang Chen
- Department of Pediatrics, Molecular Infectious Disease Research Center, Chang Gung Memorial Hospital, Linkou, Taiwan
| | - Chieh-Ying Kuo
- Graduate Institute of Biomedical Sciences, Department of Microbiology and Immunology, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Chia-Yu Yang
- Graduate Institute of Biomedical Sciences, Department of Microbiology and Immunology, College of Medicine, Chang Gung University, Taoyuan, Taiwan.,Molecular Medicine Research Center, Chang Gung University, Taoyuan, Taiwan.,Department of Otolaryngology-Head and Neck Surgery, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Chuan Chiang-Ni
- Graduate Institute of Biomedical Sciences, Department of Microbiology and Immunology, College of Medicine, Chang Gung University, Taoyuan, Taiwan.,Department of Pediatrics, Molecular Infectious Disease Research Center, Chang Gung Memorial Hospital, Linkou, Taiwan
| | - Yi-Ywan M Chen
- Graduate Institute of Biomedical Sciences, Department of Microbiology and Immunology, College of Medicine, Chang Gung University, Taoyuan, Taiwan.,Department of Pediatrics, Molecular Infectious Disease Research Center, Chang Gung Memorial Hospital, Linkou, Taiwan
| | - Chia-Ming Hsieh
- Graduate Institute of Biomedical Sciences, Department of Microbiology and Immunology, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Hui-Yu Wu
- Graduate Institute of Biomedical Sciences, Department of Microbiology and Immunology, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Ming-Ling Kuo
- Graduate Institute of Biomedical Sciences, Department of Microbiology and Immunology, College of Medicine, Chang Gung University, Taoyuan, Taiwan.,Division of Allergy, Asthma, and Rheumatology, Department of Pediatrics, Chang Gung Memorial Hospital, Linkou, Taiwan
| | - Cheng-Hsun Chiu
- Graduate Institute of Biomedical Sciences, Department of Microbiology and Immunology, College of Medicine, Chang Gung University, Taoyuan, Taiwan.,Department of Pediatrics, Molecular Infectious Disease Research Center, Chang Gung Memorial Hospital, Linkou, Taiwan
| | - Chih-Ho Lai
- Graduate Institute of Biomedical Sciences, Department of Microbiology and Immunology, College of Medicine, Chang Gung University, Taoyuan, Taiwan. .,Department of Pediatrics, Molecular Infectious Disease Research Center, Chang Gung Memorial Hospital, Linkou, Taiwan. .,Department of Microbiology, School of Medicine, China Medical University, Taichung, Taiwan. .,Department of Nursing, Asia University, Taichung, Taiwan.
| |
Collapse
|
15
|
Zhang K, Li X, Yu C, Wang Y. Promising Therapeutic Strategies Against Microbial Biofilm Challenges. Front Cell Infect Microbiol 2020; 10:359. [PMID: 32850471 PMCID: PMC7399198 DOI: 10.3389/fcimb.2020.00359] [Citation(s) in RCA: 87] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Accepted: 06/10/2020] [Indexed: 12/17/2022] Open
Abstract
Biofilms are communities of microorganisms that are attached to a biological or abiotic surface and are surrounded by a self-produced extracellular matrix. Cells within a biofilm have intrinsic characteristics that are different from those of planktonic cells. Biofilm resistance to antimicrobial agents has drawn increasing attention. It is well-known that medical device- and tissue-associated biofilms may be the leading cause for the failure of antibiotic treatments and can cause many chronic infections. The eradication of biofilms is very challenging. Many researchers are working to address biofilm-related infections, and some novel strategies have been developed and identified as being effective and promising. Nevertheless, more preclinical studies and well-designed multicenter clinical trials are critically needed to evaluate the prospects of these strategies. Here, we review information about the mechanisms underlying the drug resistance of biofilms and discuss recent progress in alternative therapies and promising strategies against microbial biofilms. We also summarize the strengths and weaknesses of these strategies in detail.
Collapse
Affiliation(s)
- Kaiyu Zhang
- Department of Infectious Diseases, First Hospital of Jilin University, Changchun, China
| | - Xin Li
- Department of Infectious Diseases, First Hospital of Jilin University, Changchun, China
| | - Chen Yu
- Department of Infectious Diseases, First Hospital of Jilin University, Changchun, China
| | - Yang Wang
- Department of Infectious Diseases, First Hospital of Jilin University, Changchun, China.,Department of Pediatrics, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| |
Collapse
|
16
|
Skalny AV, Rink L, Ajsuvakova OP, Aschner M, Gritsenko VA, Alekseenko SI, Svistunov AA, Petrakis D, Spandidos DA, Aaseth J, Tsatsakis A, Tinkov AA. Zinc and respiratory tract infections: Perspectives for COVID‑19 (Review). Int J Mol Med 2020; 46:17-26. [PMID: 32319538 PMCID: PMC7255455 DOI: 10.3892/ijmm.2020.4575] [Citation(s) in RCA: 215] [Impact Index Per Article: 43.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Accepted: 04/13/2020] [Indexed: 01/08/2023] Open
Abstract
In view of the emerging COVID‑19 pandemic caused by SARS‑CoV‑2 virus, the search for potential protective and therapeutic antiviral strategies is of particular and urgent interest. Zinc is known to modulate antiviral and antibacterial immunity and regulate inflammatory response. Despite the lack of clinical data, certain indications suggest that modulation of zinc status may be beneficial in COVID‑19. In vitro experiments demonstrate that Zn2+ possesses antiviral activity through inhibition of SARS‑CoV RNA polymerase. This effect may underlie therapeutic efficiency of chloroquine known to act as zinc ionophore. Indirect evidence also indicates that Zn2+ may decrease the activity of angiotensin‑converting enzyme 2 (ACE2), known to be the receptor for SARS‑CoV‑2. Improved antiviral immunity by zinc may also occur through up‑regulation of interferon α production and increasing its antiviral activity. Zinc possesses anti‑inflammatory activity by inhibiting NF‑κB signaling and modulation of regulatory T‑cell functions that may limit the cytokine storm in COVID‑19. Improved Zn status may also reduce the risk of bacterial co‑infection by improving mucociliary clearance and barrier function of the respiratory epithelium, as well as direct antibacterial effects against S. pneumoniae. Zinc status is also tightly associated with risk factors for severe COVID‑19 including ageing, immune deficiency, obesity, diabetes, and atherosclerosis, since these are known risk groups for zinc deficiency. Therefore, Zn may possess protective effect as preventive and adjuvant therapy of COVID‑19 through reducing inflammation, improvement of mucociliary clearance, prevention of ventilator‑induced lung injury, modulation of antiviral and antibacterial immunity. However, further clinical and experimental studies are required.
