1
|
Reis IL, Lopes B, Sousa P, Sousa AC, Caseiro AR, Mendonça CM, Santos JM, Atayde LM, Alvites RD, Maurício AC. Equine Musculoskeletal Pathologies: Clinical Approaches and Therapeutical Perspectives-A Review. Vet Sci 2024; 11:190. [PMID: 38787162 PMCID: PMC11126110 DOI: 10.3390/vetsci11050190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 04/12/2024] [Accepted: 04/23/2024] [Indexed: 05/25/2024] Open
Abstract
Musculoskeletal injuries such as equine osteoarthritis, osteoarticular defects, tendonitis/desmitis, and muscular disorders are prevalent among sport horses, with a fair prognosis for returning to exercise or previous performance levels. The field of equine medicine has witnessed rapid and fruitful development, resulting in a diverse range of therapeutic options for musculoskeletal problems. Staying abreast of these advancements can be challenging, prompting the need for a comprehensive review of commonly used and recent treatments. The aim is to compile current therapeutic options for managing these injuries, spanning from simple to complex physiotherapy techniques, conservative treatments including steroidal and non-steroidal anti-inflammatory drugs, hyaluronic acid, polysulfated glycosaminoglycans, pentosan polysulfate, and polyacrylamides, to promising regenerative therapies such as hemoderivatives and stem cell-based therapies. Each therapeutic modality is scrutinized for its benefits, limitations, and potential synergistic actions to facilitate their most effective application for the intended healing/regeneration of the injured tissue/organ and subsequent patient recovery. While stem cell-based therapies have emerged as particularly promising for equine musculoskeletal injuries, a multidisciplinary approach is underscored throughout the discussion, emphasizing the importance of considering various therapeutic modalities in tandem.
Collapse
Affiliation(s)
- Inês L. Reis
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, n° 228, 4050-313 Porto, Portugal; (I.L.R.); (B.L.); (P.S.); (A.C.S.); (C.M.M.); (J.M.S.); (L.M.A.); (R.D.A.)
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente da Universidade do Porto (ICETA), Rua D. Manuel II, Apartado 55142, 4051-401 Porto, Portugal;
- Associate Laboratory for Animal and Veterinary Science (AL4AnimalS), 1300-477 Lisboa, Portugal
- Departamento de Ciências Veterinárias, Cooperativa de Ensino Superior Politécnico e Universitário (CESPU), Instituto Universitário de Ciências da Saúde (IUCS), Avenida Central de Gandra 1317, 4585-116 Gandra, Portugal
| | - Bruna Lopes
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, n° 228, 4050-313 Porto, Portugal; (I.L.R.); (B.L.); (P.S.); (A.C.S.); (C.M.M.); (J.M.S.); (L.M.A.); (R.D.A.)
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente da Universidade do Porto (ICETA), Rua D. Manuel II, Apartado 55142, 4051-401 Porto, Portugal;
- Associate Laboratory for Animal and Veterinary Science (AL4AnimalS), 1300-477 Lisboa, Portugal
| | - Patrícia Sousa
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, n° 228, 4050-313 Porto, Portugal; (I.L.R.); (B.L.); (P.S.); (A.C.S.); (C.M.M.); (J.M.S.); (L.M.A.); (R.D.A.)
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente da Universidade do Porto (ICETA), Rua D. Manuel II, Apartado 55142, 4051-401 Porto, Portugal;
- Associate Laboratory for Animal and Veterinary Science (AL4AnimalS), 1300-477 Lisboa, Portugal
| | - Ana C. Sousa
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, n° 228, 4050-313 Porto, Portugal; (I.L.R.); (B.L.); (P.S.); (A.C.S.); (C.M.M.); (J.M.S.); (L.M.A.); (R.D.A.)
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente da Universidade do Porto (ICETA), Rua D. Manuel II, Apartado 55142, 4051-401 Porto, Portugal;
- Associate Laboratory for Animal and Veterinary Science (AL4AnimalS), 1300-477 Lisboa, Portugal
| | - Ana R. Caseiro
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente da Universidade do Porto (ICETA), Rua D. Manuel II, Apartado 55142, 4051-401 Porto, Portugal;
- Associate Laboratory for Animal and Veterinary Science (AL4AnimalS), 1300-477 Lisboa, Portugal
- Veterinary Sciences Department, University School Vasco da Gama (EUVG), Avenida José R. Sousa Fernandes, Lordemão, 3020-210 Coimbra, Portugal
- Vasco da Gama Research Center (CIVG), University School Vasco da Gama (EUVG), Avenida José R. Sousa Fernandes, Lordemão, 3020-210 Coimbra, Portugal
| | - Carla M. Mendonça
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, n° 228, 4050-313 Porto, Portugal; (I.L.R.); (B.L.); (P.S.); (A.C.S.); (C.M.M.); (J.M.S.); (L.M.A.); (R.D.A.)
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente da Universidade do Porto (ICETA), Rua D. Manuel II, Apartado 55142, 4051-401 Porto, Portugal;
- Associate Laboratory for Animal and Veterinary Science (AL4AnimalS), 1300-477 Lisboa, Portugal
- Campus Agrário de Vairão, Centro Clínico de Equinos de Vairão (CCEV), Rua da Braziela n° 100, 4485-144 Vairão, Portugal
| | - Jorge M. Santos
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, n° 228, 4050-313 Porto, Portugal; (I.L.R.); (B.L.); (P.S.); (A.C.S.); (C.M.M.); (J.M.S.); (L.M.A.); (R.D.A.)
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente da Universidade do Porto (ICETA), Rua D. Manuel II, Apartado 55142, 4051-401 Porto, Portugal;
- Associate Laboratory for Animal and Veterinary Science (AL4AnimalS), 1300-477 Lisboa, Portugal
| | - Luís M. Atayde
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, n° 228, 4050-313 Porto, Portugal; (I.L.R.); (B.L.); (P.S.); (A.C.S.); (C.M.M.); (J.M.S.); (L.M.A.); (R.D.A.)
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente da Universidade do Porto (ICETA), Rua D. Manuel II, Apartado 55142, 4051-401 Porto, Portugal;
- Associate Laboratory for Animal and Veterinary Science (AL4AnimalS), 1300-477 Lisboa, Portugal
- Campus Agrário de Vairão, Centro Clínico de Equinos de Vairão (CCEV), Rua da Braziela n° 100, 4485-144 Vairão, Portugal
| | - Rui D. Alvites
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, n° 228, 4050-313 Porto, Portugal; (I.L.R.); (B.L.); (P.S.); (A.C.S.); (C.M.M.); (J.M.S.); (L.M.A.); (R.D.A.)
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente da Universidade do Porto (ICETA), Rua D. Manuel II, Apartado 55142, 4051-401 Porto, Portugal;
- Associate Laboratory for Animal and Veterinary Science (AL4AnimalS), 1300-477 Lisboa, Portugal
- Departamento de Ciências Veterinárias, Cooperativa de Ensino Superior Politécnico e Universitário (CESPU), Instituto Universitário de Ciências da Saúde (IUCS), Avenida Central de Gandra 1317, 4585-116 Gandra, Portugal
| | - Ana C. Maurício
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, n° 228, 4050-313 Porto, Portugal; (I.L.R.); (B.L.); (P.S.); (A.C.S.); (C.M.M.); (J.M.S.); (L.M.A.); (R.D.A.)
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente da Universidade do Porto (ICETA), Rua D. Manuel II, Apartado 55142, 4051-401 Porto, Portugal;
- Associate Laboratory for Animal and Veterinary Science (AL4AnimalS), 1300-477 Lisboa, Portugal
- Campus Agrário de Vairão, Centro Clínico de Equinos de Vairão (CCEV), Rua da Braziela n° 100, 4485-144 Vairão, Portugal
| |
Collapse
|
2
|
Burk J, Wittenberg-Voges L, Schubert S, Horstmeier C, Brehm W, Geburek F. Treatment of Naturally Occurring Tendon Disease with Allogeneic Multipotent Mesenchymal Stromal Cells: A Randomized, Controlled, Triple-Blinded Pilot Study in Horses. Cells 2023; 12:2513. [PMID: 37947591 PMCID: PMC10650642 DOI: 10.3390/cells12212513] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 10/13/2023] [Accepted: 10/19/2023] [Indexed: 11/12/2023] Open
Abstract
The treatment of tendinopathies with multipotent mesenchymal stromal cells (MSCs) is a promising option in equine and human medicine. However, conclusive clinical evidence is lacking. The purpose of this study was to gain insight into clinical treatment efficacy and to identify suitable outcome measures for larger clinical studies. Fifteen horses with early naturally occurring tendon disease were assigned to intralesional treatment with allogeneic adipose-derived MSCs suspended in serum or with serum alone through block randomization (dosage adapted to lesion size). Clinicians and horse owners remained blinded to the treatment during 12 months (seven horses per group) and 18 months (seven MSC-group and five control-group horses) of follow-up including clinical examinations and diagnostic imaging. Clinical inflammation, lameness, and ultrasonography scores improved more over time in the MSC group. The lameness score difference significantly improved in the MSC group compared with the control group after 6 months. In the MSC group, five out of the seven horses were free of re-injuries and back to training until 12 and 18 months. In the control group, three out of the seven horses were free of re-injuries until 12 months. These results suggest that MSCs are effective for the treatment of early-phase tendon disease and provide a basis for a larger controlled study.
