1
|
Cieśla J, Tomsia M. Differentiation of stem cells into chondrocytes and their potential clinical application in cartilage regeneration. Histochem Cell Biol 2025; 163:27. [PMID: 39863760 DOI: 10.1007/s00418-025-02356-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/10/2025] [Indexed: 01/27/2025]
Abstract
Cartilage diseases and injuries are considered difficult to treat owing to the low regenerative capacity of this tissue. Using stem cells (SCs) is one of the potential methods of treating cartilage defects and creating functional cartilage models for transplants. Their ability to proliferate and to generate functional chondrocytes, a natural tissue environment, and extracellular cartilage matrix, makes SCs a new opportunity for patients with articular injuries or incurable diseases, such as osteoarthritis (OA). The review summarizes the most important scientific reports on biology and mechanisms of SC-derived chondrogenesis and sources of SCs for chondrogenic purposes. Additionally, it focuses on the genetic mechanisms, microRNA (miRNA) regulation, and epigenetic processes steering the chondrogenic differentiation of SCs. It also describes the attempts to create functional cartilage with tissue engineering using growth factors and scaffolds. Finally, it presents the challenges that researchers will have to face in the future to effectuate SC differentiation methods into clinical practice for treating cartilage diseases.
Collapse
Affiliation(s)
- Julia Cieśla
- School of Medicine in Katowice, Medical University of Silesia, 18 Medyków Street, 40-752, Katowice, Poland
| | - Marcin Tomsia
- Department of Forensic Medicine and Forensic Toxicology, Medical University of Silesia, 18 Medyków Street, 40-752, Katowice, Poland.
| |
Collapse
|
2
|
Owaidah A. Induced pluripotent stem cells in cartilage tissue engineering: a literature review. Biosci Rep 2024; 44:BSR20232102. [PMID: 38563479 PMCID: PMC11088306 DOI: 10.1042/bsr20232102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 03/26/2024] [Accepted: 03/28/2024] [Indexed: 04/04/2024] Open
Abstract
Osteoarthritis (OA) is a long-term, persistent joint disorder characterized by bone and cartilage degradation, resulting in tightness, pain, and restricted movement. Current attempts in cartilage regeneration are cell-based therapies using stem cells. Multipotent stem cells, such as mesenchymal stem cells (MSCs), and pluripotent stem cells, such as embryonic stem cells (ESCs), have been used to regenerate cartilage. However, since the discovery of human-induced pluripotent stem cells (hiPSCs) in 2007, it was seen as a potential source for regenerative chondrogenic therapy as it overcomes the ethical issues surrounding the use of ESCs and the immunological and differentiation limitations of MSCs. This literature review focuses on chondrogenic differentiation and 3D bioprinting technologies using hiPSCS, suggesting them as a viable source for successful tissue engineering. METHODS A literature search was conducted using scientific search engines, PubMed, MEDLINE, and Google Scholar databases with the terms 'Cartilage tissue engineering' and 'stem cells' to retrieve published literature on chondrogenic differentiation and tissue engineering using MSCs, ESCs, and hiPSCs. RESULTS hiPSCs may provide an effective and autologous treatment for focal chondral lesions, though further research is needed to explore the potential of such technologies. CONCLUSIONS This review has provided a comprehensive overview of these technologies and the potential applications for hiPSCs in regenerative medicine.