Collapse
Affiliation(s)
- Anatoly V. Skalny
- I.M. Sechenov First Moscow State Medical University (Sechenov University), 119146 Moscow
- Yaroslavl State University, 150003 Yaroslavl, Russia
| | - Lothar Rink
- Institute of Immunology, Medical Faculty, RWTH Aachen University, D-52062 Aachen, Germany
| | - Olga P. Ajsuvakova
- Yaroslavl State University, 150003 Yaroslavl, Russia
- Federal Research Centre of Biological Systems and Agro-technologies of the Russian Academy of Sciences, 460000 Orenburg, Russia
| | - Michael Aschner
- I.M. Sechenov First Moscow State Medical University (Sechenov University), 119146 Moscow
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Viktor A. Gritsenko
- Institute of Cellular and Intracellular Symbiosis, Russian Academy of Sciences, 460000 Orenburg
| | - Svetlana I. Alekseenko
- I.I. Mechnikov North-Western State Medical University, 191015 St. Petersburg
- K.A. Rauhfus Children's City Multidisciplinary Clinical Center for High Medical Technologies, 191000 St. Petersburg, Russia
| | - Andrey A. Svistunov
- I.M. Sechenov First Moscow State Medical University (Sechenov University), 119146 Moscow
| | | | - Demetrios A. Spandidos
- Laboratory of Clinical Virology, Medical School, University of Crete, 71409 Heraklion, Greece
| | - Jan Aaseth
- I.M. Sechenov First Moscow State Medical University (Sechenov University), 119146 Moscow
- Research Department, Innlandet Hospital Trust, 3159894 Brumunddal, Norway
| | - Aristidis Tsatsakis
- I.M. Sechenov First Moscow State Medical University (Sechenov University), 119146 Moscow
- Center of Toxicology Science and Research
| | - Alexey A. Tinkov
- I.M. Sechenov First Moscow State Medical University (Sechenov University), 119146 Moscow
- Yaroslavl State University, 150003 Yaroslavl, Russia
- Institute of Cellular and Intracellular Symbiosis, Russian Academy of Sciences, 460000 Orenburg
| |
Collapse
|
17
|
Li SW, Huang CW, Liao VHC. Early-life long-term exposure to ZnO nanoparticles suppresses innate immunity regulated by SKN-1/Nrf and the p38 MAPK signaling pathway in Caenorhabditis elegans. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 256:113382. [PMID: 31662252 DOI: 10.1016/j.envpol.2019.113382] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 09/26/2019] [Accepted: 10/11/2019] [Indexed: 06/10/2023]
Abstract
The widespread use of zinc oxide nanoparticles (ZnO-NPs) has led to their release into the environment, and they thus represent a potential risk for both humans and ecosystems. However, the negative impact of ZnO-NPs on the immune system, especially in relation to host defense against pathogenic infection and its underlying regulatory mechanisms, remains largely unexplored. This study investigated the effects of early-life long-term ZnO-NPs exposure (from L1 larvae to adults) on innate immunity and its underlying mechanisms using a host-pathogen Caenorhabditis elegans model, and this was compared with the effect of ionic Zn. The results showed that the ZnO-NPs taken up by C. elegans primarily accumulated in the intestine and that early-life long-term ZnO-NPs exposure at environmentally relevant concentrations (50 and 500 μg/L) decreased the survival of wild-type C. elegans when faced with pathogenic Pseudomonas aeruginosa PA14 infection. Early-life long-term ZnO-NPs (500 μg/L) exposure significantly increased (by about 3-fold) the accumulation of live P. aeruginosa PA14 colonies in the intestine of C. elegans. In addition, ZnO-NPs (500 μg/L) inhibited the intestinal nuclear translocation of SKN-1 and also downregulated gcs-1 gene expression, which is an SKN-1 target gene. Further evidence revealed that early-life long-term exposure to ZnO-NPs (500 μg/L) did not increase susceptibility to mutation among the genes (pmk-1, sek-1, and nsy-1) encoding the p38 mitogen-activated protein kinase (MAPK) cascade in response to P. aeruginosa PA14 infection, though ZnO-NPs significantly decreased the mRNA levels of pmk-1, sek-1, and nsy-1. This study provides regulatory insight based on evidence that ZnO-NPs suppress the innate immunity of C. elegans and highlights the potential health risks of certain environmental nanomaterials, including ZnO-NPs, in terms of their immunotoxicity at environmentally relevant concentrations.