Collapse
Affiliation(s)
- Janina Burk
- Institute of Physiology, Pathophysiology and Biophysics, University of Veterinary Medicine Vienna, Veterinaerplatz 1, 1210 Vienna, Austria
| | - Liza Wittenberg-Voges
- Clinic for Horses, University of Veterinary Medicine Hannover, Foundation, Bünteweg 9, 30559 Hannover, Germany;
| | - Susanna Schubert
- Institute of Human Genetics, University of Leipzig Medical Center, Philipp-Rosenthal-Strasse 55, 04103 Leipzig, Germany;
| | - Carolin Horstmeier
- Department for Horses, Veterinary Teaching Hospital, University of Leipzig, An den Tierkliniken 21, 04103 Leipzig, Germany; (C.H.); (W.B.)
| | - Walter Brehm
- Department for Horses, Veterinary Teaching Hospital, University of Leipzig, An den Tierkliniken 21, 04103 Leipzig, Germany; (C.H.); (W.B.)
| | - Florian Geburek
- Clinic for Horses, University of Veterinary Medicine Hannover, Foundation, Bünteweg 9, 30559 Hannover, Germany;
| |
Collapse
|
3
|
Efficacy of Adipose-Derived Mesenchymal Stem Cells and Stromal Vascular Fraction Alone and Combined to Biomaterials in Tendinopathy or Tendon Injury: Systematic Review of Current Concepts. MEDICINA (KAUNAS, LITHUANIA) 2023; 59:medicina59020273. [PMID: 36837474 PMCID: PMC9963687 DOI: 10.3390/medicina59020273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 01/20/2023] [Accepted: 01/25/2023] [Indexed: 02/05/2023]
Abstract
Background and Objectives: Tendon injury and tendinopathy are among the most frequent musculoskeletal diseases and represent a challenging issue for surgeons as well as a great socio-economic global burden. Despite the current treatments available, either surgical or conservative, the tendon healing process is often suboptimal and impaired. This is due to the inherent scarce ability of tendon tissue to repair and return itself to the original structure. Recently, Adipose-derived mesenchymal stem cells (ADSC) and stromal vascular fraction (SVF) have gained a central interest in the scientific community, demonstrating their effectiveness in treatments of acute and chronic tendon disorders in animals and humans. Either enzymatic or mechanical procedures to obtain ADSC and SVF have been described and used in current clinical practice. However, no unified protocols and processes have been established. Materials and Methods: This systematic review aims at providing a comprehensive update of the literature on the clinical application of ADSC enzymatically or mechanically processed to obtain SVF, alone and in association with biomaterials in the local treatment of tendinopathy and tendon injury in vivo, in animal models and humans. The study was performed according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA). Results: Thirty-two articles met our inclusion criteria, with a total of 18 studies in animals, 10 studies in humans and 4 studies concerning the application of biomaterials in vivo in animals. The review of the literature suggests that ADSC/SVF therapy can represent a promising alternative in tendonregenerative medicine for the enhancement of tendon healing. Conclusions: Nevertheless, further investigations and randomized control trials are needed to improve the knowledge, standardize the procedures and extend the consensus on their use for such applications.
Collapse
|
4
|
Citro V, Clerici M, Boccaccini AR, Della Porta G, Maffulli N, Forsyth NR. Tendon tissue engineering: An overview of biologics to promote tendon healing and repair. J Tissue Eng 2023; 14:20417314231196275. [PMID: 37719308 PMCID: PMC10501083 DOI: 10.1177/20417314231196275] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 08/06/2023] [Indexed: 09/19/2023] Open
Abstract
Tendons are dense connective tissues with a hierarchical polarized structure that respond to and adapt to the transmission of muscle contraction forces to the skeleton, enabling motion and maintaining posture. Tendon injuries, also known as tendinopathies, are becoming more common as populations age and participation in sports/leisure activities increases. The tendon has a poor ability to self-heal and regenerate given its intrinsic, constrained vascular supply and exposure to frequent, severe loading. There is a lack of understanding of the underlying pathophysiology, and it is not surprising that disorder-targeted medicines have only been partially effective at best. Recent tissue engineering approaches have emerged as a potential tool to drive tendon regeneration and healing. In this review, we investigated the physiochemical factors involved in tendon ontogeny and discussed their potential application in vitro to reproduce functional and self-renewing tendon tissue. We sought to understand whether stem cells are capable of forming tendons, how they can be directed towards the tenogenic lineage, and how their growth is regulated and monitored during the entire differentiation path. Finally, we showed recent developments in tendon tissue engineering, specifically the use of mesenchymal stem cells (MSCs), which can differentiate into tendon cells, as well as the potential role of extracellular vesicles (EVs) in tendon regeneration and their potential for use in accelerating the healing response after injury.
Collapse
Affiliation(s)
- Vera Citro
- School of Pharmacy and Bioengineering, Keele University, Stoke-on-Trent, Staffordshire, UK
- Department of Materials Science and Engineering, Institute of Biomaterials University of Erlangen-Nuremberg, Cauerstrasse 6, Erlangen, Germany
| | - Marta Clerici
- School of Pharmacy and Bioengineering, Keele University, Stoke-on-Trent, Staffordshire, UK
- Department of Medicine, Surgery and Dentistry, University of Salerno, via S. Allende, Baronissi, Salerno, Italy
| | - Aldo R. Boccaccini
- Department of Materials Science and Engineering, Institute of Biomaterials University of Erlangen-Nuremberg, Cauerstrasse 6, Erlangen, Germany
| | - Giovanna Della Porta
- Department of Medicine, Surgery and Dentistry, University of Salerno, via S. Allende, Baronissi, Salerno, Italy
- Interdepartmental Centre BIONAM, University of Salerno, via Giovanni Paolo I, Fisciano, Salerno, Italy
| | - Nicola Maffulli
- School of Pharmacy and Bioengineering, Keele University, Stoke-on-Trent, Staffordshire, UK
- Department of Medicine, Surgery and Dentistry, University of Salerno, via S. Allende, Baronissi, Salerno, Italy
- Department of Trauma and Orthopaedic Surgery, University Hospital ‘San Giovanni di Dio e Ruggi D’Aragona’, Salerno, Italy
| | - Nicholas R. Forsyth
- School of Pharmacy and Bioengineering, Keele University, Stoke-on-Trent, Staffordshire, UK
- Vice Principals’ Office, University of Aberdeen, Kings College, Aberdeen, UK
| |
Collapse
|
5
|
Depuydt E, Chiers K, Van Hecke L, Saunders J, Martens A, Pille F, Spaas JH. Assessing the functional properties of tenogenic primed mesenchymal stem cells in ex vivo equine tendon and ligament explants: A preliminary study. Stem Cell Res 2022; 65:102963. [PMID: 36395687 DOI: 10.1016/j.scr.2022.102963] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 11/03/2022] [Accepted: 11/08/2022] [Indexed: 11/13/2022] Open
Abstract
Injuries to equine tendons and ligaments are career-compromising, causing reduced performance and premature retirement. Promising treatment alternatives have been investigated in the field of mesenchymal stem cells (MSCs). In this study, the tissue adherence and protein expression of tenogenic primed mesenchymal stem cells (tpMSCs) after administration to ex vivo tendon and ligament explants is investigated. First, collagen type I (COL I) and smooth muscle actin (SMA) expression was assessed in cytospins prepared from native MSCs and tpMSCs. Second, equine superficial digital flexor tendon and suspensory ligament explants were cultivated, and a lesion was treated with both cell types. Subsequently, cell adhesion to the explants and the amount of COL I and SMA positive cells was evaluated. The cytospins revealed a significantly higher COL I and lower SMA expression in tpMSCs compared to native MSCs. In the explants, tpMSCs showed a significantly higher tendon and ligament adherence. Furthermore, a significantly higher percentage of COL I positive and a lower percentage of SMA positive cells were observed in the lesions treated with tpMSCs. The results of these explant co-cultures may demonstrate at least a part of the mechanism of action and functional properties of tpMSCs in restoring function to tendons and ligaments.
Collapse
Affiliation(s)
- Eva Depuydt
- Boehringer Ingelheim Veterinary Medicine Belgium, Noorwegenstraat 4, 9940 Evergem, Belgium; Ghent University, Faculty of Veterinary Medicine, Department of Surgery and Anaesthesiology of Domestic Animals, Salisburylaan 133, 9820 Merelbeke, Belgium.
| | - Koen Chiers
- Ghent University, Faculty of Veterinary Medicine, Department of Pathology, Bacteriology and Poultry diseases, Salisburylaan 133, 9820 Merelbeke, Belgium.
| | - Lore Van Hecke
- Boehringer Ingelheim Veterinary Medicine Belgium, Noorwegenstraat 4, 9940 Evergem, Belgium.
| | - Jimmy Saunders
- Ghent University, Faculty of Veterinary Medicine, Department of Morphology, Imaging, Orthopedics, Rehabilitation and Nutrition, Salisburylaan 133, 9820 Merelbeke, Belgium.
| | - Ann Martens
- Ghent University, Faculty of Veterinary Medicine, Department of Surgery and Anaesthesiology of Domestic Animals, Salisburylaan 133, 9820 Merelbeke, Belgium.
| | - Frederik Pille
- Ghent University, Faculty of Veterinary Medicine, Department of Surgery and Anaesthesiology of Domestic Animals, Salisburylaan 133, 9820 Merelbeke, Belgium.
| | - Jan H Spaas
- Ghent University, Faculty of Veterinary Medicine, Department of Morphology, Imaging, Orthopedics, Rehabilitation and Nutrition, Salisburylaan 133, 9820 Merelbeke, Belgium; Boehringer Ingelheim Animal Health, 1730 Olympic Drive, 30606 Athens, GA, USA.
| |
Collapse
|
6
|
Iuso AM, Pacik D, Martin J, Oakes D, Malanga GA. Adipose cellular injection in the treatment of an intrasubstance Achilles tendon defect: a case report. Regen Med 2022; 17:835-843. [PMID: 36068962 DOI: 10.2217/rme-2021-0157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Our patient presented with a 1-year history of right sided Achilles tendon pain and weakness due to partial intrasubstance tear. The injury was refractory to conservative treatment, leading to a trial injection of microfragmented adipose tissue. Progressive healing and improved function were documented on physical exam and sonographically at subsequent follow-up appointments. About 4 weeks following the injection, the patient was able to return to his regular activity level. At the 6 month follow-up appointment, the patient continued to be pain free and had resumed all prior activities without limitations. This case highlights the potential microfragmented adipose tissue has as a regenerative treatment modality for the management of partial Achilles tendon tears.
