1
|
Silva RM, Rosa SS, Santos JAL, Azevedo AM, Fernandes-Platzgummer A. Enabling Mesenchymal Stromal Cells and Their Extracellular Vesicles Clinical Availability-A Technological and Economical Evaluation. JOURNAL OF EXTRACELLULAR BIOLOGY 2025; 4:e70037. [PMID: 40104174 PMCID: PMC11913891 DOI: 10.1002/jex2.70037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Revised: 01/05/2025] [Accepted: 01/30/2025] [Indexed: 03/20/2025]
Abstract
Mesenchymal stromal cell-derived extracellular vesicles (MSC-EVs) have shown significant therapeutic potential across a wide range of clinical conditions, complementing the progress of MSC-based therapies, some of which have already received regulatory approval. However, the high cost of these therapies has limited their accessibility, creating an urgent need to explore manufacturing strategies that reduce the cost of goods and selling prices. This study presents the design and simulation of a scalable manufacturing platform for the co-production of clinical-grade MSC and MSC-EVs using SuperPro Designer. Various production scenarios were evaluated to maximise manufacturing capacity while analysing their impact on economic performance. Our findings demonstrate that for MSC-EVs doses containing 1010 and 1011 particles, selling prices range from 166 to 309€ and from 1659 to 3082€, respectively. For clinical doses of MSC, selling prices vary between 965 and 42,673€ depending on dose size and production scale. Importantly, the co-production approach enables cost-sharing between products, contributing to significantly lower prices compared to individual production. Overall, the proposed platform achieved an attractive payback time of 3 years and a return on investment of 36%. By increasing the number of staggered production units, further price reductions and improved economic metrics could be attained. In conclusion, this study highlights the potential of the proposed manufacturing platform to deliver cost-effective, clinical-grade MSC and MSC-EVs products, advancing the field of regenerative medicine and enhancing the accessibility of these innovative treatments.
Collapse
Affiliation(s)
- Ricardo M Silva
- Institute for Bioengineering and Biosciences, Department of Bioengineering Instituto Superior Técnico, Universidade de Lisboa Lisbon Portugal
| | - Sara Sousa Rosa
- Institute for Bioengineering and Biosciences, Department of Bioengineering Instituto Superior Técnico, Universidade de Lisboa Lisbon Portugal
| | - José A L Santos
- Institute for Bioengineering and Biosciences, Department of Bioengineering Instituto Superior Técnico, Universidade de Lisboa Lisbon Portugal
| | - Ana M Azevedo
- Institute for Bioengineering and Biosciences, Department of Bioengineering Instituto Superior Técnico, Universidade de Lisboa Lisbon Portugal
- Associate Laboratory i4HB-Institute for Health and Bioeconomy Instituto Superior Técnico, Universidade de Lisboa Lisbon Portugal
| | - Ana Fernandes-Platzgummer
- Institute for Bioengineering and Biosciences, Department of Bioengineering Instituto Superior Técnico, Universidade de Lisboa Lisbon Portugal
- Associate Laboratory i4HB-Institute for Health and Bioeconomy Instituto Superior Técnico, Universidade de Lisboa Lisbon Portugal
| |
Collapse
|
2
|
Chen Y, Zhou Y, Zhou Z, Fang Y, Ma L, Zhang X, Xiong J, Liu L. Hypoimmunogenic human pluripotent stem cells are valid cell sources for cell therapeutics with normal self-renewal and multilineage differentiation capacity. Stem Cell Res Ther 2023; 14:11. [PMID: 36691086 PMCID: PMC9872349 DOI: 10.1186/s13287-022-03233-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 12/28/2022] [Indexed: 01/25/2023] Open
Abstract
Hypoimmunogenic human pluripotent stem cells (hPSCs) are expected to serve as an unlimited cell source for generating universally compatible "off-the-shelf" cell grafts. However, whether the engineered hypoimmunogenic hPSCs still preserve their advantages of unlimited self-renewal and multilineage differentiation to yield functional tissue cells remains unclear. Here, we systematically studied the self-renewal and differentiation potency of three types of hypoimmunogenic hPSCs, established through the biallelic lesion of B2M gene to remove all surface expression of classical and nonclassical HLA class I molecules (B2Mnull), biallelic homologous recombination of nonclassical HLA-G1 to the B2M loci to knockout B2M while expressing membrane-bound β2m-HLA-G1 fusion proteins (B2MmHLAG), and ectopic expression of soluble and secreted β2m-HLA-G5 fusion proteins in B2MmHLAG hPSCs (B2Mm/sHLAG) in the most widely used WA09 human embryonic stem cells. Our results showed that hypoimmunogenic hPSCs with variable expression patterns of HLA molecules and immune compromising spectrums retained their normal self-renewal capacity and three-germ-layer differentiation potency. More importantly, as exemplified by neurons, cardiomyocytes and hepatocytes, hypoimmunogenic hPSC-derived tissue cells were fully functional as of their morphology, electrophysiological properties, macromolecule transportation and metabolic regulation. Our findings thus indicate that engineered hypoimmunogenic hPSCs hold great promise of serving as an unlimited universal cell source for cell therapeutics.
Collapse
Affiliation(s)
- Yifan Chen
- Translational Medical Center for Stem Cell Therapy, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
- Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai, China
- Key Laboratory of Neuroregeneration of Shanghai Universities, School of Medicine, Tongji University, Shanghai, China
| | - Yanjie Zhou
- Translational Medical Center for Stem Cell Therapy, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
- Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai, China
- Key Laboratory of Neuroregeneration of Shanghai Universities, School of Medicine, Tongji University, Shanghai, China
| | - Zhongshu Zhou
- Translational Medical Center for Stem Cell Therapy, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
- Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai, China
- Key Laboratory of Neuroregeneration of Shanghai Universities, School of Medicine, Tongji University, Shanghai, China
| | - Yujiang Fang
- Translational Medical Center for Stem Cell Therapy, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
- Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai, China
- Key Laboratory of Neuroregeneration of Shanghai Universities, School of Medicine, Tongji University, Shanghai, China
| | - Lin Ma
- Translational Medical Center for Stem Cell Therapy, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
- Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai, China
- Key Laboratory of Neuroregeneration of Shanghai Universities, School of Medicine, Tongji University, Shanghai, China
| | - Xiaoqing Zhang
- Translational Medical Center for Stem Cell Therapy, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China.