Collapse
Affiliation(s)
- Amani Y. Owaidah
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| |
Collapse
|
3
|
Eremeev A, Pikina A, Ruchko Y, Bogomazova A. Clinical Potential of Cellular Material Sources in the Generation of iPSC-Based Products for the Regeneration of Articular Cartilage. Int J Mol Sci 2023; 24:14408. [PMID: 37833856 PMCID: PMC10572671 DOI: 10.3390/ijms241914408] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 09/06/2023] [Accepted: 09/06/2023] [Indexed: 10/15/2023] Open
Abstract
Inflammatory joint diseases, among which osteoarthritis and rheumatoid arthritis are the most common, are characterized by progressive degeneration of the cartilage tissue, resulting in the threat of limited or lost joint functionality in the absence of treatment. Currently, treating these diseases is difficult, and a number of existing treatment and prevention measures are not entirely effective and are complicated by the patients' conditions, the multifactorial nature of the pathology, and an incomplete understanding of the etiology. Cellular technologies based on induced pluripotent stem cells (iPSCs) can provide a vast cellular resource for the production of artificial cartilage tissue for replacement therapy and allow the possibility of a personalized approach. However, the question remains whether a number of etiological abnormalities associated with joint disease are transmitted from the source cell to iPSCs and their chondrocyte derivatives. Some data state that there is no difference between the iPSCs and their derivatives from healthy and sick donors; however, there are other data indicating a dissimilarity. Therefore, this topic requires a thorough study of the differentiation potential of iPSCs and the factors influencing it, the risk factors associated with joint diseases, and a comparative analysis of the characteristics of cells obtained from patients. Together with cultivation optimization methods, these measures can increase the efficiency of obtaining cell technology products and make their wide practical application possible.
Collapse
Affiliation(s)
- Artem Eremeev
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine, Federal Medical Biological Agency, Malaya Pirogovskaya 1a, Moscow 119435, Russia; (A.P.); (A.B.)
- Koltzov Institute of Developmental Biology, Russian Academy of Sciences, 26 Vavilov Street, Moscow 119334, Russia;
| | - Arina Pikina
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine, Federal Medical Biological Agency, Malaya Pirogovskaya 1a, Moscow 119435, Russia; (A.P.); (A.B.)
- Department of Embryology, Faculty of Biology, Lomonosov Moscow State University, GSP-1 Leninskie Gory, Moscow 119991, Russia
| | - Yevgeny Ruchko
- Koltzov Institute of Developmental Biology, Russian Academy of Sciences, 26 Vavilov Street, Moscow 119334, Russia;
| | - Alexandra Bogomazova
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine, Federal Medical Biological Agency, Malaya Pirogovskaya 1a, Moscow 119435, Russia; (A.P.); (A.B.)
| |
Collapse
|
4
|
Köck H, Striegl B, Kraus A, Zborilova M, Christiansen S, Schäfer N, Grässel S, Hornberger H. In Vitro Analysis of Human Cartilage Infiltrated by Hydrogels and Hydrogel-Encapsulated Chondrocytes. Bioengineering (Basel) 2023; 10:767. [PMID: 37508794 PMCID: PMC10376441 DOI: 10.3390/bioengineering10070767] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 05/31/2023] [Accepted: 06/10/2023] [Indexed: 07/30/2023] Open
Abstract
Osteoarthritis (OA) is a degenerative joint disease causing loss of articular cartilage and structural damage in all joint tissues. Given the limited regenerative capacity of articular cartilage, methods to support the native structural properties of articular cartilage are highly anticipated. The aim of this study was to infiltrate zwitterionic monomer solutions into human OA-cartilage explants to replace lost proteoglycans. The study included polymerization and deposition of methacryloyloxyethyl-phosphorylcholine- and a novel sulfobetaine-methacrylate-based monomer solution within ex vivo human OA-cartilage explants and the encapsulation of isolated chondrocytes within hydrogels and the corresponding effects on chondrocyte viability. The results demonstrated that zwitterionic cartilage-hydrogel networks are formed by infiltration. In general, cytotoxic effects of the monomer solutions were observed, as was a time-dependent infiltration behavior into the tissue accompanied by increasing cell death and penetration depth. The successful deposition of zwitterionic hydrogels within OA cartilage identifies the infiltration method as a potential future therapeutic option for the repair/replacement of OA-cartilage extracellular suprastructure. Due to the toxic effects of the monomer solutions, the focus should be on sealing the OA-cartilage surface, instead of complete infiltration. An alternative treatment option for focal cartilage defects could be the usage of monomer solutions, especially the novel generated sulfobetaine-methacrylate-based monomer solution, as bionic for cell-based 3D bioprintable hydrogels.