Collapse
Affiliation(s)
- Shang-Wei Li
- Department of Bioenvironmental Systems Engineering, National Taiwan University, Taipei 106, Taiwan
| | - Chi-Wei Huang
- Department of Bioenvironmental Systems Engineering, National Taiwan University, Taipei 106, Taiwan
| | - Vivian Hsiu-Chuan Liao
- Department of Bioenvironmental Systems Engineering, National Taiwan University, Taipei 106, Taiwan.
| |
Collapse
|
18
|
Dukhinova MS, Prilepskii AY, Shtil AA, Vinogradov VV. Metal Oxide Nanoparticles in Therapeutic Regulation of Macrophage Functions. NANOMATERIALS (BASEL, SWITZERLAND) 2019; 9:E1631. [PMID: 31744137 PMCID: PMC6915518 DOI: 10.3390/nano9111631] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 11/13/2019] [Accepted: 11/13/2019] [Indexed: 12/11/2022]
Abstract
Macrophages are components of the innate immune system that control a plethora of biological processes. Macrophages can be activated towards pro-inflammatory (M1) or anti-inflammatory (M2) phenotypes depending on the cue; however, polarization may be altered in bacterial and viral infections, cancer, or autoimmune diseases. Metal (zinc, iron, titanium, copper, etc.) oxide nanoparticles are widely used in therapeutic applications as drugs, nanocarriers, and diagnostic tools. Macrophages can recognize and engulf nanoparticles, while the influence of macrophage-nanoparticle interaction on cell polarization remains unclear. In this review, we summarize the molecular mechanisms that drive macrophage activation phenotypes and functions upon interaction with nanoparticles in an inflammatory microenvironment. The manifold effects of metal oxide nanoparticles on macrophages depend on the type of metal and the route of synthesis. While largely considered as drug transporters, metal oxide nanoparticles nevertheless have an immunotherapeutic potential, as they can evoke pro- or anti-inflammatory effects on macrophages and become essential for macrophage profiling in cancer, wound healing, infections, and autoimmunity.
Collapse
Affiliation(s)
- Marina S. Dukhinova
- ITMO University, Saint-Petersburg 197101, Russia; (M.S.D.); (A.Y.P.); (A.A.S.)
| | | | - Alexander A. Shtil
- ITMO University, Saint-Petersburg 197101, Russia; (M.S.D.); (A.Y.P.); (A.A.S.)
- Blokhin National Medical Center of Oncology, Moscow 115478, Russia
| | | |
Collapse
|
19
|
Breznan D, Das DD, MacKinnon-Roy C, Bernatchez S, Sayari A, Hill M, Vincent R, Kumarathasan P. Physicochemical Properties Can Be Key Determinants of Mesoporous Silica Nanoparticle Potency in Vitro. ACS NANO 2018; 12:12062-12079. [PMID: 30475590 DOI: 10.1021/acsnano.8b04910] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Nanoforms of mesoporous silica (mSiNPs) are increasingly applied in medicine, imaging, energy storage, catalysis, biosensors, and bioremediation. The impact of their physicochemical properties on health and the environment remain to be elucidated. In this work, newly synthesized mesoporous silica (sizes: 25, 70, 100, 170, and 600 nm; surface functionalization: pristine, C3-, and C11-COOH moieties) were assessed for cytotoxicity and induction of inflammatory responses in vitro (A549, THP-1, J774A.1 cells). All toxicity end points were integrated to obtain simple descriptors of biological potencies of these mSiNPs. The findings indicate that mSiNPs are less bioactive than the nonporous reference SiNP used in this study. The C3-COOH-modified mSiNPs were generally less cytotoxic than their pristine and C11-modified counterparts in the nanorange (≤100 nm). Carboxyl-modified mSiNPs affected inflammatory marker release across all sizes with cell-type specificity, suggesting a potential for immunomodulatory effects. Surface area, size, extent of agglomeration, ζ-potential, and surface modification appeared to be important determinants of cytotoxicity of mSiNPs based on association tests. Pathway analysis identified particle and cell-type-specific alteration of cellular pathways and functions by mSiNPs. The integration of exposure-related biological responses of multiple cell lines to mSiNPs allowed for a comprehensive evaluation of the impact of physicochemical factors on their toxicity characteristics. The integrated multilevel toxicity assessment approach can be valuable as a hazard screening tool for safety evaluations of emerging nanomaterials for regulatory purpose.
Collapse
Affiliation(s)
| | | | | | | | - Abdelhamid Sayari
- Department of Chemistry and Biomolecular Sciences , University of Ottawa , Ottawa , Ontario K1N 6N5 , Canada
| | | | | | | |
Collapse
|
20
|
The Role of Zinc and Zinc Homeostasis in Macrophage Function. J Immunol Res 2018; 2018:6872621. [PMID: 30622979 PMCID: PMC6304900 DOI: 10.1155/2018/6872621] [Citation(s) in RCA: 92] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Revised: 08/31/2018] [Accepted: 11/06/2018] [Indexed: 01/12/2023] Open
Abstract
Zinc has long been recognized as an essential trace element, playing roles in the growth and development of all living organisms. In recent decades, zinc homeostasis was also found to be important for the innate immune system, especially for maintaining the function of macrophages. It is now generally accepted that dysregulated zinc homeostasis in macrophages causes impaired phagocytosis and an abnormal inflammatory response. However, many questions remain with respect to the mechanisms that underlie these processes, particularly at the cellular and molecular levels. Here, we review our current understanding of the roles that zinc and zinc transporters play in regulating macrophage function.
Collapse
|
21
|
Wang J, Zhou H, Guo G, Tan J, Wang Q, Tang J, Liu W, Shen H, Li J, Zhang X. Enhanced Anti-Infective Efficacy of ZnO Nanoreservoirs through a Combination of Intrinsic Anti-Biofilm Activity and Reinforced Innate Defense. ACS APPLIED MATERIALS & INTERFACES 2017; 9:33609-33623. [PMID: 28884578 DOI: 10.1021/acsami.7b08864] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The increasing prevalence of implant-associated infections (IAIs) imposes a heavy burden on patients and medical providers. Bacterial biofilms are recalcitrant to antiseptic drugs and local immune defense and can attenuate host proinflammatory response to interfere with bacterial clearance. Zinc oxide nanoparticles (ZnO NPs) play a dual role in antibacterial and immunomodulatory activities but compromise the cytocompatibility because of their intracellular uptake. Here, ZnO NPs were immobilized on titanium to form homogeneous nanofilms (from discontinuous to continuous) through magnetron sputtering, and the possible antimicrobial activity and immunomodulatory effect of nano-ZnO films were investigated. Nano-ZnO films were found to prohibit sessile bacteria more than planktonic bacteria in vitro, and the antibacterial effect occurred in a dose-dependent manner. Using a novel mouse soft tissue IAI model, the in vivo results revealed that nano-ZnO films possessed outstanding antimicrobial efficacy, which could not be ascribed solely to the intrinsic anti-infective activity of nano-ZnO films observed in vitro. Macrophages and polymorphonuclear leukocytes (PMNs), two important factors in innate immune response, were cocultured with nano-ZnO and bacteria/lipopolysaccharide in vitro, and the nano-ZnO films could enhance the antimicrobial efficacy of macrophages and PMNs through promoting phagocytosis and secretion of inflammatory cytokines. This study provides insights into the anti-infective activity and mechanism of ZnO and consolidates the theoretical basis for future clinical applications of ZnO.