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Orthopaedic Department of Tongji Hospital, Shanghai, China.
- Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai, China.
- Key Laboratory of Neuroregeneration of Shanghai Universities, School of Medicine, Tongji University, Shanghai, China.
- Clinical Center for Brain and Spinal Cord Research, Tongji University, Shanghai, China.
- Tsingtao Advanced Research Institute, Tongji University, Qingdao, China.
| | - Jie Xiong
- Translational Medical Center for Stem Cell Therapy, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China.
- Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai, China.
- Key Laboratory of Neuroregeneration of Shanghai Universities, School of Medicine, Tongji University, Shanghai, China.
| | - Ling Liu
- Translational Medical Center for Stem Cell Therapy, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China.
- Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai, China.
- Key Laboratory of Neuroregeneration of Shanghai Universities, School of Medicine, Tongji University, Shanghai, China.
| |
Collapse
|
3
|
Mendonça da Silva J, Stamatis C, Chalmers SA, Erro E, Selden C, Farid SS. Decisional tool for cost of goods analysis of bioartificial liver devices for routine clinical use. Cytotherapy 2021; 23:683-693. [PMID: 34116945 DOI: 10.1016/j.jcyt.2021.04.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 03/31/2021] [Accepted: 04/14/2021] [Indexed: 11/25/2022]
Abstract
BACKGROUND AIMS Bioartificial liver devices (BALs) are categorized as advanced therapy medicinal products (ATMPs) with the potential to provide temporary liver support for liver failure patients. However, to meet commercial demands, next-generation BAL manufacturing processes need to be designed that are scalable and financially feasible. The authors describe the development and application of a process economics decisional tool to determine the cost of goods (COG) of alternative BAL process flowsheets across a range of industrial scales. METHODS The decisional tool comprised an information database linked to a process economics engine, with equipment sizing, resource consumption, capital investment and COG calculations for the whole bioprocess, from cell expansion and encapsulation to fluidized bed bioreactor (FBB) culture to cryopreservation and cryorecovery. Four different flowsheet configurations were evaluated across demands, with cell factories or microcarriers in suspension culture for the cell expansion step and single-use or stainless steel technology for the FBB culture step. RESULTS The tool outputs demonstrated that the lowest COG was achieved with microcarriers and stainless steel technology independent of the annual demand (1500-30 000 BALs/year). The analysis identified the key cost drivers were parameters impacting the medium volume and cost. CONCLUSIONS The tool outputs can be used to identify cost-effective and scalable bioprocesses early in the development process and minimize the risk of failing to meet commercial demands due to technology choices. The tool predictions serve as a useful benchmark for manufacturing ATMPs.
Collapse
Affiliation(s)
- Joana Mendonça da Silva
- Liver Group, Institute for Liver and Digestive Health, Royal Free Campus, University College London, London, UK
| | - Christos Stamatis
- Department of Biochemical Engineering, Advanced Centre for Biochemical Engineering, University College London, London, UK
| | - Sherri-Ann Chalmers
- Liver Group, Institute for Liver and Digestive Health, Royal Free Campus, University College London, London, UK
| | - Eloy Erro
- Liver Group, Institute for Liver and Digestive Health, Royal Free Campus, University College London, London, UK
| | - Clare Selden
- Liver Group, Institute for Liver and Digestive Health, Royal Free Campus, University College London, London, UK
| | - Suzanne S Farid
- Department of Biochemical Engineering, Advanced Centre for Biochemical Engineering, University College London, London, UK.
| |
Collapse
|
4
|
Frederiksen HR, Doehn U, Tveden-Nyborg P, Freude KK. Non-immunogenic Induced Pluripotent Stem Cells, a Promising Way Forward for Allogenic Transplantations for Neurological Disorders. Front Genome Ed 2021; 2:623717. [PMID: 34713244 PMCID: PMC8525385 DOI: 10.3389/fgeed.2020.623717] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 12/08/2020] [Indexed: 12/19/2022] Open
Abstract
Neurological disorder is a general term used for diseases affecting the function of the brain and nervous system. Those include a broad range of diseases from developmental disorders (e.g., Autism) over injury related disorders (e.g., stroke and brain tumors) to age related neurodegeneration (e.g., Alzheimer's disease), affecting up to 1 billion people worldwide. For most of those disorders, no curative treatment exists leaving symptomatic treatment as the primary mean of alleviation. Human induced pluripotent stem cells (hiPSC) in combination with animal models have been instrumental to foster our understanding of underlying disease mechanisms in the brain. Of specific interest are patient derived hiPSC which allow for targeted gene editing in the cases of known mutations. Such personalized treatment would include (1) acquisition of primary cells from the patient, (2) reprogramming of those into hiPSC via non-integrative methods, (3) corrective intervention via CRISPR-Cas9 gene editing of mutations, (4) quality control to ensure successful correction and absence of off-target effects, and (5) subsequent transplantation of hiPSC or pre-differentiated precursor cells for cell replacement therapies. This would be the ideal scenario but it is time consuming and expensive. Therefore, it would be of great benefit if transplanted hiPSC could be modulated to become invisible to the recipient's immune system, avoiding graft rejection and allowing for allogenic transplantations. This review will focus on the current status of gene editing to generate non-immunogenic hiPSC and how these cells can be used to treat neurological disorders by using cell replacement therapy. By providing an overview of current limitations and challenges in stem cell replacement therapies and the treatment of neurological disorders, this review outlines how gene editing and non-immunogenic hiPSC can contribute and pave the road for new therapeutic advances. Finally, the combination of using non-immunogenic hiPSC and in vivo animal modeling will highlight the importance of models with translational value for safety efficacy testing; before embarking on human trials.
