1
|
Breitenstein P, Visser VL, Motta SE, Martin M, Generali M, Baaijens FPT, Loerakker S, Breuer CK, Hoerstrup SP, Emmert MY. Modulating biomechanical and integrating biochemical cues to foster adaptive remodeling of tissue engineered matrices for cardiovascular implants. Acta Biomater 2025; 197:48-67. [PMID: 40118167 DOI: 10.1016/j.actbio.2025.03.036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 03/15/2025] [Accepted: 03/18/2025] [Indexed: 03/23/2025]
Abstract
Cardiovascular disease remains one of the leading causes of mortality in the Western world. Congenital heart disease affects nearly 1 % of newborns, with approximately one-fourth requiring reconstructive surgery during their lifetime. Current cardiovascular replacement options have significant limitations. Their inability to grow poses particular challenges for pediatric patients. Tissue Engineered Matrix (TEM)-based in situ constructs, with their self-repair and growth potential, offer a promising solution to overcome the limitations of current clinically used replacement options. Various functionalization strategies, involving the integration of biomechanical or biochemical components to enhance biocompatibility, have been developed for Tissue Engineered Vascular Grafts (TEVG) and Tissue Engineered Heart Valves (TEHV) to foster their capacity for in vivo remodeling. In this review, we present the current state of clinical translation for TEVG and TEHV, and provide a comprehensive overview of biomechanical and biochemical functionalization strategies for TEVG and TEHV. We discuss the rationale for functionalization, the implementation of functionalization cues in TEM-based TEVG and TEHV, and the interrelatedness of biomechanical and biochemical cues in the in vivo response. Finally, we address the challenges associated with functionalization and discuss how interdisciplinary research, especially when combined with in silico models, could enhance the translation of these strategies into clinical applications. STATEMENT OF SIGNIFICANCE: Cardiovascular disease remains one of the leading causes of mortality, with current replacements being unable to grow and regenerate. In this review, we present the current state of clinical translation for tissue engineered vascular grafts (TEVG) and heart valves (TEHV). Particularly, we discuss the rationale and implementation for functionalization cues in tissue engineered matrix-based TEVGs and TEHVs, and for the first time we introduce the interrelatedness of biomechanical and biochemical cues in the in-vivo response. These insights pave the way for next-generation cardiovascular implants that promise better durability, biocompatibility, and growth potential. Finally, we address the challenges associated with functionalization and discuss how interdisciplinary research, especially when combined with in silico models, could enhance the translation of these strategies into clinical applications .
Collapse
Affiliation(s)
- Pascal Breitenstein
- Institute for Regenerative Medicine (IREM), University of Zurich, Schlieren 8952, Switzerland
| | - Valery L Visser
- Institute for Regenerative Medicine (IREM), University of Zurich, Schlieren 8952, Switzerland
| | - Sarah E Motta
- Institute for Regenerative Medicine (IREM), University of Zurich, Schlieren 8952, Switzerland
| | - Marcy Martin
- Institute for Regenerative Medicine (IREM), University of Zurich, Schlieren 8952, Switzerland
| | - Melanie Generali
- Institute for Regenerative Medicine (IREM), University of Zurich, Schlieren 8952, Switzerland
| | - Frank P T Baaijens
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, the Netherlands; Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, the Netherlands
| | - Sandra Loerakker
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, the Netherlands; Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, the Netherlands
| | - Christopher K Breuer
- Center for Regenerative Medicine, Research Institute at Nationwide Children's Hospital, Columbus, OH, USA; Department of Surgery, Nationwide Children's Hospital, Columbus, OH, USA; Department of Surgery, The Ohio State University College of Medicine, Columbus, OH, USA
| | - Simon P Hoerstrup
- Institute for Regenerative Medicine (IREM), University of Zurich, Schlieren 8952, Switzerland; Wyss Zurich Translational Center, University of Zurich and ETH Zurich, Zurich 8092, Switzerland
| | - Maximilian Y Emmert
- Institute for Regenerative Medicine (IREM), University of Zurich, Schlieren 8952, Switzerland; Department of Cardiothoracic and Vascular Surgery, Deutsches Herzzentrum der Charité (DHZC), Berlin 13353, Germany; Charité Universitätsmedizin Berlin, Berlin 10117, Germany.
| |
Collapse
|
2
|
Breuer T, Jimenez M, Humphrey JD, Shinoka T, Breuer CK. Tissue Engineering of Vascular Grafts: A Case Report From Bench to Bedside and Back. Arterioscler Thromb Vasc Biol 2023; 43:399-409. [PMID: 36633008 PMCID: PMC9974789 DOI: 10.1161/atvbaha.122.318236] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 12/29/2022] [Indexed: 01/13/2023]
Abstract
For over 25 years, our group has used regenerative medicine strategies to develop improved biomaterials for use in congenital heart surgery. Among other applications, we developed a tissue-engineered vascular graft (TEVG) by seeding tubular biodegradable polymeric scaffolds with autologous bone marrow-derived mononuclear cells. Results of our first-in-human study demonstrated feasibility as the TEVG transformed into a living vascular graft having an ability to grow, making it the first engineered graft with growth potential. Yet, outcomes of this first Food and Drug Administration-approved clinical trial evaluating safety revealed a prohibitively high incidence of early TEVG stenosis, preventing the widespread use of this promising technology. Mechanistic studies in mouse models provided important insight into the development of stenosis and enabled advanced computational models. Computational simulations suggested both a novel inflammation-driven, mechano-mediated process of in vivo TEVG development and an unexpected natural history, including spontaneous reversal of the stenosis. Based on these in vivo and in silico discoveries, we have been able to rationally design strategies for inhibiting TEVG stenosis that have been validated in preclinical large animal studies and translated to the clinic via a new Food and Drug Administration-approved clinical trial. This progress would not have been possible without the multidisciplinary approach, ranging from small to large animal models and computational simulations. This same process is expected to lead to further advances in scaffold design, and thus next generation TEVGs.
Collapse
Affiliation(s)
- Thomas Breuer
- Nationwide Children's Hospital, Columbus, OH (T.B., M.J., T.S., C.K.B.)
| | - Michael Jimenez
- Nationwide Children's Hospital, Columbus, OH (T.B., M.J., T.S., C.K.B.)
| | - Jay D Humphrey
- Yale University, School of Engineering and Applied Science, New Haven, CT (J.D.H.)
| | - Toshiharu Shinoka
- Nationwide Children's Hospital, Columbus, OH (T.B., M.J., T.S., C.K.B.)
| | | |
Collapse
|
3
|
Current Progress in Vascular Engineering and Its Clinical Applications. Cells 2022; 11:cells11030493. [PMID: 35159302 PMCID: PMC8834640 DOI: 10.3390/cells11030493] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Revised: 01/28/2022] [Accepted: 01/29/2022] [Indexed: 02/04/2023] Open
Abstract
Coronary heart disease (CHD) is caused by narrowing or blockage of coronary arteries due to atherosclerosis. Coronary artery bypass grafting (CABG) is widely used for the treatment of severe CHD cases. Although autologous vessels are a preferred choice, healthy autologous vessels are not always available; hence there is a demand for tissue engineered vascular grafts (TEVGs) to be used as alternatives. However, producing clinical grade implantable TEVGs that could healthily survive in the host with long-term patency is still a great challenge. There are additional difficulties in producing small diameter (<6 mm) vascular conduits. As a result, there have not been TEVGs that are commercially available. Properties of vascular scaffolds such as tensile strength, thrombogenicity and immunogenicity are key factors that determine the biocompatibility of TEVGs. The source of vascular cells employed to produce TEVGs is a limiting factor for large-scale productions. Advanced technologies including the combined use of natural and biodegradable synthetic materials for scaffolds in conjunction with the use of mesenchyme stem cells or induced pluripotent stem cells (iPSCs) provide promising solutions for vascular tissue engineering. The aim of this review is to provide an update on various aspects in this field and the current status of TEVG clinical applications.
Collapse
|
4
|
Blum KM, Zbinden JC, Ramachandra AB, Lindsey SE, Szafron JM, Reinhardt JW, Heitkemper M, Best CA, Mirhaidari GJM, Chang YC, Ulziibayar A, Kelly J, Shah KV, Drews JD, Zakko J, Miyamoto S, Matsuzaki Y, Iwaki R, Ahmad H, Daulton R, Musgrave D, Wiet MG, Heuer E, Lawson E, Schwarz E, McDermott MR, Krishnamurthy R, Krishnamurthy R, Hor K, Armstrong AK, Boe BA, Berman DP, Trask AJ, Humphrey JD, Marsden AL, Shinoka T, Breuer CK. Tissue engineered vascular grafts transform into autologous neovessels capable of native function and growth. COMMUNICATIONS MEDICINE 2022; 2:3. [PMID: 35603301 PMCID: PMC9053249 DOI: 10.1038/s43856-021-00063-7] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 11/30/2021] [Indexed: 11/09/2022] Open
Abstract
Background Tissue-engineered vascular grafts (TEVGs) have the potential to advance the surgical management of infants and children requiring congenital heart surgery by creating functional vascular conduits with growth capacity. Methods Herein, we used an integrative computational-experimental approach to elucidate the natural history of neovessel formation in a large animal preclinical model; combining an in vitro accelerated degradation study with mechanical testing, large animal implantation studies with in vivo imaging and histology, and data-informed computational growth and remodeling models. Results Our findings demonstrate that the structural integrity of the polymeric scaffold is lost over the first 26 weeks in vivo, while polymeric fragments persist for up to 52 weeks. Our models predict that early neotissue accumulation is driven primarily by inflammatory processes in response to the implanted polymeric scaffold, but that turnover becomes progressively mechano-mediated as the scaffold degrades. Using a lamb model, we confirm that early neotissue formation results primarily from the foreign body reaction induced by the scaffold, resulting in an early period of dynamic remodeling characterized by transient TEVG narrowing. As the scaffold degrades, mechano-mediated neotissue remodeling becomes dominant around 26 weeks. After the scaffold degrades completely, the resulting neovessel undergoes growth and remodeling that mimicks native vessel behavior, including biological growth capacity, further supported by fluid-structure interaction simulations providing detailed hemodynamic and wall stress information. Conclusions These findings provide insights into TEVG remodeling, and have important implications for clinical use and future development of TEVGs for children with congenital heart disease.