Collapse
Affiliation(s)
- Hannah Köck
- Biomaterials Laboratory, Faculty of Mechanical Engineering, Ostbayerische Technische Hochschule (OTH), 93053 Regensburg, Germany
- Department of Orthopaedic Surgery, Experimental Orthopaedics, Centre for Medical Biotechnology (ZMB/Biopark 1), University of Regensburg, 93053 Regensburg, Germany
- Regensburg Center of Biomedical Engineering (RCBE), Ostbayerische Technische Hochschule (OTH) and University of Regensburg, 93053 Regensburg, Germany
| | - Birgit Striegl
- Regensburg Center of Biomedical Engineering (RCBE), Ostbayerische Technische Hochschule (OTH) and University of Regensburg, 93053 Regensburg, Germany
| | - Annalena Kraus
- Institute for Nanotechnology and Correlative Microscopy eV INAM, 91301 Forchheim, Germany
| | - Magdalena Zborilova
- Department of Orthopaedic Surgery, University of Regensburg, 93053 Regensburg, Germany
| | - Silke Christiansen
- Institute for Nanotechnology and Correlative Microscopy eV INAM, 91301 Forchheim, Germany
| | - Nicole Schäfer
- Department of Orthopaedic Surgery, Experimental Orthopaedics, Centre for Medical Biotechnology (ZMB/Biopark 1), University of Regensburg, 93053 Regensburg, Germany
| | - Susanne Grässel
- Department of Orthopaedic Surgery, Experimental Orthopaedics, Centre for Medical Biotechnology (ZMB/Biopark 1), University of Regensburg, 93053 Regensburg, Germany
- Department of Orthopaedic Surgery, University of Regensburg, 93053 Regensburg, Germany
| | - Helga Hornberger
- Biomaterials Laboratory, Faculty of Mechanical Engineering, Ostbayerische Technische Hochschule (OTH), 93053 Regensburg, Germany
- Regensburg Center of Biomedical Engineering (RCBE), Ostbayerische Technische Hochschule (OTH) and University of Regensburg, 93053 Regensburg, Germany
| |
Collapse
|
5
|
Grogan S, Kopcow J, D’Lima D. Challenges Facing the Translation of Embryonic Stem Cell Therapy for the Treatment of Cartilage Lesions. Stem Cells Transl Med 2022; 11:1186-1195. [PMID: 36493381 PMCID: PMC9801304 DOI: 10.1093/stcltm/szac078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 10/02/2022] [Indexed: 12/13/2022] Open
Abstract
Osteoarthritis is a common disease resulting in significant disability without approved disease-modifying treatment (other than total joint replacement). Stem cell-based therapy is being actively explored for the repair of cartilage lesions in the treatment and prevention of osteoarthritis. Embryonic stem cells are a very attractive source as they address many of the limitations inherent in autologous stem cells, such as variability in function and limited expansion. Over the past 20 years, there has been widespread interest in differentiating ESC into mesenchymal stem cells and chondroprogenitors with successful in vitro, ex vivo, and early animal studies. However, to date, none have progressed to clinical trials. In this review, we compare and contrast the various approaches to differentiating ESC; and discuss the benefits and drawbacks of each approach. Approaches relying on spontaneous differentiation are simpler but not as efficient as more targeted approaches. Methods replicating developmental biology are more efficient and reproducible but involve many steps in a complicated process. The small-molecule approach, arguably, combines the advantages of the above two methods because of the relative efficiency, reproducibility, and simplicity. To better understand the reasons for lack of progression to clinical applications, we explore technical, scientific, clinical, and regulatory challenges that remain to be overcome to achieve success in clinical applications.