Collapse
Affiliation(s)
- Henriette Reventlow Frederiksen
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Ulrik Doehn
- Stem Cell Discovery, Novo Nordisk A/S, Måløv, Denmark
| | - Pernille Tveden-Nyborg
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Kristine K. Freude
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- *Correspondence: Kristine K. Freude
| |
Collapse
|
5
|
Improved recovery of cryopreserved cell monolayers with a hyaluronic acid surface treatment. Biointerphases 2020; 15:061015. [PMID: 33356337 DOI: 10.1116/6.0000613] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Cryopreservation is an essential part of tissue banking and effective cryopreservation methods are critical for the development of cost-effective cell therapy products. Cell sheets are an attractive subset of cell therapy types, and cryopreservation has the potential to further drive down costs of allogeneic cell sheet therapy. This is currently a challenge as adhered cell monolayers are more susceptible to membrane damage during the freezing process. In this article, we investigate the performance of a surface-modified dressing for the cryopreservation of cells and strategies to improve cell recovery. Cryopreservation of multipotent adult progenitor cells (MAPC®) was performed on cells following their attachment to a surface for different periods of time. MAPC cells, given just 1 h to attach, washed off and were not recovered on the surface following thawing. Cells attached for longer periods, elongated further, and were more susceptible to damage from cryopreservation. A temporal window was identified that could allow cryopreservation on adherent surfaces where cells had attached to a surface without full elongation. By functionalizing the surface with coupled hyaluronic acid, cell spreading was initially retarded, thereby widening this temporal window. This approach demonstrates a novel method for enhancing the recovery of cryopreserved cell sheets on surfaces.
Collapse
|
6
|
Arroyave F, Montaño D, Lizcano F. Diabetes Mellitus Is a Chronic Disease that Can Benefit from Therapy with Induced Pluripotent Stem Cells. Int J Mol Sci 2020; 21:ijms21228685. [PMID: 33217903 PMCID: PMC7698772 DOI: 10.3390/ijms21228685] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 10/20/2020] [Accepted: 10/31/2020] [Indexed: 12/17/2022] Open
Abstract
Diabetes mellitus (DM) is one of the main causes of morbidity and mortality, with an increasing incidence worldwide. The impact of DM on public health in developing countries has triggered alarm due to the exaggerated costs of the treatment and monitoring of patients with this disease. Considerable efforts have been made to try to prevent the onset and reduce the complications of DM. However, because insulin-producing pancreatic β-cells progressively deteriorate, many people must receive insulin through subcutaneous injection. Additionally, current therapies do not have consistent results regarding the prevention of chronic complications. Leveraging the approval of real-time continuous glucose monitors and sophisticated algorithms that partially automate insulin infusion pumps has improved glycemic control, decreasing the burden of diabetes management. However, these advances are facing physiologic barriers. New findings in molecular and cellular biology have produced an extraordinary advancement in tissue development for the treatment of DM. Obtaining pancreatic β-cells from somatic cells is a great resource that currently exists for patients with DM. Although this therapeutic option has great prospects for patients, some challenges remain for this therapeutic plan to be used clinically. The purpose of this review is to describe the new techniques in cell biology and regenerative medicine as possible treatments for DM. In particular, this review highlights the origin of induced pluripotent cells (iPSCs) and how they have begun to emerge as a regenerative treatment that may mitigate the pathology of this disease.
Collapse
Affiliation(s)
- Felipe Arroyave
- Doctoral Program in Biosciences, Universidad de La Sabana, Chía 250008, CU, Colombia;
| | - Diana Montaño
- Center of Biomedical Investigation (CIBUS), Universidad de La Sabana, Chía 250008, CU, Colombia;
| | - Fernando Lizcano
- Doctoral Program in Biosciences, Universidad de La Sabana, Chía 250008, CU, Colombia;
- Center of Biomedical Investigation (CIBUS), Universidad de La Sabana, Chía 250008, CU, Colombia;
- Correspondence: ; Tel.: +57-3144120052 or +57-18615555 (ext. 23906)
| |
Collapse
|
7
|
Childs PG, Reid S, Salmeron-Sanchez M, Dalby MJ. Hurdles to uptake of mesenchymal stem cells and their progenitors in therapeutic products. Biochem J 2020; 477:3349-3366. [PMID: 32941644 PMCID: PMC7505558 DOI: 10.1042/bcj20190382] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 08/15/2020] [Accepted: 08/24/2020] [Indexed: 12/11/2022]
Abstract
Twenty-five years have passed since the first clinical trial utilising mesenchymal stomal/stem cells (MSCs) in 1995. In this time academic research has grown our understanding of MSC biochemistry and our ability to manipulate these cells in vitro using chemical, biomaterial, and mechanical methods. Research has been emboldened by the promise that MSCs can treat illness and repair damaged tissues through their capacity for immunomodulation and differentiation. Since 1995, 31 therapeutic products containing MSCs and/or progenitors have reached the market with the level of in vitro manipulation varying significantly. In this review, we summarise existing therapeutic products containing MSCs or mesenchymal progenitor cells and examine the challenges faced when developing new therapeutic products. Successful progression to clinical trial, and ultimately market, requires a thorough understanding of these hurdles at the earliest stages of in vitro pre-clinical development. It is beneficial to understand the health economic benefit for a new product and the reimbursement potential within various healthcare systems. Pre-clinical studies should be selected to demonstrate efficacy and safety for the specific clinical indication in humans, to avoid duplication of effort and minimise animal usage. Early consideration should also be given to manufacturing: how cell manipulation methods will integrate into highly controlled workflows and how they will be scaled up to produce clinically relevant quantities of cells. Finally, we summarise the main regulatory pathways for these clinical products, which can help shape early therapeutic design and testing.