Collapse
Affiliation(s)
- Kevin M. Blum
- Center for Regenerative Medicine, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH 43205 USA
- Department of Biomedical Engineering, The Ohio State University, Columbus, OH 43210 USA
| | - Jacob C. Zbinden
- Center for Regenerative Medicine, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH 43205 USA
- Department of Biomedical Engineering, The Ohio State University, Columbus, OH 43210 USA
| | | | - Stephanie E. Lindsey
- Department of Pediatrics (Cardiology), Stanford University, Stanford, CA 94305 USA
- Institute for Computational and Mathematical Engineering (ICME), Stanford University, Stanford, CA 94305 USA
| | - Jason M. Szafron
- Department of Biomedical Engineering, Yale University, New Haven, CT 06520 USA
| | - James W. Reinhardt
- Center for Regenerative Medicine, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH 43205 USA
| | - Megan Heitkemper
- Center for Regenerative Medicine, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH 43205 USA
| | - Cameron A. Best
- Center for Regenerative Medicine, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH 43205 USA
- The Ohio State University College of Medicine, Columbus, OH 43210 USA
| | - Gabriel J. M. Mirhaidari
- Center for Regenerative Medicine, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH 43205 USA
| | - Yu-Chun Chang
- Center for Regenerative Medicine, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH 43205 USA
| | - Anudari Ulziibayar
- Center for Regenerative Medicine, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH 43205 USA
| | - John Kelly
- Center for Regenerative Medicine, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH 43205 USA
- The Heart Center, Nationwide Children’s Hospital, Columbus, OH 43205 USA
| | - Kejal V. Shah
- Center for Regenerative Medicine, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH 43205 USA
| | - Joseph D. Drews
- Center for Regenerative Medicine, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH 43205 USA
- Department of Surgery, The Ohio State University Wexner Medical Center, Columbus, OH 43210 USA
| | - Jason Zakko
- Center for Regenerative Medicine, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH 43205 USA
- Department of Surgery, The Ohio State University Wexner Medical Center, Columbus, OH 43210 USA
| | - Shinka Miyamoto
- Center for Regenerative Medicine, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH 43205 USA
- Department of Cardiovascular Surgery at Tokyo Women’s Medical University, Tokyo, Japan
| | - Yuichi Matsuzaki
- Center for Regenerative Medicine, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH 43205 USA
| | - Ryuma Iwaki
- Center for Regenerative Medicine, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH 43205 USA
| | - Hira Ahmad
- Center for Regenerative Medicine, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH 43205 USA
- Department of Pediatric Colorectal and Pelvic Reconstructive Surgery, Nationwide Children’s Hospital, Columbus, OH 43205 USA
| | - Robbie Daulton
- Center for Regenerative Medicine, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH 43205 USA
- University of Cincinnati College of Medicine 3230 Eden Ave, Cincinnati, OH 45267 USA
| | - Drew Musgrave
- Center for Regenerative Medicine, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH 43205 USA
| | - Matthew G. Wiet
- Center for Regenerative Medicine, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH 43205 USA
- The Ohio State University College of Medicine, Columbus, OH 43210 USA
| | - Eric Heuer
- Center for Regenerative Medicine, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH 43205 USA
| | - Emily Lawson
- The Ohio State University College of Medicine, Columbus, OH 43210 USA
| | - Erica Schwarz
- Department of Bioengineering, Stanford University, Stanford, CA 94304 USA
| | - Michael R. McDermott
- Center for Cardiovascular Research, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH 43205 USA
| | - Rajesh Krishnamurthy
- Department of Radiology, Nationwide Children’s Hospital, Columbus, Ohio 43205 USA
| | | | - Kan Hor
- The Heart Center, Nationwide Children’s Hospital, Columbus, OH 43205 USA
| | - Aimee K. Armstrong
- The Heart Center, Nationwide Children’s Hospital, Columbus, OH 43205 USA
| | - Brian A. Boe
- The Heart Center, Nationwide Children’s Hospital, Columbus, OH 43205 USA
| | - Darren P. Berman
- The Heart Center, Nationwide Children’s Hospital, Columbus, OH 43205 USA
| | - Aaron J. Trask
- Center for Cardiovascular Research, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH 43205 USA
- Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH 43210 USA
| | - Jay D. Humphrey
- Department of Biomedical Engineering, Yale University, New Haven, CT 06520 USA
| | - Alison L. Marsden
- Institute for Computational and Mathematical Engineering (ICME), Stanford University, Stanford, CA 94305 USA
- Department of Bioengineering, Stanford University, Stanford, CA 94304 USA
| | - Toshiharu Shinoka
- The Heart Center, Nationwide Children’s Hospital, Columbus, OH 43205 USA
- Department of Cardiothoracic Surgery, The Ohio State University College of Medicine, Columbus, OH 43205 USA
| | - Christopher K. Breuer
- Center for Regenerative Medicine, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH 43205 USA
| |
Collapse
|
5
|
Lorentz KL, Gupta P, Shehabeldin MS, Cunnane EM, Ramaswamy AK, Verdelis K, DiLeo MV, Little SR, Weinbaum JS, Sfeir CS, Mandal BB, Vorp DA. CCL2 loaded microparticles promote acute patency in silk-based vascular grafts implanted in rat aortae. Acta Biomater 2021; 135:126-138. [PMID: 34496284 PMCID: PMC8595801 DOI: 10.1016/j.actbio.2021.08.049] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 08/04/2021] [Accepted: 08/27/2021] [Indexed: 01/22/2023]
Abstract
Cardiovascular disease is the leading cause of death worldwide, often associated with coronary artery occlusion. A common intervention for arterial blockage utilizes a vascular graft to bypass the diseased artery and restore downstream blood flow; however, current clinical options exhibit high long-term failure rates. Our goal was to develop an off-the-shelf tissue-engineered vascular graft capable of delivering a biological payload based on the monocyte recruitment factor C-C motif chemokine ligand 2 (CCL2) to induce remodeling. Bi-layered silk scaffolds consisting of an inner porous and outer electrospun layer were fabricated using a custom blend of Antherea Assama and Bombyx Mori silk (lyogel). Lyogel silk scaffolds alone (LG), and lyogel silk scaffolds containing microparticles (LGMP) were tested. The microparticles (MPs) were loaded with either CCL2 (LGMP+) or water (LGMP-). Scaffolds were implanted as abdominal aortic interposition grafts in Lewis rats for 1 and 8 weeks. 1-week implants exhibited patency rates of 50% (7/14), 100% (10/10), and 100% (5/5) in the LGMP-, LGMP+, and LG groups, respectively. The significantly higher patency rate for the LGMP+ group compared to the LGMP- group (p = 0.0188) suggests that CCL2 can prevent acute occlusion. Immunostaining of the explants revealed a significantly higher density of macrophages (CD68+ cells) within the outer vs. inner layer of LGMP- and LGMP+ constructs but not in LG constructs. After 8 weeks, there were no significant differences in patency rates between groups. All patent scaffolds at 8 weeks showed signs of remodeling; however, stenosis was observed within the majority of explants. This study demonstrated the successful fabrication of a custom blended silk scaffold functionalized with cell-mimicking microparticles to facilitate controlled delivery of a biological payload improving their in vivo performance. STATEMENT OF SIGNIFICANCE: This study outlines the development of a custom blended silk-based tissue-engineered vascular graft (TEVG) for use in arterial bypass or replacement surgery. A custom mixture of silk was formulated to improve biocompatibility and cellular binding to the tubular scaffold. Many current approaches to TEVGs include cells that encourage graft cellularization and remodeling; however, our technology incorporates a microparticle based delivery platform capable of delivering bioactive molecules that can mimic the function of seeded cells. In this study, we load the TEVGs with microparticles containing a monocyte attractant and demonstrate improved performance in terms of unobstructed blood flow versus blank microparticles. The acellular nature of this technology potentially reduces risk, increases reproducibility, and results in a more cost-effective graft when compared to cell-based options.