Collapse
Affiliation(s)
- Jiaxing Wang
- Department of Orthopaedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai Jiao Tong University , Shanghai 200233, China
| | - Huaijuan Zhou
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences , Shanghai 200050, China
| | - Geyong Guo
- Department of Orthopaedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai Jiao Tong University , Shanghai 200233, China
| | - Jiaqi Tan
- Department of Orthopaedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai Jiao Tong University , Shanghai 200233, China
| | - Qiaojie Wang
- Department of Orthopaedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai Jiao Tong University , Shanghai 200233, China
| | - Jin Tang
- Department of Clinical Laboratory, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai Jiao Tong University , Shanghai 200233, China
| | - Wei Liu
- Department of Orthopaedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai Jiao Tong University , Shanghai 200233, China
| | - Hao Shen
- Department of Orthopaedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai Jiao Tong University , Shanghai 200233, China
| | - Jinhua Li
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences , Shanghai 200050, China
- Department of Orthopaedics and Traumatology, Li Ka Shing Faculty of Medicine, The University of Hong Kong , Pokfulam, Hong Kong 999077, China
- University of Chinese Academy of Sciences , Beijing 100049, China
| | - Xianlong Zhang
- Department of Orthopaedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai Jiao Tong University , Shanghai 200233, China
| |
Collapse
|
22
|
Lin HJ, Hsu FY, Chen WW, Lee CH, Lin YJ, Chen YYM, Chen CJ, Huang MZ, Kao MC, Chen YA, Lai HC, Lai CH. Helicobacter pylori Activates HMGB1 Expression and Recruits RAGE into Lipid Rafts to Promote Inflammation in Gastric Epithelial Cells. Front Immunol 2016; 7:341. [PMID: 27667993 PMCID: PMC5016528 DOI: 10.3389/fimmu.2016.00341] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Accepted: 08/23/2016] [Indexed: 12/16/2022] Open
Abstract
Helicobacter pylori infection is associated with several gastrointestinal disorders in the human population worldwide. High-mobility group box 1 (HMGB1), a ubiquitous nuclear protein, mediates various inflammation functions. The interaction between HMGB1 and receptor for advanced glycation end-products (RAGE) triggers nuclear factor (NF)-κB expression, which in turn stimulates the release of proinflammatory cytokines, such as interleukin (IL)-8, and enhances the inflammatory response. However, how H. pylori activates HMGB1 expression and mobilizes RAGE into cholesterol-rich microdomains in gastric epithelial cells to promote inflammation has not been explored. In this study, we found that HMGB1 and RAGE expression increased significantly in H. pylori-infected cells compared with -uninfected cells. Blocking HMGB1 by neutralizing antibody abrogated H. pylori-elicited RAGE, suggesting that RAGE expression follows HMGB1 production, and silenced RAGE-attenuated H. pylori-mediated NF-κB activation and IL-8 production. Furthermore, significantly more RAGE was present in detergent-resistant membranes extracted from H. pylori-infected cells than in those from -uninfected cells, indicating that H. pylori exploited cholesterol to induce the HMGB1 signaling pathway. These results indicate that HMGB1 plays a crucial role in H. pylori-induced inflammation in gastric epithelial cells, which may be valuable in developing treatments for H. pylori-associated diseases.
Collapse
Affiliation(s)
- Hwai-Jeng Lin
- Department of Internal Medicine, Division of Gastroenterology and Hepatology, College of Medicine, School of Medicine, Taipei Medical University, Taipei, Taiwan; Department of Internal Medicine, Division of Gastroenterology and Hepatology, Shuang-Ho Hospital, New Taipei, Taiwan
| | - Fang-Yu Hsu
- Graduate Institute of Basic Medical Science, School of Medicine, China Medical University , Taichung , Taiwan
| | - Wei-Wei Chen
- Graduate Institute of Basic Medical Science, School of Medicine, China Medical University , Taichung , Taiwan
| | - Che-Hsin Lee
- Graduate Institute of Basic Medical Science, School of Medicine, China Medical University, Taichung, Taiwan; Department of Biological Sciences, National Sun Yet-sen University, Kaohsiung, Taiwan
| | - Ying-Ju Lin
- Department of Medical Research, Genetic Center, School of Chinese Medicine, China Medical University and Hospital , Taichung , Taiwan
| | - Yi-Ywan M Chen
- Department of Microbiology and Immunology, Graduate Institute of Biomedical Sciences, Chang Gung University, Taoyuan, Taiwan; Department of Pediatrics, Molecular Infectious Disease Research Center, Chang Gung Children's Hospital and Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Chih-Jung Chen
- Department of Pediatrics, Molecular Infectious Disease Research Center, Chang Gung Children's Hospital and Chang Gung Memorial Hospital , Taoyuan , Taiwan
| | - Mei-Zi Huang
- Department of Microbiology and Immunology, Graduate Institute of Biomedical Sciences, Chang Gung University , Taoyuan , Taiwan
| | - Min-Chuan Kao
- Department of Microbiology and Immunology, Graduate Institute of Biomedical Sciences, Chang Gung University , Taoyuan , Taiwan
| | - Yu-An Chen
- Graduate Institute of Basic Medical Science, School of Medicine, China Medical University , Taichung , Taiwan
| | - Hsin-Chih Lai
- Department of Medical Biotechnology and Laboratory Science, Chang Gung University, Taoyuan, Taiwan; Department of Laboratory Medicine, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Chih-Ho Lai
- Graduate Institute of Basic Medical Science, School of Medicine, China Medical University, Taichung, Taiwan; Department of Microbiology and Immunology, Graduate Institute of Biomedical Sciences, Chang Gung University, Taoyuan, Taiwan; Department of Pediatrics, Molecular Infectious Disease Research Center, Chang Gung Children's Hospital and Chang Gung Memorial Hospital, Taoyuan, Taiwan; Department of Nursing, Asia University, Taichung, Taiwan