Collapse
Affiliation(s)
- Shawn Grogan
- Corresponding author: Darryl D’Lima, MD, PhD, Shiley Center for Orthopaedic Research and Education, Scripps Health, 10666 N. Torrey Pines Road, La Jolla, CA 92037, USA.
| | - Joel Kopcow
- Shiley Center for Orthopaedic Research and Education, Scripps Health, La Jolla, CA, USA
| | - Darryl D’Lima
- Shiley Center for Orthopaedic Research and Education, Scripps Health, La Jolla, CA, USA
| |
Collapse
|
6
|
The Induced Pluripotent Stem Cells in Articular Cartilage Regeneration and Disease Modelling: Are We Ready for Their Clinical Use? Cells 2022; 11:cells11030529. [PMID: 35159338 PMCID: PMC8834349 DOI: 10.3390/cells11030529] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Revised: 01/29/2022] [Accepted: 02/01/2022] [Indexed: 02/01/2023] Open
Abstract
The development of induced pluripotent stem cells has brought unlimited possibilities to the field of regenerative medicine. This could be ideal for treating osteoarthritis and other skeletal diseases, because the current procedures tend to be short-term solutions. The usage of induced pluripotent stem cells in the cell-based regeneration of cartilage damages could replace or improve on the current techniques. The patient’s specific non-invasive collection of tissue for reprogramming purposes could also create a platform for drug screening and disease modelling for an overview of distinct skeletal abnormalities. In this review, we seek to summarise the latest achievements in the chondrogenic differentiation of pluripotent stem cells for regenerative purposes and disease modelling.
Collapse
|
7
|
Evenbratt H, Andreasson L, Bicknell V, Brittberg M, Mobini R, Simonsson S. Insights into the present and future of cartilage regeneration and joint repair. CELL REGENERATION (LONDON, ENGLAND) 2022; 11:3. [PMID: 35106664 PMCID: PMC8807792 DOI: 10.1186/s13619-021-00104-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 12/06/2021] [Indexed: 12/23/2022]
Abstract
Knee osteoarthritis is the most common joint disease. It causes pain and suffering for affected patients and is the source of major economic costs for healthcare systems. Despite ongoing research, there is a lack of knowledge regarding disease mechanisms, biomarkers, and possible cures. Current treatments do not fulfill patients' long-term needs, and it often requires invasive surgical procedures with subsequent long periods of rehabilitation. Researchers and companies worldwide are working to find a suitable cell source to engineer or regenerate a functional and healthy articular cartilage tissue to implant in the damaged area. Potential cell sources to accomplish this goal include embryonic stem cells, mesenchymal stem cells, or induced pluripotent stem cells. The differentiation of stem cells into different tissue types is complex, and a suitable concentration range of specific growth factors is vital. The cellular microenvironment during early embryonic development provides crucial information regarding concentrations of signaling molecules and morphogen gradients as these are essential inducers for tissue development. Thus, morphogen gradients implemented in developmental protocols aimed to engineer functional cartilage tissue can potentially generate cells comparable to those within native cartilage. In this review, we have summarized the problems with current treatments, potential cell sources for cell therapy, reviewed the progress of new treatments within the regenerative cartilage field, and highlighted the importance of cell quality, characterization assays, and chemically defined protocols.
