1
|
Romero-Ben E, Goswami U, Soto-Cruz J, Mansoori-Kermani A, Mishra D, Martin-Saldaña S, Muñoz-Ugartemendia J, Sosnik A, Calderón M, Beloqui A, Larrañaga A. Polymer-based nanocarriers to transport therapeutic biomacromolecules across the blood-brain barrier. Acta Biomater 2025; 196:17-49. [PMID: 40032217 DOI: 10.1016/j.actbio.2025.02.065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 02/20/2025] [Accepted: 02/28/2025] [Indexed: 03/05/2025]
Abstract
Therapeutic biomacromolecules such as genetic material, antibodies, growth factors and enzymes represent a novel therapeutic alternative for neurological diseases and disorders. In comparison to traditional therapeutics, which are mainly based on small molecular weight drugs that address the symptoms of these disorders, therapeutic biomacromolecules can reduce undesired side effects and target specific pathological pathways, thus paving the way towards personalized medicine. However, these biomacromolecules undergo degradation/denaturation processes in the physiological environment and show poor capacity to cross the blood-brain barrier (BBB). Consequently, they rarely reach the central nervous system (CNS) in their active form. Herein, we critically overview several polymeric nanocarriers that can protect and deliver therapeutic biomacromolecules across the BBB. Polymeric nanocarriers are first categorized based on their architecture (biodegradable solid nanoparticles, nanogels, dendrimers, self-assembled nanoparticles) that ultimately determines their physico-chemical properties and function. The available polymeric formulations are then thoroughly analyzed, placing particular attention on those strategies that ensure the stability of the biomacromolecules during their encapsulation process and promote their passage across the BBB by controlling their physical (e.g., mechanical properties, size, surface charge) and chemical (e.g., surface functional groups, targeting motifs) properties. Accordingly, this review gives a unique perspective on polymeric nanocarriers for the delivery of therapeutic biomacromolecules across the BBB, representing a concise, complete and easy-to-follow guide, which will be of high interest for chemists, material scientists, pharmacologists, and biologists. Besides, it also provides a critical perspective about the limited clinical translation of these systems. STATEMENT OF SIGNIFICANCE: The increasing incidence of central nervous system disorders is a major health concern. The use of therapeutic biomacromolecules has been placed in the spotlight of many investigations. However, reaching therapeutic concentration levels of biomacromolecules in the central nervous system is restricted by the blood-brain barrier and, thus, this represents the main clinical challenge when developing efficient therapies. Herein, we provide a critical discussion about the use of polymeric nanocarriers to deliver therapeutic biomacromolecules into the central nervous system, highlighting potential future directions to overcome the current challenges.
Collapse
Affiliation(s)
- Elena Romero-Ben
- POLYMAT, Applied Chemistry Department, Faculty of Chemistry, University of the Basque Country UPV/EHU, Paseo Manuel de Lardizabal 3, Donostia-San Sebastián 20018, Spain
| | - Upashi Goswami
- POLYMAT, Applied Chemistry Department, Faculty of Chemistry, University of the Basque Country UPV/EHU, Paseo Manuel de Lardizabal 3, Donostia-San Sebastián 20018, Spain; Department of Mining-Metallurgy Engineering and Materials Science, POLYMAT, Bilbao School of Engineering, University of the Basque Country (UPV/EHU), Plaza Torres Quevedo 1, Bilbao 48013, Spain
| | - Jackeline Soto-Cruz
- POLYMAT, Applied Chemistry Department, Faculty of Chemistry, University of the Basque Country UPV/EHU, Paseo Manuel de Lardizabal 3, Donostia-San Sebastián 20018, Spain
| | - Amirreza Mansoori-Kermani
- Department of Mining-Metallurgy Engineering and Materials Science, POLYMAT, Bilbao School of Engineering, University of the Basque Country (UPV/EHU), Plaza Torres Quevedo 1, Bilbao 48013, Spain; Istituto Italiano di Tecnologia, Smart Bio-Interfaces, Viale Rinaldo Piaggio 34, Pontedera 56025, Italy; Scuola Superiore Sant'Anna, The Biorobotics Institute, Viale Rinaldo PIaggio 34, Pontedera 56025, Italy
| | - Dhiraj Mishra
- POLYMAT, Applied Chemistry Department, Faculty of Chemistry, University of the Basque Country UPV/EHU, Paseo Manuel de Lardizabal 3, Donostia-San Sebastián 20018, Spain; Laboratory of Pharmaceutical Nanomaterials Science, Department of Materials Science and Engineering, Technion - Israel Institute of Technology, Haifa 3200003, Israel
| | - Sergio Martin-Saldaña
- POLYMAT, Applied Chemistry Department, Faculty of Chemistry, University of the Basque Country UPV/EHU, Paseo Manuel de Lardizabal 3, Donostia-San Sebastián 20018, Spain
| | - Jone Muñoz-Ugartemendia
- Department of Mining-Metallurgy Engineering and Materials Science, POLYMAT, Bilbao School of Engineering, University of the Basque Country (UPV/EHU), Plaza Torres Quevedo 1, Bilbao 48013, Spain
| | - Alejandro Sosnik
- Laboratory of Pharmaceutical Nanomaterials Science, Department of Materials Science and Engineering, Technion - Israel Institute of Technology, Haifa 3200003, Israel
| | - Marcelo Calderón
- POLYMAT, Applied Chemistry Department, Faculty of Chemistry, University of the Basque Country UPV/EHU, Paseo Manuel de Lardizabal 3, Donostia-San Sebastián 20018, Spain; IKERBASQUE, Basque Foundation for Science, Plaza Euskadi 5, Bilbao 48009, Spain
| | - Ana Beloqui
- POLYMAT, Applied Chemistry Department, Faculty of Chemistry, University of the Basque Country UPV/EHU, Paseo Manuel de Lardizabal 3, Donostia-San Sebastián 20018, Spain; IKERBASQUE, Basque Foundation for Science, Plaza Euskadi 5, Bilbao 48009, Spain
| | - Aitor Larrañaga
- Department of Mining-Metallurgy Engineering and Materials Science, POLYMAT, Bilbao School of Engineering, University of the Basque Country (UPV/EHU), Plaza Torres Quevedo 1, Bilbao 48013, Spain.
| |
Collapse
|
2
|
Wang Y, Lou X, Yang L, Hou Y. Application of Chitosan-based Nanogel in Cancer Nanomedicine. Curr Pharm Des 2025; 31:1247-1258. [PMID: 39754764 DOI: 10.2174/0113816128347060241105032329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 10/07/2024] [Accepted: 10/09/2024] [Indexed: 01/06/2025]
Abstract
Chitosan is a kind of natural material with many unique physicochemical and biological properties related to antibacterial, antioxidant, and chelating. In recent years, chitosan-based nano gels (CS-NG) have been widely used in the field of cancer nanomedicine due to their excellent characteristics including biodegradability, biocompatibility, flexibility, large surface area, controllability, high loading capacity, and especially it can be engineered to become stimuli-responsive to tumor environments. In this review, we summarized the main synthesis approaches of CS-NGs including radical polymerization, self-assembly, microemulsion, and ionic gelation methods. These novel CS-NGs are applied in cancer nanomedicine serving as drug delivery, gene delivery, and bioimaging. Besides, we proposed our perspectives regarding the clinical development of CS-NGs cancer nanomedicine applications.
Collapse
Affiliation(s)
- Yue Wang
- Department of Clinical Laboratory, Songjiang Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 201600, China
| | - Xiaoli Lou
- Department of Clinical Laboratory, Songjiang Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 201600, China
| | - Liyuan Yang
- Department of Clinical Laboratory, Songjiang Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 201600, China
| | - Yanqiang Hou
- Department of Clinical Laboratory, Songjiang Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 201600, China
| |
Collapse
|
3
|
Sader D, Zlotver I, Moya S, Calabrese GC, Sosnik A. Doubly self-assembled dermatan sulfate/chitosan nanoparticles for targeted siRNA delivery in cancer therapy. J Colloid Interface Sci 2024; 680:763-775. [PMID: 39580927 DOI: 10.1016/j.jcis.2024.11.132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 11/16/2024] [Accepted: 11/17/2024] [Indexed: 11/26/2024]
Abstract
RNA interference, a naturally occurring regulatory mechanism in which small interfering RNA (siRNA) molecules are responsible for the sequence-specific suppression of gene expression, emerged as one of the most promising gene therapies in cancer. In this work, we investigate a microfluidics double self-assembly method based on micellization and polyelectrolyte complex formation for the encapsulation of siRNA targeting the BIRC5 gene, a member of the inhibitor of apoptosis gene family, that codes for survivin a protein of theinhibitorof apoptosis protein family that is involved in triple-negative breast cancer (TNBC) proliferation and metastasis within nanoparticles of an amphiphilic chitosan-graft-poly(methyl methacrylate) copolymer and low-molecular weight dermatan sulfate, a polysaccharide targeting the CD44 receptor overexpressed in this tumor. Nanoparticles are spherical and display a hydrodynamic diameter of ∼ 200 nm, as measured by dynamic light scattering and scanning electron microscopy. In addition, these colloidal systems exhibit a strongly negative zeta-potential that confers them excellent physical stability for at least four months owing to electrostatic repulsion and evidences the exposure of the polyanionic dermatan sulfate on the surface. The key role of dermatan sulfate in the active targeting and intracellular delivery of the cargo in the murine breast cancer cell line 4T1, a model of TNBC, is confirmed by confocal laser scanning microscopy and imaging flow cytometry. Finally, the silencing efficiency is demonstrated in 4T1 cell viability, migration, proliferation and spheroid formation assays in vitro. Overall results highlight the promise of this simple, reproducible and scalable method for the nanoencapsulation of siRNA and other therapeutic nucleic acids.