Collapse
Affiliation(s)
- Katherine L Lorentz
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, United States
| | - Prerak Gupta
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, United States; Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, India
| | - Mostafa S Shehabeldin
- Department of Oral and Craniofacial Sciences, University of Pittsburgh, Pittsburgh, PA; Center for Craniofacial Regeneration, University of Pittsburgh, Pittsburgh, PA, United States; Department of Periodontics and Preventive Dentistry, University of Pittsburgh, Pittsburgh, PA, United States
| | - Eoghan M Cunnane
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, United States; Tissue Engineering Research Group, Dept. of Anatomy and Regenerative Medicine, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Aneesh K Ramaswamy
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, United States
| | - Konstantinos Verdelis
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, United States; Center for Craniofacial Regeneration, University of Pittsburgh, Pittsburgh, PA, United States
| | - Morgan V DiLeo
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, United States; Department of Chemical and Petroleum Engineering, University of Pittsburgh, Pittsburgh, PA, United States; Department of Ophthalmology, University of Pittsburgh, Pittsburgh, PA, United States
| | - Steven R Little
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, United States; McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, United States; Department of Chemical and Petroleum Engineering, University of Pittsburgh, Pittsburgh, PA, United States; Department of Ophthalmology, University of Pittsburgh, Pittsburgh, PA, United States; Department of Immunology, University of Pittsburgh, Pittsburgh, PA, United States; Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, PA, United States
| | - Justin S Weinbaum
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, United States; McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, United States; Department of Pathology, University of Pittsburgh, Pittsburgh, PA, United States
| | - Charles S Sfeir
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, United States; McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, United States; Department of Oral and Craniofacial Sciences, University of Pittsburgh, Pittsburgh, PA; Center for Craniofacial Regeneration, University of Pittsburgh, Pittsburgh, PA, United States; Department of Periodontics and Preventive Dentistry, University of Pittsburgh, Pittsburgh, PA, United States
| | - Biman B Mandal
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, India; Centre for Nanotechnology, Indian Institute of Technology Guwahati, Guwahati, India; School of Health Sciences and Technology, Indian Institute of Technology Guwahati, Guwahati, India.
| | - David A Vorp
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, United States; McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, United States; Department of Chemical and Petroleum Engineering, University of Pittsburgh, Pittsburgh, PA, United States; Department of Surgery, University of Pittsburgh, Pittsburgh, PA, United States; Department of Cardiothoracic Surgery, University of Pittsburgh, Pittsburgh, PA, United States; Center for Vascular Remodeling and Regeneration, University of Pittsburgh, Pittsburgh, PA, United States; The Clinical & Translational Sciences Institute, University of Pittsburgh, Pittsburgh, PA, United States; Department of Mechanical Engineering and Materials Science, University of Pittsburgh, Pittsburgh, PA, United States.
| |
Collapse
|
6
|
Drews JD, Pepper VK, Best CA, Szafron JM, Cheatham JP, Yates AR, Hor KN, Zbinden JC, Chang YC, Mirhaidari GJM, Ramachandra AB, Miyamoto S, Blum KM, Onwuka EA, Zakko J, Kelly J, Cheatham SL, King N, Reinhardt JW, Sugiura T, Miyachi H, Matsuzaki Y, Breuer J, Heuer ED, West TA, Shoji T, Berman D, Boe BA, Asnes J, Galantowicz M, Matsumura G, Hibino N, Marsden AL, Pober JS, Humphrey JD, Shinoka T, Breuer CK. Spontaneous reversal of stenosis in tissue-engineered vascular grafts. Sci Transl Med 2021; 12:12/537/eaax6919. [PMID: 32238576 DOI: 10.1126/scitranslmed.aax6919] [Citation(s) in RCA: 78] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2019] [Revised: 10/27/2019] [Accepted: 02/21/2020] [Indexed: 12/12/2022]
Abstract
We developed a tissue-engineered vascular graft (TEVG) for use in children and present results of a U.S. Food and Drug Administration (FDA)-approved clinical trial evaluating this graft in patients with single-ventricle cardiac anomalies. The TEVG was used as a Fontan conduit to connect the inferior vena cava and pulmonary artery, but a high incidence of graft narrowing manifested within the first 6 months, which was treated successfully with angioplasty. To elucidate mechanisms underlying this early stenosis, we used a data-informed, computational model to perform in silico parametric studies of TEVG development. The simulations predicted early stenosis as observed in our clinical trial but suggested further that such narrowing could reverse spontaneously through an inflammation-driven, mechano-mediated mechanism. We tested this unexpected, model-generated hypothesis by implanting TEVGs in an ovine inferior vena cava interposition graft model, which confirmed the prediction that TEVG stenosis resolved spontaneously and was typically well tolerated. These findings have important implications for our translational research because they suggest that angioplasty may be safely avoided in patients with asymptomatic early stenosis, although there will remain a need for appropriate medical monitoring. The simulations further predicted that the degree of reversible narrowing can be mitigated by altering the scaffold design to attenuate early inflammation and increase mechano-sensing by the synthetic cells, thus suggesting a new paradigm for optimizing next-generation TEVGs. We submit that there is considerable translational advantage to combined computational-experimental studies when designing cutting-edge technologies and their clinical management.
Collapse
Affiliation(s)
- Joseph D Drews
- Center for Regenerative Medicine, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH 43205, USA.,Department of Surgery, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
| | - Victoria K Pepper
- Center for Regenerative Medicine, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH 43205, USA
| | - Cameron A Best
- Center for Regenerative Medicine, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH 43205, USA.,Biomedical Sciences Graduate Program, The Ohio State University College of Medicine, Columbus, OH 43210, USA
| | - Jason M Szafron
- Department of Biomedical Engineering, Yale University, New Haven, CT 06520, USA
| | - John P Cheatham
- The Heart Center, Nationwide Children's Hospital, Columbus, OH 43205, USA
| | - Andrew R Yates
- The Heart Center, Nationwide Children's Hospital, Columbus, OH 43205, USA.,Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH 43210, USA
| | - Kan N Hor
- The Heart Center, Nationwide Children's Hospital, Columbus, OH 43205, USA.,Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH 43210, USA
| | - Jacob C Zbinden
- Center for Regenerative Medicine, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH 43205, USA.,Department of Biomedical Engineering, The Ohio State University, Columbus, OH 43210, USA
| | - Yu-Chun Chang
- Center for Regenerative Medicine, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH 43205, USA.,Biomedical Sciences Graduate Program, The Ohio State University College of Medicine, Columbus, OH 43210, USA
| | - Gabriel J M Mirhaidari
- Center for Regenerative Medicine, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH 43205, USA.,Biomedical Sciences Graduate Program, The Ohio State University College of Medicine, Columbus, OH 43210, USA
| | - Abhay B Ramachandra
- Department of Biomedical Engineering, Yale University, New Haven, CT 06520, USA
| | - Shinka Miyamoto
- Center for Regenerative Medicine, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH 43205, USA
| | - Kevin M Blum
- Center for Regenerative Medicine, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH 43205, USA.,Department of Biomedical Engineering, The Ohio State University, Columbus, OH 43210, USA
| | - Ekene A Onwuka
- Center for Regenerative Medicine, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH 43205, USA.,Department of Surgery, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
| | - Jason Zakko
- Center for Regenerative Medicine, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH 43205, USA.,Department of Surgery, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
| | - John Kelly
- Center for Regenerative Medicine, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH 43205, USA.,The Heart Center, Nationwide Children's Hospital, Columbus, OH 43205, USA
| | - Sharon L Cheatham
- The Heart Center, Nationwide Children's Hospital, Columbus, OH 43205, USA
| | - Nakesha King
- Center for Regenerative Medicine, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH 43205, USA.,Department of Surgery, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
| | - James W Reinhardt
- Center for Regenerative Medicine, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH 43205, USA
| | - Tadahisa Sugiura
- Center for Regenerative Medicine, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH 43205, USA
| | - Hideki Miyachi
- Center for Regenerative Medicine, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH 43205, USA
| | - Yuichi Matsuzaki
- Center for Regenerative Medicine, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH 43205, USA
| | - Julie Breuer
- Center for Regenerative Medicine, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH 43205, USA
| | - Eric D Heuer
- Center for Regenerative Medicine, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH 43205, USA
| | - T Aaron West
- Center for Regenerative Medicine, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH 43205, USA
| | - Toshihiro Shoji
- Center for Regenerative Medicine, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH 43205, USA
| | - Darren Berman
- The Heart Center, Nationwide Children's Hospital, Columbus, OH 43205, USA
| | - Brian A Boe
- The Heart Center, Nationwide Children's Hospital, Columbus, OH 43205, USA
| | - Jeremy Asnes
- Department of Pediatrics, Yale School of Medicine, New Haven, CT 06520, USA
| | - Mark Galantowicz
- The Heart Center, Nationwide Children's Hospital, Columbus, OH 43205, USA.,Department of Cardiothoracic Surgery, Nationwide Children's Hospital, Columbus, OH 43205, USA
| | - Goki Matsumura
- Department of Cardiovascular Surgery, Tokyo Women's Medical University, Tokyo, Japan
| | - Narutoshi Hibino
- Department of Surgery, University of Chicago/Advocate Children's Hospital, Chicago, IL 60453, USA
| | - Alison L Marsden
- Departments of Pediatrics and Bioengineering, Stanford University, Stanford, CA 94304, USA
| | - Jordan S Pober
- Department of Immunobiology, Yale University, New Haven, CT 06520, USA
| | - Jay D Humphrey
- Department of Biomedical Engineering, Yale University, New Haven, CT 06520, USA
| | - Toshiharu Shinoka
- Center for Regenerative Medicine, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH 43205, USA.,The Heart Center, Nationwide Children's Hospital, Columbus, OH 43205, USA.,Department of Cardiothoracic Surgery, Nationwide Children's Hospital, Columbus, OH 43205, USA
| | - Christopher K Breuer
- Center for Regenerative Medicine, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH 43205, USA. .,Department of Surgery, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA.,Department of Surgery, Nationwide Children's Hospital, Columbus, OH 43205, USA
| |
Collapse
|
7
|
Cunnane EM, Lorentz KL, Soletti L, Ramaswamy AK, Chung TK, Haskett DG, Luketich SK, Tzeng E, D'Amore A, Wagner WR, Weinbaum JS, Vorp DA. Development of a Semi-Automated, Bulk Seeding Device for Large Animal Model Implantation of Tissue Engineered Vascular Grafts. Front Bioeng Biotechnol 2020; 8:597847. [PMID: 33195168 PMCID: PMC7644804 DOI: 10.3389/fbioe.2020.597847] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Accepted: 10/07/2020] [Indexed: 01/22/2023] Open
Abstract
Vascular tissue engineering is a field of regenerative medicine that restores tissue function to defective sections of the vascular network by bypass or replacement with a tubular, engineered graft. The tissue engineered vascular graft (TEVG) is comprised of a biodegradable scaffold, often combined with cells to prevent acute thrombosis and initiate scaffold remodeling. Cells are most effectively incorporated into scaffolds using bulk seeding techniques. While our group has been successful in uniform, rapid, bulk cell seeding of scaffolds for TEVG testing in small animals using our well-validated rotational vacuum technology, this approach was not directly translatable to large scaffolds, such as those required for large animal testing or human implants. The objective of this study was to develop and validate a semi-automated cell seeding device that allows for uniform, rapid, bulk seeding of large scaffolds for the fabrication of TEVGs appropriately sized for testing in large animals and eventual translation to humans. Validation of our device revealed successful seeding of cells throughout the length of our tubular scaffolds with homogenous longitudinal and circumferential cell distribution. To demonstrate the utility of this device, we implanted a cell seeded scaffold as a carotid interposition graft in a sheep model for 10 weeks. Graft remodeling was demonstrated upon explant analysis using histological staining and mechanical characterization. We conclude from this work that our semi-automated, rotational vacuum seeding device can successfully seed porous tubular scaffolds suitable for implantation in large animals and provides a platform that can be readily adapted for eventual human use.