Collapse
Affiliation(s)
- Anthony M Iuso
- Touro College of Osteopathic Medicine, 230 W 125th St 3rd Floor, New York, NY 10027, USA
| | - Deborah Pacik
- Department of Rehabilitation, Montefiore Medical Center, 150 East 210th Street, Bronx, NY 10467, USA.,Currently at Department of Rehabilitation and Human Performance, Icahn School of Medicine at Mount Sinai, 5 E 98th St 6th Floor, New York, NY 10003, USA
| | - Joshua Martin
- New Jersey Regenerative Institute LLC, 197 Ridgedale Avenue, Suite 210, Cedar Knolls, NJ 07927, USA.,Currently at Regenerative Orthopedics & Sports Medicine, 1145 19th St NW, Unit 410, Washington, DC 20036, USA
| | - Devin Oakes
- Department of Rehabilitation, Montefiore Medical Center, 150 East 210th Street, Bronx, NY 10467, USA
| | - Gerard A Malanga
- New Jersey Regenerative Institute LLC, 197 Ridgedale Avenue, Suite 210, Cedar Knolls, NJ 07927, USA.,Department of Physical Medicine & Rehabilitation, New Jersey Medical School, Rutgers University, Newark, NJ 07103, USA
| |
Collapse
|
7
|
Hagen A, Niebert S, Brandt VP, Holland H, Melzer M, Wehrend A, Burk J. Functional properties of equine adipose-derived mesenchymal stromal cells cultured with equine platelet lysate. Front Vet Sci 2022; 9:890302. [PMID: 36016806 PMCID: PMC9395693 DOI: 10.3389/fvets.2022.890302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Accepted: 07/11/2022] [Indexed: 12/03/2022] Open
Abstract
Successful translation of multipotent mesenchymal stromal cell (MSC)-based therapies into clinical reality relies on adequate cell production procedures. These should be available not only for human MSC, but also for MSC from animal species relevant to preclinical research and veterinary medicine. The cell culture medium supplementation is one of the critical aspects in MSC production. Therefore, we previously established a scalable protocol for the production of buffy-coat based equine platelet lysate (ePL). This ePL proved to be a suitable alternative to fetal bovine serum (FBS) for equine adipose-derived (AD-) MSC culture so far, as it supported AD-MSC proliferation and basic characteristics. The aim of the current study was to further analyze the functional properties of equine AD-MSC cultured with the same ePL, focusing on cell fitness, genetic stability and pro-angiogenic potency. All experiments were performed with AD-MSC from n = 5 horses, which were cultured either in medium supplemented with 10% FBS, 10% ePL or 2.5% ePL. AD-MSC cultured with 2.5% ePL, which previously showed decreased proliferation potential, displayed higher apoptosis but lower senescence levels as compared to 10% ePL medium (p < 0.05). Non-clonal chromosomal aberrations occurred in 8% of equine AD-MSC cultivated with FBS and only in 4.8% of equine AD-MSC cultivated with 10% ePL. Clonal aberrations in the AD-MSC were neither observed in FBS nor in 10% ePL medium. Analysis of AD-MSC and endothelial cells in an indirect co-culture revealed that the ePL supported the pro-angiogenic effects of AD-MSC. In the 10% ePL group, more vascular endothelial growth factor (VEGF-A) was released and highest VEGF-A concentrations were reached in the presence of ePL and co-cultured cells (p < 0.05). Correspondingly, AD-MSC expressed the VEGF receptor-2 at higher levels in the presence of ePL (p < 0.05). Finally, AD-MSC and 10% ePL together promoted the growth of endothelial cells and induced the formation of vessel-like structures in two of the samples. These data further substantiate that buffy-coat-based ePL is a valuable supplement for equine AD-MSC culture media. The ePL does not only support stable equine AD-MSC characteristics as demonstrated before, but it also enhances their functional properties.
Collapse
Affiliation(s)
- Alina Hagen
- Equine Clinic (Surgery, Orthopedics), Justus-Liebig-University Giessen, Giessen, Germany
| | - Sabine Niebert
- Equine Clinic (Surgery, Orthopedics), Justus-Liebig-University Giessen, Giessen, Germany
| | - Vivian-Pascal Brandt
- Saxon Incubator for Clinical Translation (SIKT), University of Leipzig, Leipzig, Germany
| | - Heidrun Holland
- Saxon Incubator for Clinical Translation (SIKT), University of Leipzig, Leipzig, Germany
| | - Michaela Melzer
- Equine Clinic (Surgery, Orthopedics), Justus-Liebig-University Giessen, Giessen, Germany
| | - Axel Wehrend
- Clinic for Obstetrics, Gynecology and Andrology of Large and Small Animals, Justus-Liebig-University Giessen, Giessen, Germany
| | - Janina Burk
- Equine Clinic (Surgery, Orthopedics), Justus-Liebig-University Giessen, Giessen, Germany
- *Correspondence: Janina Burk
| |
Collapse
|
8
|
How to maintain and transport equine adipose tissue for isolating mesenchymal stem cells? BMC Vet Res 2022; 18:284. [PMID: 35864533 PMCID: PMC9306088 DOI: 10.1186/s12917-022-03379-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 07/11/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Adipose tissue (AT) is one of the most important mesenchymal stem cell (MSC) sources because of its high quantities, availability and ease of collection. After being collected samples, they should be transported to a laboratory for stem cell (SC) isolation, culture and expansion for future clinical application. Usually, laboratories are distant from animal husbandry centers; therefore, it is necessary to provide suitable conditions for adipose tissue transportation, such that adipose-derived MSCs are minimally affected. In the current study, the impact of tissue maintenance under different conditions on MSCs derived from these tissues was evaluated. We aimed at finding suitable and practical transportation methods in which ASCs go through the slightest changes. RESULTS In the current study, after being collected, equine AT was randomized into eight groups: four samples were maintained in stem cell culture media at 25 οC and 4 οC for 6 and 12 hrs. as transportation via SC media groups. Three samples were frozen at three different temperatures (- 20, - 75 and - 196 οC) as cryopreserved groups; these samples were defrosted 1 week after cryopreservation. Fresh and unfrozen AT was evaluated as a control group. The tissue samples were then initiated into enzymatic digestion, isolation and the culturing of SCs. Cells at passage three were used to evaluate the ability to form colonies, proliferation rate, plotting of the cell growth curve, and viability rate. All experiments were performed in triplicate. Stem cell isolation was successful in all groups, although purification of SCs from the first series of cryopreservation at - 196 οC and two series of - 20 οC was unsuccessful. There was no significant difference between the surface area of colonies in all groups except for - 20 οC. The growth rate of transportation via stem cell media at 25 οC for 6 hrs. was similar to that of the control group. MTT analysis revealed a significant difference between 25 οC 12 hrs. Group and other experimental groups except for control, 4 οC 12 hrs. and - 196 οC group. CONCLUSION Data have shown freezing at - 75 οC, transportation via stem cell media at 4 οC for 12 hrs. and 25 οC for 6 hrs. are acceptable tissue preservation and transportation methods due to minor effects on MSCs features.
Collapse
|
9
|
Song K, Yang GM, Han J, Gil M, Dayem AA, Kim K, Lim KM, Kang GH, Kim S, Jang SB, Vellingiri B, Cho SG. Modulation of Osteogenic Differentiation of Adipose-Derived Stromal Cells by Co-Treatment with 3, 4'-Dihydroxyflavone, U0126, and N-Acetyl Cysteine. Int J Stem Cells 2022; 15:334-345. [PMID: 35769058 PMCID: PMC9396012 DOI: 10.15283/ijsc22044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 04/20/2022] [Accepted: 04/20/2022] [Indexed: 11/30/2022] Open
Abstract
Background and Objectives Flavonoids form the largest group of plant phenols and have various biological and pharmacological activities. In this study, we investigated the effect of a flavonoid, 3, 4’-dihydroxyflavone (3, 4’-DHF) on osteogenic differentiation of equine adipose-derived stromal cells (eADSCs). Methods and Results Treatment of 3, 4’-DHF led to increased osteogenic differentiation of eADSCs by increasing phosphorylation of ERK and modulating Reactive Oxygen Species (ROS) generation. Although PD98059, an ERK inhibitor, suppressed osteogenic differentiation, another ERK inhibitor, U0126, apparently increased osteogenic differentiation of the 3, 4’-DHF-treated eADSCs, which may indicate that the effect of U0126 on bone morphogenetic protein signaling is involved in the regulation of 3, 4’-DHF in osteogenic differentiation of eADSCs. We revealed that 3, 4’-DHF could induce osteogenic differentiation of eADSCs by suppressing ROS generation and co-treatment of 3, 4’-DHF, U0126, and/or N-acetyl cysteine (NAC) resulted in the additive enhancement of osteogenic differentiation of eADSCs. Conclusions Our results showed that co-treatment of 3, 4’-DHF, U0126, and/or NAC cumulatively regulated osteogenesis in eADSCs, suggesting that 3, 4’-DHF, a flavonoid, can provide a novel approach to the treatment of osteoporosis and can provide potential therapeutic applications in therapeutics and regenerative medicine for human and companion animals.