Collapse
Affiliation(s)
- Dareen Sader
- Laboratory of Pharmaceutical Nanomaterials Science, Department of Materials Science and Engineering Technion - Israel Institute of Technology, Technion City 320003, Haifa, Israel
| | - Ivan Zlotver
- Laboratory of Pharmaceutical Nanomaterials Science, Department of Materials Science and Engineering Technion - Israel Institute of Technology, Technion City 320003, Haifa, Israel
| | - Sergio Moya
- Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), 20014 Donostia-San Sebastian, Spain
| | - Graciela C Calabrese
- Departamento de Ciencias Biológicas, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires (UBA) and Instituto de Química Fisicoquímica Biológicas "Prof. Alejandro C. Paladini" (IQUIFIB) UBA - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Junín 956, C1113AAD Ciudad Autónoma de Buenos Aires, Buenos Aires, Argentina
| | - Alejandro Sosnik
- Laboratory of Pharmaceutical Nanomaterials Science, Department of Materials Science and Engineering Technion - Israel Institute of Technology, Technion City 320003, Haifa, Israel.
| |
Collapse
|
4
|
Sosnik A, Zlotver I, Peled E. Galactomannan- graft-poly(methyl methacrylate) nanoparticles induce an anti-inflammatory phenotype in human macrophages. J Mater Chem B 2023; 11:8471-8483. [PMID: 37587844 DOI: 10.1039/d3tb01397a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/18/2023]
Abstract
Macrophages are immune cells that can be activated into either pro-inflammatory M1 or anti-inflammatory M2 phenotypes. Attempts to modulate macrophage phenotype using drugs have been limited by targeting issues and systemic toxicity. This study investigates the effect of drug-free self-assembled hydrolyzed galactomannan-poly(methyl methacrylate) (hGM-g-PMMA) nanoparticles on the activation of the human monocyte-derived macrophage THP-1 cell line. Nanoparticles are cell compatible and are taken up by macrophages. RNA-sequencing analysis of cells exposed to NPs reveal the upregulation of seven metallothionein genes. Additionally, the secretion of pro-inflammatory and anti-inflammatory cytokines upon exposure of unpolarized macrophages and M1-like cells obtained by activation with lipopolysaccharide + interferon-γ to the NPs is reduced and increased, respectively. Finally, nanoparticle-treated macrophages promote fibroblast migration in vitro. Overall, results demonstrate that hGM-g-PMMA nanoparticles induce the release of anti-inflammatory cytokines by THP-1 macrophages, which could pave the way for their application in the therapy of different inflammatory conditions, especially by local delivery.
Collapse
Affiliation(s)
- Alejandro Sosnik
- Laboratory of Pharmaceutical Nanomaterials Science, Department of Materials Science and Engineering, Technion-Israel Institute of Technology, De-Jur Building, Office 607, Technion City, 3200003 Haifa, Israel.
| | - Ivan Zlotver
- Laboratory of Pharmaceutical Nanomaterials Science, Department of Materials Science and Engineering, Technion-Israel Institute of Technology, De-Jur Building, Office 607, Technion City, 3200003 Haifa, Israel.
| | - Ella Peled
- Laboratory of Pharmaceutical Nanomaterials Science, Department of Materials Science and Engineering, Technion-Israel Institute of Technology, De-Jur Building, Office 607, Technion City, 3200003 Haifa, Israel.
| |
Collapse
|
5
|
Moshe Halamish H, Zlotver I, Sosnik A. Polymeric nanoparticles surface-complexed with boric acid actively target solid tumors overexpressing sialic acid. J Colloid Interface Sci 2022; 626:916-929. [PMID: 35835042 DOI: 10.1016/j.jcis.2022.07.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 06/22/2022] [Accepted: 07/04/2022] [Indexed: 11/16/2022]
Abstract
Sialic acid is a fundamental component of the tumor microenvironment, modulates cell-cell and cell-extracellular matrix interactions and is associated with bad prognosis and clinical outcomes in different cancers. Capitalizing on the ability of boric acid to form cyclic esters with diols, in this work, we design self-assembled multi-micellar colloidal systems of an amphiphilic poly(vinyl alcohol)-g-poly(methyl methacrylate) copolymer surface-modified with boric acid for the active targeting of solid tumors that overexpress sialic acid. Nanoparticles display sizes in the 100-200 nm range and a spherical morphology, as determined by dynamic light scattering and high resolution-scanning electron microscopy, respectively. The uptake and anti-proliferative activity are assessed in 2D and 3D models of rhabdomyosarcoma in vitro. Surface boration increases the nanoparticle permeability and uptake, especially in rhabdomyosarcoma spheroids that overexpress sialic acid to a greater extent than 2D cultures. The biodistribution of non-borated and borated nanoparticles upon intravenous injection to a subcutaneous rhabdomyosarcoma murine xenograft model confirm a statistically significant increase in the intertumoral accumulation of the modified nanocarriers with respect to the unmodified counterparts and a sharp decrease in major clearance organs such as the liver. Overall, our results highlight the promise of these borated nanomaterials to actively target hypersialylated solid tumors.
Collapse
Affiliation(s)
- Hen Moshe Halamish
- Laboratory of Pharmaceutical Nanomaterials Science, Department of Materials Science and Engineering, Technion-Israel Institute of Technology, De-Jur Building, Office 607, Technion City 3200003 Haifa, Israel
| | - Ivan Zlotver
- Laboratory of Pharmaceutical Nanomaterials Science, Department of Materials Science and Engineering, Technion-Israel Institute of Technology, De-Jur Building, Office 607, Technion City 3200003 Haifa, Israel
| | - Alejandro Sosnik
- Laboratory of Pharmaceutical Nanomaterials Science, Department of Materials Science and Engineering, Technion-Israel Institute of Technology, De-Jur Building, Office 607, Technion City 3200003 Haifa, Israel.
| |
Collapse
|
6
|
Trousil J, Dal NJK, Fenaroli F, Schlachet I, Kubíčková P, Janoušková O, Pavlova E, Škorič M, Trejbalová K, Pavliš O, Sosnik A. Antibiotic-Loaded Amphiphilic Chitosan Nanoparticles Target Macrophages and Kill an Intracellular Pathogen. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2201853. [PMID: 35691939 DOI: 10.1002/smll.202201853] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 05/19/2022] [Indexed: 06/15/2023]
Abstract
In this work, levofloxacin (LVX), a third-generation fluoroquinolone antibiotic, is encapsulated within amphiphilic polymeric nanoparticles of a chitosan-g-poly(methyl methacrylate) produced by self-assembly and physically stabilized by ionotropic crosslinking with sodium tripolyphosphate. Non-crosslinked nanoparticles display a size of 29 nm and a zeta-potential of +36 mV, while the crosslinked counterparts display 45 nm and +24 mV, respectively. The cell compatibility, uptake, and intracellular trafficking are characterized in the murine alveolar macrophage cell line MH-S and the human bronchial epithelial cell line BEAS-2B in vitro. Internalization events are detected after 10 min and the uptake is inhibited by several endocytosis inhibitors, indicating the involvement of complex endocytic pathways. In addition, the nanoparticles are detected in the lysosomal compartment. Then, the antibacterial efficacy of LVX-loaded nanoformulations (50% w/w drug content) is assessed in MH-S and BEAS-2B cells infected with Staphylococcus aureus and the bacterial burden is decreased by 49% and 46%, respectively. In contrast, free LVX leads to a decrease of 8% and 5%, respectively, in the same infected cell lines. Finally, intravenous injection to a zebrafish larval model shows that the nanoparticles accumulate in macrophages and endothelium and demonstrate the promise of these amphiphilic nanoparticles to target intracellular infections.