Collapse
Affiliation(s)
| | - L. Andreasson
- Cline Scientific AB, SE-431 53 Mölndal, Sweden
- Institute of Biomedicine at Sahlgrenska Academy, Department of Clinical Chemistry and Transfusion Medicine, University of Gothenburg, SE-413 45 Gothenburg, Sweden
| | - V. Bicknell
- Cline Scientific AB, SE-431 53 Mölndal, Sweden
| | - M. Brittberg
- Cartilage Research Unit, University of Gothenburg, Region Halland Orthopaedics, Kungsbacka Hospital, S-434 80 Kungsbacka, Sweden
| | - R. Mobini
- Cline Scientific AB, SE-431 53 Mölndal, Sweden
| | - S. Simonsson
- Institute of Biomedicine at Sahlgrenska Academy, Department of Clinical Chemistry and Transfusion Medicine, University of Gothenburg, SE-413 45 Gothenburg, Sweden
| |
Collapse
|
8
|
Application of Alginate Hydrogels for Next-Generation Articular Cartilage Regeneration. Int J Mol Sci 2022; 23:ijms23031147. [PMID: 35163071 PMCID: PMC8835677 DOI: 10.3390/ijms23031147] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 01/14/2022] [Accepted: 01/18/2022] [Indexed: 12/28/2022] Open
Abstract
The articular cartilage has insufficient intrinsic healing abilities, and articular cartilage injuries often progress to osteoarthritis. Alginate-based scaffolds are attractive biomaterials for cartilage repair and regeneration, allowing for the delivery of cells and therapeutic drugs and gene sequences. In light of the heterogeneity of findings reporting the benefits of using alginate for cartilage regeneration, a better understanding of alginate-based systems is needed in order to improve the approaches aiming to enhance cartilage regeneration with this compound. This review provides an in-depth evaluation of the literature, focusing on the manipulation of alginate as a tool to support the processes involved in cartilage healing in order to demonstrate how such a material, used as a direct compound or combined with cell and gene therapy and with scaffold-guided gene transfer procedures, may assist cartilage regeneration in an optimal manner for future applications in patients.
Collapse
|
9
|
Li M, Sun D, Zhang J, Wang Y, Wei Q, Wang Y. Application and development of 3D bioprinting in cartilage tissue engineering. Biomater Sci 2022; 10:5430-5458. [DOI: 10.1039/d2bm00709f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Bioprinting technology can build complex tissue structures and has the potential to fabricate engineered cartilage with bionic structures for achieving cartilage defect repair/regeneration.
Collapse
Affiliation(s)
- Mingyang Li
- Industry Engineering Department, School of Mechanical Engineering, Northwestern Polytechnical University, Xi'an 710072, P.R. China
- Institute of Medical Research, Northwestern Polytechnical University, Xi'an 710072, China
| | - Daocen Sun
- Industry Engineering Department, School of Mechanical Engineering, Northwestern Polytechnical University, Xi'an 710072, P.R. China
- Institute of Medical Research, Northwestern Polytechnical University, Xi'an 710072, China
| | - Juan Zhang
- Industry Engineering Department, School of Mechanical Engineering, Northwestern Polytechnical University, Xi'an 710072, P.R. China
- Institute of Medical Research, Northwestern Polytechnical University, Xi'an 710072, China
| | - Yanmei Wang
- Industry Engineering Department, School of Mechanical Engineering, Northwestern Polytechnical University, Xi'an 710072, P.R. China
- Institute of Medical Research, Northwestern Polytechnical University, Xi'an 710072, China
| | - Qinghua Wei
- Industry Engineering Department, School of Mechanical Engineering, Northwestern Polytechnical University, Xi'an 710072, P.R. China
- Institute of Medical Research, Northwestern Polytechnical University, Xi'an 710072, China
| | - Yanen Wang
- Industry Engineering Department, School of Mechanical Engineering, Northwestern Polytechnical University, Xi'an 710072, P.R. China
- Institute of Medical Research, Northwestern Polytechnical University, Xi'an 710072, China
| |
Collapse
|
10
|
Li Z, Huang Z, Bai L. Cell Interplay in Osteoarthritis. Front Cell Dev Biol 2021; 9:720477. [PMID: 34414194 PMCID: PMC8369508 DOI: 10.3389/fcell.2021.720477] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 07/14/2021] [Indexed: 01/15/2023] Open
Abstract
Osteoarthritis (OA) is a common chronic disease and a significant health concern that needs to be urgently solved. OA affects the cartilage and entire joint tissues, including the subchondral bone, synovium, and infrapatellar fat pads. The physiological and pathological changes in these tissues affect the occurrence and development of OA. Understanding complex crosstalk among different joint tissues and their roles in OA initiation and progression is critical in elucidating the pathogenic mechanism of OA. In this review, we begin with an overview of the role of chondrocytes, synovial cells (synovial fibroblasts and macrophages), mast cells, osteoblasts, osteoclasts, various stem cells, and engineered cells (induced pluripotent stem cells) in OA pathogenesis. Then, we discuss the various mechanisms by which these cells communicate, including paracrine signaling, local microenvironment, co-culture, extracellular vesicles (exosomes), and cell tissue engineering. We particularly focus on the therapeutic potential and clinical applications of stem cell-derived extracellular vesicles, which serve as modulators of cell-to-cell communication, in the field of regenerative medicine, such as cartilage repair. Finally, the challenges and limitations related to exosome-based treatment for OA are discussed. This article provides a comprehensive summary of key cells that might be targets of future therapies for OA.