Collapse
Affiliation(s)
- Kwonwoo Song
- Department of Stem Cell and Regenerative Biotechnology and Incurable Disease Animal Model and Stem Cell Institute (IDASI), Konkuk University, Seoul, Korea
| | - Gwang-Mo Yang
- Department of Stem Cell and Regenerative Biotechnology and Incurable Disease Animal Model and Stem Cell Institute (IDASI), Konkuk University, Seoul, Korea
| | - Jihae Han
- Department of Stem Cell and Regenerative Biotechnology and Incurable Disease Animal Model and Stem Cell Institute (IDASI), Konkuk University, Seoul, Korea
| | - Minchan Gil
- Department of Stem Cell and Regenerative Biotechnology and Incurable Disease Animal Model and Stem Cell Institute (IDASI), Konkuk University, Seoul, Korea
| | - Ahmed Abdal Dayem
- Department of Stem Cell and Regenerative Biotechnology and Incurable Disease Animal Model and Stem Cell Institute (IDASI), Konkuk University, Seoul, Korea
| | - Kyeongseok Kim
- Department of Stem Cell and Regenerative Biotechnology and Incurable Disease Animal Model and Stem Cell Institute (IDASI), Konkuk University, Seoul, Korea
| | - Kyung Min Lim
- Department of Stem Cell and Regenerative Biotechnology and Incurable Disease Animal Model and Stem Cell Institute (IDASI), Konkuk University, Seoul, Korea
| | - Geun-Ho Kang
- Department of Stem Cell and Regenerative Biotechnology and Incurable Disease Animal Model and Stem Cell Institute (IDASI), Konkuk University, Seoul, Korea
| | - Sejong Kim
- Department of Stem Cell and Regenerative Biotechnology and Incurable Disease Animal Model and Stem Cell Institute (IDASI), Konkuk University, Seoul, Korea
| | - Soo Bin Jang
- Department of Stem Cell and Regenerative Biotechnology and Incurable Disease Animal Model and Stem Cell Institute (IDASI), Konkuk University, Seoul, Korea
| | - Balachandar Vellingiri
- Human Molecular Cytogenetics and Stem Cell Laboratory, Department of Human Genetics and Molecular Biology, Bharathiar University, Coimbatore, India
| | - Ssang-Goo Cho
- Department of Stem Cell and Regenerative Biotechnology and Incurable Disease Animal Model and Stem Cell Institute (IDASI), Konkuk University, Seoul, Korea
| |
Collapse
|
10
|
Roth SP, Burk J, Brehm W, Troillet A. MSC in Tendon and Joint Disease: The Context-Sensitive Link Between Targets and Therapeutic Mechanisms. Front Bioeng Biotechnol 2022; 10:855095. [PMID: 35445006 PMCID: PMC9015188 DOI: 10.3389/fbioe.2022.855095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 03/07/2022] [Indexed: 12/04/2022] Open
Abstract
Mesenchymal stromal cells (MSC) represent a promising treatment option for tendon disorders and joint diseases, primarily osteoarthritis. Since MSC are highly context-sensitive to their microenvironment, their therapeutic efficacy is influenced by their tissue-specific pathologically altered targets. These include not only cellular components, such as resident cells and invading immunocompetent cells, but also components of the tissue-characteristic extracellular matrix. Although numerous in vitro models have already shown potential MSC-related mechanisms of action in tendon and joint diseases, only a limited number reflect the disease-specific microenvironment and allow conclusions about well-directed MSC-based therapies for injured tendon and joint-associated tissues. In both injured tissue types, inflammatory processes play a pivotal pathophysiological role. In this context, MSC-mediated macrophage modulation seems to be an important mode of action across these tissues. Additional target cells of MSC applied in tendon and joint disorders include tenocytes, synoviocytes as well as other invading and resident immune cells. It remains of critical importance whether the context-sensitive interplay between MSC and tissue- and disease-specific targets results in an overall promotion or inhibition of the desired therapeutic effects. This review presents the authors’ viewpoint on disease-related targets of MSC therapeutically applied in tendon and joint diseases, focusing on the equine patient as valid animal model.
Collapse
Affiliation(s)
- Susanne Pauline Roth
- Veterinary Teaching Hospital, Department for Horses, Veterinary Faculty, University of Leipzig, Leipzig, Germany
| | - Janina Burk
- Equine Clinic (Surgery, Orthopedics), Justus-Liebig-University Giessen, Giessen, Germany
| | - Walter Brehm
- Veterinary Teaching Hospital, Department for Horses, Veterinary Faculty, University of Leipzig, Leipzig, Germany
| | - Antonia Troillet
- Clinic for Horses, Ludwig-Maximilians-University of Munich, Munich, Germany
- *Correspondence: Antonia Troillet,
| |
Collapse
|
11
|
Depuydt E, Broeckx SY, Chiers K, Patruno M, Da Dalt L, Duchateau L, Saunders J, Pille F, Martens A, Van Hecke L, Spaas JH. Cellular and Humoral Immunogenicity Investigation of Single and Repeated Allogeneic Tenogenic Primed Mesenchymal Stem Cell Treatments in Horses Suffering From Tendon Injuries. Front Vet Sci 2022; 8:789293. [PMID: 35281431 PMCID: PMC8907452 DOI: 10.3389/fvets.2021.789293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 12/31/2021] [Indexed: 11/22/2022] Open
Abstract
The use of mesenchymal stem cells (MSCs) for the treatment of equine tendon disease is widely investigated because of their regenerative and immunomodulatory potential. However, questions have been raised concerning the immunogenic properties of allogeneic MSCs. Therefore, two studies were conducted to assess the safety of equine allogeneic peripheral blood-derived tenogenic primed MSCs (tpMSCs). The objective was to evaluate if a single and repeated tpMSC administration induced a cellular and humoral immune response in horses suffering from tendon injuries. Horses enrolled in the first study (n = 8) had a surgically induced superficial digital flexor tendon core lesion and were treated intralesionally with tpMSCs. Before and after treatment the cellular immunogenicity was assessed by modified mixed lymphocyte reactions. The humoral immune response was investigated using a crossmatch assay. Presence of anti-bovine serum albumin (BSA) antibodies was detected via ELISA. Horses enrolled in the second study (n = 6) suffered from a naturally occurring tendon injury and were treated twice with tpMSCs. Blood was collected after the second treatment for the same immunological assays. No cellular immune response was found in any of the horses. One out of eight horses in the first study and none of the horses in the second study had anti-tpMSC antibodies. This particular horse had an equine sarcoid and further investigation revealed presence of antibodies against sarcoid cells and epithelial-like stem cells before treatment, which increased after treatment. Additionally, formation of antibodies against BSA was observed. These findings might indicate a non-specific immune response generated after treatment. Serum from the other horses revealed no such antibody formation. These two studies showed that the administration of tpMSCs did not induce a cellular or humoral immune response following an intralesional single or repeated (two consecutive) allogeneic tpMSC treatment in horses with tendon injury, except for one horse. Therefore, a larger field study should confirm these findings and support the safe use of tpMSCs as a therapeutic for horses suffering from tendon injuries.
Collapse
Affiliation(s)
- Eva Depuydt
- Boehringer Ingelheim Veterinary Medicine Belgium, Evergem, Belgium
- Department of Surgery and Anaesthesiology of Domestic Animals, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Sarah Y. Broeckx
- Boehringer Ingelheim Veterinary Medicine Belgium, Evergem, Belgium
| | - Koen Chiers
- Department of Pathology, Bacteriology and Poultry Diseases, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Marco Patruno
- Department of Comparative Biomedicine and Food Science (BCA), University of Padova, Padova, Italy
| | - Laura Da Dalt
- Department of Comparative Biomedicine and Food Science (BCA), University of Padova, Padova, Italy
| | - Luc Duchateau
- Biometrics Research Group, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Jimmy Saunders
- Department of Veterinary Medical Imaging and Small Animal Orthopaedics, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Frederik Pille
- Department of Surgery and Anaesthesiology of Domestic Animals, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Ann Martens
- Department of Surgery and Anaesthesiology of Domestic Animals, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Lore Van Hecke
- Boehringer Ingelheim Veterinary Medicine Belgium, Evergem, Belgium
| | - Jan H. Spaas
- Boehringer Ingelheim Veterinary Medicine Belgium, Evergem, Belgium
- Department of Veterinary Medical Imaging and Small Animal Orthopaedics, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| |
Collapse
|
12
|
Depuydt E, Broeckx SY, Van Hecke L, Chiers K, Van Brantegem L, van Schie H, Beerts C, Spaas JH, Pille F, Martens A. The Evaluation of Equine Allogeneic Tenogenic Primed Mesenchymal Stem Cells in a Surgically Induced Superficial Digital Flexor Tendon Lesion Model. Front Vet Sci 2021; 8:641441. [PMID: 33748217 PMCID: PMC7973085 DOI: 10.3389/fvets.2021.641441] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 02/05/2021] [Indexed: 01/19/2023] Open
Abstract
Background: Tendon injuries are very common in horses and jeopardize the athletic performance, and due to the high risk of reinjury may lead to early retirement. The use of mesenchymal stem cells for the treatment of equine tendon disease is widely investigated because of their regenerative potential. The objective of this study is to investigate the safety and efficacy of equine allogeneic tenogenic primed mesenchymal stem cells (tpMSCs) for the management of tendinitis in horses. Methods: A core lesion was surgically induced in the superficial digital flexor tendon of both forelimbs of eight horses. After 7 days, one forelimb was treated with tpMSCs, while the contralateral forelimb served as an intra-individual control and was treated with saline. A prescribed exercise program was started. All horses underwent a daily clinical evaluation throughout the entire study period of 112 days. Blood samples were taken at different time points for hematological and biochemical analysis. Tendon assessment, lameness examination, ultrasound assessment and ultrasound tissue characterization (UTC) were performed at regular time intervals. At the end of the study period, the superficial digital flexor tendons were evaluated macroscopically and histologically. Results: No suspected or serious adverse events occurred during the entire study period. There was no difference in local effects including heat and pain to pressure between a single intralesional injection of allogeneic tpMSCs and a single intralesional injection with saline. A transient moderate local swelling was noted in the tpMSC treated limbs, which dissipated by day 11. Starting at a different time point depending on the parameter, a significant improvement was observed in the tpMSC treated limbs compared to the placebo for echogenicity score, fiber alignment score, anterior-posterior thickness of the tendon and echo type by UTC assessment. Immunohistochemistry 112 days post-injection revealed that the amount of collagen type I and Von Willebrand factor were significantly higher in the tendon tissue of the tpMSC group, while the amount of collagen type III and smooth muscle actin was significantly lower. Conclusion: Equine allogeneic tenogenic primed mesenchymal stem cells were shown to be well-tolerated and may be effective for the management of tendon injuries.