Collapse
Affiliation(s)
- Jiří Trousil
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Prague, 162 00, Czech Republic
| | | | | | - Inbar Schlachet
- Laboratory of Pharmaceutical Nanomaterials Science, Faculty of Materials Science and Engineering, Technion-Israel Institute of Technology, Haifa, 3200003, Israel
| | - Pavla Kubíčková
- Military Health Institute, Military Medical Agency, Prague, 160 00, Czech Republic
| | - Olga Janoušková
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Prague, 162 00, Czech Republic
- Department of Biology, Faculty of Science, University of J. E. Purkyně, Ústí nad Labem, 400 96, Czech Republic
| | - Ewa Pavlova
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Prague, 162 00, Czech Republic
| | - Miša Škorič
- Department of Pathological Morphology and Parasitology, Faculty of Veterinary Medicine, University of Veterinary Sciences Brno, Brno, 612 42, Czech Republic
| | - Kateřina Trejbalová
- Institute of Molecular Genetics, Czech Academy of Sciences, Prague, 142 20, Czech Republic
| | - Oto Pavliš
- Military Health Institute, Military Medical Agency, Prague, 160 00, Czech Republic
| | - Alejandro Sosnik
- Laboratory of Pharmaceutical Nanomaterials Science, Faculty of Materials Science and Engineering, Technion-Israel Institute of Technology, Haifa, 3200003, Israel
| |
Collapse
|
7
|
Cannabidiol-Loaded Mixed Polymeric Micelles of Chitosan/Poly(Vinyl Alcohol) and Poly(Methyl Methacrylate) for Trans-Corneal Delivery. Pharmaceutics 2021; 13:pharmaceutics13122142. [PMID: 34959427 PMCID: PMC8703866 DOI: 10.3390/pharmaceutics13122142] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 12/08/2021] [Accepted: 12/09/2021] [Indexed: 12/13/2022] Open
Abstract
Ocular drug delivery is challenging due to the very short drug residence time and low permeability. In this work, we produce and characterize mucoadhesive mixed polymeric micelles (PMs) made of chitosan (CS) and poly(vinyl alcohol) backbones graft-hydrophobized with short poly(methyl methacrylate) blocks and use them to encapsulate cannabidiol (CBD), an anti-inflammatory cannabinoid. CBD-loaded mixed PMs are physically stabilized by ionotropic crosslinking of the CS domains with sodium tripolyphoshate and spray-drying. These mixed PMs display CBD loading capacity of 20% w/w and sizes of 100-200 nm, and spherical morphology (cryogenic-transmission electron microscopy). The good compatibility of the unloaded and CBD-loaded PMs is assessed in a human corneal epithelial cell line. Then, we confirm the permeability of CBD-free PMs and nanoencapsulated CBD in human corneal epithelial cell monolayers under liquid-liquid and air-liquid conditions. Overall, our results highlight the potential of these polymeric nanocarriers for ocular drug delivery.
Collapse
|
8
|
Toscanini MA, Limeres MJ, Garrido AV, Cagel M, Bernabeu E, Moretton MA, Chiappetta DA, Cuestas ML. Polymeric micelles and nanomedicines: Shaping the future of next generation therapeutic strategies for infectious diseases. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2021.102927] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
9
|
Marsili L, Dal Bo M, Berti F, Toffoli G. Chitosan-Based Biocompatible Copolymers for Thermoresponsive Drug Delivery Systems: On the Development of a Standardization System. Pharmaceutics 2021; 13:1876. [PMID: 34834291 PMCID: PMC8620438 DOI: 10.3390/pharmaceutics13111876] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 10/27/2021] [Accepted: 11/02/2021] [Indexed: 12/26/2022] Open
Abstract
Chitosan is a natural polysaccharide that is considered to be biocompatible, biodegradable and non-toxic. The polymer has been used in drug delivery applications for its positive charge, which allows for adhesion with and recognition of biological tissues via non-covalent interactions. In recent times, chitosan has been used for the preparation of graft copolymers with thermoresponsive polymers such as poly-N-vinylcaprolactam (PNVCL) and poly-N-isopropylamide (PNIPAM), allowing the combination of the biodegradability of the natural polymer with the ability to respond to changes in temperature. Due to the growing interest in the utilization of thermoresponsive polymers in the biological context, it is necessary to increase the knowledge of the key principles of thermoresponsivity in order to obtain comparable results between different studies or applications. In the present review, we provide an overview of the basic principles of thermoresponsivity, as well as a description of the main polysaccharides and thermoresponsive materials, with a special focus on chitosan and poly-N-Vinyl caprolactam (PNVCL) and their biomedical applications.
Collapse
Affiliation(s)
- Lorenzo Marsili
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, Via Licio Giorgieri 1, 34127 Trieste, Italy;
| | - Michele Dal Bo
- Experimental and Clinical Pharmacology Unit, CRO National Cancer Institute IRCCS, Via Franco Gallini 2, 33081 Aviano, Italy; (M.D.B.); (G.T.)
| | - Federico Berti
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, Via Licio Giorgieri 1, 34127 Trieste, Italy;
| | - Giuseppe Toffoli
- Experimental and Clinical Pharmacology Unit, CRO National Cancer Institute IRCCS, Via Franco Gallini 2, 33081 Aviano, Italy; (M.D.B.); (G.T.)
| |
Collapse
|
10
|
Oravczová V, Garaiová Z, Hianik T. Nanoparticles and Nanomotors Modified by Nucleic Acids Aptamers for Targeted Drug Delivery. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2021. [DOI: 10.1134/s1068162021020187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
11
|
Robla S, Prasanna M, Varela-Calviño R, Grandjean C, Csaba N. A chitosan-based nanosystem as pneumococcal vaccine delivery platform. Drug Deliv Transl Res 2021; 11:581-597. [PMID: 33655441 DOI: 10.1007/s13346-021-00928-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/26/2021] [Indexed: 01/01/2023]
Abstract
Chitosan-based nanosystems have been described as interesting tools for antigen delivery and for enhancing the immunogenicity of nasally administered vaccines. As a possible vaccine delivery method, the chemical conjugation of chitosan nanocapsules with the Streptococcus pneumoniae cell membrane protein PsaA (pneumococcal surface adhesin A) is suggested here. The antigen PsaA, common to all pneumococcus serotypes, is expected to improve its uptake by immune cells and to activate specific T cells, generating an adaptive immune response against pneumococcus. With this aim, chitosan nanocapsules with thiol-maleimide conjugation between the polymer (chitosan) and the antigen (PsaA) were designed to enable the surface presentation of PsaA for immune cell recognition. Spherical-shaped particles, with a size of 266 ± 32 nm, positive charge of +30 ± 1 mV, and good stability profiles in simulated nasal fluids (up to 24 h) were achieved. PsaA association rates were three times higher compared with nanocapsules without covalent polymer-protein conjugation. Cytotoxicity studies in cell culture media showed non-toxic effect under 150 µg/mL concentration of nanocapsules, and subsequent studies on the maturation of immature dendritic cells in the presence of antigen-conjugated nanocapsules displayed peripheral blood mononuclear cell activation and lymphocyte differentiation after their presentation by dendritic cells. Secretion of TNFα following exposure to nanocapsules and the ability of nanocapsules to activate CD4 and CD8 T lymphocytes had also been studied. Antigen loaded nanocarrier uptake and presentation by professional presenting cells.
Collapse
Affiliation(s)
- Sandra Robla
- Center for Research in Molecular Medicine and Chronic Diseases, University of Santiago de Compostela, A Coruña, Spain
- Department of Pharmacology, Pharmacy and Pharmaceutical Technology, University of Santiago de Compostela, A Coruña, Spain
| | - Maruthi Prasanna
- Center for Research in Molecular Medicine and Chronic Diseases, University of Santiago de Compostela, A Coruña, Spain
- Unit Function & Protein Engineering UMR CNRS 6286, University of Nantes, Nantes Cedex, France
| | - Rubén Varela-Calviño
- Department of Biochemistry and Molecular Biology, University of Santiago de Compostela, A Coruña, Spain
| | - Cyrille Grandjean
- Unit Function & Protein Engineering UMR CNRS 6286, University of Nantes, Nantes Cedex, France
| | - Noemi Csaba
- Center for Research in Molecular Medicine and Chronic Diseases, University of Santiago de Compostela, A Coruña, Spain.