Collapse
Affiliation(s)
- Eoghan M Cunnane
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, United States.,Tissue Engineering Research Group, Department of Anatomy, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Katherine L Lorentz
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, United States
| | - Lorenzo Soletti
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, United States
| | - Aneesh K Ramaswamy
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, United States
| | - Timothy K Chung
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, United States
| | - Darren G Haskett
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| | - Samuel K Luketich
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| | - Edith Tzeng
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA, United States
| | - Antonio D'Amore
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, United States.,RiMED Foundation, Palermo, Italy
| | - William R Wagner
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, United States.,McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, United States.,Department of Surgery, University of Pittsburgh, Pittsburgh, PA, United States.,Department of Chemical and Petroleum Engineering, University of Pittsburgh, Pittsburgh, PA, United States
| | - Justin S Weinbaum
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, United States.,McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, United States.,Department of Pathology, University of Pittsburgh, Pittsburgh, PA, United States
| | - David A Vorp
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, United States.,McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, United States.,Department of Surgery, University of Pittsburgh, Pittsburgh, PA, United States.,Department of Chemical and Petroleum Engineering, University of Pittsburgh, Pittsburgh, PA, United States.,Department of Cardiothoracic Surgery, University of Pittsburgh, Pittsburgh, PA, United States.,Clinical and Translational Sciences Institute, University of Pittsburgh, Pittsburgh, PA, United States
| |
Collapse
|
8
|
Zilla P, Deutsch M, Bezuidenhout D, Davies NH, Pennel T. Progressive Reinvention or Destination Lost? Half a Century of Cardiovascular Tissue Engineering. Front Cardiovasc Med 2020; 7:159. [PMID: 33033720 PMCID: PMC7509093 DOI: 10.3389/fcvm.2020.00159] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 07/28/2020] [Indexed: 12/19/2022] Open
Abstract
The concept of tissue engineering evolved long before the phrase was forged, driven by the thromboembolic complications associated with the early total artificial heart programs of the 1960s. Yet more than half a century of dedicated research has not fulfilled the promise of successful broad clinical implementation. A historical account outlines reasons for this scientific impasse. For one, there was a disconnect between distinct eras each characterized by different clinical needs and different advocates. Initiated by the pioneers of cardiac surgery attempting to create neointimas on total artificial hearts, tissue engineering became fashionable when vascular surgeons pursued the endothelialisation of vascular grafts in the late 1970s. A decade later, it were cardiac surgeons again who strived to improve the longevity of tissue heart valves, and lastly, cardiologists entered the fray pursuing myocardial regeneration. Each of these disciplines and eras started with immense enthusiasm but were only remotely aware of the preceding efforts. Over the decades, the growing complexity of cellular and molecular biology as well as polymer sciences have led to surgeons gradually being replaced by scientists as the champions of tissue engineering. Together with a widening chasm between clinical purpose, human pathobiology and laboratory-based solutions, clinical implementation increasingly faded away as the singular endpoint of all strategies. Moreover, a loss of insight into the healing of cardiovascular prostheses in humans resulted in the acceptance of misleading animal models compromising the translation from laboratory to clinical reality. This was most evident in vascular graft healing, where the two main impediments to the in-situ generation of functional tissue in humans remained unheeded–the trans-anastomotic outgrowth stoppage of endothelium and the build-up of an impenetrable surface thrombus. To overcome this dead-lock, research focus needs to shift from a biologically possible tissue regeneration response to one that is feasible at the intended site and in the intended host environment of patients. Equipped with an impressive toolbox of modern biomaterials and deep insight into cues for facilitated healing, reconnecting to the “user needs” of patients would bring one of the most exciting concepts of cardiovascular medicine closer to clinical reality.
Collapse
Affiliation(s)
- Peter Zilla
- Christiaan Barnard Division for Cardiothoracic Surgery, University of Cape Town, Cape Town, South Africa.,Cardiovascular Research Unit, University of Cape Town, Cape Town, South Africa
| | - Manfred Deutsch
- Karl Landsteiner Institute for Cardiovascular Surgical Research, Vienna, Austria
| | - Deon Bezuidenhout
- Cardiovascular Research Unit, University of Cape Town, Cape Town, South Africa
| | - Neil H Davies
- Cardiovascular Research Unit, University of Cape Town, Cape Town, South Africa
| | - Tim Pennel
- Christiaan Barnard Division for Cardiothoracic Surgery, University of Cape Town, Cape Town, South Africa
| |
Collapse
|
9
|
Ferrari MR, Di Maria MV, Jacot JG. Review on Mechanical Support and Cell-Based Therapies for the Prevention and Recovery of the Failed Fontan-Kreutzer Circulation. Front Pediatr 2020; 8:627660. [PMID: 33575233 PMCID: PMC7870783 DOI: 10.3389/fped.2020.627660] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 12/31/2020] [Indexed: 12/13/2022] Open
Abstract
Though the current staged surgical strategy for palliation of single ventricle heart disease, culminating in a Fontan circulation, has increased short-term survival, mounting evidence has shown that the single ventricle, especially a morphologic right ventricle (RV), is inadequate for long-term circulatory support. In addition to high rates of ventricular failure, high central venous pressures (CVP) lead to liver fibrosis or cirrhosis, lymphatic dysfunction, kidney failure, and other comorbidities. In this review, we discuss the complications seen with Fontan physiology, including causes of ventricular and multi-organ failure. We then evaluate the clinical use, results, and limitations of long-term mechanical assist devices intended to reduce RV work and high CVP, as well as biological therapies for failed Fontan circulations. Finally, we discuss experimental tissue engineering solutions designed to prevent Fontan circulation failure and evaluate knowledge gaps and needed technology development to realize a more robust single ventricle therapy.
Collapse
Affiliation(s)
- Margaret R Ferrari
- Department of Bioengineering, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Michael V Di Maria
- Division of Cardiology, Heart Institute, Children's Hospital Colorado, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Jeffrey G Jacot
- Department of Bioengineering, University of Colorado Anschutz Medical Campus, Aurora, CO, United States.,Department of Pediatrics, Children's Hospital Colorado, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| |
Collapse
|
10
|
Yeung E, Inoue T, Matsushita H, Opfermann J, Mass P, Aslan S, Johnson J, Nelson K, Kim B, Olivieri L, Krieger A, Hibino N. In vivo implantation of 3-dimensional printed customized branched tissue engineered vascular graft in a porcine model. J Thorac Cardiovasc Surg 2019; 159:1971-1981.e1. [PMID: 31864694 DOI: 10.1016/j.jtcvs.2019.09.138] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 09/15/2019] [Accepted: 09/16/2019] [Indexed: 01/22/2023]
Abstract
BACKGROUND The customized vascular graft offers the potential to simplify the surgical procedure, optimize physiological function, and reduce morbidity and mortality. This experiment evaluated the feasibility of a flow dynamic-optimized branched tissue engineered vascular graft (TEVG) customized based on medical imaging and manufactured by 3-dimensional (3D) printing for a porcine model. METHODS We acquired magnetic resonance angiography and 4-dimensional flow data for the native anatomy of the pigs (n = 2) to design a custom-made branched vascular graft of the pulmonary bifurcation. An optimal shape of the branched vascular graft was designed using a computer-aided design system informed by computational flow dynamics analysis. We manufactured and implanted the graft for pulmonary artery (PA) reconstruction in the porcine model. The graft was explanted at 4 weeks after implantation for further evaluation. RESULTS The custom-made branched PA graft had a wall shear stress and pressure drop (PD) from the main PA to the branch PA comparable to the native vessel. At the end point, magnetic resonance imaging revealed comparable left/right pulmonary blood flow balance. PD from main PA to branch between before and after the graft implantation was unchanged. Immunohistochemistry showed evidence of endothelization and smooth muscle layer formation without calcification of the graft. CONCLUSIONS Our animal model demonstrates the feasibility of designing and implanting image-guided, 3D-printed, customized grafts. These grafts can be designed to optimize both anatomic fit and hemodynamic properties. This study demonstrates the tremendous potential structural and physiological advantages of customized TEVGs in cardiac surgery.