Collapse
Affiliation(s)
- Peter G. Childs
- Centre for the Cellular Microenvironment, Division of Biomedical Engineering, School of Engineering, College of Science and Engineering, University of Glasgow, Glasgow G12 8QQ, U.K
- Centre for the Cellular Microenvironment, SUPA Department of Biomedical Engineering, University of Strathclyde, Glasgow G1 1QE, U.K
| | - Stuart Reid
- Centre for the Cellular Microenvironment, SUPA Department of Biomedical Engineering, University of Strathclyde, Glasgow G1 1QE, U.K
| | - Manuel Salmeron-Sanchez
- Centre for the Cellular Microenvironment, Division of Biomedical Engineering, School of Engineering, College of Science and Engineering, University of Glasgow, Glasgow G12 8QQ, U.K
| | - Matthew J. Dalby
- Centre for the Cellular Microenvironment, Institute for Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, U.K
| |
Collapse
|
8
|
Gay MHP, Baldomero H, Farge-Bancel D, Robey PG, Rodeo S, Passweg J, Müller-Gerbl M, Martin I. The Survey on Cellular and Tissue-Engineered Therapies in Europe in 2016 and 2017. Tissue Eng Part A 2020; 27:336-350. [PMID: 32680446 DOI: 10.1089/ten.tea.2020.0092] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
This report describes activity in Europe for the years 2016 and 2017 in the area of cellular and tissue-engineered therapies, excluding hematopoietic stem cell treatments for the reconstitution of hematopoiesis. It is the eighth of its kind and is supported by five established scientific organizations. In 2016 and 2017, a combined 234 teams from 29 countries responded to the cellular and engineered tissue therapy survey; 227 teams reported treating 8236 patients in these 2 years. Indications were categorized in hematology/oncology (40%; predominantly prevention or treatment of graft vs. host disease and hematopoietic graft enhancement), musculoskeletal/rheumatological disorders (29%), cardiovascular disorders (6%), neurological disorders (4%), gastrointestinal disorders (<1%), as well as miscellaneous disorders (20%), which were not assigned to the previous indications. The predominantly used cells were autologous (61%). The majority of autologous cells were used to treat musculoskeletal/rheumatological (44%) disorders, whereas allogeneic cells were mainly used for hematology/oncology (78%). The reported cell types were mesenchymal stem/stromal cells (MSCs) (56%), hematopoietic cells (21%), keratinocytes (7%), chondrocytes (6%) dermal fibroblasts (4%), dendritic cells (2%), and other cell types (4%). Cells were expanded in vitro in 62% of the treatments, sorted in 11% of the cases, and rarely transduced (2%). The processing of cells was outsourced to external facilities in 30% of the cases. Cells were delivered predominantly intravenously or intra-arterially [47%], as suspension [36%], or using a membrane/scaffold (16%). The data are compared with those from previous years to identify trends in a rapidly evolving field. In this edition, the report includes a critical discussion of data collected in the space of orthopedics and the use of MSCs.
Collapse
Affiliation(s)
- Max H P Gay
- Department of Biomedicine, Institute of Anatomy, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Helen Baldomero
- EBMT Activity Survey Office, Division of Hematology, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Dominique Farge-Bancel
- Unité de Médecine Interne, Maladies Auto-immunes et Pathologie Vasculaire, Université de Paris, Paris, France.,MATHEC, Centre de Référence des Maladies auto-immunes systémiques Rares d'Ile-de-France, Hôpital St-Louis, Paris, France
| | - Pamela G Robey
- National Institute of Dental and Craniofacial Research, National Institutes of Health, Department of Health and Human Services, Bethesda, Maryland, USA
| | - Scott Rodeo
- Orthopaedic Surgery, Weill Medical College of Cornell University, New York, New York, USA.,The Hospital for Special Surgery, New York, New York, USA
| | - Jakob Passweg
- EBMT Activity Survey Office, Division of Hematology, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Magdalena Müller-Gerbl
- Department of Biomedicine, Institute of Anatomy, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Ivan Martin
- Department of Biomedicine, University Hospital Basel, University of Basel, Basel, Switzerland
| |
Collapse
|
9
|
Desgres M, Menasché P. Clinical Translation of Pluripotent Stem Cell Therapies: Challenges and Considerations. Cell Stem Cell 2020; 25:594-606. [PMID: 31703770 DOI: 10.1016/j.stem.2019.10.001] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Although the clinical outcomes of cell therapy trials have not met initial expectations, emerging evidence suggests that injury-mediated tissue damage might benefit from the delivery of cells or their secreted products. Pluripotent stem cells (PSCs) are promising cell sources primarily because of their capacity to generate stage- and lineage-specific differentiated derivatives. However, they carry inherent challenges for safe and efficacious clinical translation. This Review describes completed or ongoing trials of PSCs, discusses their potential mechanisms of action, and considers how to address the challenges required for them to become a major therapy, using heart repair as a case study.
Collapse
Affiliation(s)
- Manon Desgres
- Université de Paris, PARCC, INSERM, 75015 Paris, France
| | - Philippe Menasché
- Université de Paris, PARCC, INSERM, 75015 Paris, France; Department of Cardiovascular Surgery, Hôpital Européen Georges Pompidou 20, rue Leblanc, 75015 Paris, France.
| |
Collapse
|
10
|
Hypoimmunogenic derivatives of induced pluripotent stem cells evade immune rejection in fully immunocompetent allogeneic recipients. Nat Biotechnol 2019; 37:252-258. [PMID: 30778232 DOI: 10.1038/s41587-019-0016-3] [Citation(s) in RCA: 482] [Impact Index Per Article: 80.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Accepted: 12/28/2018] [Indexed: 12/21/2022]
Abstract
Autologous induced pluripotent stem cells (iPSCs) constitute an unlimited cell source for patient-specific cell-based organ repair strategies. However, their generation and subsequent differentiation into specific cells or tissues entail cell line-specific manufacturing challenges and form a lengthy process that precludes acute treatment modalities. These shortcomings could be overcome by using prefabricated allogeneic cell or tissue products, but the vigorous immune response against histo-incompatible cells has prevented the successful implementation of this approach. Here we show that both mouse and human iPSCs lose their immunogenicity when major histocompatibility complex (MHC) class I and II genes are inactivated and CD47 is over-expressed. These hypoimmunogenic iPSCs retain their pluripotent stem cell potential and differentiation capacity. Endothelial cells, smooth muscle cells, and cardiomyocytes derived from hypoimmunogenic mouse or human iPSCs reliably evade immune rejection in fully MHC-mismatched allogeneic recipients and survive long-term without the use of immunosuppression. These findings suggest that hypoimmunogenic cell grafts can be engineered for universal transplantation.
