1
|
Meanwell NA. Sub-stoichiometric Modulation of Viral Targets-Potent Antiviral Agents That Exploit Target Vulnerability. ACS Med Chem Lett 2023; 14:1021-1030. [PMID: 37583823 PMCID: PMC10424314 DOI: 10.1021/acsmedchemlett.3c00279] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 06/30/2023] [Indexed: 08/17/2023] Open
Abstract
The modulation of oligomeric viral targets at sub-stoichiometric ratios of drug to target has been advocated for its efficacy and potency, but there are only a limited number of documented examples. In this Viewpoint, we summarize the invention of the HIV-1 maturation inhibitor fipravirimat and discuss the emerging details around the mode of action of this class of drug that reflects inhibition of a protein composed of 1,300-1,600 monomers that interact in a cooperative fashion. Similarly, the HCV NS5A inhibitor daclatasvir has been shown to act in a highly sub-stoichiometric fashion, inhibiting viral replication at concentrations that are ∼23,500 lower than that of the protein target.
Collapse
|
2
|
Guo P. High resolution structure of hexameric herpesvirus DNA-packaging motor elucidates revolving mechanism and ends 20-year fervent debate. Protein Cell 2020; 11:311-315. [PMID: 32314326 PMCID: PMC7196596 DOI: 10.1007/s13238-020-00714-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Affiliation(s)
- Peixuan Guo
- College of Pharmacy, College of Medicine, Dorothy M. Davis Heart and Lung Research Institute, and Comprehensive Cancer Center, The Ohio State University, Columbus, OH, 43210, USA.
| |
Collapse
|
3
|
Translation of the long-term fundamental studies on viral DNA packaging motors into nanotechnology and nanomedicine. SCIENCE CHINA-LIFE SCIENCES 2020; 63:1103-1129. [DOI: 10.1007/s11427-020-1752-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 06/04/2020] [Indexed: 02/07/2023]
|
4
|
Zhao Z, Zhang H, Shu D, Montemagno C, Ding B, Li J, Guo P. Construction of Asymmetrical Hexameric Biomimetic Motors with Continuous Single-Directional Motion by Sequential Coordination. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2017; 13:10.1002/smll.201601600. [PMID: 27709780 PMCID: PMC5217803 DOI: 10.1002/smll.201601600] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Revised: 08/12/2016] [Indexed: 05/21/2023]
Abstract
The significance of bionanomotors in nanotechnology is analogous to mechanical motors in daily life. Here the principle and approach for designing and constructing biomimetic nanomotors with continuous single-directional motion are reported. This bionanomotor is composed of a dodecameric protein channel, a six-pRNA ring, and an ATPase hexamer. Based on recent elucidations of the one-way revolving mechanisms of the phi29 double-stranded DNA (dsDNA) motor, various RNA and protein elements are designed and tested by single-molecule imaging and biochemical assays, with which the motor with active components has been constructed. The motor motion direction is controlled by three operation elements: (1) Asymmetrical ATPase with ATP-interacting domains for alternative DNA binding/pushing regulated by an arginine finger in a sequential action manner. The arginine finger bridges two adjacent ATPase subunits into a non-covalent dimer, resulting in an asymmetrical hexameric complex containing one dimer and four monomers. (2) The dsDNA translocation channel as a one-way valve. (3) The hexameric pRNA ring geared with left-/right-handed loops. Assessments of these constructs reveal that one inactive subunit of pRNA/ATPase is sufficient to completely block motor function (defined as K = 1), implying that these components work sequentially based on the principle of binomial distribution and Yang Hui's triangle.