Collapse
Affiliation(s)
- Enoch Yeung
- Division of Cardiac Surgery, Johns Hopkins Hospital, Baltimore, Md
| | - Takahiro Inoue
- Division of Cardiac Surgery, Johns Hopkins Hospital, Baltimore, Md
| | | | - Justin Opfermann
- Division of Cardiology, Children's National Medical Center, Washington, DC
| | - Paige Mass
- Division of Cardiology, Children's National Medical Center, Washington, DC
| | - Seda Aslan
- Department of Mechanical Engineering, University of Maryland, Baltimore, Md
| | | | | | - Byeol Kim
- Department of Mechanical Engineering, University of Maryland, Baltimore, Md
| | - Laura Olivieri
- Division of Cardiology, Children's National Medical Center, Washington, DC
| | - Axel Krieger
- Department of Mechanical Engineering, University of Maryland, Baltimore, Md
| | - Narutoshi Hibino
- Division of Cardiac Surgery, Johns Hopkins Hospital, Baltimore, Md; Department of Cardiac Surgery, University of Chicago/Advocate Children's Hospital, Chicago, Ill.
| |
Collapse
|
11
|
Reinhardt JW, Rosado JDDR, Barker JC, Lee YU, Best CA, Yi T, Zeng Q, Partida-Sanchez S, Shinoka T, Breuer CK. Early natural history of neotissue formation in tissue-engineered vascular grafts in a murine model. Regen Med 2019; 14:389-408. [PMID: 31180275 DOI: 10.2217/rme-2018-0133] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Aim: To characterize early events in neotissue formation during the first 2 weeks after vascular scaffold implantation. Materials & methods: Biodegradable polymeric scaffolds were implanted as abdominal inferior vena cava interposition grafts in wild-type mice. Results: All scaffolds explanted at day 1 contained a platelet-rich mural thrombus. Within the first few days, the majority of cell infiltration appeared to be from myeloid cells at the peritoneal surface with modest infiltration along the lumen. Host reaction to the graft was distinct between the scaffold and mural thrombus; the scaffold stimulated an escalating foreign body reaction, whereas the thrombus was quickly remodeled into collagen-rich neotissue. Conclusion: Mural thrombi remodel into neotissue that persistently occludes the lumen of vascular grafts.
Collapse
Affiliation(s)
- James W Reinhardt
- Center for Tissue Engineering, The Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH 43205, USA
| | - Juan de Dios Ruiz Rosado
- Center for Microbial Pathogenesis, The Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH 43205, USA
| | - Jenny C Barker
- Center for Tissue Engineering, The Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH 43205, USA
| | - Yong-Ung Lee
- Center for Tissue Engineering, The Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH 43205, USA
| | - Cameron A Best
- Center for Tissue Engineering, The Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH 43205, USA.,Biomedical Sciences Graduate Program, The Ohio State University College of Medicine, Columbus, OH 43210, USA
| | - Tai Yi
- Center for Tissue Engineering, The Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH 43205, USA
| | - Qiang Zeng
- Center for Tissue Engineering, The Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH 43205, USA
| | - Santiago Partida-Sanchez
- Center for Microbial Pathogenesis, The Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH 43205, USA
| | - Toshiharu Shinoka
- Center for Tissue Engineering, The Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH 43205, USA.,Department of Cardiothoracic Surgery, Nationwide Children's Hospital, Columbus, OH 43205, USA
| | - Christopher K Breuer
- Center for Tissue Engineering, The Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH 43205, USA.,Department of Surgery, Nationwide Children's Hospital, Columbus, OH 43205, USA
| |
Collapse
|
12
|
Colunga T, Hayworth M, Kreß S, Reynolds DM, Chen L, Nazor KL, Baur J, Singh AM, Loring JF, Metzger M, Dalton S. Human Pluripotent Stem Cell-Derived Multipotent Vascular Progenitors of the Mesothelium Lineage Have Utility in Tissue Engineering and Repair. Cell Rep 2019; 26:2566-2579.e10. [PMID: 30840882 PMCID: PMC6585464 DOI: 10.1016/j.celrep.2019.02.016] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Revised: 11/30/2018] [Accepted: 02/02/2019] [Indexed: 01/01/2023] Open
Abstract
In this report we describe a human pluripotent stem cell-derived vascular progenitor (MesoT) cell of the mesothelium lineage. MesoT cells are multipotent and generate smooth muscle cells, endothelial cells, and pericytes and self-assemble into vessel-like networks in vitro. MesoT cells transplanted into mechanically damaged neonatal mouse heart migrate into the injured tissue and contribute to nascent coronary vessels in the repair zone. When seeded onto decellularized vascular scaffolds, MesoT cells differentiate into the major vascular lineages and self-assemble into vasculature capable of supporting peripheral blood flow following transplantation. These findings demonstrate in vivo functionality and the potential utility of MesoT cells in vascular engineering applications.
Collapse
Affiliation(s)
- Thomas Colunga
- Department of Biochemistry and Molecular Biology and Center for Molecular Medicine, University of Georgia, 325 Riverbend Road, Athens, GA 30605, USA
| | - Miranda Hayworth
- Department of Biochemistry and Molecular Biology and Center for Molecular Medicine, University of Georgia, 325 Riverbend Road, Athens, GA 30605, USA
| | - Sebastian Kreß
- Department of Tissue Engineering & Regenerative Medicine, University Hospital Würzburg, 97070 Würzburg, Germany
| | - David M Reynolds
- Department of Biochemistry and Molecular Biology and Center for Molecular Medicine, University of Georgia, 325 Riverbend Road, Athens, GA 30605, USA
| | - Luoman Chen
- Department of Biochemistry and Molecular Biology and Center for Molecular Medicine, University of Georgia, 325 Riverbend Road, Athens, GA 30605, USA
| | - Kristopher L Nazor
- The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Johannes Baur
- Department of General, Visceral, Vascular and Pediatric Surgery, University Hospital of Würzburg, 97080 Würzburg, Germany
| | - Amar M Singh
- Department of Biochemistry and Molecular Biology and Center for Molecular Medicine, University of Georgia, 325 Riverbend Road, Athens, GA 30605, USA
| | - Jeanne F Loring
- The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Marco Metzger
- Translational Centre for Regenerative Therapies TLZ-RT, Fraunhofer Institute for Silicate Research ISC, Röntgenring 11, 97070 Würzburg, Germany
| | - Stephen Dalton
- Department of Biochemistry and Molecular Biology and Center for Molecular Medicine, University of Georgia, 325 Riverbend Road, Athens, GA 30605, USA.
| |
Collapse
|
13
|
Abstract
The broad clinical use of synthetic vascular grafts for vascular diseases is limited by their thrombogenicity and low patency rate, especially for vessels with a diameter inferior to 6 mm. Alternatives such as tissue-engineered vascular grafts (TEVGs), have gained increasing interest. Among the different manufacturing approaches, 3D bioprinting presents numerous advantages and enables the fabrication of multi-scale, multi-material, and multicellular tissues with heterogeneous and functional intrinsic structures. Extrusion-, inkjet- and light-based 3D printing techniques have been used for the fabrication of TEVG out of hydrogels, cells, and/or solid polymers. This review discusses the state-of-the-art research on the use of 3D printing for TEVG with a focus on the biomaterials and deposition methods.
Collapse
|
14
|
Stacy MR, Best CA, Maxfield MW, Qiu M, Naito Y, Kurobe H, Mahler N, Rocco KA, Sinusas AJ, Shinoka T, Sampath S, Breuer CK. Magnetic Resonance Imaging of Shear Stress and Wall Thickness in Tissue-Engineered Vascular Grafts. Tissue Eng Part C Methods 2018; 24:465-473. [PMID: 29978768 DOI: 10.1089/ten.tec.2018.0144] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
OBJECTIVES Tissue-engineered vascular grafts (TEVGs) have demonstrated potential for treating congenital heart disease (CHD); however, quantitative imaging for tracking functional and structural remodeling of TEVGs has not been applied. Therefore, we evaluated the potential of magnetic resonance (MR) imaging for assessing TEVG wall shear stress (WSS) and wall thickness in a large animal model. METHODS Cell-seeded (n = 3) or unseeded (n = 3) TEVGs were implanted as inferior vena cava interposition grafts in juvenile lambs. Six months following implantation, two-dimensional phase-contrast MR imaging was performed at 3 slice locations (proximal, middle, and distal) to assess normalized WSS (i.e., WSS-to-cross sectional area). T2-weighted MR imaging was performed to assess TEVG wall thickness. Histology was qualitatively assessed, whereas immunohistochemistry was semiquantitatively assessed for smooth muscle cells (αSMA), macrophage lineage cells (CD11b), and matrix metalloproteinase activity (MMP-2 and MMP-9). Picrosirius Red staining was performed to quantify collagen content. RESULTS TEVG wall thickness was significantly higher for proximal, middle, and distal slices in unseeded versus cell-seeded grafts. Significantly higher WSS values existed for proximal versus distal slice locations for cell-seeded TEVGs, whereas no differences in WSS existed between slices for unseeded TEVGs. Additionally, no differences in WSS existed between cell-seeded and unseeded groups. Both groups demonstrated elastin formation, without vascular calcification. Unseeded TEVGs possessed greater content of smooth muscle cells when compared with cell-seeded TEVGs. No differences in macrophage, MMP activity, or collagen content existed between groups. CONCLUSION MR imaging allows for in vivo assessment of functional and anatomical characteristics of TEVGs and may provide a nonionizing approach that is clinically translatable to children undergoing treatment for CHD.