Collapse
|
11
|
Jenkins MJ, Farid SS. Cost-effective bioprocess design for the manufacture of allogeneic CAR-T cell therapies using a decisional tool with multi-attribute decision-making analysis. Biochem Eng J 2018. [DOI: 10.1016/j.bej.2018.05.014] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
12
|
Pereira Chilima TD, Moncaubeig F, Farid SS. Impact of allogeneic stem cell manufacturing decisions on cost of goods, process robustness and reimbursement. Biochem Eng J 2018. [DOI: 10.1016/j.bej.2018.04.017] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
13
|
Rathod R, Surendran H, Battu R, Desai J, Pal R. Induced pluripotent stem cells (iPSC)-derived retinal cells in disease modeling and regenerative medicine. J Chem Neuroanat 2018; 95:81-88. [PMID: 29448001 DOI: 10.1016/j.jchemneu.2018.02.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Revised: 02/02/2018] [Accepted: 02/10/2018] [Indexed: 12/19/2022]
Abstract
Retinal degenerative disorders are a leading cause of the inherited, irreversible and incurable vision loss. While various rodent model systems have provided crucial information in this direction, lack of disease-relevant tissue availability and species-specific differences have proven to be a major roadblock. Human induced pluripotent stem cells (iPSC) have opened up a whole new avenue of possibilities not just in understanding the disease mechanism but also potential therapeutic approaches towards a cure. In this review, we have summarized recent advances in the methods of deriving retinal cell types from iPSCs which can serve as a renewable source of disease-relevant cell population for basic as well as translational studies. We also provide an overview of the ongoing efforts towards developing a suitable in vitro model for modeling retinal degenerative diseases. This basic understanding in turn has contributed to advances in translational goals such as drug screening and cell-replacement therapies. Furthermore we discuss gene editing approaches for autologous repair of genetic disorders and allogeneic transplantation of stem cell-based retinal derivatives for degenerative disorders with an ultimate goal to restore vision. It is pertinent to note however, that these exciting new developments throw up several challenges that need to be overcome before their full clinical potential can be realized.
Collapse
Affiliation(s)
- Reena Rathod
- Eyestem Research Private Limited, Centre for Cellular and Molecular Platforms (CCAMP), National Centre for Biological Sciences-Tata Institute of Fundamental Research (NCBS-TIFR), GKVK Campus, Bangalore, 560065, India
| | - Harshini Surendran
- Eyestem Research Private Limited, Centre for Cellular and Molecular Platforms (CCAMP), National Centre for Biological Sciences-Tata Institute of Fundamental Research (NCBS-TIFR), GKVK Campus, Bangalore, 560065, India
| | - Rajani Battu
- Eyestem Research Private Limited, Centre for Cellular and Molecular Platforms (CCAMP), National Centre for Biological Sciences-Tata Institute of Fundamental Research (NCBS-TIFR), GKVK Campus, Bangalore, 560065, India; Centre for Eye Genetics and Research, Cytecare Hospital, Bellary Road, Bangalore, 560064, India
| | - Jogin Desai
- Eyestem Research Private Limited, Centre for Cellular and Molecular Platforms (CCAMP), National Centre for Biological Sciences-Tata Institute of Fundamental Research (NCBS-TIFR), GKVK Campus, Bangalore, 560065, India; Centre for Eye Genetics and Research, Cytecare Hospital, Bellary Road, Bangalore, 560064, India
| | - Rajarshi Pal
- Eyestem Research Private Limited, Centre for Cellular and Molecular Platforms (CCAMP), National Centre for Biological Sciences-Tata Institute of Fundamental Research (NCBS-TIFR), GKVK Campus, Bangalore, 560065, India.
| |
Collapse
|
14
|
Abbasalizadeh S, Pakzad M, Cabral JMS, Baharvand H. Allogeneic cell therapy manufacturing: process development technologies and facility design options. Expert Opin Biol Ther 2017; 17:1201-1219. [PMID: 28699788 DOI: 10.1080/14712598.2017.1354982] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Currently, promising outcomes from clinical trials of allogeneic cells, especially allogeneic mesenchymal stromal cells, fibroblasts, keratinocytes, and human cardiac stem cells, have encouraged research institutions, small and medium enterprises (SMEs), and big pharmaceutical companies to invest and focus on developing allogeneic cell therapy products. Commercial and large-scale production of allogeneic cell therapy products requires unique capabilities to develop technologies that generate safe and effective allogeneic cells/cell lines and their fully characterized master/working banks. In addition, it is necessary to design robust upstream and downstream manufacturing processes, and establish integrated, well-designed manufacturing facilities to produce high quality affordable products in accordance with current GMP regulations for the production of cell therapy products. Areas covered: The authors highlight: the recent advances in the development of allogeneic products, the available options to develop robust manufacturing processes, and facility design considerations. Expert opinion: Currently, there are multiple challenges in development of allogeneic cell therapy products. Indeed, the field is still in its infancy; with technologies and regulations still under development, as is our understanding of the mechanisms of action in the body and their interaction with the host immune system. Their characterization and testing is also an emerging and very complex area.