Collapse
Affiliation(s)
- Zhengyi Zhao
- College of Pharmacy; College of Medicine/Department of Physiology & Cell Biology/Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH, USA
| | - Hui Zhang
- College of Pharmacy; College of Medicine/Department of Physiology & Cell Biology/Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH, USA
| | - Dan Shu
- College of Pharmacy; College of Medicine/Department of Physiology & Cell Biology/Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH, USA
| | - Carlo Montemagno
- Chemical and Materials Engineering and Ingenuity Lab, University of Alberta, Edmonton, Alberta, Canada
| | - Baoquan Ding
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
| | - Jingyuan Li
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology of China and Institute of High Energy Physics, Beijing, China
| | - Peixuan Guo
- College of Pharmacy; College of Medicine/Department of Physiology & Cell Biology/Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH, USA
| |
Collapse
|
5
|
Pi F, Zhao Z, Chelikani V, Yoder K, Kvaratskhelia M, Guo P. Development of Potent Antiviral Drugs Inspired by Viral Hexameric DNA-Packaging Motors with Revolving Mechanism. J Virol 2016; 90:8036-46. [PMID: 27356896 PMCID: PMC5008075 DOI: 10.1128/jvi.00508-16] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The intracellular parasitic nature of viruses and the emergence of antiviral drug resistance necessitate the development of new potent antiviral drugs. Recently, a method for developing potent inhibitory drugs by targeting biological machines with high stoichiometry and a sequential-action mechanism was described. Inspired by this finding, we reviewed the development of antiviral drugs targeting viral DNA-packaging motors. Inhibiting multisubunit targets with sequential actions resembles breaking one bulb in a series of Christmas lights, which turns off the entire string. Indeed, studies on viral DNA packaging might lead to the development of new antiviral drugs. Recent elucidation of the mechanism of the viral double-stranded DNA (dsDNA)-packaging motor with sequential one-way revolving motion will promote the development of potent antiviral drugs with high specificity and efficiency. Traditionally, biomotors have been classified into two categories: linear and rotation motors. Recently discovered was a third type of biomotor, including the viral DNA-packaging motor, beside the bacterial DNA translocases, that uses a revolving mechanism without rotation. By analogy, rotation resembles the Earth's rotation on its own axis, while revolving resembles the Earth's revolving around the Sun (see animations at http://rnanano.osu.edu/movie.html). Herein, we review the structures of viral dsDNA-packaging motors, the stoichiometries of motor components, and the motion mechanisms of the motors. All viral dsDNA-packaging motors, including those of dsDNA/dsRNA bacteriophages, adenoviruses, poxviruses, herpesviruses, mimiviruses, megaviruses, pandoraviruses, and pithoviruses, contain a high-stoichiometry machine composed of multiple components that work cooperatively and sequentially. Thus, it is an ideal target for potent drug development based on the power function of the stoichiometries of target complexes that work sequentially.
Collapse
Affiliation(s)
- Fengmei Pi
- Division of Pharmaceutics and Pharmaceutical Chemistry, College of Pharmacy, Department of Physiology and Cell Biology, College of Medicine, and the Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, Columbus, Ohio, USA
| | - Zhengyi Zhao
- Division of Pharmaceutics and Pharmaceutical Chemistry, College of Pharmacy, Department of Physiology and Cell Biology, College of Medicine, and the Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, Columbus, Ohio, USA
| | - Venkata Chelikani
- Faculty of Agriculture and Life Sciences, Lincoln University, Lincoln, Canterbury, New Zealand
| | - Kristine Yoder
- Department of Molecular Virology, Immunology, and Medical Genetics, College of Medicine, The Ohio State University, Columbus, Ohio, USA
| | - Mamuka Kvaratskhelia
- Division of Pharmaceutics and Pharmaceutical Chemistry, College of Pharmacy, Department of Physiology and Cell Biology, College of Medicine, and the Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, Columbus, Ohio, USA
| | - Peixuan Guo
- Division of Pharmaceutics and Pharmaceutical Chemistry, College of Pharmacy, Department of Physiology and Cell Biology, College of Medicine, and the Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, Columbus, Ohio, USA
| |
Collapse
|
6
|
An Arginine Finger Regulates the Sequential Action of Asymmetrical Hexameric ATPase in the Double-Stranded DNA Translocation Motor. Mol Cell Biol 2016; 36:2514-23. [PMID: 27457616 PMCID: PMC5021374 DOI: 10.1128/mcb.00142-16] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Accepted: 06/30/2016] [Indexed: 11/30/2022] Open
Abstract
Biological motors are ubiquitous in living systems. Currently, how the motor components coordinate the unidirectional motion is elusive in most cases. Here, we report that the sequential action of the ATPase ring in the DNA packaging motor of bacteriophage ϕ29 is regulated by an arginine finger that extends from one ATPase subunit to the adjacent unit to promote noncovalent dimer formation. Mutation of the arginine finger resulted in the interruption of ATPase oligomerization, ATP binding/hydrolysis, and DNA translocation. Dimer formation reappeared when arginine mutants were mixed with other ATPase subunits that can offer the arginine to promote their interaction. Ultracentrifugation and virion assembly assays indicated that the ATPase was presenting as monomers and dimer mixtures. The isolated dimer alone was inactive in DNA translocation, but the addition of monomer could restore the activity, suggesting that the hexameric ATPase ring contained both dimer and monomers. Moreover, ATP binding or hydrolysis resulted in conformation and entropy changes of the ATPase with high or low DNA affinity. Taking these observations together, we concluded that the arginine finger regulates sequential action of the motor ATPase subunit by promoting the formation of the dimer inside the hexamer. The finding of asymmetrical hexameric organization is supported by structural evidence of many other ATPase systems showing the presence of one noncovalent dimer and four monomer subunits. All of these provide clues for why the asymmetrical hexameric ATPase gp16 of ϕ29 was previously reported as a pentameric configuration by cryo-electron microscopy (cryo-EM) since the contact by the arginine finger renders two adjacent ATPase subunits closer than other subunits. Thus, the asymmetrical hexamer would appear as a pentamer by cryo-EM, a technology that acquires the average of many images.