Collapse
Affiliation(s)
- Mitchel R Stacy
- 1 Department of Internal Medicine, Yale University School of Medicine , New Haven, Connecticut.,2 Center for Regenerative Medicine, The Research Institute at Nationwide Children's Hospital , Columbus, Ohio
| | - Cameron A Best
- 2 Center for Regenerative Medicine, The Research Institute at Nationwide Children's Hospital , Columbus, Ohio
| | - Mark W Maxfield
- 3 Department of Surgery, Yale University School of Medicine , New Haven, Connecticut
| | - Maolin Qiu
- 4 Department of Radiology & Biomedical Imaging, Yale University School of Medicine , New Haven, Connecticut
| | - Yuji Naito
- 3 Department of Surgery, Yale University School of Medicine , New Haven, Connecticut
| | - Hirotsugu Kurobe
- 3 Department of Surgery, Yale University School of Medicine , New Haven, Connecticut
| | - Nathan Mahler
- 2 Center for Regenerative Medicine, The Research Institute at Nationwide Children's Hospital , Columbus, Ohio
| | - Kevin A Rocco
- 5 Department of Biomedical Engineering, Yale University , New Haven, Connecticut
| | - Albert J Sinusas
- 1 Department of Internal Medicine, Yale University School of Medicine , New Haven, Connecticut.,4 Department of Radiology & Biomedical Imaging, Yale University School of Medicine , New Haven, Connecticut
| | - Toshiharu Shinoka
- 2 Center for Regenerative Medicine, The Research Institute at Nationwide Children's Hospital , Columbus, Ohio
| | - Smita Sampath
- 4 Department of Radiology & Biomedical Imaging, Yale University School of Medicine , New Haven, Connecticut
| | - Christopher K Breuer
- 2 Center for Regenerative Medicine, The Research Institute at Nationwide Children's Hospital , Columbus, Ohio
| |
Collapse
|
15
|
Cunnane EM, Weinbaum JS, O'Brien FJ, Vorp DA. Future Perspectives on the Role of Stem Cells and Extracellular Vesicles in Vascular Tissue Regeneration. Front Cardiovasc Med 2018; 5:86. [PMID: 30018970 PMCID: PMC6037696 DOI: 10.3389/fcvm.2018.00086] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Accepted: 06/13/2018] [Indexed: 02/06/2023] Open
Abstract
Vascular tissue engineering is an area of regenerative medicine that attempts to create functional replacement tissue for defective segments of the vascular network. One approach to vascular tissue engineering utilizes seeding of biodegradable tubular scaffolds with stem (and/or progenitor) cells wherein the seeded cells initiate scaffold remodeling and prevent thrombosis through paracrine signaling to endogenous cells. Stem cells have received an abundance of attention in recent literature regarding the mechanism of their paracrine therapeutic effect. However, very little of this mechanistic research has been performed under the aegis of vascular tissue engineering. Therefore, the scope of this review includes the current state of TEVGs generated using the incorporation of stem cells in biodegradable scaffolds and potential cell-free directions for TEVGs based on stem cell secreted products. The current generation of stem cell-seeded vascular scaffolds are based on the premise that cells should be obtained from an autologous source. However, the reduced regenerative capacity of stem cells from certain patient groups limits the therapeutic potential of an autologous approach. This limitation prompts the need to investigate allogeneic stem cells or stem cell secreted products as therapeutic bases for TEVGs. The role of stem cell derived products, particularly extracellular vesicles (EVs), in vascular tissue engineering is exciting due to their potential use as a cell-free therapeutic base. EVs offer many benefits as a therapeutic base for functionalizing vascular scaffolds such as cell specific targeting, physiological delivery of cargo to target cells, reduced immunogenicity, and stability under physiological conditions. However, a number of points must be addressed prior to the effective translation of TEVG technologies that incorporate stem cell derived EVs such as standardizing stem cell culture conditions, EV isolation, scaffold functionalization with EVs, and establishing the therapeutic benefit of this combination treatment.
Collapse
Affiliation(s)
- Eoghan M Cunnane
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, United States.,McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, United States.,Tissue Engineering Research Group, Department of Anatomy, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Justin S Weinbaum
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, United States.,McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, United States.,Department of Pathology, University of Pittsburgh, Pittsburgh, PA, United States
| | - Fergal J O'Brien
- Tissue Engineering Research Group, Department of Anatomy, Royal College of Surgeons in Ireland, Dublin, Ireland.,Trinity Centre for Bioengineering, Trinity College Dublin, Dublin, Ireland.,Advanced Materials and Bioengineering Research Centre, Royal College of Surgeons in Ireland and Trinity College Dublin, Dublin, Ireland
| | - David A Vorp
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, United States.,McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, United States.,Department of Surgery, University of Pittsburgh, Pittsburgh, PA, United States.,Department of Cardiothoracic Surgery, University of Pittsburgh, Pittsburgh, PA, United States.,Department of Chemical and Petroleum Engineering, University of Pittsburgh, Pittsburgh, PA, United States
| |
Collapse
|
16
|
Best C, Strouse R, Hor K, Pepper V, Tipton A, Kelly J, Shinoka T, Breuer C. Toward a patient-specific tissue engineered vascular graft. J Tissue Eng 2018; 9:2041731418764709. [PMID: 29568478 PMCID: PMC5858675 DOI: 10.1177/2041731418764709] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Accepted: 02/20/2018] [Indexed: 12/15/2022] Open
Abstract
Integrating three-dimensional printing with the creation of tissue-engineered vascular grafts could provide a readily available, patient-specific, autologous tissue source that could significantly improve outcomes in newborns with congenital heart disease. Here, we present the recent case of a candidate for our tissue-engineered vascular graft clinical trial deemed ineligible due to complex anatomical requirements and consider the application of three-dimensional printing technologies for a patient-specific graft. We 3D-printed a closed-disposable seeding device and validated that it performed equivalently to the traditional open seeding technique using ovine bone marrow–derived mononuclear cells. Next, our candidate’s preoperative imaging was reviewed to propose a patient-specific graft. A seeding apparatus was then designed to accommodate the custom graft and 3D-printed on a commodity fused deposition modeler. This exploratory feasibility study represents an important proof of concept advancing progress toward a rationally designed patient-specific tissue-engineered vascular graft for clinical application.
Collapse
Affiliation(s)
- Cameron Best
- Center for Regenerative Medicine, The Research Institute, Nationwide Children's Hospital, Columbus, OH, USA.,Biomedical Sciences Graduate Program, The Ohio State University College of Medicine, Columbus, OH, USA
| | - Robert Strouse
- Research Innovation and Solutions, The Research Institute, Nationwide Children's Hospital, Columbus, OH, USA
| | - Kan Hor
- Department of Cardiology, The Heart Center, Nationwide Children's Hospital, Columbus, OH, USA
| | - Victoria Pepper
- Center for Regenerative Medicine, The Research Institute, Nationwide Children's Hospital, Columbus, OH, USA.,Department of Surgery, Nationwide Children's Hospital, Columbus, OH, USA
| | - Amy Tipton
- Advanced Cardiac Imaging Laboratory, The Heart Center, Nationwide Children's Hospital, Columbus, OH, USA
| | - John Kelly
- Center for Regenerative Medicine, The Research Institute, Nationwide Children's Hospital, Columbus, OH, USA.,Department of Cardiology, The Heart Center, Nationwide Children's Hospital, Columbus, OH, USA
| | - Toshiharu Shinoka
- Center for Regenerative Medicine, The Research Institute, Nationwide Children's Hospital, Columbus, OH, USA.,Department of Cardiothoracic Surgery, The Heart Center, Nationwide Children's Hospital, Columbus, OH, USA
| | - Christopher Breuer
- Center for Regenerative Medicine, The Research Institute, Nationwide Children's Hospital, Columbus, OH, USA.,Department of Surgery, Nationwide Children's Hospital, Columbus, OH, USA
| |
Collapse
|
17
|
Sugiura T, Matsumura G, Miyamoto S, Miyachi H, Breuer CK, Shinoka T. Tissue-engineered Vascular Grafts in Children With Congenital Heart Disease: Intermediate Term Follow-up. Semin Thorac Cardiovasc Surg 2018; 30:175-179. [PMID: 29427773 DOI: 10.1053/j.semtcvs.2018.02.002] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/01/2018] [Indexed: 01/22/2023]
Abstract
Tissue engineering holds great promise for the advancement of cardiovascular surgery as well as other medical fields. Tissue-engineered vascular grafts have the ability to grow and remodel and could therefore make great advances for pediatric cardiovascular surgery. In 2001, we began a human clinical trial evaluating these grafts in patients with a univentricular physiology. Herein, we report the long-term results of patients who underwent implantation of tissue-engineered vascular grafts as extracardiac total cavopulmonary conduits. Tissue-engineered vascular grafts seeded with autologous bone marrow mononuclear cells were implanted in 25 patients with univentricular physiology. The graft is composed of a woven fabric of poly-l-lactide acid or polyglycolic acid and a 50:50 poly (l-lactic-co-ε-caprolactone) copolymer. Patients were followed up with postoperatively in a multidisciplinary clinic. Median patient age at operation was 5.5 years and the mean follow-up period was 11.1 years. There was no graft-related mortality during the follow-up period. There was also no evidence of aneurysmal formation, graft rupture, graft infection, or calcification. Seven (28%) patients had asymptomatic graft stenosis and underwent successful balloon angioplasty. Stenosis is the primary complication of the tissue-engineered vascular graft. Avoidance of anticoagulation therapy would improve patients' quality of life. Tissue-engineered vascular grafts have feasibility in pediatric cardiovascular surgery.