| |
Collapse
|
23
|
Yadavalli T, Shukla D. Role of metal and metal oxide nanoparticles as diagnostic and therapeutic tools for highly prevalent viral infections. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2016; 13:219-230. [PMID: 27575283 DOI: 10.1016/j.nano.2016.08.016] [Citation(s) in RCA: 100] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Revised: 05/24/2016] [Accepted: 08/11/2016] [Indexed: 01/30/2023]
Abstract
Nanotechnology is increasingly playing important roles in various fields including virology. The emerging use of metal or metal oxide nanoparticles in virus targeting formulations shows the promise of improved diagnostic or therapeutic ability of the agents while uniquely enhancing the prospects of targeted drug delivery. Although a number of nanoparticles varying in composition, size, shape, and surface properties have been approved for human use, the candidates being tested or approved for clinical diagnosis and treatment of viral infections are relatively less in number. Challenges remain in this domain due to a lack of essential knowledge regarding the in vivo comportment of nanoparticles during viral infections. This review provides a broad overview of recent advances in diagnostic, prophylactic and therapeutic applications of metal and metal oxide nanoparticles in human immunodeficiency virus, hepatitis virus, influenza virus and herpes virus infections. Types of nanoparticles commonly used and their broad applications have been explained in this review.
Collapse
Affiliation(s)
- Tejabhiram Yadavalli
- Nanotechnology Research Centre, SRM University, Kattankulathur, India; Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, USA
| | - Deepak Shukla
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, USA; Department of Microbiology and Immunology, University of Illinois at Chicago, USA.
| |
Collapse
|
24
|
Ligand independent aryl hydrocarbon receptor inhibits lung cancer cell invasion by degradation of Smad4. Cancer Lett 2016; 376:211-7. [DOI: 10.1016/j.canlet.2016.03.052] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Revised: 03/28/2016] [Accepted: 03/29/2016] [Indexed: 12/30/2022]
|
25
|
Piperigkou Z, Karamanou K, Engin AB, Gialeli C, Docea AO, Vynios DH, Pavão MSG, Golokhvast KS, Shtilman MI, Argiris A, Shishatskaya E, Tsatsakis AM. Emerging aspects of nanotoxicology in health and disease: From agriculture and food sector to cancer therapeutics. Food Chem Toxicol 2016; 91:42-57. [PMID: 26969113 DOI: 10.1016/j.fct.2016.03.003] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Revised: 03/02/2016] [Accepted: 03/03/2016] [Indexed: 02/07/2023]
Abstract
Nanotechnology is an evolving scientific field that has allowed the manufacturing of materials with novel physicochemical and biological properties, offering a wide spectrum of potential applications. Properties of nanoparticles that contribute to their usefulness include their markedly increased surface area in relation to mass, surface reactivity and insolubility, ability to agglomerate or change size in different media and enhanced endurance over conventional-scale substance. Here, we review nanoparticle classification and their emerging applications in several fields; from active food packaging to drug delivery and cancer research. Nanotechnology has exciting therapeutic applications, including novel drug delivery for the treatment of cancer. Additionally, we discuss that exposure to nanostructures incorporated to polymer composites, may result in potential human health risks. Therefore, the knowledge of processes, including absorption, distribution, metabolism and excretion, as well as careful toxicological assessment is critical in order to determine the effects of nanomaterials in humans and other biological systems. Expanding the knowledge of nanoparticle toxicity will facilitate designing of safer nanocomposites and their application in a beneficial manner.
Collapse
Affiliation(s)
- Zoi Piperigkou
- Biochemistry, Biochemical Analysis & Matrix Pathobiology Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, Patras, Greece; Foundation for Research and Technology-Hellas (FORTH), Patras, Greece
| | - Konstantina Karamanou
- Biochemistry, Biochemical Analysis & Matrix Pathobiology Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, Patras, Greece; Laboratório de Bioquímica e Biologia Cellular de Glicoconjugados, Universidade Federal do Rio de Janeiro, Brazil
| | - Ayse Basak Engin
- Gazi University, Faculty of Pharmacy, Department of Toxicology, Hipodrom, Ankara, Turkey
| | - Chrysostomi Gialeli
- Biochemistry, Biochemical Analysis & Matrix Pathobiology Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, Patras, Greece; Lund University, Department of Laboratory Medicine, Malmö University Hospital, Malmö, Sweden
| | - Anca Oana Docea
- Department of Toxicology, University of Medicine and Pharmacy, Faculty of Pharmacy, Craiova, Romania
| | - Demitrios H Vynios
- Biochemistry, Biochemical Analysis & Matrix Pathobiology Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, Patras, Greece
| | - Mauro S G Pavão
- Laboratório de Bioquímica e Biologia Cellular de Glicoconjugados, Universidade Federal do Rio de Janeiro, Brazil
| | - Kirill S Golokhvast
- Scientific Educational Center of Nanotechnology, Far Eastern Federal University, Engineering School, Vladivostok, Russia
| | - Mikhail I Shtilman
- Master School Biomaterials, D.I. Mendeleyev University of Chemical Technology, Moscow, Russia
| | - Athanassios Argiris
- University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | | | - Aristidis M Tsatsakis
- Center of Toxicology Science & Research, Medical School, University of Crete, Heraklion, Crete, Greece; Scientific Educational Center of Nanotechnology, Far Eastern Federal University, Engineering School, Vladivostok, Russia.