Collapse
Affiliation(s)
- Saeed Abbasalizadeh
- a Department of Stem Cells and Developmental Biology, Cell Science Research Center , Royan Institute for Stem Cell Biology and Technology, ACECR , Tehran , Iran
- b Department of Bioengineering and Institute for Bioengineering and Biosciences , Instituto Superior Técnico, Universidade de Lisboa , Lisboa , Portugal
| | - Mohammad Pakzad
- a Department of Stem Cells and Developmental Biology, Cell Science Research Center , Royan Institute for Stem Cell Biology and Technology, ACECR , Tehran , Iran
| | - Joaquim M S Cabral
- b Department of Bioengineering and Institute for Bioengineering and Biosciences , Instituto Superior Técnico, Universidade de Lisboa , Lisboa , Portugal
| | - Hossein Baharvand
- a Department of Stem Cells and Developmental Biology, Cell Science Research Center , Royan Institute for Stem Cell Biology and Technology, ACECR , Tehran , Iran
- c Department of Developmental Biology , University of Science and Culture , Tehran , Iran
| |
Collapse
|
15
|
Vilquin JT, Etienne J. [Cell therapies for cardiopathies: the shift of paradigms]. Med Sci (Paris) 2016; 32 Hors série n°2:30-39. [PMID: 27869075 DOI: 10.1051/medsci/201632s209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Heart failure is a major concern for public health systems, and several approaches of cellular therapy are being investigated with the goal of improving the function of these failing hearts. Many cell types have been used (skeletal myoblasts, hematopoietic, endothelial or mesenchymal progenitors, cardiac cells…), most often in the indication of post-ischemic heart failure rather than in the indication of genetic dilated cardiomyopathy. It is easier, indeed, to target a restricted area than the whole myocardium. Several clinical trials have reported slight but encouraging functional benefits, but their interpretations were frequently limited by the small sizes of cohorts, and by the biological variabilities inherent to the patients status and to the biology of the cells. These trials also shed light on unexpected mechanisms of action of the cells, which are changing the concepts and methodologies of the studies. The functional benefits observed would be due, indeed, to the secretion of trophic factors by the cells, instead of their true structural and mechanical integration within the myocardial tissue. Accordingly, the new generations of clinical trials aim at improving the size and homogeneity of the patient cohorts to increase the statistical power. On the other hand, several studies are associating or conditionning cells with biomaterials or cocktails of cytokines to improve their survival and their biological efficacy. In parallel, bio-engineering investigates several ways to support cells in vitro and in vivo, to sustain the architectural structure of the failing myocardium, to produce ex vivo some true substitutive cardiac tissue, or to purely replace the cells by their active secreted products. Several therapeutic devices should emerge from these researches, and the choice of their respective use will be ultimately guided by the medical indication.
Collapse
Affiliation(s)
- Jean-Thomas Vilquin
- Centre de Recherche en Myologie, Sorbonne Universités, UPMC-Inserm UMRS 974, CNRS FRE 3617, Institut de Myologie, Groupe Hospitalier Pitié-Salpêtrière, Paris, France
| | - Jessy Etienne
- Centre de Recherche en Myologie, Sorbonne Universités, UPMC-Inserm UMRS 974, CNRS FRE 3617, Institut de Myologie, Groupe Hospitalier Pitié-Salpêtrière, Paris, France
| |
Collapse
|
16
|
de Soure AM, Fernandes-Platzgummer A, da Silva CL, Cabral JMS. Scalable microcarrier-based manufacturing of mesenchymal stem/stromal cells. J Biotechnol 2016; 236:88-109. [PMID: 27527397 DOI: 10.1016/j.jbiotec.2016.08.007] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Revised: 08/02/2016] [Accepted: 08/09/2016] [Indexed: 12/17/2022]
Abstract
Due to their unique features, mesenchymal stem/stromal cells (MSC) have been exploited in clinical settings as therapeutic candidates for the treatment of a variety of diseases. However, the success in obtaining clinically-relevant MSC numbers for cell-based therapies is dependent on efficient isolation and ex vivo expansion protocols, able to comply with good manufacturing practices (GMP). In this context, the 2-dimensional static culture systems typically used for the expansion of these cells present several limitations that may lead to reduced cell numbers and compromise cell functions. Furthermore, many studies in the literature report the expansion of MSC using fetal bovine serum (FBS)-supplemented medium, which has been critically rated by regulatory agencies. Alternative platforms for the scalable manufacturing of MSC have been developed, namely using microcarriers in bioreactors, with also a considerable number of studies now reporting the production of MSC using xenogeneic/serum-free medium formulations. In this review we provide a comprehensive overview on the scalable manufacturing of human mesenchymal stem/stromal cells, depicting the various steps involved in the process from cell isolation to ex vivo expansion, using different cell tissue sources and culture medium formulations and exploiting bioprocess engineering tools namely microcarrier technology and bioreactors.
Collapse
Affiliation(s)
- António M de Soure
- Department of Bioengineering and iBB-Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, Lisboa, Portugal
| | - Ana Fernandes-Platzgummer
- Department of Bioengineering and iBB-Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, Lisboa, Portugal
| | - Cláudia L da Silva
- Department of Bioengineering and iBB-Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, Lisboa, Portugal
| | - Joaquim M S Cabral
- Department of Bioengineering and iBB-Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, Lisboa, Portugal.
| |
Collapse
|
17
|
Menasché P, Vanneaux V. Stem cells for the treatment of heart failure. Curr Res Transl Med 2016; 64:97-106. [PMID: 27316393 DOI: 10.1016/j.retram.2016.04.003] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2016] [Revised: 04/02/2016] [Accepted: 04/08/2016] [Indexed: 12/17/2022]
Abstract
Stem cell-based therapy is currently tested in several trials of chronic heart failure. The main question is to determine how its implementation could be extended to standard clinical practice. To answer this question, it is helpful to capitalize on the three main lessons drawn from the accumulated experience, both in the laboratory and in the clinics. Regarding the cell type, the best outcomes seem to be achieved by cells the phenotype of which closely matches that of the target tissue. This argues in favor of the use of cardiac-committed cells among which the pluripotent stem cell-derived cardiac progeny is particularly attractive. Regarding the mechanism of action, there has been a major paradigm shift whereby cells are no longer expected to structurally integrate within the recipient myocardium but rather to release biomolecules that foster endogenous repair processes. This implies to focus on early cell retention, rather than on sustained cell survival, so that the cells reside in the target tissue long enough and in sufficient amounts to deliver the factors underpinning their action. Biomaterials are here critical adjuncts to optimize this residency time. Furthermore, the paracrine hypothesis gives more flexibility for using allogeneic cells in that targeting an only transient engraftment requires to delay, and no longer to avoid, rejection, which, in turn, should simplify immunomodulation regimens. Regarding manufacturing, a broad dissemination of cardiac cell therapy requires the development of automated systems allowing to yield highly reproducible cell products. This further emphasizes the interest of allogeneic cells because of their suitability for industrially-relevant and cost-effective scale-up and quality control procedures. At the end, definite confirmation that the effects of cells can be recapitulated by the factors they secrete could lead to acellular therapies whereby factors alone (possibly clustered in extracellular vesicles) would be delivered to the patient. The production process of these cell-derived biologics would then be closer to that of a pharmaceutical compound, which could streamline the manufacturing and regulatory paths and thereby facilitate an expended clinical use.