Collapse
|
7
|
Biological Nanomotors with a Revolution, Linear, or Rotation Motion Mechanism. Microbiol Mol Biol Rev 2016; 80:161-86. [PMID: 26819321 DOI: 10.1128/mmbr.00056-15] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The ubiquitous biological nanomotors were classified into two categories in the past: linear and rotation motors. In 2013, a third type of biomotor, revolution without rotation (http://rnanano.osu.edu/movie.html), was discovered and found to be widespread among bacteria, eukaryotic viruses, and double-stranded DNA (dsDNA) bacteriophages. This review focuses on recent findings about various aspects of motors, including chirality, stoichiometry, channel size, entropy, conformational change, and energy usage rate, in a variety of well-studied motors, including FoF1 ATPase, helicases, viral dsDNA-packaging motors, bacterial chromosome translocases, myosin, kinesin, and dynein. In particular, dsDNA translocases are used to illustrate how these features relate to the motion mechanism and how nature elegantly evolved a revolution mechanism to avoid coiling and tangling during lengthy dsDNA genome transportation in cell division. Motor chirality and channel size are two factors that distinguish rotation motors from revolution motors. Rotation motors use right-handed channels to drive the right-handed dsDNA, similar to the way a nut drives the bolt with threads in same orientation; revolution motors use left-handed motor channels to revolve the right-handed dsDNA. Rotation motors use small channels (<2 nm in diameter) for the close contact of the channel wall with single-stranded DNA (ssDNA) or the 2-nm dsDNA bolt; revolution motors use larger channels (>3 nm) with room for the bolt to revolve. Binding and hydrolysis of ATP are linked to different conformational entropy changes in the motor that lead to altered affinity for the substrate and allow work to be done, for example, helicase unwinding of DNA or translocase directional movement of DNA.
Collapse
|
8
|
Li H, Lee T, Dziubla T, Pi F, Guo S, Xu J, Li C, Haque F, Liang XJ, Guo P. RNA as a stable polymer to build controllable and defined nanostructures for material and biomedical applications. NANO TODAY 2015; 10:631-655. [PMID: 26770259 PMCID: PMC4707685 DOI: 10.1016/j.nantod.2015.09.003] [Citation(s) in RCA: 87] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
The value of polymers is manifested in their vital use as building blocks in material and life sciences. Ribonucleic acid (RNA) is a polynucleic acid, but its polymeric nature in materials and technological applications is often overlooked due to an impression that RNA is seemingly unstable. Recent findings that certain modifications can make RNA resistant to RNase degradation while retaining its authentic folding property and biological function, and the discovery of ultra-thermostable RNA motifs have adequately addressed the concerns of RNA unstability. RNA can serve as a unique polymeric material to build varieties of nanostructures including nanoparticles, polygons, arrays, bundles, membrane, and microsponges that have potential applications in biomedical and material sciences. Since 2005, more than a thousand publications on RNA nanostructures have been published in diverse fields, indicating a remarkable increase of interest in the emerging field of RNA nanotechnology. In this review, we aim to: delineate the physical and chemical properties of polymers that can be applied to RNA; introduce the unique properties of RNA as a polymer; review the current methods for the construction of RNA nanostructures; describe its applications in material, biomedical and computer sciences; and, discuss the challenges and future prospects in this field.