Collapse
Affiliation(s)
- Zihao Li
- Department of Orthopedics, Shengjing Hospital of China Medical University, Shenyang, China
| | - Ziyu Huang
- Foreign Languages College, Shanghai Normal University, Shanghai, China
| | - Lunhao Bai
- Department of Orthopedics, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
11
|
Kamaraj A, Kyriacou H, Seah KTM, Khan WS. Use of human induced pluripotent stem cells for cartilage regeneration in vitro and within chondral defect models of knee joint cartilage in vivo: a Preferred Reporting Items for Systematic Reviews and Meta-Analyses systematic literature review. Cytotherapy 2021; 23:647-661. [PMID: 34059422 DOI: 10.1016/j.jcyt.2021.03.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 03/16/2021] [Accepted: 03/27/2021] [Indexed: 12/16/2022]
Abstract
BACKGROUND AIMS Articular cartilage has limited regenerative ability when damaged through trauma or disease. Failure to treat focal chondral lesions results in changes that inevitably progress to osteoarthritis. Osteoarthritis is a major contributor to disability globally, which results in significant medical costs and lost wages every year. Human induced pluripotent stem cells (hiPSCs) have long been considered a potential autologous therapeutic option for the treatment of focal chondral lesions. Although there are significant advantages to hiPSCs over other stem cell options, such as mesenchymal and embryonic stem cells, there are concerns regarding their ability to form bona fide cartilage and their tumorgenicity in vivo. METHODS The authors carried out a systematic literature review on the use of hiPSCs to produce differentiated progeny capable of producing high-quality cartilage in vitro and regenerate cartilage in osteochondral defects in vivo in accordance with Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines. Eight studies were included in the review that used hiPSCs or their derived progeny in xenogeneic transplants in animal models to regenerate cartilage in osteochondral defects of the knee joint. The in vitro-differentiated, hiPSC-derived and in vivo defect repair ability of the hiPSC-derived progeny transplants were assessed. RESULTS Most studies reported the generation of high-quality cartilage-producing progeny that were able to successfully repair cartilage defects in vivo. No tumorigenicity was observed. CONCLUSIONS The authors conclude that hiPSCs offer a valuable source of cartilage-producing progeny that show promise as an effective cell-based therapy in treating focal chondral lesions.
Collapse
Affiliation(s)
- Achi Kamaraj
- Division of Trauma and Orthopedic Surgery, Addenbrooke's Hospital, University of Cambridge, Cambridge, UK
| | - Harry Kyriacou
- Division of Trauma and Orthopedic Surgery, Addenbrooke's Hospital, University of Cambridge, Cambridge, UK
| | - K T Matthew Seah
- Division of Trauma and Orthopedic Surgery, Addenbrooke's Hospital, University of Cambridge, Cambridge, UK.