Collapse
Affiliation(s)
- P Menasché
- Department of Cardiovascular Surgery, Hôpital Européen Georges Pompidou, 20, rue Leblanc, 75015 Paris, France; Université Paris Descartes, Sorbonne Paris Cité, 75010 Paris, France; INSERM U 970, 75010 Paris, France.
| | - V Vanneaux
- INSERM UMR1160, Institut Universitaire d'Hématologie, 75475 Paris cedex 10, France; Assistance publique-Hôpitaux de Paris, Unité de thérapie cellulaire et CIC de Biothérapies, Hôpital Saint-Louis, 75475 Paris cedex 10, France
| |
Collapse
|
18
|
Hassan S, Simaria AS, Varadaraju H, Gupta S, Warren K, Farid SS. Allogeneic cell therapy bioprocess economics and optimization: downstream processing decisions. Regen Med 2016; 10:591-609. [PMID: 26237703 DOI: 10.2217/rme.15.29] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
AIM To develop a decisional tool to identify the most cost effective process flowsheets for allogeneic cell therapies across a range of production scales. MATERIALS & METHODS A bioprocess economics and optimization tool was built to assess competing cell expansion and downstream processing (DSP) technologies. RESULTS Tangential flow filtration was generally more cost-effective for the lower cells/lot achieved in planar technologies and fluidized bed centrifugation became the only feasible option for handling large bioreactor outputs. DSP bottlenecks were observed at large commercial lot sizes requiring multiple large bioreactors. The DSP contribution to the cost of goods/dose ranged between 20-55%, and 50-80% for planar and bioreactor flowsheets, respectively. CONCLUSION This analysis can facilitate early decision-making during process development.
Collapse
Affiliation(s)
- Sally Hassan
- The Advanced Centre for Biochemical Engineering, Department of Biochemical Engineering, University College London, Gordon Street, London WC1H 0AH, UK
| | - Ana S Simaria
- The Advanced Centre for Biochemical Engineering, Department of Biochemical Engineering, University College London, Gordon Street, London WC1H 0AH, UK
| | - Hemanthram Varadaraju
- Development Services, Cell Therapy, Lonza Walkersville, Inc., 8830 Biggs Ford Road, US - 21793-0127 Walkersville, MD, USA.,Modern Meadow, 140 58 Street Building A, Suite 8J Brooklyn, NY 11220, USA
| | - Siddharth Gupta
- Development Services, Cell Therapy, Lonza Walkersville, Inc., 8830 Biggs Ford Road, US - 21793-0127 Walkersville, MD, USA
| | - Kim Warren
- Development Services, Cell Therapy, Lonza Walkersville, Inc., 8830 Biggs Ford Road, US - 21793-0127 Walkersville, MD, USA
| | - Suzanne S Farid
- The Advanced Centre for Biochemical Engineering, Department of Biochemical Engineering, University College London, Gordon Street, London WC1H 0AH, UK
| |
Collapse
|
19
|
Sasaki K, Miyata H, Sasaki H, Kang S, Yuasa T, Kato R. Image-based focused counting of dividing cells for non-invasive monitoring of regenerative medicine products. J Biosci Bioeng 2015; 120:582-90. [DOI: 10.1016/j.jbiosc.2015.03.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2014] [Revised: 02/25/2015] [Accepted: 03/01/2015] [Indexed: 12/14/2022]
|
20
|
Thurman-Newell JA, Petzing JN, Williams DJ. Quantification of biological variation in blood-based therapy--a summary of a meta-analysis to inform manufacturing in the clinic. Vox Sang 2015; 109:394-402. [PMID: 26174339 PMCID: PMC5016773 DOI: 10.1111/vox.12288] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2014] [Revised: 02/18/2015] [Accepted: 03/27/2015] [Indexed: 11/28/2022]
Abstract
Background and Objectives Biological raw materials, the basis for cellular therapies such as stem cells, have a significantly greater degree of complexity than their traditional pharmaceutical counterparts. This can be attributed to the inherent variation of its source – human beings. Currently, cell therapies are made in small, ad hoc batches, but larger scale production is a prerequisite to meeting future demand and will require a quality‐by‐design approach to manufacturing that will be designed around, or be robust to this variation. Quantification of variation will require understanding of the current baseline and stratification of its sources. Materials and Methods Haematopoietic stem cell therapy was chosen as a case study to explore this variation, and a PRISMA‐guided (Preferred Reporting Items for Systematic Reviews and Meta‐Analyses) systematic meta‐analysis was carried out for a number of predetermined cell measurements. Results From this data set, it appears that the extent of variation in therapeutic dose (in terms of transplanted total nucleated cells and CD34+ cells per kilogram) for HSCT is between one and four orders of magnitude of the median. Conclusions This is tolerated under the practice of medicine but would be unmanageable from a biomanufacturing perspective and raises concerns about comparable levels of efficacy and treatment. A number of sources that will contribute towards this variation are also reported, as is the direction of travel for 4 greater clarity of the scale of this challenge.