- Department of Pharmacology, Pharmacy and Pharmaceutical Technology, University of Santiago de Compostela, A Coruña, Spain.
| |
Collapse
|
12
|
Rosa V, Ho D, Sabino-Silva R, Siqueira WL, Silikas N. Fighting viruses with materials science: Prospects for antivirus surfaces, drug delivery systems and artificial intelligence. Dent Mater 2021; 37:496-507. [PMID: 33441249 PMCID: PMC7834288 DOI: 10.1016/j.dental.2020.12.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 11/30/2020] [Accepted: 12/14/2020] [Indexed: 12/12/2022]
Abstract
OBJECTIVE Viruses on environmental surfaces, in saliva and other body fluids represent risk of contamination for general population and healthcare professionals. The development of vaccines and medicines is costly and time consuming. Thus, the development of novel materials and technologies to decrease viral availability, viability, infectivity, and to improve therapeutic outcomes can positively impact the prevention and treatment of viral diseases. METHODS Herein, we discuss (a) interaction mechanisms between viruses and materials, (b) novel strategies to develop materials with antiviral properties and oral antiviral delivery systems, and (c) the potential of artificial intelligence to design and optimize preventive measures and therapeutic regimen. RESULTS The mechanisms of viral adsorption on surfaces are well characterized but no major breakthrough has become clinically available. Materials with fine-tuned physical and chemical properties have the potential to compromise viral availability and stability. Emerging strategies using oral antiviral delivery systems and artificial intelligence can decrease infectivity and improve antiviral therapies. SIGNIFICANCE Emerging viral infections are concerning due to risk of mortality, as well as psychological and economic impacts. Materials science emerges for the development of novel materials and technologies to diminish viral availability, infectivity, and to enable enhanced preventive and therapeutic strategies, for the safety and well-being of humankind.
Collapse
Affiliation(s)
- Vinicius Rosa
- Faculty of Dentistry, National University of Singapore, Singapore; Craniofacial Research and Innovation Center, National University of Singapore, Singapore.
| | - Dean Ho
- The N.1 Institute for Health (N.1), Institute for Digital Medicine (WisDM), Department of Biomedical Engineering, and Department of Pharmacology, National University of Singapore, Singapore.
| | - Robinson Sabino-Silva
- Department of Physiology, Institute of Biomedical Sciences, Federal University of Uberlandia, Brazil.
| | | | - Nikolaos Silikas
- Division of Dentistry, School of Medical Sciences, University of Manchester, United Kingdom.
| |
Collapse
|
13
|
das Neves J, Sverdlov Arzi R, Sosnik A. Molecular and cellular cues governing nanomaterial-mucosae interactions: from nanomedicine to nanotoxicology. Chem Soc Rev 2021; 49:5058-5100. [PMID: 32538405 DOI: 10.1039/c8cs00948a] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Mucosal tissues constitute the largest interface between the body and the surrounding environment and they regulate the access of molecules, supramolecular structures, particulate matter, and pathogens into it. All mucosae are characterized by an outer mucus layer that protects the underlying cells from physicochemical, biological and mechanical insults, a mono-layered or stratified epithelium that forms tight junctions and controls the selective transport of solutes across it and associated lymphoid tissues that play a sentinel role. Mucus is a gel-like material comprised mainly of the glycoprotein mucin and water and it displays both hydrophilic and hydrophobic domains, a net negative charge, and high porosity and pore interconnectivity, providing an efficient barrier for the absorption of therapeutic agents. To prolong the residence time, absorption and bioavailability of a broad spectrum of active compounds upon mucosal administration, mucus-penetrating and mucoadhesive particles have been designed by tuning the chemical composition, the size, the density, and the surface properties. The benefits of utilizing nanomaterials that interact intimately with mucosae by different mechanisms in the nanomedicine field have been extensively reported. To ensure the safety of these nanosystems, their compatibility is evaluated in vitro and in vivo in preclinical and clinical trials. Conversely, there is a growing concern about the toxicity of nanomaterials dispersed in air and water effluents that unintentionally come into contact with the airways and the gastrointestinal tract. Thus, deep understanding of the key nanomaterial properties that govern the interplay with mucus and tissues is crucial for the rational design of more efficient drug delivery nanosystems (nanomedicine) and to anticipate the fate and side-effects of nanoparticulate matter upon acute or chronic exposure (nanotoxicology). This review initially overviews the complex structural features of mucosal tissues, including the structure of mucus, the epithelial barrier, the mucosal-associated lymphatic tissues and microbiota. Then, the most relevant investigations attempting to identify and validate the key particle features that govern nanomaterial-mucosa interactions and that are relevant in both nanomedicine and nanotoxicology are discussed in a holistic manner. Finally, the most popular experimental techniques and the incipient use of mathematical and computational models to characterize these interactions are described.
Collapse
Affiliation(s)
- José das Neves
- i3S - Instituto de Investigação e Inovação em Saúde & INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Porto, Portugal
| | - Roni Sverdlov Arzi
- Laboratory of Pharmaceutical Nanomaterials Science, Department of Materials Science and Engineering, Technion-Israel Institute of Technology, De-Jur Building, Office 607, Haifa, 3200003, Israel.
| | - Alejandro Sosnik
- Laboratory of Pharmaceutical Nanomaterials Science, Department of Materials Science and Engineering, Technion-Israel Institute of Technology, De-Jur Building, Office 607, Haifa, 3200003, Israel.
| |
Collapse
|
14
|
Schlachet I, Moshe Halamish H, Sosnik A. Mixed Amphiphilic Polymeric Nanoparticles of Chitosan, Poly(vinyl alcohol) and Poly(methyl methacrylate) for Intranasal Drug Delivery: A Preliminary In Vivo Study. Molecules 2020; 25:molecules25194496. [PMID: 33008001 PMCID: PMC7582691 DOI: 10.3390/molecules25194496] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 09/21/2020] [Accepted: 09/28/2020] [Indexed: 01/10/2023] Open
Abstract
Intranasal (i.n.) administration became an alternative strategy to bypass the blood-brain barrier and improve drug bioavailability in the brain. The main goal of this work was to preliminarily study the biodistribution of mixed amphiphilic mucoadhesive nanoparticles made of chitosan-g-poly(methyl methacrylate) and poly(vinyl alcohol)-g-poly(methyl methacrylate) and ionotropically crosslinked with sodium tripolyphosphate in the brain after intravenous (i.v.) and i.n. administration to Hsd:ICR mice. After i.v. administration, the highest nanoparticle accumulation was detected in the liver, among other peripheral organs. After i.n. administration of a 10-times smaller nanoparticle dose, the accumulation of the nanoparticles in off-target organs was much lower than after i.v. injection. In particular, the accumulation of the nanoparticles in the liver was 20 times lower than by i.v. When brains were analyzed separately, intravenously administered nanoparticles accumulated mainly in the "top" brain, reaching a maximum after 1 h. Conversely, in i.n. administration, nanoparticles were detected in the "bottom" brain and the head (maximum reached after 2 h) owing to their retention in the nasal mucosa and could serve as a reservoir from which the drug is released and transported to the brain over time. Overall, results indicate that i.n. nanoparticles reach similar brain bioavailability, though with a 10-fold smaller dose, and accumulate in off-target organs to a more limited extent and only after redistribution through the systemic circulation. At the same time, both administration routes seem to lead to differential accumulation in brain regions, and thus, they could be beneficial in the treatment of different medical conditions.
Collapse
|
15
|
Rusu AG, Chiriac AP, Nita LE, Rosca I, Pinteala M, Mititelu-Tartau L. Chitosan Derivatives in Macromolecular Co-assembly Nanogels with Potential for Biomedical Applications. Biomacromolecules 2020; 21:4231-4243. [PMID: 32909739 DOI: 10.1021/acs.biomac.0c01008] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Maleoyl-chitosan/poly(aspartic acid) nanogels were developed and characterized in order to assess its suitability for biomedical applications. Thus, the physicochemical properties were investigated and correlated with the composition of the new structures. Dynamic light scattering measurements, correlated with transmission electron microscopy images, demonstrated that nanogels size distribution was narrow with average diameter between 186 and 246 nm, and presented positive zeta potential values. The sensitivity of nanogels at pH and temperature was also evaluated. Nanogels loaded with amoxicillin showed a controlled release profile dependent on nanogel content. The formulations loaded with amoxicillin had antibacterial properties, and the cytotoxicity tests indicated good in vivo biocompatibility. In conclusion, the new synthesized polyelectrolyte nanogels, which can provide a stable environment for the encapsulated drugs, can be used as a multifunctional platform for administration of antimicrobial agents from the spectrum of antibiotics that have a very poor biodistribution.