Collapse
Affiliation(s)
- Eva Depuydt
- Global Stem cell Technology, Part of Boehringer Ingelheim, Evergem, Belgium.,Department of Surgery and Anaesthesiology of Domestic Animals, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Sarah Y Broeckx
- Global Stem cell Technology, Part of Boehringer Ingelheim, Evergem, Belgium
| | - Lore Van Hecke
- Global Stem cell Technology, Part of Boehringer Ingelheim, Evergem, Belgium
| | - Koen Chiers
- Department of Pathology, Bacteriology and Poultry Diseases, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Leen Van Brantegem
- Department of Pathology, Bacteriology and Poultry Diseases, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Hans van Schie
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, Netherlands.,Department of Research and Development, UTC Imaging, Stein, Netherlands
| | - Charlotte Beerts
- Global Stem cell Technology, Part of Boehringer Ingelheim, Evergem, Belgium.,Department of Veterinary Medical Imaging and Small Animal Orthopaedics, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Jan H Spaas
- Global Stem cell Technology, Part of Boehringer Ingelheim, Evergem, Belgium.,Department of Veterinary Medical Imaging and Small Animal Orthopaedics, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Frederik Pille
- Department of Surgery and Anaesthesiology of Domestic Animals, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Ann Martens
- Department of Surgery and Anaesthesiology of Domestic Animals, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| |
Collapse
|
13
|
Regenerative Medicine for Equine Musculoskeletal Diseases. Animals (Basel) 2021; 11:ani11010234. [PMID: 33477808 PMCID: PMC7832834 DOI: 10.3390/ani11010234] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 01/08/2021] [Accepted: 01/15/2021] [Indexed: 01/15/2023] Open
Abstract
Simple Summary Lameness due to musculoskeletal disease is the most common diagnosis in equine veterinary practice. Many of these orthopaedic disorders are chronic problems, for which no clinically satisfactory treatment exists. Thus, high hopes are pinned on regenerative medicine, which aims to replace or regenerate cells, tissues, or organs to restore or establish normal function. Some regenerative medicine therapies have already made their way into equine clinical practice mainly to treat tendon injures, tendinopathies, cartilage injuries and degenerative joint disorders with promising but diverse results. This review summarises the current knowledge of commonly used regenerative medicine treatments and critically discusses their use. Abstract Musculoskeletal injuries and chronic degenerative diseases commonly affect both athletic and sedentary horses and can entail the end of their athletic careers. The ensuing repair processes frequently do not yield fully functional regeneration of the injured tissues but biomechanically inferior scar or replacement tissue, causing high reinjury rates, degenerative disease progression and chronic morbidity. Regenerative medicine is an emerging, rapidly evolving branch of translational medicine that aims to replace or regenerate cells, tissues, or organs to restore or establish normal function. It includes tissue engineering but also cell-based and cell-free stimulation of endogenous self-repair mechanisms. Some regenerative medicine therapies have made their way into equine clinical practice mainly to treat tendon injures, tendinopathies, cartilage injuries and degenerative joint disorders with promising results. However, the qualitative and quantitative spatiotemporal requirements for specific bioactive factors to trigger tissue regeneration in the injury response are still unknown, and consequently, therapeutic approaches and treatment results are diverse. To exploit the full potential of this burgeoning field of medicine, further research will be required and is ongoing. This review summarises the current knowledge of commonly used regenerative medicine treatments in equine patients and critically discusses their use.
Collapse
|
14
|
Jankowski M, Dompe C, Sibiak R, Wąsiatycz G, Mozdziak P, Jaśkowski JM, Antosik P, Kempisty B, Dyszkiewicz-Konwińska M. In Vitro Cultures of Adipose-Derived Stem Cells: An Overview of Methods, Molecular Analyses, and Clinical Applications. Cells 2020; 9:cells9081783. [PMID: 32726947 PMCID: PMC7463427 DOI: 10.3390/cells9081783] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 07/23/2020] [Accepted: 07/24/2020] [Indexed: 02/06/2023] Open
Abstract
Adipose-derived stem cells (ASCs) exhibiting mesenchymal stem cell (MSC) characteristics, have been extensively studied in recent years. Because they have been shown to differentiate into lineages such as osteogenic, chondrogenic, neurogenic or myogenic, the focus of most of the current research concerns either their potential to replace bone marrow as a readily available and abundant source of MSCs, or to employ them in regenerative and reconstructive medicine. There is close to consensus regarding the methodology used for ASC isolation and culture, whereas a number of molecular analyses implicates them in potential therapies of a number of pathologies. When it comes to clinical application, there is a range of examples of animal trials and clinical studies employing ASCs, further emphasizing the advancement of studies leading to their more widespread use. Nevertheless, in vitro studies will most likely continue to play a significant role in ASC studies, both providing the molecular knowledge of their ex vivo properties and possibly serving as an important step in purification and application of those cells in a clinical setting. Therefore, it is important to consider current methods of ASC isolation, culture, and processing. Furthermore, molecular analyses and cell surface properties of ASCs are essential for animal studies, clinical studies, and therapeutic applications of the MSC properties.
Collapse
Affiliation(s)
- Maurycy Jankowski
- Department of Anatomy, Poznan University of Medical Sciences, 60-781 Poznan, Poland; (M.J.); (R.S.); (M.D.-K.)
| | - Claudia Dompe
- Department of Histology and Embryology, Poznan University of Medical Sciences, 60-781 Poznan, Poland;
- The School of Medicine, Medical Sciences and Nutrition, Aberdeen University, Aberdeen AB25 2ZD, UK
| | - Rafał Sibiak
- Department of Anatomy, Poznan University of Medical Sciences, 60-781 Poznan, Poland; (M.J.); (R.S.); (M.D.-K.)
| | - Grzegorz Wąsiatycz
- Department of Veterinary Surgery, Institute of Veterinary Medicine, Nicolaus Copernicus University in Torun, 87-100 Toruń, Poland; (G.W.); (P.A.)
| | - Paul Mozdziak
- Physiology Graduate Program, North Carolina State University, Raleigh, NC 27695, USA;
| | - Jędrzej M. Jaśkowski
- Department of Diagnostics and Clinical Sciences, Institute of Veterinary Medicine, Nicolaus Copernicus University in Torun, 87-100 Toruń, Poland;
| | - Paweł Antosik
- Department of Veterinary Surgery, Institute of Veterinary Medicine, Nicolaus Copernicus University in Torun, 87-100 Toruń, Poland; (G.W.); (P.A.)
| | - Bartosz Kempisty
- Department of Anatomy, Poznan University of Medical Sciences, 60-781 Poznan, Poland; (M.J.); (R.S.); (M.D.-K.)
- Department of Histology and Embryology, Poznan University of Medical Sciences, 60-781 Poznan, Poland;
- Department of Veterinary Surgery, Institute of Veterinary Medicine, Nicolaus Copernicus University in Torun, 87-100 Toruń, Poland; (G.W.); (P.A.)
- Department of Obstetrics and Gynecology, University Hospital and Masaryk University, 20 Jihlavská St., 601 77 Brno, Czech Republic
- Correspondence:
| | - Marta Dyszkiewicz-Konwińska
- Department of Anatomy, Poznan University of Medical Sciences, 60-781 Poznan, Poland; (M.J.); (R.S.); (M.D.-K.)
- Department of Biomaterials and Experimental Dentistry, Poznan University of Medical Sciences, 60-812 Poznan, Poland
| |
Collapse
|
15
|
Lim WL, Liau LL, Ng MH, Chowdhury SR, Law JX. Current Progress in Tendon and Ligament Tissue Engineering. Tissue Eng Regen Med 2019; 16:549-571. [PMID: 31824819 PMCID: PMC6879704 DOI: 10.1007/s13770-019-00196-w] [Citation(s) in RCA: 123] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 05/07/2019] [Accepted: 05/22/2019] [Indexed: 02/08/2023] Open
Abstract
Background Tendon and ligament injuries accounted for 30% of all musculoskeletal consultations with 4 million new incidences worldwide each year and thus imposed a significant burden to the society and the economy. Damaged tendon and ligament can severely affect the normal body movement and might lead to many complications if not treated promptly and adequately. Current conventional treatment through surgical repair and tissue graft are ineffective with a high rate of recurrence. Methods In this review, we first discussed the anatomy, physiology and pathophysiology of tendon and ligament injuries and its current treatment. Secondly, we explored the current role of tendon and ligament tissue engineering, describing its recent advances. After that, we also described stem cell and cell secreted product approaches in tendon and ligament injuries. Lastly, we examined the role of the bioreactor and mechanical loading in in vitro maturation of engineered tendon and ligament. Results Tissue engineering offers various alternative ways of treatment from biological tissue constructs to stem cell therapy and cell secreted products. Bioreactor with mechanical stimulation is instrumental in preparing mature engineered tendon and ligament substitutes in vitro. Conclusions Tissue engineering showed great promise in replacing the damaged tendon and ligament. However, more study is needed to develop ideal engineered tendon and ligament.