| |
Collapse
|
26
|
Xu Y, Wei MT, Ou-Yang HD, Walker SG, Wang HZ, Gordon CR, Guterman S, Zawacki E, Applebaum E, Brink PR, Rafailovich M, Mironava T. Exposure to TiO2 nanoparticles increases Staphylococcus aureus infection of HeLa cells. J Nanobiotechnology 2016; 14:34. [PMID: 27102228 PMCID: PMC4840899 DOI: 10.1186/s12951-016-0184-y] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Accepted: 04/10/2016] [Indexed: 01/02/2023] Open
Abstract
Background Titanium dioxide (TiO2) is one of the most common nanoparticles found in industry ranging from food additives to energy generation. Approximately four million tons of TiO2 particles are produced worldwide each year with approximately 3000 tons being produced in nanoparticulate form, hence exposure to these particles is almost certain. Results Even though TiO2 is also used as an anti-bacterial agent in combination with UV, we have found that, in the absence of UV, exposure of HeLa cells to TiO2 nanoparticles significantly increased their risk of bacterial invasion. HeLa cells cultured with 0.1 mg/ml rutile and anatase TiO2 nanoparticles for 24 h prior to exposure to bacteria had 350 and 250 % respectively more bacteria per cell. The increase was attributed to bacterial polysaccharides absorption on TiO2 NPs, increased extracellular LDH, and changes in the mechanical response of the cell membrane. On the other hand, macrophages exposed to TiO2 particles ingested 40 % fewer bacteria, further increasing the risk of infection. Conclusions In combination, these two factors raise serious concerns regarding the impact of exposure to TiO2 nanoparticles on the ability of organisms to resist bacterial infection. Electronic supplementary material The online version of this article (doi:10.1186/s12951-016-0184-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yan Xu
- Department of Materials Science and Engineering, Stony Brook University, Stony Brook, NY, USA
| | - Ming-Tzo Wei
- Department of Bioengineering, Lehigh University, Bethlehem, PA, USA
| | - H Daniel Ou-Yang
- Department of Bioengineering, Lehigh University, Bethlehem, PA, USA
| | - Stephen G Walker
- Department of Oral Biology and Pathology, School of Dental Medicine, Stony Brook University, Stony Brook, NY, USA
| | - Hong Zhan Wang
- Department of Physiology and Biophysics, Stony Brook University, Stony Brook, NY, USA
| | - Chris R Gordon
- Department of Physiology and Biophysics, Stony Brook University, Stony Brook, NY, USA
| | | | - Emma Zawacki
- University of California at Los Angeles, Los Angeles, CA, USA
| | | | - Peter R Brink
- Department of Physiology and Biophysics, Stony Brook University, Stony Brook, NY, USA
| | - Miriam Rafailovich
- Department of Materials Science and Engineering, Stony Brook University, Stony Brook, NY, USA
| | - Tatsiana Mironava
- Department of Materials Science and Engineering, Stony Brook University, Stony Brook, NY, USA.
| |
Collapse
|
27
|
Arancibia S, Barrientos A, Torrejón J, Escobar A, Beltrán CJ. Copper oxide nanoparticles recruit macrophages and modulate nitric oxide, proinflammatory cytokines and PGE2 production through arginase activation. Nanomedicine (Lond) 2016; 11:1237-51. [PMID: 27079258 DOI: 10.2217/nnm.16.39] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
AIM In the present study, we examine the effects of copper oxide nanoparticles (CuNP) on macrophage immune response and the signaling pathways involved. MATERIALS & METHODS A peritonitis model was used to determine in vivo immune cells recruitment, while primary macrophages were used as an in vitro model for the cellular and molecular analysis. RESULTS In vivo, CuNP induce significant macrophages recruitment to the site of injection. In vitro, in LPS-stimulated primary macrophages, the co-treatment with CuNP inhibited the production of NO in a dose-dependent manner. The mechanism underlying NO and proinflammatory cytokines inhibition was associated with an increased arginase activity. Macrophage stimulation with CuNP did not provoke any cytokine secretion; however, arginase inhibition promoted TNFα and MIP-1β production. In addition, CuNP induced the expression of COX-2 and the production of PGE2 through arginase activation. CONCLUSION Our results demonstrate that CuNP activate arginase and suppress macrophage innate immune response.
Collapse
Affiliation(s)
- Sergio Arancibia
- Investigación y Desarrollo, Fundación Ciencia y Tecnología para el Desarrollo, Santiago, Chile.,Investigación y Desarrollo, Laboratorio Centrovet, Santiago, Chile
| | | | - Javiera Torrejón
- Investigación y Desarrollo, Laboratorio Centrovet, Santiago, Chile
| | - Alejandro Escobar
- Instituto de Investigación en Ciencias Odontológicas, Facultad de Odontología, Universidad de Chile, Santiago, Chile
| | - Caroll J Beltrán
- Facultad de Medicina, Universidad de Chile, Santiago, Chile.,Departamento de Gastroenterología, Hospital Clínico de la Universidad de Chile, Santiago, Chile
| |
Collapse
|
28
|
DeLoid G, Casella B, Pirela S, Filoramo R, Pyrgiotakis G, Demokritou P, Kobzik L. Effects of engineered nanomaterial exposure on macrophage innate immune function. NANOIMPACT 2016; 2:70-81. [PMID: 29568809 PMCID: PMC5860825 DOI: 10.1016/j.impact.2016.07.001] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Increasing use of engineered nanomaterials (ENMs) means increased human exposures. Potential adverse effects include those on the immune system, ranging from direct toxicity to impairment of defenses against environmental pathogens and toxins. Effects on lung macrophages may be especially prominent, because they serve to clear foreign materials like ENMs and bacterial pathogens. We investigated the effects of 4 hour exposures over a range of concentrations, of a panel of industry-relevant ENMs, including SiO2, Fe2O3, ZnO, CeO2, TiO2, and an Ag/SiO2 composite, on human THP-1 macrophages. Effects on phagocytosis of latex beads, and phagocytosis and killing of Francisella tularensis (FT), as well as viability, oxidative stress and mitochondrial integrity, were measured by automated scanning confocal microscopy and image analysis. Results revealed some notable patterns: 1) Phagocytosis of unopsonized beads was increased, whereas that of opsonized beads was decreased, by all ENMs, with the exception of ZnO, which reduced both opsonized and unopsonized uptake; 2) Uptake of opsonized and unopsonized FT was either impaired or unaffected by all ENMs, with the exception of CeO2, which increased phagocytosis of unopsonized FT; 3) Macrophage killing of FT tended to improve with all ENMs; and 4) Viability was unaffected immediately following exposures with all ENMs tested, but was significantly decreased 24 hours after exposures to Ag/SiO2 and ZnO ENMs. The results reveal a complex landscape of ENM effects on macrophage host defenses, including both enhanced and reduced capacities, and underscore the importance of robust hazard assessment, including immunotoxicity assessment, of ENMs.