Collapse
Affiliation(s)
- Alina Gabriela Rusu
- Laboratory of Inorganic Polymers, "Petru Poni" Institute of Macromolecular Chemistry, 41-A Grigore Ghica Voda Alley, Iasi 700487, Romania
| | - Aurica P Chiriac
- Laboratory of Inorganic Polymers, "Petru Poni" Institute of Macromolecular Chemistry, 41-A Grigore Ghica Voda Alley, Iasi 700487, Romania
| | - Loredana Elena Nita
- Laboratory of Inorganic Polymers, "Petru Poni" Institute of Macromolecular Chemistry, 41-A Grigore Ghica Voda Alley, Iasi 700487, Romania
| | - Irina Rosca
- Center of Advanced Research in Bionanoconjugates and Biopolymers, "Petru Poni" Institute of Macromolecular Chemistry, 41-A Grigore Ghica Voda Alley, Iasi 700487, Romania
| | - Mariana Pinteala
- Center of Advanced Research in Bionanoconjugates and Biopolymers, "Petru Poni" Institute of Macromolecular Chemistry, 41-A Grigore Ghica Voda Alley, Iasi 700487, Romania
| | - Liliana Mititelu-Tartau
- "Gr .T. Popa" University of Medicine and Pharmacy, Universitǎţii Street 16, Iasi 700115, Romania
| |
Collapse
|
16
|
Pilipenko IM, Korzhikov-Vlakh VA, Zakharova NV, Urtti A, Tennikova TB. Thermo- and pH-sensitive glycosaminoglycans derivatives obtained by controlled grafting of poly(N-isopropylacrylamide). Carbohydr Polym 2020; 248:116764. [PMID: 32919560 DOI: 10.1016/j.carbpol.2020.116764] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 07/10/2020] [Accepted: 07/10/2020] [Indexed: 01/03/2023]
Abstract
Poly(N-isopropyl acrylamide) grafted heparin and chondroitin sulfate were synthesized via reversible addition-fragmentation chain transfer (RAFT) polymerization. The copolymers were characterized by NMR, IR, SEC, DLS, SLS and NTA methods. High grafting densities were reached for both glycosaminoglycans. The temperature, pH and polymer concentration affected the low critical solution temperatures values. The increased pNIPAAm chain length, grafting density and concentration led to the sharp phase transition at 35 °C. Spherical nanogels were formed around this temperature. Terminal dodecyl trithiocarbonate groups of the copolymers were reduced to thiols that allowed formation of sensitive nanogels with sharp phase transitions induced by pNIPAAm chains. The copolymers showed no toxicity to the ocular cells and they provided the prolonged release of dexamethasone phosphate at 37 °C. These copolymers are interesting alternatives for ocular drug delivery.
Collapse
Affiliation(s)
- I M Pilipenko
- St. Petersburg State University, Institute of Chemistry, Universitetskii pr. 26, 198504, St. Petersburg, Russia
| | - V A Korzhikov-Vlakh
- St. Petersburg State University, Institute of Chemistry, Universitetskii pr. 26, 198504, St. Petersburg, Russia
| | - N V Zakharova
- Institute of Macromolecular Compounds, Russian Academy of Sciences, Bolshoy pr. 31, 199004, St. Petersburg, Russia
| | - A Urtti
- St. Petersburg State University, Institute of Chemistry, Universitetskii pr. 26, 198504, St. Petersburg, Russia
| | - T B Tennikova
- St. Petersburg State University, Institute of Chemistry, Universitetskii pr. 26, 198504, St. Petersburg, Russia.
| |
Collapse
|
17
|
Nasrollahzadeh M, Sajjadi M, Soufi GJ, Iravani S, Varma RS. Nanomaterials and Nanotechnology-Associated Innovations against Viral Infections with a Focus on Coronaviruses. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E1072. [PMID: 32486364 PMCID: PMC7352498 DOI: 10.3390/nano10061072] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 05/18/2020] [Accepted: 05/20/2020] [Indexed: 12/17/2022]
Abstract
Viral infections have recently emerged not only as a health threat to people but rapidly became the cause of universal fatality on a large scale. Nanomaterials comprising functionalized nanoparticles (NPs) and quantum dots and nanotechnology-associated innovative detection methods, vaccine design, and nanodrug production have shown immense promise for interfacing with pathogenic viruses and restricting their entrance into cells. These viruses have been scrutinized using rapid diagnostic detection and therapeutic interventional options against the caused infections including vaccine development for prevention and control. Coronaviruses, namely SARS-CoV, MERS-CoV, and SARS-CoV-2, have endangered human life, and the COVID-19 (caused by SARS-CoV-2) outbreak has become a perilous challenge to public health globally with huge accompanying morbidity rates. Thus, it is imperative to expedite the drug and vaccine development efforts that would help mitigate this pandemic. In this regard, smart and innovative nano-based technologies and approaches encompassing applications of green nanomedicine, bio-inspired methods, multifunctional bioengineered nanomaterials, and biomimetic drug delivery systems/carriers can help resolve the critical issues regarding detection, prevention, and treatment of viral infections. This perspective review expounds recent nanoscience advancements for the detection and treatment of viral infections with focus on coronaviruses and encompasses nano-based formulations and delivery platforms, nanovaccines, and promising methods for clinical diagnosis, especially regarding SARS-CoV-2.
Collapse
Affiliation(s)
| | - Mohaddeseh Sajjadi
- Department of Chemistry, Faculty of Science, University of Qom, Qom 37185-359, Iran;
| | - Ghazaleh Jamalipour Soufi
- Radiology Department, School of Medicine, Isfahan University of Medical Sciences, Isfahan 81746 73461, Iran;
| | - Siavash Iravani
- Faculty of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan 81746 73461, Iran
| | - Rajender S. Varma
- Regional Centre of Advanced Technologies and Materials, Palacký University in Olomouc, Šlechtitelů 27, 783 71, CZ-779 00 Olomouc, Czech Republic
| |
Collapse
|
18
|
pH/redox/UV irradiation multi-stimuli responsive nanogels from star copolymer micelles and Fe3+ complexation for “on-demand” anticancer drug delivery. REACT FUNCT POLYM 2020. [DOI: 10.1016/j.reactfunctpolym.2020.104532] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
19
|
Nanomaterials Designed for Antiviral Drug Delivery Transport across Biological Barriers. Pharmaceutics 2020; 12:pharmaceutics12020171. [PMID: 32085535 PMCID: PMC7076512 DOI: 10.3390/pharmaceutics12020171] [Citation(s) in RCA: 113] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 02/10/2020] [Accepted: 02/15/2020] [Indexed: 12/13/2022] Open
Abstract
Viral infections are a major global health problem, representing a significant cause of mortality with an unfavorable continuously amplified socio-economic impact. The increased drug resistance and constant viral replication have been the trigger for important studies regarding the use of nanotechnology in antiviral therapies. Nanomaterials offer unique physico-chemical properties that have linked benefits for drug delivery as ideal tools for viral treatment. Currently, different types of nanomaterials namely nanoparticles, liposomes, nanospheres, nanogels, nanosuspensions and nanoemulsions were studied either in vitro or in vivo for drug delivery of antiviral agents with prospects to be translated in clinical practice. This review highlights the drug delivery nanosystems incorporating the major antiviral classes and their transport across specific barriers at cellular and intracellular level. Important reflections on nanomedicines currently approved or undergoing investigations for the treatment of viral infections are also discussed. Finally, the authors present an overview on the requirements for the design of antiviral nanotherapeutics.
Collapse
|
20
|
Zaritski A, Castillo-Ecija H, Kumarasamy M, Peled E, Sverdlov Arzi R, Carcaboso ÁM, Sosnik A. Selective Accumulation of Galactomannan Amphiphilic Nanomaterials in Pediatric Solid Tumor Xenografts Correlates with GLUT1 Gene Expression. ACS APPLIED MATERIALS & INTERFACES 2019; 11:38483-38496. [PMID: 31537060 DOI: 10.1021/acsami.9b12682] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
In this work, we designed, characterized, and investigated the performance of hydrolyzed galactomannan (hGM)-based amphiphilic nanoparticles for selective intratumoral accumulation in pediatric patient-derived sarcomas. To create a self-assembly amphiphilic copolymer, the side chain of hGM was hydrophobized with poly(methyl methacrylate) (PMMA) by utilizing a graft free radical polymerization reaction. Different hGM and MMA weight feeding ratios were used to adjust the critical aggregation concentration and the size and size distribution of the nanoparticles. The ability to actively target glucose transporter-1 (GLUT-1) was studied by fluorescence confocal microscopy and imaging flow cytometry in vitro on Rh30 (rhabdomyosarcoma) and patient-derived Ewing sarcoma (HSJD-ES-001) cell lines with different expression levels of GLUT-1. Results confirmed that the nanoparticles are internalized by ∼100% of the cells at 37 °C. Furthermore, we investigated the biodistribution of the nanoparticles in pediatric patient-derived models of two deadly musculoskeletal tumors, rhabdomyosarcoma and Ewing sarcoma. Outstandingly, the intratumoral accumulation of the nanoparticles correlated very well with the expression level of GLUT1 gene in each patient-derived tumor (P = 0.0141; Pearson's correlation test). Finally, we demonstrated the encapsulation capacity of these nanoparticles by loading 7.5% (w/w) of the hydrophobic first-generation tyrosine kinase inhibitor imatinib. These findings point out the potential of this new type of nanoparticle to target GLUT-1-expressing tumors and selectively deliver anticancer agents.