Collapse
Affiliation(s)
- Wei Lee Lim
- Tissue Engineering Centre, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Jalan Yaacob Latif, 56000 Kuala Lumpur, Malaysia
| | - Ling Ling Liau
- Department of Physiology, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, JalanYaacob Latif, 56000 Kuala Lumpur, Malaysia
| | - Min Hwei Ng
- Tissue Engineering Centre, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Jalan Yaacob Latif, 56000 Kuala Lumpur, Malaysia
| | - Shiplu Roy Chowdhury
- Tissue Engineering Centre, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Jalan Yaacob Latif, 56000 Kuala Lumpur, Malaysia
| | - Jia Xian Law
- Tissue Engineering Centre, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Jalan Yaacob Latif, 56000 Kuala Lumpur, Malaysia
| |
Collapse
|
16
|
Kornicka K, Geburek F, Röcken M, Marycz K. Stem Cells in Equine Veterinary Practice-Current Trends, Risks, and Perspectives. J Clin Med 2019; 8:jcm8050675. [PMID: 31091732 PMCID: PMC6572129 DOI: 10.3390/jcm8050675] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Accepted: 05/07/2019] [Indexed: 12/31/2022] Open
Abstract
With this Editorial, we introduce the Special Issue "Adipose-Derived Stem Cells and Their Extracellular Microvesicles (ExMVs) for Tissue Engineering and Regenerative Medicine Applications" to the scientific community. In this issue, we focus on regenerative medicine, stem cells, and their clinical application.
Collapse
Affiliation(s)
- Katarzyna Kornicka
- Department of Experimental Biology, The Faculty of Biology and Animal Science, University of Environmental and Life Sciences, 50-375 Wroclaw, Poland.
- International Institute of Translational Medicine, Malin, Jesionowa 11, 55-114 Wisznia Mała, Poland.
| | - Florian Geburek
- Faculty of Veterinary Medicine, Equine Clinic-Equine Surgery, Justus-Liebig-University, 35392 Giessen, Germany.
| | - Michael Röcken
- Faculty of Veterinary Medicine, Equine Clinic-Equine Surgery, Justus-Liebig-University, 35392 Giessen, Germany.
| | - Krzysztof Marycz
- Department of Experimental Biology, The Faculty of Biology and Animal Science, University of Environmental and Life Sciences, 50-375 Wroclaw, Poland.
- International Institute of Translational Medicine, Malin, Jesionowa 11, 55-114 Wisznia Mała, Poland.
- Faculty of Veterinary Medicine, Equine Clinic-Equine Surgery, Justus-Liebig-University, 35392 Giessen, Germany.
| |
Collapse
|
17
|
Gugjoo MB, Amarpal, Makhdoomi DM, Sharma GT. Equine Mesenchymal Stem Cells: Properties, Sources, Characterization, and Potential Therapeutic Applications. J Equine Vet Sci 2018; 72:16-27. [PMID: 30929778 DOI: 10.1016/j.jevs.2018.10.007] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Revised: 09/06/2018] [Accepted: 10/05/2018] [Indexed: 02/07/2023]
Abstract
Properties like sustained multiplication and self-renewal, and homing and multilineage differentiation to undertake repair of the damaged tissues make stem cells the lifeline for any living system. Therefore, stem cell therapy is regarded to carry immense therapeutic potential. Though the dearth of understanding about the basic biological properties and pathways involved in therapeutic benefits currently limit the application of stem cells in humans as well as animals, there are innumerable reports that suggest clinical benefits of stem cell therapy in equine. Among various stem cell sources, currently adult mesenchymal stem cells (MSCs) are preferred for therapeutic application in horse owing to their easy availability, capacity to modulate inflammation, and promote healing. Also the cells carry very limited teratogenic risk compared to the pluripotent stem cells. Mesenchymal stem cells were earlier considered mainly for musculoskeletal tissues, but now may also be utilized in other diverse clinical problems in horse, and the results may be extrapolated even for human medicine. The current review highlights biological properties, sources, mechanisms, and potential therapeutic applications of stem cells in equine practice.
Collapse
Affiliation(s)
- Mudasir Bashir Gugjoo
- Division of Surgery, Indian Veterinary Research Institute-Izatnagar, Bareilly, UP, India.
| | - Amarpal
- Division of Surgery, Indian Veterinary Research Institute-Izatnagar, Bareilly, UP, India
| | - Dil Mohammad Makhdoomi
- Division of Surgery, Faculty of Veterinary Sciences and Animal Husbandry, Shuhama, SKUAST-Kashmir, Srinagar, J&K, India
| | - Gutulla Taru Sharma
- Division of Physiology and Climatology, Indian Veterinary Research Institute-Izatnagar, Bareilly, UP, India
| |
Collapse
|
18
|
Ahrberg AB, Horstmeier C, Berner D, Brehm W, Gittel C, Hillmann A, Josten C, Rossi G, Schubert S, Winter K, Burk J. Effects of mesenchymal stromal cells versus serum on tendon healing in a controlled experimental trial in an equine model. BMC Musculoskelet Disord 2018; 19:230. [PMID: 30021608 PMCID: PMC6052633 DOI: 10.1186/s12891-018-2163-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Accepted: 06/28/2018] [Indexed: 01/16/2023] Open
Abstract
BACKGROUND Mesenchymal stromal cells (MSC) have shown promising results in the treatment of tendinopathy in equine medicine, making this therapeutic approach seem favorable for translation to human medicine. Having demonstrated that MSC engraft within the tendon lesions after local injection in an equine model, we hypothesized that they would improve tendon healing superior to serum injection alone. METHODS Quadrilateral tendon lesions were induced in six horses by mechanical tissue disruption combined with collagenase application 3 weeks before treatment. Adipose-derived MSC suspended in serum or serum alone were then injected intralesionally. Clinical examinations, ultrasound and magnetic resonance imaging were performed over 24 weeks. Tendon biopsies for histological assessment were taken from the hindlimbs 3 weeks after treatment. Horses were sacrificed after 24 weeks and forelimb tendons were subjected to macroscopic and histological examination as well as analysis of musculoskeletal marker expression. RESULTS Tendons injected with MSC showed a transient increase in inflammation and lesion size, as indicated by clinical and imaging parameters between week 3 and 6 (p < 0.05). Thereafter, symptoms decreased in both groups and, except that in MSC-treated tendons, mean lesion signal intensity as seen in T2w magnetic resonance imaging and cellularity as seen in the histology (p < 0.05) were lower, no major differences could be found at week 24. CONCLUSIONS These data suggest that MSC have influenced the inflammatory reaction in a way not described in tendinopathy studies before. However, at the endpoint of the current study, 24 weeks after treatment, no distinct improvement was observed in MSC-treated tendons compared to the serum-injected controls. Future studies are necessary to elucidate whether and under which conditions MSC are beneficial for tendon healing before translation into human medicine.
Collapse
Affiliation(s)
- A B Ahrberg
- Department of Orthopedics, Traumatology and Plastic Surgery, University of Leipzig, Liebigstr. 20, 04103, Leipzig, Germany. .,Translational Center for Regenerative Medicine (TRM), University of Leipzig, Leipzig, Germany.
| | - C Horstmeier
- Translational Center for Regenerative Medicine (TRM), University of Leipzig, Leipzig, Germany.,Saxon Incubator for Clinical Translation (SIKT), University of Leipzig, Leipzig, Germany.,University Equine Hospital, University of Leipzig, Leipzig, Germany
| | - D Berner
- Department of Clinical Science and Services, The Royal Veterinary College, University of London, London, UK
| | - W Brehm
- Translational Center for Regenerative Medicine (TRM), University of Leipzig, Leipzig, Germany.,Saxon Incubator for Clinical Translation (SIKT), University of Leipzig, Leipzig, Germany.,University Equine Hospital, University of Leipzig, Leipzig, Germany
| | - C Gittel
- University Equine Hospital, University of Leipzig, Leipzig, Germany
| | - A Hillmann
- Translational Center for Regenerative Medicine (TRM), University of Leipzig, Leipzig, Germany.,Saxon Incubator for Clinical Translation (SIKT), University of Leipzig, Leipzig, Germany
| | - C Josten
- Department of Orthopedics, Traumatology and Plastic Surgery, University of Leipzig, Liebigstr. 20, 04103, Leipzig, Germany
| | - G Rossi
- School of Biosciences and Veterinary Medicine, University of Camerino, Camerino, Italy
| | - S Schubert
- Translational Center for Regenerative Medicine (TRM), University of Leipzig, Leipzig, Germany.,Saxon Incubator for Clinical Translation (SIKT), University of Leipzig, Leipzig, Germany.,Institute of Veterinary Physiology, University of Leipzig, Leipzig, Germany
| | - K Winter
- University Equine Hospital, University of Leipzig, Leipzig, Germany.,Institute of Anatomy, Medical Faculty, University of Leipzig, Leipzig, Germany
| | - J Burk
- Translational Center for Regenerative Medicine (TRM), University of Leipzig, Leipzig, Germany.,Saxon Incubator for Clinical Translation (SIKT), University of Leipzig, Leipzig, Germany.,Institute of Veterinary Physiology, University of Leipzig, Leipzig, Germany.,Department of Biotechnology, University of Natural Resources and Life Sciences, Vienna, Austria
| |
Collapse
|
19
|
Geburek F, Roggel F, van Schie HTM, Beineke A, Estrada R, Weber K, Hellige M, Rohn K, Jagodzinski M, Welke B, Hurschler C, Conrad S, Skutella T, van de Lest C, van Weeren R, Stadler PM. Effect of single intralesional treatment of surgically induced equine superficial digital flexor tendon core lesions with adipose-derived mesenchymal stromal cells: a controlled experimental trial. Stem Cell Res Ther 2017; 8:129. [PMID: 28583184 PMCID: PMC5460527 DOI: 10.1186/s13287-017-0564-8] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Revised: 03/15/2017] [Accepted: 04/26/2017] [Indexed: 12/31/2022] Open
Abstract
Background Adipose tissue is a promising source of mesenchymal stromal cells (MSCs) for the treatment of tendon disease. The goal of this study was to assess the effect of a single intralesional implantation of adipose tissue-derived mesenchymal stromal cells (AT-MSCs) on artificial lesions in equine superficial digital flexor tendons (SDFTs). Methods During this randomized, controlled, blinded experimental study, either autologous cultured AT-MSCs suspended in autologous inactivated serum (AT-MSC-serum) or autologous inactivated serum (serum) were injected intralesionally 2 weeks after surgical creation of centrally located SDFT lesions in both forelimbs of nine horses. Healing was assessed clinically and with ultrasound (standard B-mode and ultrasound tissue characterization) at regular intervals over 24 weeks. After euthanasia of the horses the SDFTs were examined histologically, biochemically and by means of biomechanical testing. Results AT-MSC implantation did not substantially influence clinical and ultrasonographic parameters. Histology, biochemical and biomechanical characteristics of the repair tissue did not differ significantly between treatment modalities after 24 weeks. Compared with macroscopically normal tendon tissue, the content of the mature collagen crosslink hydroxylysylpyridinoline did not differ after AT-MSC-serum treatment (p = 0.074) while it was significantly lower (p = 0.027) in lesions treated with serum alone. Stress at failure (p = 0.048) and the modulus of elasticity (p = 0.001) were significantly lower after AT-MSC-serum treatment than in normal tendon tissue. Conclusions The effect of a single intralesional injection of cultured AT-MSCs suspended in autologous inactivated serum was not superior to treatment of surgically created SDFT lesions with autologous inactivated serum alone in a surgical model of tendinopathy over an observation period of 22 weeks. AT-MSC treatment might have a positive influence on collagen crosslinking of remodelling scar tissue. Controlled long-term studies including naturally occurring tendinopathies are necessary to verify the effects of AT-MSCs on tendon disease. Electronic supplementary material The online version of this article (doi:10.1186/s13287-017-0564-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Florian Geburek
- Equine Clinic, University of Veterinary Medicine Hannover, Foundation, Bünteweg 9, 30559, Hannover, Germany.