Collapse
Affiliation(s)
- Glen DeLoid
- Center for Nanotechnology and Nanotoxicology, Department of Environmental Health, Harvard School of Public Health, Boston, MA, United States of America
- corresponding author: Glen M. DeLoid,
| | - Beatriz Casella
- Center for Nanotechnology and Nanotoxicology, Department of Environmental Health, Harvard School of Public Health, Boston, MA, United States of America
- Faculty of Medicine, University of São Paulo, São Paulo, Brazil
| | - Sandra Pirela
- Center for Nanotechnology and Nanotoxicology, Department of Environmental Health, Harvard School of Public Health, Boston, MA, United States of America
| | - Rose Filoramo
- Center for Nanotechnology and Nanotoxicology, Department of Environmental Health, Harvard School of Public Health, Boston, MA, United States of America
| | - Georgios Pyrgiotakis
- Center for Nanotechnology and Nanotoxicology, Department of Environmental Health, Harvard School of Public Health, Boston, MA, United States of America
| | - Philip Demokritou
- Center for Nanotechnology and Nanotoxicology, Department of Environmental Health, Harvard School of Public Health, Boston, MA, United States of America
| | - Lester Kobzik
- Center for Nanotechnology and Nanotoxicology, Department of Environmental Health, Harvard School of Public Health, Boston, MA, United States of America
- Department of Pathology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States of America
| |
Collapse
|
29
|
High mobility group box 1-induced epithelial mesenchymal transition in human airway epithelial cells. Sci Rep 2016; 6:18815. [PMID: 26739898 PMCID: PMC4703978 DOI: 10.1038/srep18815] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Accepted: 11/13/2015] [Indexed: 12/31/2022] Open
Abstract
Epithelial–mesenchymal transition (EMT) is implicated in bronchial remodeling and loss of lung function in chronic inflammatory airway diseases. Previous studies showed the involvement of the high mobility group box 1 (HMGB1) protein in the pathology of chronic pulmonary inflammatory diseases. However, the role of HMGB1 in EMT of human airway epithelial cells is still unclear. In this study, we used RNA sequencing to show that HMGB1 treatment regulated EMT-related gene expression in human primary-airway epithelial cells. The top five upregulated genes were SNAI2, FGFBP1, VIM, SPARC (osteonectin), and SERPINE1, while the downregulated genes included OCLN, TJP1 (ZO-1), FZD7, CDH1 (E-cadherin), and LAMA5. We found that HMGB1 induced downregulation of E-cadherin and ZO-1, and upregulation of vimentin mRNA transcription and protein translation in a dose-dependent manner. Additionally, we observed that HMGB1 induced AKT phosphorylation, resulting in GSK3β inactivation, cytoplasmic accumulation, and nuclear translocation of β-catenin to induce EMT in human airway epithelial cells. Treatment with PI3K inhibitor (LY294006) and β-catenin shRNA reversed HMGB1-induced EMT. Moreover, HMGB1 induced expression of receptor for advanced glycation products (RAGE), but not that of Toll-like receptor (TLR) 2 or TLR4, and RAGE shRNA inhibited HMGB1-induced EMT in human airway epithelial cells. In conclusion, we found that HMGB1 induced EMT through RAGE and the PI3K/AKT/GSK3β/β-catenin signaling pathway.
Collapse
|
30
|
Interleukin-13 Inhibits Lipopolysaccharide-Induced BPIFA1 Expression in Nasal Epithelial Cells. PLoS One 2015; 10:e0143484. [PMID: 26646664 PMCID: PMC4672888 DOI: 10.1371/journal.pone.0143484] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2014] [Accepted: 11/05/2015] [Indexed: 02/01/2023] Open
Abstract
Short palate, lung, and nasal epithelium clone 1 (SPLUNC1) protein is expressed in human nasopharyngeal and respiratory epithelium and has demonstrated antimicrobial activity. SPLUNC1 is now referred to as bactericidal/permeability-increasing fold containing family A, member 1 (BPIFA1). Reduced BPIFA1 expression is associated with bacterial colonization in patients with chronic rhinosinusitis with nasal polyps (CRSwNP). Interleukin 13 (IL-13), predominately secreted by T helper 2 (TH2) cells, has been found to contribute to airway allergies and suppress BPIFA1 expression in nasal epithelial cells. However, the molecular mechanism of IL-13 perturbation of bacterial infection and BPIFA1 expression in host airways remains unclear. In this study, we found that lipopolysaccharide (LPS)-induced BPIFA1 expression in nasal epithelial cells was mediated through the JNK/c-Jun signaling pathway and AP-1 activation. We further demonstrated that IL-13 downregulated the LPS-induced activation of phosphorylated JNK and c-Jun, followed by attenuation of BPIFA1 expression. Moreover, the immunohistochemical analysis showed that IL-13 prominently suppressed BPIFA1 expression in eosinophilic CRSwNP patients with bacterial infection. Taken together, these results suggest that IL-13 plays a critical role in attenuation of bacteria-induced BPIFA1 expression that may result in eosinophilic CRSwNP.