Collapse
Affiliation(s)
- Anna Zaritski
- Laboratory of Pharmaceutical Nanomaterials Science, Department of Materials Science and Engineering , Technion-Israel Institute of Technology , Haifa 3200003 , Israel
| | - Helena Castillo-Ecija
- Institut de Recerca Sant Joan de Deu, Barcelona, Spain & Department of Pediatric Hematology and Oncology , Hospital Sant Joan de Deu , Barcelona 08950 , Spain
| | - Murali Kumarasamy
- Laboratory of Pharmaceutical Nanomaterials Science, Department of Materials Science and Engineering , Technion-Israel Institute of Technology , Haifa 3200003 , Israel
| | - Ella Peled
- Laboratory of Pharmaceutical Nanomaterials Science, Department of Materials Science and Engineering , Technion-Israel Institute of Technology , Haifa 3200003 , Israel
| | - Roni Sverdlov Arzi
- Laboratory of Pharmaceutical Nanomaterials Science, Department of Materials Science and Engineering , Technion-Israel Institute of Technology , Haifa 3200003 , Israel
| | - Ángel M Carcaboso
- Institut de Recerca Sant Joan de Deu, Barcelona, Spain & Department of Pediatric Hematology and Oncology , Hospital Sant Joan de Deu , Barcelona 08950 , Spain
| | - Alejandro Sosnik
- Laboratory of Pharmaceutical Nanomaterials Science, Department of Materials Science and Engineering , Technion-Israel Institute of Technology , Haifa 3200003 , Israel
| |
Collapse
|
21
|
Self-assembly and nanostructure of poly(vinyl alcohol)-graft-poly(methyl methacrylate) amphiphilic nanoparticles. J Colloid Interface Sci 2019; 553:512-523. [DOI: 10.1016/j.jcis.2019.06.047] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 06/14/2019] [Accepted: 06/15/2019] [Indexed: 01/08/2023]
|
22
|
Schlachet I, Sosnik A. Mixed Mucoadhesive Amphiphilic Polymeric Nanoparticles Cross a Model of Nasal Septum Epithelium in Vitro. ACS APPLIED MATERIALS & INTERFACES 2019; 11:21360-21371. [PMID: 31124655 DOI: 10.1021/acsami.9b04766] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Intranasal administration of nano-drug-delivery systems emerged as an appealing strategy to surpass the blood-brain barrier and thus increase drug bioavailability in the central nervous system. However, a systematic study of the effect of the structural properties of the nanoparticles on the nose-to-brain transport is missing. In this work, we synthesized and characterized mixed amphiphilic polymeric nanoparticles combining two mucoadhesive graft copolymers, namely, chitosan- g-poly(methyl methacrylate) and poly(vinyl alcohol)- g-poly(methyl methacrylate), for the first time. Chitosan enables the physical stabilization of the nanoparticles by ionotropic cross-linking with tripolyphosphate and confers mucoadhesiveness, while poly(vinyl alcohol) is also mucoadhesive and, owing to its nonionic nature, it improves nanoparticle compatibility in nasal epithelial cells by reducing the surface charge of the nanoparticles. After a thorough characterization of the mixed nanoparticles by dynamic light scattering and nanoparticle tracking analysis, we investigated the cell uptake by fluorescence light and confocal microscopy and imaging flow cytometry. Mixed nanoparticles were readily internalized at 37 °C, while the uptake was inhibited almost completely at 4 °C, indicating the involvement of energy-dependent mechanisms. Finally, we assessed the nanoparticle permeability across liquid-liquid and air-liquid monolayers of a nasal septum epithelial cell line and studied the effect of nanoparticle concentration and temperature on the apparent permeability. Overall, our findings demonstrate that these novel amphiphilic nanoparticles cross this in vitro model of intranasal epithelium mainly by a passive (paracellular) pathway involving the opening of epithelial tight junctions.
Collapse
Affiliation(s)
- Inbar Schlachet
- Laboratory of Pharmaceutical Nanomaterials Science, Department of Materials Science and Engineering , Technion-Israel Institute of Technology , Technion City, Haifa 3200003 , Israel
| | - Alejandro Sosnik
- Laboratory of Pharmaceutical Nanomaterials Science, Department of Materials Science and Engineering , Technion-Israel Institute of Technology , Technion City, Haifa 3200003 , Israel
| |
Collapse
|
23
|
Elmowafy E, Soliman ME. Losartan-chitosan/dextran sulfate microplex as a carrier to lung therapeutics: Dry powder inhalation, aerodynamic profile and pulmonary tolerability. Int J Biol Macromol 2019; 136:220-229. [PMID: 31195046 DOI: 10.1016/j.ijbiomac.2019.06.058] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2019] [Revised: 05/19/2019] [Accepted: 06/09/2019] [Indexed: 12/25/2022]
Abstract
This study aims to obtain an inhalation powder with meaningful aerodynamic and safety profiles for the lung delivery of losartan (LS). For this, the capacity of self-assembly of chitosan (CS) and dextran sulfate (DS) to form CS/DS microplex (MC), incorporating high payload of hydrophilic LS was harnessed. Dry powder inhaler (LS-MC-DPI), prepared via spray drying of the best achieved LS-MC, was proposed to impart precise engineered inhalation characteristics. Micrometric robust CS/DS MC was revealed to offer the opportunity to heighten LS encapsulation, accounting for ~75%. LS-MC-DPI was successfully developed with high yield, flowability, respirable aerodynamic size and morphology which formed swellable and mucoadhesive network, facilitating intra-pulmonary delivery. Moreover, sustained release pattern, augmented deep lung deposition and safe histological profile were realized. Overall, the newly developed LS-MC DPI shows promises as an inhalation system. The aerodynamic performance and safety of LS-MC-DPI verify its suitability for further in vivo lung therapeutics.
Collapse
Affiliation(s)
- Enas Elmowafy
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt, Monazzamet Elwehda Elafrikeya Street, Abbaseyya, Cairo P.O. 11566, Egypt.
| | - Mahmoud E Soliman
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt, Monazzamet Elwehda Elafrikeya Street, Abbaseyya, Cairo P.O. 11566, Egypt
| |
Collapse
|
24
|
Cuggino JC, Blanco ERO, Gugliotta LM, Alvarez Igarzabal CI, Calderón M. Crossing biological barriers with nanogels to improve drug delivery performance. J Control Release 2019; 307:221-246. [PMID: 31175895 DOI: 10.1016/j.jconrel.2019.06.005] [Citation(s) in RCA: 117] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 06/03/2019] [Accepted: 06/03/2019] [Indexed: 01/04/2023]
Abstract
The current limitations in the use of nanocarriers to treat constantly evolving diseases call for the design of novel and smarter drug delivery systems (DDS). Nanogels (NGs) are three-dimensional crosslinked polymers with dimensions on the nanoscale and with a great potential for use in the biomedical field. Particular interest focuses on their application as DDS to minimize severe toxic effects and increase the therapeutic index of drugs. They have recently gained attention, since they can include responsive modalities within their structure, which enable them to excerpt a therapeutic function on demand. Their bigger sizes and controlled architecture and functionality, when compared to non-crosslinked polymers, make them particularly interesting to explore novel modalities to cross biological barriers. The present review summarizes the most significant developments of NGs as smart carriers, with focus on smart modalities to cross biological barriers such as cellular membrane, tumor stroma, mucose, skin, and blood brain barrier. We discuss the properties of each barrier and highlight the importance that the NG design has on their capability to overcome them and deliver the cargo at the site of action.