Collapse
Affiliation(s)
- Hui Li
- Nanobiotechnology Center, Markey Cancer Center, and Department of Pharmaceutical Sciences, University of Kentucky, Lexington, KY 40536, USA
| | - Taek Lee
- Nanobiotechnology Center, Markey Cancer Center, and Department of Pharmaceutical Sciences, University of Kentucky, Lexington, KY 40536, USA
- Department of Chemical and Biomolecular Engineering, Sogang University, Seoul, Republic of Korea
| | - Thomas Dziubla
- Department of Chemical and Materials Engineering, University of Kentucky, Lexington, KY 40506, USA
| | - Fengmei Pi
- Nanobiotechnology Center, Markey Cancer Center, and Department of Pharmaceutical Sciences, University of Kentucky, Lexington, KY 40536, USA
| | - Sijin Guo
- Nanobiotechnology Center, Markey Cancer Center, and Department of Pharmaceutical Sciences, University of Kentucky, Lexington, KY 40536, USA
- Department of Chemistry, University of Kentucky, Lexington, KY 40506, USA
| | - Jing Xu
- Laboratory of Nanomedicine and Nanosafety, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology of China, Beijing 100190, China
| | - Chan Li
- Laboratory of Nanomedicine and Nanosafety, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology of China, Beijing 100190, China
| | - Farzin Haque
- Nanobiotechnology Center, Markey Cancer Center, and Department of Pharmaceutical Sciences, University of Kentucky, Lexington, KY 40536, USA
| | - Xing-Jie Liang
- Laboratory of Nanomedicine and Nanosafety, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology of China, Beijing 100190, China
| | - Peixuan Guo
- Nanobiotechnology Center, Markey Cancer Center, and Department of Pharmaceutical Sciences, University of Kentucky, Lexington, KY 40536, USA
| |
Collapse
|
9
|
Pi F, Vieweger M, Zhao Z, Wang S, Guo P. Discovery of a new method for potent drug development using power function of stoichiometry of homomeric biocomplexes or biological nanomotors. Expert Opin Drug Deliv 2015; 13:23-36. [PMID: 26307193 DOI: 10.1517/17425247.2015.1082544] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
INTRODUCTION Multidrug resistance and the appearance of incurable diseases inspire the quest for potent therapeutics. AREAS COVERED We review a new methodology in designing potent drugs by targeting multi-subunit homomeric biological motors, machines or complexes with Z > 1 and K = 1, where Z is the stoichiometry of the target, and K is the number of drugged subunits required to block the function of the complex. The condition is similar to a series electrical circuit of Christmas decorations: failure of one light bulb causes the entire lighting system to lose power. In most multi-subunit, homomeric biological systems, a sequential coordination or cooperative action mechanism is utilized, thus K equals 1. Drug inhibition depends on the ratio of drugged to non-drugged complexes. When K = 1, and Z > 1, the inhibition effect follows a power law with respect to Z, leading to enhanced drug potency. The hypothesis that the potency of drug inhibition depends on the stoichiometry of the targeted biological complexes was recently quantified by Yang-Hui's Triangle (or binomial distribution), and proved using a highly sensitive in vitro phi29 viral DNA packaging system. Examples of targeting homomeric bio-complexes with high stoichiometry for potent drug discovery are discussed. EXPERT OPINION Biomotors with multiple subunits are widespread in viruses, bacteria and cells, making this approach generally applicable in the development of inhibition drugs with high efficiency.
Collapse
Affiliation(s)
- Fengmei Pi
- a 1 University of Kentucky, Nanobiotechnology Center , Lexington, KY 40536, USA.,b 2 University of Kentucky, Markey Cancer Center , Lexington, KY 40536, USA.,c 3 University of Kentucky, Department of Pharmaceutical Sciences , 789 S. Limestone Street, Room # 576, Lexington, KY 40536, USA +1 859 218 0128 ; +1 859 257 1307 ;
| | - Mario Vieweger
- a 1 University of Kentucky, Nanobiotechnology Center , Lexington, KY 40536, USA.,b 2 University of Kentucky, Markey Cancer Center , Lexington, KY 40536, USA.,c 3 University of Kentucky, Department of Pharmaceutical Sciences , 789 S. Limestone Street, Room # 576, Lexington, KY 40536, USA +1 859 218 0128 ; +1 859 257 1307 ;
| | - Zhengyi Zhao
- a 1 University of Kentucky, Nanobiotechnology Center , Lexington, KY 40536, USA.,b 2 University of Kentucky, Markey Cancer Center , Lexington, KY 40536, USA.,c 3 University of Kentucky, Department of Pharmaceutical Sciences , 789 S. Limestone Street, Room # 576, Lexington, KY 40536, USA +1 859 218 0128 ; +1 859 257 1307 ;
| | - Shaoying Wang
- a 1 University of Kentucky, Nanobiotechnology Center , Lexington, KY 40536, USA.,b 2 University of Kentucky, Markey Cancer Center , Lexington, KY 40536, USA.,c 3 University of Kentucky, Department of Pharmaceutical Sciences , 789 S. Limestone Street, Room # 576, Lexington, KY 40536, USA +1 859 218 0128 ; +1 859 257 1307 ;
| | - Peixuan Guo
- a 1 University of Kentucky, Nanobiotechnology Center , Lexington, KY 40536, USA.,b 2 University of Kentucky, Markey Cancer Center , Lexington, KY 40536, USA.,c 3 University of Kentucky, Department of Pharmaceutical Sciences , 789 S. Limestone Street, Room # 576, Lexington, KY 40536, USA +1 859 218 0128 ; +1 859 257 1307 ;
| |
Collapse
|