| | - Wasim S Khan
- Division of Trauma and Orthopedic Surgery, Addenbrooke's Hospital, University of Cambridge, Cambridge, UK
| |
Collapse
|
12
|
Recent Updates of Diagnosis, Pathophysiology, and Treatment on Osteoarthritis of the Knee. Int J Mol Sci 2021; 22:ijms22052619. [PMID: 33807695 PMCID: PMC7961389 DOI: 10.3390/ijms22052619] [Citation(s) in RCA: 266] [Impact Index Per Article: 66.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 02/26/2021] [Accepted: 02/26/2021] [Indexed: 02/07/2023] Open
Abstract
Osteoarthritis (OA) is a degenerative and chronic joint disease characterized by clinical symptoms and distortion of joint tissues. It primarily damages joint cartilage, causing pain, swelling, and stiffness around the joint. It is the major cause of disability and pain. The prevalence of OA is expected to increase gradually with the aging population and increasing prevalence of obesity. Many potential therapeutic advances have been made in recent years due to the improved understanding of the underlying mechanisms, diagnosis, and management of OA. Embryonic stem cells and induced pluripotent stem cells differentiate into chondrocytes or mesenchymal stem cells (MSCs) and can be used as a source of injectable treatments in the OA joint cavity. MSCs are known to be the most studied cell therapy products in cell-based OA therapy owing to their ability to differentiate into chondrocytes and their immunomodulatory properties. They have the potential to improve cartilage recovery and ultimately restore healthy joints. However, despite currently available therapies and advances in research, unfulfilled medical needs persist for OA treatment. In this review, we focused on the contents of non-cellular and cellular therapies for OA, and briefly summarized the results of clinical trials for cell-based OA therapy to lay a solid application basis for clinical research.
Collapse
|
13
|
Csobonyeiova M, Polak S, Nicodemou A, Zamborsky R, Danisovic L. iPSCs in Modeling and Therapy of Osteoarthritis. Biomedicines 2021; 9:186. [PMID: 33673154 PMCID: PMC7917981 DOI: 10.3390/biomedicines9020186] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 02/05/2021] [Accepted: 02/08/2021] [Indexed: 12/17/2022] Open
Abstract
Osteoarthritis (OA) belongs to chronic degenerative disorders and is often a leading cause of disability in elderly patients. Typically, OA is manifested by articular cartilage erosion, pain, stiffness, and crepitus. Currently, the treatment options are limited, relying mostly on pharmacological therapy, which is often related to numerous complications. The proper management of the disease is challenging because of the poor regenerative capacity of articular cartilage. During the last decade, cell-based approaches such as implantation of autologous chondrocytes or mesenchymal stem cells (MSCs) have shown promising results. However, the mentioned techniques face their hurdles (cell harvesting, low proliferation capacity). The invention of induced pluripotent stem cells (iPSCs) has created new opportunities to increase the efficacy of the cartilage healing process. iPSCs may represent an unlimited source of chondrocytes derived from a patient's somatic cells, circumventing ethical and immunological issues. Aside from the regenerative potential of iPSCs, stem cell-derived cartilage tissue models could be a useful tool for studying the pathological process of OA. In our recent article, we reviewed the progress in chondrocyte differentiation techniques, disease modeling, and the current status of iPSC-based regenerative therapy of OA.
Collapse
Affiliation(s)
- Maria Csobonyeiova
- Institute of Histology and Embryology, Faculty of Medicine, Comenius University, Sasinkova 4, 811 08 Bratislava, Slovakia; (M.C.); (S.P.)
| | - Stefan Polak
- Institute of Histology and Embryology, Faculty of Medicine, Comenius University, Sasinkova 4, 811 08 Bratislava, Slovakia; (M.C.); (S.P.)