Collapse
Affiliation(s)
- Tadahisa Sugiura
- Tissue Engineering Program and Surgical Research, Nationwide Children's Hospital, Columbus, Ohio
| | - Goki Matsumura
- Department of Cardiovascular Surgery, Tokyo Women's Medical University, Tokyo, Japan
| | - Shinka Miyamoto
- Tissue Engineering Program and Surgical Research, Nationwide Children's Hospital, Columbus, Ohio
| | - Hideki Miyachi
- Tissue Engineering Program and Surgical Research, Nationwide Children's Hospital, Columbus, Ohio
| | - Christopher K Breuer
- Tissue Engineering Program and Surgical Research, Nationwide Children's Hospital, Columbus, Ohio
| | - Toshiharu Shinoka
- Tissue Engineering Program and Surgical Research, Nationwide Children's Hospital, Columbus, Ohio; Department of Cardiothoracic Surgery, The Heart Center, Nationwide Children's Hospital, Columbus, Ohio.
| |
Collapse
|
18
|
Soynov IA, Zhuravleva IY, Kulyabin YY, Nichay NR, Afanasyev AV, Aleshkevich NP, Bogachev-Prokofiev AV, Karaskov AM. [Valved conduits in pediatric cardiac surgery]. Khirurgiia (Mosk) 2018:75-81. [PMID: 29376963 DOI: 10.17116/hirurgia2018175-81] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Affiliation(s)
- I A Soynov
- Meshalkin Siberian Federal Biomedical Research Center of Healthcare Ministry of the Russian Federation, Novosibirsk, Russia
| | - I Yu Zhuravleva
- Meshalkin Siberian Federal Biomedical Research Center of Healthcare Ministry of the Russian Federation, Novosibirsk, Russia
| | - Yu Yu Kulyabin
- Meshalkin Siberian Federal Biomedical Research Center of Healthcare Ministry of the Russian Federation, Novosibirsk, Russia
| | - N R Nichay
- Meshalkin Siberian Federal Biomedical Research Center of Healthcare Ministry of the Russian Federation, Novosibirsk, Russia
| | - A V Afanasyev
- Meshalkin Siberian Federal Biomedical Research Center of Healthcare Ministry of the Russian Federation, Novosibirsk, Russia
| | - N P Aleshkevich
- Meshalkin Siberian Federal Biomedical Research Center of Healthcare Ministry of the Russian Federation, Novosibirsk, Russia
| | - A V Bogachev-Prokofiev
- Meshalkin Siberian Federal Biomedical Research Center of Healthcare Ministry of the Russian Federation, Novosibirsk, Russia
| | - A M Karaskov
- Meshalkin Siberian Federal Biomedical Research Center of Healthcare Ministry of the Russian Federation, Novosibirsk, Russia
| |
Collapse
|
19
|
Improving in vivo outcomes of decellularized vascular grafts via incorporation of a novel extracellular matrix. Biomaterials 2017; 141:63-73. [PMID: 28667900 DOI: 10.1016/j.biomaterials.2017.06.025] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Revised: 06/19/2017] [Accepted: 06/19/2017] [Indexed: 12/30/2022]
Abstract
Each year, hundreds of thousands coronary bypass procedures are performed in the US, yet there currently exists no off-the-shelf alternative to autologous vessel transplant. In the present study, we investigated the use of mouse thrombospondin-2 knockout (TSP2 KO) cells, which secrete a non-thrombogenic and pro-migratory extracellular matrix (TSP2 KO ECM), to modify small diameter vascular grafts. To accomplish this, we first optimized the incorporation of TSP2 KO ECM on decellularized rat aortas. Because MMP levels are known to be elevated in TSP2 KO cell culture, it was necessary to probe the effect of the modification process on the graft's mechanical properties. However, no differences were found in suture retention, Young's modulus, or ultimate tensile strength between modified and unmodified grafts. Platelet studies were then performed to determine the time point at which the TSP2 KO ECM sufficiently reduced thrombogenicity. Finally, grafts modified by either TSP2 KO or WT cells or unmodified grafts, were implanted in an abdominal aortic interposition model in rats. After 4 weeks, grafts with incorporated TSP2 KO ECM showed improved endothelial and mural cell recruitment, and a decreased failure rate compared to control grafts. Therefore, our studies show that TSP2 KO ECM could enable the production of off-the-shelf vascular grafts while promoting reconstruction of native vessels.
Collapse
|
20
|
Drews JD, Miyachi H, Shinoka T. Tissue-engineered vascular grafts for congenital cardiac disease: Clinical experience and current status. Trends Cardiovasc Med 2017; 27:521-531. [PMID: 28754230 DOI: 10.1016/j.tcm.2017.06.013] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Revised: 06/09/2017] [Accepted: 06/14/2017] [Indexed: 01/22/2023]
Abstract
Congenital heart disease is a leading cause of death in the newborn period, and man-made grafts currently used for reconstruction are associated with multiple complications. Tissue engineering can provide an alternative source of vascular tissue in congenital cardiac surgery. Clinical trials have been successful overall, but the most frequent complication is graft stenosis. Recent studies in animal models have indicated the important role of the recipient׳s immune response in neotissue formation, and that modulating the immune response can reduce the incidence of stenosis.
Collapse
Affiliation(s)
- Joseph D Drews
- Department of Surgery, The Ohio State University Wexner Medical Center, Columbus, OH; Tissue Engineering Program, The Heart Center, Nationwide Children׳s Hospital, Columbus, OH
| | - Hideki Miyachi
- Tissue Engineering Program, The Heart Center, Nationwide Children׳s Hospital, Columbus, OH; Department of Cardiovascular Medicine, Nippon Medical School Hospital, Tokyo, Japan
| | - Toshiharu Shinoka
- Department of Surgery, The Ohio State University Wexner Medical Center, Columbus, OH; Tissue Engineering Program, The Heart Center, Nationwide Children׳s Hospital, Columbus, OH.
| |
Collapse
|
21
|
Fukunishi T, Best CA, Ong CS, Groehl T, Reinhardt J, Yi T, Miyachi H, Zhang H, Shinoka T, Breuer CK, Johnson J, Hibino N. Role of Bone Marrow Mononuclear Cell Seeding for Nanofiber Vascular Grafts. Tissue Eng Part A 2017; 24:135-144. [PMID: 28486019 DOI: 10.1089/ten.tea.2017.0044] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
OBJECTIVE Electrospinning is a promising technology that provides biodegradable nanofiber scaffolds for cardiovascular tissue engineering. However, success with these materials has been limited, and the optimal combination of scaffold parameters for a tissue-engineered vascular graft (TEVG) remains elusive. The purpose of the present study is to evaluate the effect of bone marrow mononuclear cell (BM-MNC) seeding in electrospun scaffolds to support the rational design of optimized TEVGs. METHODS Nanofiber scaffolds were fabricated from co-electrospinning a solution of polyglycolic acid and a solution of poly(ι-lactide-co-ɛ-caprolactone) and characterized with scanning electron microscopy. Platelet activation and cell seeding efficiency were assessed by ATP secretion and DNA assays, respectively. Cell-free and BM-MNC seeded scaffolds were implanted in C57BL/6 mice (n = 15/group) as infrarenal inferior vena cava (IVC) interposition conduits. Animals were followed with serial ultrasonography for 6 months, after which grafts were harvested for evaluation of patency and neotissue formation by histology and immunohistochemistry (n = 10/group) and PCR (n = 5/group) analyses. RESULTS BM-MNC seeding of electrospun scaffolds prevented stenosis compared with unseeded scaffolds (seeded: 9/10 patent vs. unseeded: 1/10 patent, p = 0.0003). Seeded vascular grafts demonstrated concentric laminated smooth muscle cells, a confluent endothelial monolayer, and a collagen-rich extracellular matrix. Platelet-derived ATP, a marker of platelet activation, was significantly reduced after incubating thrombin-activated platelets in the presence of seeded scaffolds compared with unseeded scaffolds (p < 0.0001). In addition, reduced macrophage infiltration and a higher M2 macrophage percentage were observed in seeded grafts. CONCLUSIONS The beneficial effects of BM-MNC seeding apply to electrospun TEVG scaffolds by attenuating stenosis through the regulation of platelet activation and inflammatory macrophage function, leading to well-organized neotissue formation. BM-MNC seeding is a valuable technique that can be used in the rational design of optimal TEVG scaffolds.