Collapse
Affiliation(s)
- J A Thurman-Newell
- Healthcare Engineering Group, Centre for Biological Engineering, Loughborough University, Loughborough, UK
| | - J N Petzing
- Healthcare Engineering Group, Centre for Biological Engineering, Loughborough University, Loughborough, UK
| | - D J Williams
- Healthcare Engineering Group, Centre for Biological Engineering, Loughborough University, Loughborough, UK
| |
Collapse
|
21
|
Jenkins MJ, Farid SS. Human pluripotent stem cell-derived products: advances towards robust, scalable and cost-effective manufacturing strategies. Biotechnol J 2014; 10:83-95. [PMID: 25524780 PMCID: PMC4674985 DOI: 10.1002/biot.201400348] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2014] [Revised: 09/18/2014] [Accepted: 10/13/2014] [Indexed: 02/06/2023]
Abstract
The ability to develop cost-effective, scalable and robust bioprocesses for human pluripotent stem cells (hPSCs) will be key to their commercial success as cell therapies and tools for use in drug screening and disease modelling studies. This review outlines key process economic drivers for hPSCs and progress made on improving the economic and operational feasibility of hPSC bioprocesses. Factors influencing key cost metrics, namely capital investment and cost of goods, for hPSCs are discussed. Step efficiencies particularly for differentiation, media requirements and technology choice are amongst the key process economic drivers identified for hPSCs. Progress made to address these cost drivers in hPSC bioprocessing strategies is discussed. These include improving expansion and differentiation yields in planar and bioreactor technologies, the development of xeno-free media and microcarrier coatings, identification of optimal bioprocess operating conditions to control cell fate and the development of directed differentiation protocols that reduce reliance on expensive morphogens such as growth factors and small molecules. These approaches offer methods to further optimise hPSC bioprocessing in terms of its commercial feasibility.
Collapse
Affiliation(s)
- Michael J Jenkins
- Department of Biochemical Engineering, University College London, London, UK
| | | |
Collapse
|
22
|
Matsuoka F, Takeuchi I, Agata H, Kagami H, Shiono H, Kiyota Y, Honda H, Kato R. Characterization of time-course morphological features for efficient prediction of osteogenic potential in human mesenchymal stem cells. Biotechnol Bioeng 2014; 111:1430-9. [PMID: 24420699 PMCID: PMC4231256 DOI: 10.1002/bit.25189] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2013] [Revised: 10/21/2013] [Accepted: 01/07/2014] [Indexed: 11/18/2022]
Abstract
Human bone marrow mesenchymal stem cells (hBMSCs) represents one of the most frequently applied cell sources for clinical bone regeneration. To achieve the greatest therapeutic effect, it is crucial to evaluate the osteogenic differentiation potential of the stem cells during their culture before the implantation. However, the practical evaluation of stem cell osteogenicity has been limited to invasive biological marker analysis that only enables assaying a single end-point. To innovate around invasive quality assessments in clinical cell therapy, we previously explored and demonstrated the positive predictive value of using time-course images taken during differentiation culture for hBMSC bone differentiation potential. This initial method establishes proof of concept for a morphology-based cell evaluation approach, but reveals a practical limitation when considering the need to handle large amounts of image data. In this report, we aimed to scale-down our proposed method into a more practical, efficient modeling scheme that can be more broadly implemented by physicians on the frontiers of clinical cell therapy. We investigated which morphological features are critical during the osteogenic differentiation period to assure the performance of prediction models with reduced burden on image acquisition. To our knowledge, this is the first detailed characterization that describes both the critical observation period and the critical number of time-points needed for morphological features to adequately model osteogenic potential. Our results revealed three important observations: (i) the morphological features from the first 3 days of differentiation are sufficiently informative to predict bone differentiation potential, both activities of alkaline phosphatase and calcium deposition, after 3 weeks of continuous culture; (ii) intervals of 48 h are sufficient for measuring critical morphological features; and (iii) morphological features are most accurately predictive when early morphological features from the first 3 days of differentiation are combined with later features (after 10 days of differentiation). Biotechnol. Bioeng. 2014;111: 1430–1439.
Collapse
Affiliation(s)
- Fumiko Matsuoka
- Department of Biotechnology, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi, 464-8603, Japan
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Simaria AS, Hassan S, Varadaraju H, Rowley J, Warren K, Vanek P, Farid SS. Allogeneic cell therapy bioprocess economics and optimization: single-use cell expansion technologies. Biotechnol Bioeng 2013; 111:69-83. [PMID: 23893544 PMCID: PMC4065358 DOI: 10.1002/bit.25008] [Citation(s) in RCA: 126] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2013] [Revised: 07/08/2013] [Accepted: 07/18/2013] [Indexed: 01/02/2023]
Abstract
For allogeneic cell therapies to reach their therapeutic potential, challenges related to achieving scalable and robust manufacturing processes will need to be addressed. A particular challenge is producing lot-sizes capable of meeting commercial demands of up to 10(9) cells/dose for large patient numbers due to the current limitations of expansion technologies. This article describes the application of a decisional tool to identify the most cost-effective expansion technologies for different scales of production as well as current gaps in the technology capabilities for allogeneic cell therapy manufacture. The tool integrates bioprocess economics with optimization to assess the economic competitiveness of planar and microcarrier-based cell expansion technologies. Visualization methods were used to identify the production scales where planar technologies will cease to be cost-effective and where microcarrier-based bioreactors become the only option. The tool outputs also predict that for the industry to be sustainable for high demand scenarios, significant increases will likely be needed in the performance capabilities of microcarrier-based systems. These data are presented using a technology S-curve as well as windows of operation to identify the combination of cell productivities and scale of single-use bioreactors required to meet future lot sizes. The modeling insights can be used to identify where future R&D investment should be focused to improve the performance of the most promising technologies so that they become a robust and scalable option that enables the cell therapy industry reach commercially relevant lot sizes. The tool outputs can facilitate decision-making very early on in development and be used to predict, and better manage, the risk of process changes needed as products proceed through the development pathway.
Collapse
Affiliation(s)
- Ana S Simaria
- Department of Biochemical Engineering, The Advanced Centre for Biochemical Engineering, University College London, Torrington Place, London, WC1E 7JE, UK
| | | | | | | | | | | | | |
Collapse
|