Collapse
Affiliation(s)
- Julio César Cuggino
- Instituto de Desarrollo Tecnológico para la Industria Química (INTEC), CONICET, Güemes 3450, Santa Fe 3000, Argentina; Grupo de Polímeros, Departamento de Ingeniería Química, Facultad Regional San Francisco, Universidad Tecnológica Nacional. Av. de la Universidad 501, San Francisco, 2400 Córdoba, Argentina
| | - Ernesto Rafael Osorio Blanco
- Freie Universität Berlin, Institute of Chemistry and Biochemistry, Takustr. 3, 14195 Berlin, Germany; POLYMAT and Applied Chemistry Department, Faculty of Chemistry, University of the Basque Country UPV/EHU, Paseo Manuel de Lardizabal 3, 20018 Donostia-San Sebastián, Spain
| | - Luis Marcelino Gugliotta
- Instituto de Desarrollo Tecnológico para la Industria Química (INTEC), CONICET, Güemes 3450, Santa Fe 3000, Argentina
| | - Cecilia Inés Alvarez Igarzabal
- Departamento de Química Orgánica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba (UNC), IPQA-CONICET, Haya de la Torre y Medina Allende, Ciudad Universitaria, Córdoba X5000HUA, Argentina.
| | - Marcelo Calderón
- POLYMAT and Applied Chemistry Department, Faculty of Chemistry, University of the Basque Country UPV/EHU, Paseo Manuel de Lardizabal 3, 20018 Donostia-San Sebastián, Spain; IKERBASQUE, Basque Foundation for Science, 48013 Bilbao, Spain.
| |
Collapse
|
25
|
Schlachet I, Trousil J, Rak D, Knudsen KD, Pavlova E, Nyström B, Sosnik A. Chitosan-graft-poly(methyl methacrylate) amphiphilic nanoparticles: Self-association and physicochemical characterization. Carbohydr Polym 2019; 212:412-420. [PMID: 30832875 DOI: 10.1016/j.carbpol.2019.02.022] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 02/03/2019] [Accepted: 02/08/2019] [Indexed: 02/09/2023]
Abstract
In this work, we synthesized and characterized the self-assembly behavior of a chitosan-poly(methyl methacrylate) graft copolymer and the properties of the formed nanoparticles by static and dynamic light scattering, small-angle neutron scattering, and transmission electron microscopy. Overall, our results indicate that the hydrophobization of the chitosan side-chain with PMMA leads to a complex array of small unimolecular and/or small-aggregation number "building blocks" that further self-assemble into larger amphiphilic nanoparticles.
Collapse
Affiliation(s)
- Inbar Schlachet
- Laboratory of Pharmaceutical Nanomaterials Science, Department of Materials Science and Engineering, Technion-Israel Institute of Technology, 320003 Haifa, Israel
| | - Jiří Trousil
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovského náměstí 2, 162 06 Prague 6, Czechia; Department of Analytical Chemistry, Charles University, Faculty of Science, Hlavova 8, 128 43 Prague 2, Czechia
| | - Dmytro Rak
- Institute of Experimental Physics, Slovak Academy of Sciences, Watsonova 47, 040 01 Košice, Slovakia
| | - Kenneth D Knudsen
- Department of Physics, Institute for Energy Technology, P. O. Box 40, N-2027 Kjeller, Norway
| | - Ewa Pavlova
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovského náměstí 2, 162 06 Prague 6, Czechia
| | - Bo Nyström
- Department of Chemistry, University of Oslo, P.O. Box 1033, Blindern, N-0315 Oslo, Norway
| | - Alejandro Sosnik
- Laboratory of Pharmaceutical Nanomaterials Science, Department of Materials Science and Engineering, Technion-Israel Institute of Technology, 320003 Haifa, Israel.
| |
Collapse
|
26
|
Monroe M, Flexner C, Cui H. Harnessing nanostructured systems for improved treatment and prevention of HIV disease. Bioeng Transl Med 2018; 3:102-123. [PMID: 30065966 PMCID: PMC6063869 DOI: 10.1002/btm2.10096] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Revised: 05/15/2018] [Accepted: 05/17/2018] [Indexed: 12/12/2022] Open
Abstract
Combination antiretroviral therapy effectively controls human immunodeficiency virus (HIV) viral replication, delaying the progression to acquired immune deficiency syndrome and improving and extending quality of life of patients. However, the inability of antiretroviral therapeutics to target latent virus and their poor penetration of viral reserve tissues result in the need for continued treatment for the life of the patient. Side effects from long-term antiretroviral use and the development of drug resistance due to patient noncompliance are also continuing problems. Nanostructured systems of antiretroviral therapeutics have the potential to improve targeted delivery to viral reservoirs, reduce drug toxicity, and increase dosing intervals, thereby improving treatment outcomes and enhancing patient adherence. Despite these advantages, very few nanostructured antiretroviral delivery systems have made it to clinical trials due to challenges in preclinical and clinical development. In this context, we review the current challenges in HIV disease management, and the recent progress in leveraging the unique performance of nanostructured systems in therapeutic delivery for improved treatment and prevention of this incurable human disease.
Collapse
Affiliation(s)
- Maya Monroe
- Dept. of Chemical and Biomolecular Engineering The Johns Hopkins University, 3400 N Charles Street Baltimore MD 21218.,Institute for NanoBioTechnology The Johns Hopkins University, 3400 N Charles Street Baltimore MD 21218
| | - Charles Flexner
- Div. of Clinical Pharmacology and Infectious Diseases Johns Hopkins University School of Medicine and Bloomberg School of Public Health Baltimore MD 21205
| | - Honggang Cui
- Dept. of Chemical and Biomolecular Engineering The Johns Hopkins University, 3400 N Charles Street Baltimore MD 21218.,Institute for NanoBioTechnology The Johns Hopkins University, 3400 N Charles Street Baltimore MD 21218.,Dept. of Oncology, Sidney Kimmel Comprehensive Cancer Center The Johns Hopkins University School of Medicine Baltimore MD 21205.,Center for Nanomedicine The Wilmer Eye Institute, The Johns Hopkins University School of Medicine Baltimore MD 21231
| |
Collapse
|
27
|
Moshe H, Davizon Y, Menaker Raskin M, Sosnik A. Novel poly(vinyl alcohol)-based amphiphilic nanogels by non-covalent boric acid crosslinking of polymeric micelles. Biomater Sci 2018; 5:2295-2309. [PMID: 29019482 DOI: 10.1039/c7bm00675f] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
In this work, we report a new type of poly(vinyl alcohol)-g-poly(N-isopropylacrylamide) (PVA-g-PNiPAAm) amphiphilic nanogel produced by the non-covalent crosslinking of PVA polyol domains in preformed polymeric micelles with boric acid. The nanomaterials showed sizes in the 100-250 nm range (DLS) and a spherical morphology (HR-SEM). We demonstrated that the size of the polymeric micelles could be fine-tuned by changing the concentration (and the aggregation pattern) of the polymeric amphiphile in water. Upon crosslinking, the polymeric micelles turned into physically stable amphiphilic nanogels that displayed both size and size distribution similar to the micellar precursor for up to two weeks, even under disfavored conditions of concentration and temperature that, in the case of non-crosslinked counterparts, resulted in quick disassembly. In addition, we show for the first time the feasibility of spray-drying technology to consolidate the 3D network formed between PVA and boric acid and to produce stable powders that can be reconstituted upon use at any desired concentration. Moreover, the formation of a borated surface conferred the nanogels with good mucoadhesiveness in vitro. Finally, these novel nanomaterials showed optimal cell compatibility in a model of the intestinal epithelium, the Caco2 cell line. Overall results demonstrate the unprecedented versatility of the proposed modular approach and opens completely new horizons in the application of polymeric micelles and other self-assembled polymeric nanomaterials in diagnostics and therapeutics.
Collapse
Affiliation(s)
- Hen Moshe
- Laboratory of Pharmaceutical Nanomaterials Science, Department of Materials Science and Engineering, Technion-Israel Institute of Technology, Technion City, Haifa, Israel.
| | | | | | | |
Collapse
|
28
|
Noi I, Schlachet I, Kumarasamy M, Sosnik A. Permeability of Novel Chitosan-g-Poly(Methyl Methacrylate) Amphiphilic Nanoparticles in a Model of Small Intestine In Vitro. Polymers (Basel) 2018; 10:E478. [PMID: 30966512 PMCID: PMC6415358 DOI: 10.3390/polym10050478] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Revised: 04/22/2018] [Accepted: 04/24/2018] [Indexed: 01/23/2023] Open
Abstract
Engineering of drug nanocarriers combining fine-tuned mucoadhesive/mucopenetrating properties is currently being investigated to ensure more efficient mucosal drug delivery. Aiming to improve the transmucosal delivery of hydrophobic drugs, we designed a novel nanogel produced by the self-assembly of amphiphilic chitosan graft copolymers ionotropically crosslinked with sodium tripolyphosphate. In this work, we synthesized, for the first time, chitosan-g-poly(methyl methacrylate) nanoparticles thiolated by the conjugation of N-acetyl cysteine. First, we confirmed that both non-crosslinked and crosslinked nanoparticles in the 0.05⁻0.1% w/v concentration range display very good cell compatibility in two cell lines that are relevant to oral delivery, Caco-2 cells that mimic the intestinal epithelium and HT29-MTX cells that are a model of mucin-producing goblet cells. Then, we evaluated the effect of crosslinking, nanoparticle concentration, and thiolation on the permeability in vitro utilizing monolayers of (i) Caco-2 and (ii) Caco-2:HT29-MTX cells (9:1 cell number ratio). Results confirmed that the ability of the nanoparticles to cross Caco-2 monolayer was affected by the crosslinking. In addition, thiolated nanoparticles interact more strongly with mucin, resulting in a decrease of the apparent permeability coefficient (Papp) compared to the pristine nanoparticles. Moreover, for all the nanoparticles, higher concentration resulted in lower Papp, suggesting that the transport pathways can undergo saturation.