Collapse
Affiliation(s)
- Takuma Fukunishi
- 1 Department of Cardiac Surgery, Johns Hopkins University , Baltimore, Maryland
| | - Cameron A Best
- 2 Tissue Engineering and Surgical Research, Nationwide Children's Hospital , Columbus, Ohio
| | - Chin Siang Ong
- 1 Department of Cardiac Surgery, Johns Hopkins University , Baltimore, Maryland
| | | | - James Reinhardt
- 2 Tissue Engineering and Surgical Research, Nationwide Children's Hospital , Columbus, Ohio
| | - Tai Yi
- 2 Tissue Engineering and Surgical Research, Nationwide Children's Hospital , Columbus, Ohio
| | - Hideki Miyachi
- 2 Tissue Engineering and Surgical Research, Nationwide Children's Hospital , Columbus, Ohio
| | - Huaitao Zhang
- 1 Department of Cardiac Surgery, Johns Hopkins University , Baltimore, Maryland
| | - Toshiharu Shinoka
- 2 Tissue Engineering and Surgical Research, Nationwide Children's Hospital , Columbus, Ohio
| | - Christopher K Breuer
- 2 Tissue Engineering and Surgical Research, Nationwide Children's Hospital , Columbus, Ohio
| | - Jed Johnson
- 3 Nanofiber Solutions, Inc. , Columbus, Ohio
| | - Narutoshi Hibino
- 1 Department of Cardiac Surgery, Johns Hopkins University , Baltimore, Maryland
| |
Collapse
|
22
|
Shinoka T. What is the best material for extracardiac Fontan operation? J Thorac Cardiovasc Surg 2017; 153:1551-1552. [DOI: 10.1016/j.jtcvs.2017.02.023] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Accepted: 02/14/2017] [Indexed: 11/25/2022]
|
23
|
Onwuka E, Best C, Sawyer A, Yi T, Heuer E, Sams M, Wiet M, Zheng H, Kyriakides T, Breuer C. The role of myeloid cell-derived PDGF-B in neotissue formation in a tissue-engineered vascular graft. Regen Med 2017; 12:249-261. [PMID: 28524773 DOI: 10.2217/rme-2016-0141] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
AIM Inflammatory myeloid lineage cells mediate neotissue formation in tissue-engineered vascular grafts, but the molecular mechanism is not completely understood. We examined the role of vasculogenic PDGF-B in tissue-engineered vascular graft neotissue development. MATERIALS & METHODS Myeloid cell-specific PDGF-B knockout mice (PDGF-KO) were generated using bone marrow transplantation, and scaffolds were implanted as inferior vena cava interposition grafts in either PDGF-KO or wild-type mice. RESULTS After 2 weeks, grafts from PDGF-KO mice had more remaining scaffold polymer and less intimal neotissue development. Increased macrophage apoptosis, decreased smooth muscle cell proliferation and decreased collagen content was also observed. CONCLUSION Myeloid cell-derived PDGF contributes to vascular neotissue formation by regulating macrophage apoptosis, smooth muscle cell proliferation and extracellular matrix deposition.
Collapse
Affiliation(s)
- Ekene Onwuka
- Tissue Engineering & Surgical Research, The Research Institute at Nationwide Children's Hospital, Columbus, OH, USA.,Department of Surgery, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Cameron Best
- Tissue Engineering & Surgical Research, The Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
| | - Andrew Sawyer
- Vascular Biology & Therapeutics, Yale School of Medicine, New Haven, CT, USA.,Department of Pathology, Yale School of Medicine, New Haven, CT, USA
| | - Tai Yi
- Tissue Engineering & Surgical Research, The Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
| | - Eric Heuer
- Tissue Engineering & Surgical Research, The Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
| | - Malik Sams
- Tissue Engineering & Surgical Research, The Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
| | - Matthew Wiet
- Tissue Engineering & Surgical Research, The Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
| | - Hong Zheng
- Tissue Engineering & Surgical Research, The Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
| | - Themis Kyriakides
- Vascular Biology & Therapeutics, Yale School of Medicine, New Haven, CT, USA.,Department of Pathology, Yale School of Medicine, New Haven, CT, USA
| | - Christopher Breuer
- Tissue Engineering & Surgical Research, The Research Institute at Nationwide Children's Hospital, Columbus, OH, USA.,Department of Surgery, The Ohio State University Wexner Medical Center, Columbus, OH, USA.,Department of Pediatric Surgery, Nationwide Children's Hospital, Columbus, OH, USA
| |
Collapse
|
24
|
Ong CS, Zhou X, Huang CY, Fukunishi T, Zhang H, Hibino N. Tissue engineered vascular grafts: current state of the field. Expert Rev Med Devices 2017; 14:383-392. [PMID: 28447487 DOI: 10.1080/17434440.2017.1324293] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
INTRODUCTION Conventional synthetic vascular grafts are limited by the inability to remodel, as well as issues of patency at smaller diameters. Tissue-engineered vascular grafts (TEVGs), constructed from biologically active cells and biodegradable scaffolds have the potential to overcome these limitations, and provide growth capacity and self-repair. Areas covered: This article outlines the TEVG design, biodegradable scaffolds, TEVG fabrication methods, cell seeding, drug delivery, strategies to reduce wait times, clinical trials, as well as a 5-year view with expert commentary. Expert commentary: TEVG technology has progressed significantly with advances in scaffold material and design, graft design, cell seeding and drug delivery. Strategies have been put in place to reduce wait times and improve 'off-the-shelf' capability of TEVGs. More recently, clinical trials have been conducted to investigate the clinical applications of TEVGs.
Collapse
Affiliation(s)
- Chin Siang Ong
- a Division of Cardiac Surgery , Johns Hopkins Hospital , Baltimore , MD , USA
| | - Xun Zhou
- a Division of Cardiac Surgery , Johns Hopkins Hospital , Baltimore , MD , USA
| | - Chen Yu Huang
- b Department of Physics & Astronomy , Johns Hopkins University , Baltimore , MD , USA
| | - Takuma Fukunishi
- a Division of Cardiac Surgery , Johns Hopkins Hospital , Baltimore , MD , USA
| | - Huaitao Zhang
- a Division of Cardiac Surgery , Johns Hopkins Hospital , Baltimore , MD , USA
| | - Narutoshi Hibino
- a Division of Cardiac Surgery , Johns Hopkins Hospital , Baltimore , MD , USA
| |
Collapse
|
25
|
Best C, Tara S, Wiet M, Reinhardt J, Pepper V, Ball M, Yi T, Shinoka T, Breuer C. Deconstructing the Tissue Engineered Vascular Graft: Evaluating Scaffold Pre-Wetting, Conditioned Media Incubation, and Determining the Optimal Mononuclear Cell Source. ACS Biomater Sci Eng 2016; 3:1972-1979. [PMID: 29226239 DOI: 10.1021/acsbiomaterials.6b00123] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Stenosis limits widespread use of tissue-engineered vascular grafts (TEVGs), and bone marrow mononuclear cell (BM-MNC) seeding attenuates this complication. Yet seeding is a multistep process, and the singular effects of each component are unknown. We investigated which components of the clinical seeding protocol confer graft patency and sought to identify the optimal MNC source. Scaffolds composed of polyglycolic acid and ε-caprolactone/ι-lactic acid underwent conditioned media (CM) incubation (n = 25) and syngeneic BM-MNC (n = 9) or peripheral blood (PB)-MNC (n = 20) seeding. TEVGs were implanted for 2 weeks in the mouse IVC. CM incubation and PB-MNC seeding did not increase graft patency compared to control scaffolds prewet with PBS (n = 10), while BM-MNC seeding reduced stenosis by suppressing inflammation and smooth muscle cell, myofibroblast, and pericyte proliferation. IL-1β, IL-6, and TNFα were elevated in the seeded BM-MNC supernatant. Further, BM-MNC seeding reduced platelet activation in a dose-dependent manner, possibly contributing to TEVG patency.
Collapse
Affiliation(s)
- Cameron Best
- Tissue Engineering and Surgical Research, The Research Institute at Nationwide Children's Hospital, Columbus, Ohio, United States
| | - Shuhei Tara
- Tissue Engineering and Surgical Research, The Research Institute at Nationwide Children's Hospital, Columbus, Ohio, United States.,Department of Cardiovascular Medicine, Nippon Medical School, 1-1-5 Sendagi Bunkyo-ku, Tokyo, Japan
| | - Matthew Wiet
- Tissue Engineering and Surgical Research, The Research Institute at Nationwide Children's Hospital, Columbus, Ohio, United States.,Department of Biomedical Engineering, College of Engineering, The Ohio State University, Columbus, Ohio, United States
| | - James Reinhardt
- Tissue Engineering and Surgical Research, The Research Institute at Nationwide Children's Hospital, Columbus, Ohio, United States
| | - Victoria Pepper
- Tissue Engineering and Surgical Research, The Research Institute at Nationwide Children's Hospital, Columbus, Ohio, United States.,Department of Surgery, Nationwide Children's Hospital, Columbus, Ohio, United States
| | - Matthew Ball
- Department of Pathology, The Ohio State University College of Medicine, Columbus, Ohio, United States
| | - Tai Yi
- Tissue Engineering and Surgical Research, The Research Institute at Nationwide Children's Hospital, Columbus, Ohio, United States
| | - Toshiharu Shinoka
- Tissue Engineering and Surgical Research, The Research Institute at Nationwide Children's Hospital, Columbus, Ohio, United States.,Department of Cardiothoracic Surgery, Nationwide Children's Hospital, Columbus, Ohio, United States
| | - Christopher Breuer
- Tissue Engineering and Surgical Research, The Research Institute at Nationwide Children's Hospital, Columbus, Ohio, United States.,Department of Surgery, Nationwide Children's Hospital, Columbus, Ohio, United States
| |
Collapse
|