Collapse
|
31
|
Lee CC, Wang CN, Lee YL, Tsai YR, Liu JJ. High mobility group box 1 induced human lung myofibroblasts differentiation and enhanced migration by activation of MMP-9. PLoS One 2015; 10:e0116393. [PMID: 25692286 PMCID: PMC4332862 DOI: 10.1371/journal.pone.0116393] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2014] [Accepted: 12/10/2014] [Indexed: 11/21/2022] Open
Abstract
High mobility group box 1 (HMGB1) is a nuclear protein that involves the binding with DNA and influences chromatin regulation and transcription. HMGB1 is also a cytokine that can activate monocytes and neutrophils involved in inflammation. In this study, we investigated the role of HMGB1 on cellular activation using human fibroblast cell line WI-38. After treatment with 1, 10, and 100 ng/mL of HMGB1 for 24 h, we did not find obviously cytotoxicity and cellular proliferation of WI-38 cells by MTT and BrdU incorporation assay, respectively. However, we found that treatment with 10 and 100 ng/mL of HMGB1 induced the differentiation of lung fibroblasts into myofibroblasts and myofibroblasts showed higher migration ability through activation of matrix metalloproteinase (MMP)-9 activation. To delineate the mechanism underlying HMGB1-induced cellular migration, we examined HMGB1-induced mitogen activated protein kinases (MAPKs), including extracellular signal related kinase (ERK), c-Jun N-terminal kinase (JNK), and p38 mitogen activated protein kinase (p38) phosphorylation, as well as nuclear factor (NF)-κB nuclear translocation. Using specific inhibitors and shRNAs of protein kinases, we observed that repression of ERK, JNK, p38, and NF-κB all inhibited HMGB1-induced cellular differentiation, migration and MMP-9 activation in WI-38 cells. In addition, knocking down of RAGE but not TLR2 and TLR4 by shRNAs attenuated HMGB1-induced myofibroblast differentiation and migration. In conclusion, our study demonstrated that HMGB1 induced lung fibroblasts’ differentiation into myofibroblasts and enhanced cell migration through induction of MMP-9 activation and the RAGE-MAPK and NF-κB interaction signaling pathways. Targeting HMGB1 might be a potential therapeutic approach for alleviation of airway remodeling seen in chronic airway inflammatory diseases.
Collapse
Affiliation(s)
- Chen-Chen Lee
- Department of Microbiology and Immunology, School of Medicine, China Medical University, Taichung, Taiwan
- Graduate Institute of Basic Medical Science, College of Medicine, China Medical University, Taichung, Taiwan
- * E-mail:
| | - Chien-Neng Wang
- Graduate Institute of Basic Medical Science, College of Medicine, China Medical University, Taichung, Taiwan
| | - Yueh-Lun Lee
- Department of Microbiology and Immunology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Yi-Ru Tsai
- Graduate Institute of Basic Medical Science, College of Medicine, China Medical University, Taichung, Taiwan
| | - Jau-Jin Liu
- Department of Microbiology and Immunology, School of Medicine, China Medical University, Taichung, Taiwan
| |
Collapse
|
32
|
Wang Z, Moran E, Ding L, Cheng R, Xu X, Ma JX. PPARα regulates mobilization and homing of endothelial progenitor cells through the HIF-1α/SDF-1 pathway. Invest Ophthalmol Vis Sci 2014; 55:3820-32. [PMID: 24845641 DOI: 10.1167/iovs.13-13396] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
PURPOSE The mechanism for the antiangiogenic activity of peroxisome proliferator-activated receptor alpha (PPARα) remains incompletely understood. Endothelial progenitor cells (EPC) are known to participate in neovascularization (NV). The purpose of this study was to investigate whether PPARα regulates EPC during retinal NV. METHODS Retinal NV was induced by oxygen-induced retinopathy (OIR). Mice with OIR were injected intraperitoneally with the PPARα agonist fenofibric acid (FA) or with adenovirus expressing PPARα (Ad-PPARα). Flow cytometry was used to quantify circulating and retinal EPC. Serum stromal cell-derived factor 1 (SDF-1) levels were measured by ELISA. Hypoxia was induced in primary human retinal capillary endothelial cells (HRCEC) and mouse brain endothelial cells (MBEC) by CoCl2. Levels of SDF-1 and hypoxia-inducible factor 1 alpha (HIF-1α) were measured by Western blotting. RESULTS Fenofibric acid and overexpression of PPARα attenuated the increase of circulating and retinal EPC, correlating with suppressed retinal NV in OIR mice at P17. The PPARα knockout enhanced the OIR-induced increase of circulating and retinal EPC. Fenofibric acid decreased retinal HIF-1α and SDF-1 levels as well as serum SDF-1 levels in the OIR model. In HRCEC, PPARα inhibited HIF-1α nuclear translocation and SDF-1 overexpression induced by hypoxia. Further, MBEC from PPARα(-/-) mice showed more prominent activation of HIF-1α and overexpression of SDF-1 induced by hypoxia, compared with the wild-type (WT) MBEC. PPARα failed to block SDF-1 overexpression induced by a constitutively active mutant of HIF-1α, suggesting that regulation of SDF-1 by PPARα was through blockade of HIF-1α activation. CONCLUSIONS Peroxisome proliferator-activated receptor alpha suppresses ischemia-induced EPC mobilization and homing through inhibition of the HIF-1α/SDF-1 pathway. This represents a novel molecular mechanism for PPARα's antiangiogenic effects.
Collapse
Affiliation(s)
- Zhongxiao Wang
- Department of Ophthalmology, Shanghai First People's Hospital Affiliated with Shanghai Jiaotong University, Shanghai, China Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States
| | - Elizabeth Moran
- Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States
| | - Lexi Ding
- Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States Department of Ophthalmology, Xiangya Hospital, Central South University, Changsha, China
| | - Rui Cheng
- Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States
| | - Xun Xu
- Department of Ophthalmology, Shanghai First People's Hospital Affiliated with Shanghai Jiaotong University, Shanghai, China
| | - Jian-xing Ma
- Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States
| |
Collapse
|