Collapse
Affiliation(s)
- Imrit Noi
- Laboratory of Pharmaceutical Nanomaterials Science, Department of Materials Science and Engineering, Technion-Israel Institute of Technology, 3200003 Haifa, Israel.
| | - Inbar Schlachet
- Laboratory of Pharmaceutical Nanomaterials Science, Department of Materials Science and Engineering, Technion-Israel Institute of Technology, 3200003 Haifa, Israel.
| | - Murali Kumarasamy
- Laboratory of Pharmaceutical Nanomaterials Science, Department of Materials Science and Engineering, Technion-Israel Institute of Technology, 3200003 Haifa, Israel.
| | - Alejandro Sosnik
- Laboratory of Pharmaceutical Nanomaterials Science, Department of Materials Science and Engineering, Technion-Israel Institute of Technology, 3200003 Haifa, Israel.
| |
Collapse
|
29
|
Schlachet I, Sosnik A. Protoporphyrin IX-modified chitosan-g-oligo(NiPAAm) polymeric micelles: from physical stabilization to permeability characterization in vitro. Biomater Sci 2018; 5:128-140. [PMID: 27905575 DOI: 10.1039/c6bm00667a] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Two main hurdles persist towards the more extensive bench-to-bed side translation of non-parenteral polymeric micelles. The first pertains to their thermodynamically-driven disassembly under uncontrolled dilution conditions in the biological milieu and upon interaction with biomacromolecules (e.g., proteins). The second is related to the relatively poor understanding of the pathways by which polymeric micelles improve the bioavailability of the payload by mucosal routes (e.g., intestinal). In this work, a chitosan-g-oligo(N-isopropylacrylamide) (CS-g-oligo(NiPAAm)) copolymer was modified with non-cytotoxic amounts of protoporphyrin IX (PP), a planar molecule of amphiphilic character that undergoes self-aggregation in water by forming π-π stacked supramolecular structures, to induce micellization under disfavored conditions and to serve as a fluorescent tracer for the measurement of the micelle permeability across a model of the intestinal epithelium in vitro. Findings indicated that the conjugation of PP amounts as low as 2% w/w induced the formation of micelles at temperatures below the lower critical solution temperature of oligo(NiPAAm) (30-32 °C). Moreover, permeability studies conducted at both 4 °C and 37 °C strongly suggested that despite the relatively large size of the micelles (200-300 nm), they cross the epithelial monolayer mainly by a paracellular pathway due to the opening of tight junctions. Complementary uptake studies by flow cytometry indicated that no endocytosis, though due to passive or facilitated diffusion, some internalization takes place.
Collapse
Affiliation(s)
- Inbar Schlachet
- Laboratory of Pharmaceutical Nanomaterials Science, Department of Materials Science and Engineering, Technion-Israel Institute of Technology, Haifa, Israel.
| | - Alejandro Sosnik
- Laboratory of Pharmaceutical Nanomaterials Science, Department of Materials Science and Engineering, Technion-Israel Institute of Technology, Haifa, Israel.
| |
Collapse
|
30
|
Argüelles-Monal WM, Lizardi-Mendoza J, Fernández-Quiroz D, Recillas-Mota MT, Montiel-Herrera M. Chitosan Derivatives: Introducing New Functionalities with a Controlled Molecular Architecture for Innovative Materials. Polymers (Basel) 2018; 10:E342. [PMID: 30966377 PMCID: PMC6414943 DOI: 10.3390/polym10030342] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 03/16/2018] [Accepted: 03/17/2018] [Indexed: 11/20/2022] Open
Abstract
The functionalization of polymeric substances is of great interest for the development of innovative materials for advanced applications. For many decades, the functionalization of chitosan has been a convenient way to improve its properties with the aim of preparing new materials with specialized characteristics. In the present review, we summarize the latest methods for the modification and derivatization of chitin and chitosan under experimental conditions, which allow a control over the macromolecular architecture. This is because an understanding of the interdependence between chemical structure and properties is an important condition for proposing innovative materials. New advances in methods and strategies of functionalization such as the click chemistry approach, grafting onto copolymerization, coupling with cyclodextrins, and reactions in ionic liquids are discussed.
Collapse
Affiliation(s)
| | - Jaime Lizardi-Mendoza
- Centro de Investigación en Alimentación y Desarrollo, Hermosillo 83304, Sonora, Mexico.
| | - Daniel Fernández-Quiroz
- Departamento de Investigación en Física, Universidad de Sonora, Hermosillo 83000, Sonora, Mexico.
| | | | - Marcelino Montiel-Herrera
- Departamento de Medicina y Ciencias de la Salud, Universidad de Sonora, Hermosillo 83000, Sonora, Mexico.
| |
Collapse
|
31
|
Eliyahu S, Aharon A, Bianco-Peled H. Acrylated Chitosan Nanoparticles with Enhanced Mucoadhesion. Polymers (Basel) 2018; 10:polym10020106. [PMID: 30966139 PMCID: PMC6415080 DOI: 10.3390/polym10020106] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2017] [Revised: 01/18/2018] [Accepted: 01/19/2018] [Indexed: 01/19/2023] Open
Abstract
The aim of this study was to investigate the effect of acrylate modification on the mucoadhesion of chitosan at the nanoscale. Nanoparticles were fabricated from acrylated chitosan (ACS) via ionic gelation with tripolyphosphate and were characterized in terms of size, zeta potential, stability, and nanoparticle yield. Chitosan (CS) nanoparticles, serving as a control, were fabricated using the same procedure. The mucoadhesion of the nanoparticles was evaluated using the flow-through method after different incubation periods. The retention percentages of ACS nanoparticles were found to be significantly higher than those of CS nanoparticles, for all studied time intervals. An additional indication for the increased mucoadhesion of ACS nanoparticles was the increase in particle size obtained from the mucin particle method, in which mucin and nanoparticles are mixed at different ratios. NMR data verified the presence of free acrylate groups on the ACS nanoparticles. Thus, the improved mucoadhesion could be due to a Michael-type addition reaction between the nanoparticles and thiol groups present in mucin glycoprotein, in addition to entanglements and hydrogen bonding. Overall, ACS nanoparticles exhibit enhanced mucoadhesion properties as compared to CS nanoparticles and could be used as vehicles for drug delivery systems.
Collapse
Affiliation(s)
- Shaked Eliyahu
- The Russell Berrie Nanotechnology Institute, Technion-Israel Institute of Technology, Haifa 3200003, Israel.
| | - Anat Aharon
- Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa 3200003, Israel.
- Department of Hematology and Bone Marrow Transplantation, Rambam Health Care Campus, Haifa 3109601, Israel.
| | - Havazelet Bianco-Peled
- The Russell Berrie Nanotechnology Institute, Technion-Israel Institute of Technology, Haifa 3200003, Israel.
- Department of Chemical Engineering, Technion-Israel Institute of Technology, Haifa 3200003, Israel.
| |
Collapse
|
32
|
Thiolated chitosan micelles: Highly mucoadhesive drug carriers. Carbohydr Polym 2017; 167:250-258. [PMID: 28433160 DOI: 10.1016/j.carbpol.2017.03.019] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Revised: 03/07/2017] [Accepted: 03/07/2017] [Indexed: 11/22/2022]
Abstract
Current study was aimed to generate thiolated chitosan micelles based on amphiphilic chitosan-stearic acid conjugate (CSA) and to evaluate adhesive properties on mucosal membranes. Chitosan-stearic acid-thioglycolic acid (CSA-TGA) conjugate was synthesized via stearic acid linkage to chitosan and later, thioglycolic acid was covalently attached to CSA. CSA-TGA and CSA were characterized by degree of amine substitution, thiol group determination, ATR-FTIR and cytotoxicity analysis. Micelle size was 13.40±9.38 and 26.30±26.86nm and zeta potential -0.01 and 0.03mV for CSA and CSA-TGA, respectively. In porcine mucus CSA-TGA micelles exhibited 1.80-, 2.12- and 1.72-fold increase in dynamic viscosity, elastic modulus and viscous modulus, respectively. Compared to CSA micelles CSA-TGA micelles remained up to 56.1- fold and 28.6- fold higher degree attached on intestinal and vaginal mucosa, respectively. Taking possibility to incorporate both lipophilic and hydrophilic drugs into these micelles into account, thiol functionalized micelles could be promising carriers for mucosal drug delivery.
Collapse
|