| | - Florian Roggel
- Equine Clinic, University of Veterinary Medicine Hannover, Foundation, Bünteweg 9, 30559, Hannover, Germany
| | - Hans T M van Schie
- Department of Equine Sciences, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 112, 3584 CM, Utrecht, The Netherlands
| | - Andreas Beineke
- Institute for Pathology, University of Veterinary Medicine Hannover, Foundation, Bünteweg 17, 30559, Hannover, Germany
| | - Roberto Estrada
- Department of Equine Sciences, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 112, 3584 CM, Utrecht, The Netherlands
| | - Kathrin Weber
- Pferdeklink Kirchheim, Nürtinger Straße 200, 73230, Kirchheim unter Teck, Germany
| | - Maren Hellige
- Equine Clinic, University of Veterinary Medicine Hannover, Foundation, Bünteweg 9, 30559, Hannover, Germany
| | - Karl Rohn
- Institute for Biometry, Epidemiology and Information Processing, University of Veterinary Medicine Hannover, Foundation, Bünteweg 2, 30559, Hannover, Germany
| | - Michael Jagodzinski
- Department of Orthopedic Trauma, Hannover Medical School, Carl-Neuberg-Straße 1, 30625, Hannover, Germany
| | - Bastian Welke
- Laboratory for Biomechanics and Biomaterials, Department of Orthopaedic Surgery, Hannover Medical School, Anna-von-Borries-Straße 1-7, 30625, Hannover, Germany
| | - Christof Hurschler
- Laboratory for Biomechanics and Biomaterials, Department of Orthopaedic Surgery, Hannover Medical School, Anna-von-Borries-Straße 1-7, 30625, Hannover, Germany
| | | | - Thomas Skutella
- Institute for Anatomy and Cell Biology, University of Heidelberg, Im Neuenheimer Feld 307, 69120, Heidelberg, Germany
| | - Chris van de Lest
- Department of Equine Sciences, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 112, 3584 CM, Utrecht, The Netherlands
| | - René van Weeren
- Department of Equine Sciences, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 112, 3584 CM, Utrecht, The Netherlands
| | - Peter M Stadler
- Equine Clinic, University of Veterinary Medicine Hannover, Foundation, Bünteweg 9, 30559, Hannover, Germany
| |
Collapse
|
20
|
Romero A, Barrachina L, Ranera B, Remacha A, Moreno B, de Blas I, Sanz A, Vázquez F, Vitoria A, Junquera C, Zaragoza P, Rodellar C. Comparison of autologous bone marrow and adipose tissue derived mesenchymal stem cells, and platelet rich plasma, for treating surgically induced lesions of the equine superficial digital flexor tendon. Vet J 2017; 224:76-84. [DOI: 10.1016/j.tvjl.2017.04.005] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Revised: 04/03/2017] [Accepted: 04/12/2017] [Indexed: 12/24/2022]
|
21
|
Burk J, Glauche SM, Brehm W, Crovace A, Francioso E, Hillmann A, Schubert S, Lacitignola L. Characterisation and intracellular labelling of mesenchymal stromal cells derived from synovial fluid of horses and sheep. Vet J 2017; 222:1-8. [PMID: 28410670 DOI: 10.1016/j.tvjl.2017.02.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2016] [Revised: 02/09/2017] [Accepted: 02/21/2017] [Indexed: 01/10/2023]
Abstract
Multipotent mesenchymal stromal cells (MSCs) derived from synovial fluid (SF) are considered to be a promising cell type for therapeutic applications in joint disease. However, despite their potential relevance for clinical and experimental studies, there is insufficient knowledge about SF-derived MSCs isolated from horses and sheep. In this study, cells were recovered from healthy SF and bone marrow (BM) of sheep, and from healthy and osteoarthritic SF of horses. Ovine SF-MSCs were used to assess the efficiency of intracellular labelling with quantum dots (QDs). Colony forming units, generation times, trilineage differentiation potential and expression of CD73, CD90 and CD105 at mRNA level were assessed. QD labelling was efficient, with >98% positive cells directly after labelling at 10 nmol/L and >95% positive cells directly after labelling at 2 nmol/L. The label decreased over 7 days of culture, with more persistence at the higher labelling concentration. No significant differences in proliferation were observed. All MSCs had trilineage differentiation potential, but adipogenesis was more distinct in equine samples and chondrogenesis was most pronounced in ovine SF-MSCs. CD73, CD90 and CD105 were expressed in equine and ovine MSCs.
Collapse
Affiliation(s)
- J Burk
- Saxon Incubator for Clinical Translation (SIKT), University of Leipzig, Philipp-Rosenthal-Str. 55, Leipzig 04103, Germany; Institute of Veterinary Physiology, University of Leipzig, An den Tierkliniken 7, Leipzig 04103, Germany.
| | - S M Glauche
- Saxon Incubator for Clinical Translation (SIKT), University of Leipzig, Philipp-Rosenthal-Str. 55, Leipzig 04103, Germany
| | - W Brehm
- Saxon Incubator for Clinical Translation (SIKT), University of Leipzig, Philipp-Rosenthal-Str. 55, Leipzig 04103, Germany; Large Animal Clinic for Surgery, University of Leipzig, An den Tierkliniken 21, Leipzig 04103, Germany
| | - A Crovace
- Department of Emergency and Organ Transplants (DEOT), University of Bari 'Aldo Moro', Strada Provinciale per Casamassima km. 3, Valenzano 70010, Italy
| | - E Francioso
- Department of Emergency and Organ Transplants (DEOT), University of Bari 'Aldo Moro', Strada Provinciale per Casamassima km. 3, Valenzano 70010, Italy
| | - A Hillmann
- Saxon Incubator for Clinical Translation (SIKT), University of Leipzig, Philipp-Rosenthal-Str. 55, Leipzig 04103, Germany
| | - S Schubert
- Saxon Incubator for Clinical Translation (SIKT), University of Leipzig, Philipp-Rosenthal-Str. 55, Leipzig 04103, Germany
| | - L Lacitignola
- Department of Emergency and Organ Transplants (DEOT), University of Bari 'Aldo Moro', Strada Provinciale per Casamassima km. 3, Valenzano 70010, Italy
| |
Collapse
|
22
|
Berglund AK, Schnabel LV. Allogeneic major histocompatibility complex-mismatched equine bone marrow-derived mesenchymal stem cells are targeted for death by cytotoxic anti-major histocompatibility complex antibodies. Equine Vet J 2016; 49:539-544. [PMID: 27862236 PMCID: PMC5425313 DOI: 10.1111/evj.12647] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Accepted: 11/01/2016] [Indexed: 12/21/2022]
Abstract
Background Allogeneic mesenchymal stem cells (MSCs) are a promising cell source for treating musculoskeletal injuries in horses. Controversy exists, however, over whether major histocompatibility complex (MHC)‐mismatched MSCs are recognised by the recipient immune system and targeted for death by a cytotoxic antibody response. Objectives To determine if cytotoxic anti‐MHC antibodies generated in vivo following MHC‐mismatched MSC injections are capable of initiating complement‐dependent cytotoxicity of MSCs. Study design Experimental controlled study. Methods Antisera previously collected at Days 0, 7, 14 and 21 post‐injection from 4 horses injected with donor MHC‐mismatched equine leucocyte antigen (ELA)‐A2 haplotype MSCs and one control horse injected with donor MHC‐matched ELA‐A2 MSCs were utilised in this study. Antisera were incubated with ELA‐A2 MSCs before adding complement in microcytotoxicity assays and cell death was analysed via eosin dye exclusion. ELA‐A2 peripheral blood leucocytes (PBLs) were used in the assays as a positive control. Results Antisera from all 4 horses injected with MHC‐mismatched MSCs contained antibodies that caused the death of ELA‐A2 haplotype MSCs in the microcytotoxicity assays. In 2 of the 4 horses, antibodies were present as early as Day 7 post‐injection. MSC death was consistently equivalent to that of ELA‐A2 haplotype PBL death at all time points and antisera dilutions. Antisera from the control horse that was injected with MHC‐matched MSCs did not contain cytotoxic ELA‐A2 antibodies at any of the time points examined. Main limitations This study examined MSC death in vitro only and utilized antisera from a small number of horses. Conclusions The cytotoxic antibody response induced in recipient horses following injection with donor MHC‐mismatched MSCs is capable of killing donor MSCs in vitro. These results suggest that the use of allogeneic MHC‐mismatched MSCs must be cautioned against, not only for potential adverse events, but also for reduced therapeutic efficacy due to targeted MSC death.
Collapse
Affiliation(s)
- A K Berglund
- Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina, USA
| | - L V Schnabel
- Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina, USA
| |
Collapse
|
23
|
Zhe Z, Jun D, Yang Z, Mingxi X, Ke Z, Ming Z, Zhong W, Mujun L. Bladder Acellular Matrix Grafts Seeded with Adipose-Derived Stem Cells and Incubated Intraperitoneally Promote the Regeneration of Bladder Smooth Muscle and Nerve in a Rat Model of Bladder Augmentation. Stem Cells Dev 2016; 25:405-14. [PMID: 26863067 DOI: 10.1089/scd.2015.0246] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The objective of this study was to investigate the feasibility of bladder acellular matrix grafts (BAMGs) seeded with adipose-derived stem cells (ASCs) followed by intraperitoneal incubation for bladder reconstruction in a rat model of bladder augmentation, and to explore the underlying mechanism. Autologous CM-DiI-labeled ASC-seeded (experimental group) and unseeded (control group) BAMGs were incubated in the peritoneum of male rats for 2 weeks and then harvested for bladder augmentation. Histological analysis of the incubated BAMGs revealed numerous cells growing in homogeneous collagen bundles in both groups. In the control BAMGs, these cells were mesenchyme derived, while in the ASC-seeded BAMGs, myofibroblasts and mesothelial cells were found inside and on the surface of the scaffold, respectively. Immunofluorescence analysis demonstrated that some of the myofibroblasts were transdifferentiated from the ASCs after 2 weeks of intraperitoneal incubation. The greater bladder capacity was found in the experimental group than the control group both 4 and 14 weeks postoperatively. Histological analysis revealed that the entire urothelium regenerated well both in the experimental group and the control group without significant difference 4 weeks and 14 weeks postoperatively. From the quantitative data of immunohistochemical and immunofluorescence staining, the smooth muscle cells (SMCs) regenerated significantly better in the experimental group than the control group both 4 weeks and 14 weeks postoperatively. Also significantly more nerve cells were found in the experimental group 14 weeks postoperatively. At 4 weeks postoperatively, the immunofluorescence double staining revealed that some SMCs in the BAMG were transdifferentiated from the implanted ASCs, but no CM-DiI labeling of ASCs was detected 14 weeks postoperatively. Taken together, our results demonstrate that ASC-seeded and peritoneally incubated BAMGs promote not only the morphological regeneration of the bladder smooth muscle and nerve, but also the bladder capacity, which indicates their potential for bladder regeneration.
Collapse
Affiliation(s)
- Zhou Zhe
- Department of Urology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine , Shanghai, China
| | - Da Jun
- Department of Urology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine , Shanghai, China
| | - Zhao Yang
- Department of Urology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine , Shanghai, China
| | - Xu Mingxi
- Department of Urology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine , Shanghai, China
| | - Zhang Ke
- Department of Urology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine , Shanghai, China
| | - Zhang Ming
- Department of Urology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine , Shanghai, China
| | - Wang Zhong
- Department of Urology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine , Shanghai, China
| | - Lu Mujun
- Department of Urology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine , Shanghai, China
| |
Collapse
|
24
|
Geburek F, Mundle K, Conrad S, Hellige M, Walliser U, van Schie HTM, van Weeren R, Skutella T, Stadler PM. Tracking of autologous adipose tissue-derived mesenchymal stromal cells with in vivo magnetic resonance imaging and histology after intralesional treatment of artificial equine tendon lesions--a pilot study. Stem Cell Res Ther 2016; 7:21. [PMID: 26830812 PMCID: PMC4736260 DOI: 10.1186/s13287-016-0281-8] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Revised: 12/16/2015] [Accepted: 01/14/2016] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Adipose tissue-derived mesenchymal stromal cells (AT-MSCs) are frequently used to treat equine tendinopathies. Up to now, knowledge about the fate of autologous AT-MSCs after intralesional injection into equine superficial digital flexor tendons (SDFTs) is very limited. The purpose of this study was to monitor the presence of intralesionally injected autologous AT-MSCs labelled with superparamagnetic iron oxide (SPIO) nanoparticles and green fluorescent protein (GFP) over a staggered period of 3 to 9 weeks with standing magnetic resonance imaging (MRI) and histology. METHODS Four adult warmblood horses received a unilateral injection of 10 × 10(6) autologous AT-MSCs into surgically created front-limb SDFT lesions. Administered AT-MSCs expressed lentivirally transduced reporter genes for GFP and were co-labelled with SPIO particles in three horses. The presence of AT-MSCs in SDFTs was evaluated by repeated examinations with standing low-field MRI in two horses and post-mortem in all horses with Prussian blue staining, fluorescence microscopy and with immunofluorescence and immunohistochemistry using anti-GFP antibodies at 3, 5, 7 and 9 weeks after treatment. RESULTS AT-MSCs labelled with SPIO particles were detectable in treated SDFTs during each MRI in T2*- and T1-weighted sequences until the end of the observation period. Post-mortem examinations revealed that all treated tendons contained high numbers of SPIO- and GFP-labelled cells. CONCLUSIONS Standing low-field MRI has the potential to track SPIO-labelled AT-MSCs successfully. Histology, fluorescence microscopy, immunofluorescence and immunohistochemistry are efficient tools to detect labelled AT-MSCs after intralesional injection into surgically created equine SDFT lesions. Intralesional injection of 10 × 10(6) AT-MSCs leads to the presence of high numbers of AT-MSCs in and around surgically created tendon lesions for up to 9 weeks. Integration of injected AT-MSCs into healing tendon tissue is an essential pathway after intralesional administration. Injection techniques have to be chosen deliberately to avoid reflux of the cell substrate injected. In vivo low-field MRI may be used as a non-invasive tool to monitor homing and engraftment of AT-MSCs in horses with tendinopathy of the SDFT.
Collapse
Affiliation(s)
- Florian Geburek
- Clinic for Horses, University of Veterinary Medicine Hannover, Foundation, Bünteweg 9, 30559, Hannover, Germany.
| | - Kathrin Mundle
- Pferdeklink Kirchheim, Nürtinger Straße 200, 73230, Kirchheim unter Teck, Germany.
| | | | - Maren Hellige
- Clinic for Horses, University of Veterinary Medicine Hannover, Foundation, Bünteweg 9, 30559, Hannover, Germany.
| | - Ulrich Walliser
- Pferdeklink Kirchheim, Nürtinger Straße 200, 73230, Kirchheim unter Teck, Germany.
| | - Hans T M van Schie
- Department of Equine Sciences, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 112, 3584, CM, Utrecht, The Netherlands.
| | - René van Weeren
- Department of Equine Sciences, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 112, 3584, CM, Utrecht, The Netherlands.
| | - Thomas Skutella
- Institute for Anatomy and Cell Biology, University of Heidelberg, Im Neuenheimer Feld 307, 69120, Heidelberg, Germany.
| | - Peter M Stadler
- Clinic for Horses, University of Veterinary Medicine Hannover, Foundation, Bünteweg 9, 30559, Hannover, Germany.
| |
Collapse
|
25
|
Effect of adipose-derived mesenchymal stromal cells on tendon healing in aging and estrogen deficiency: an in vitro co-culture model. Cytotherapy 2015; 17:1536-44. [DOI: 10.1016/j.jcyt.2015.07.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Revised: 06/23/2015] [Accepted: 07/05/2015] [Indexed: 11/19/2022]
|
26
|
Hillmann A, Ahrberg AB, Brehm W, Heller S, Josten C, Paebst F, Burk J. Comparative Characterization of Human and Equine Mesenchymal Stromal Cells: A Basis for Translational Studies in the Equine Model. Cell Transplant 2015; 25:109-24. [PMID: 25853993 DOI: 10.3727/096368915x687822] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Multipotent mesenchymal stromal cells (MSCs) have gained tremendous attention as potential therapeutic agents for the treatment of orthopedic diseases. Promising results have been obtained after application of MSCs for treatment of tendon and joint disease in the equine model, making it appear favorable to use these results as a basis for the translational process of the therapy. However, while the horse is considered a highly suitable model for orthopedic diseases, knowledge is lacking regarding the level of analogy of equine MSCs and their human counterparts. Therefore, the aim of this study was to assess the properties of human and equine adipose- and tendon-derived MSCs in a direct comparison. Basic properties of human and equine MSCs from both tissues were similar. The cells expressed CD29, CD44, CD90, and CD105 and lacked expression of CD73, CD14, CD34, CD45, CD79α, and MCHII/HLA-DR. No significant differences were found between proliferation potential of human and equine MSCs in early passages, but recovery of nucleated cells after tissue digestion as well as proliferation in later passages was higher in equine samples (p < 0.01). All samples showed a good migration capacity and multilineage differentiation potential. However, while osteogenic differentiation was achieved in all equine samples, it was only evident in five out of nine human tendon-derived samples. Human MSCs further showed a higher expression of collagen IIIA1 and tenascin-C, but lower expression of decorin and scleraxis (p < 0.01). Although revealing some potentially relevant differences, the study demonstrates a high level of analogy between human and equine MSCs, providing a basis for translational research in the equine model according to the guidelines issued by the authorities.
Collapse
Affiliation(s)
- Aline Hillmann
- Translational Centre for Regenerative Medicine (TRM), University of Leipzig, Leipzig, Germany
| | | | | | | | | | | | | |
Collapse
|