| | - Andreas Nicodemou
- Institute of Medical Biology, Genetics and Clinical Genetics, Faculty of Medicine, Comenius University, Sasinkova 4, 811 08 Bratislava, Slovakia;
| | - Radoslav Zamborsky
- National Institute of Children’s Diseases, Department of Orthopedics, Faculty of Medicine, Comenius University, Limbova 1, 833 40 Bratislava, Slovakia;
| | - Lubos Danisovic
- Institute of Medical Biology, Genetics and Clinical Genetics, Faculty of Medicine, Comenius University, Sasinkova 4, 811 08 Bratislava, Slovakia;
- Regenmed Ltd., Medena 29, 811 01 Bratislava, Slovakia
| |
Collapse
|
14
|
Yamashita A, Tsumaki N. Recent progress of animal transplantation studies for treating articular cartilage damage using pluripotent stem cells. Dev Growth Differ 2021; 63:72-81. [PMID: 33411345 DOI: 10.1111/dgd.12706] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 12/14/2020] [Accepted: 12/18/2020] [Indexed: 12/14/2022]
Abstract
Focal articular cartilage damage can eventually lead to the onset of osteoarthritis with degradation around healthy articular cartilage. Currently, there are no drugs available that effectively repair articular cartilage damage. Several surgical techniques exist and are expected to prevent progression to osteoarthritis, but they do not offer a long-term clinical solution. Recently, regenerative medicine approaches using human pluripotent stem cells (PSCs) have gained attention as new cell sources for therapeutic products. To translate PSCs to clinical application, appropriate cultures that produce large amounts of chondrocytes and hyaline cartilage are needed. So too are assays for the safety and efficacy of the cellular materials in preclinical studies including animal transplantation models. To confirm safety and efficacy, transplantation into the subcutaneous space and articular cartilage defects have been performed in animal models. All but one study we reviewed that transplanted PSC-derived cellular products into articular cartilage defects found safe and effective recovery. However, for most of those studies, the quality of the PSCs was not verified, and the evaluations were done with small animals over short observation periods. Large animals and longer observation times are preferred. We will discuss the recent progress and future direction of the animal transplantation studies for the treatment of focal articular cartilage damages using PSCs.
Collapse
Affiliation(s)
- Akihiro Yamashita
- Cell Induction and Regulation Field, Department of Clinical Application, Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan
| | - Noriyuki Tsumaki
- Cell Induction and Regulation Field, Department of Clinical Application, Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan
| |
Collapse
|
15
|
Taghiyar L, Jahangir S, Khozaei Ravari M, Shamekhi MA, Eslaminejad MB. Cartilage Repair by Mesenchymal Stem Cell-Derived Exosomes: Preclinical and Clinical Trial Update and Perspectives. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1326:73-93. [PMID: 33629260 DOI: 10.1007/5584_2021_625] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Osteoarthritis (OA) and other degenerative joint diseases are characterized by articular cartilage destruction, synovial inflammation, sclerosis of subchondral bone, and loss of extracellular matrix (ECM). Worldwide, these diseases are major causes of disability. Cell therapies have been considered to be the best therapeutic strategies for long-term treatment of articular cartilage diseases. It has been suggested that the mechanism of stem cell-based therapy is related to paracrine secretion of extracellular vesicles (EVs), which are recognized as the main secretion factors of stem cells. EVs, and in particular the subclass exosomes (Exos), are novel therapeutic approaches for treatment of cartilage lesions and OA. The results of recent studies have shown that EVs isolated from mesenchymal stem cells (MSCs) could inhibit OA progression. EVs isolated from various stem cell sources, such as MSCs, may contribute to tissue regeneration of the limbs, skin, heart, and other tissues. Here, we summarize recent findings of preclinical and clinical studies on different MSC-derived EVs and their effectiveness as a treatment for damaged cartilage. The Exos isolation techniques in OA treatment are also highlighted.
Collapse
Affiliation(s)
- Leila Taghiyar
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Shahrbano Jahangir
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Mojtaba Khozaei Ravari
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | | | - Mohamadreza Baghaban Eslaminejad
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran.
| |
Collapse
|
16
|
Zhao Y, Liu H, Zhao C, Dang P, Li H, Farzaneh M. Paracrine Interactions Involved in Human Induced Pluripotent Stem Cells Differentiation into Chondrocytes. Curr Stem Cell Res Ther 2020; 15:233-242. [PMID: 31889496 DOI: 10.2174/1574888x15666191224122058] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2019] [Revised: 10/24/2019] [Accepted: 10/30/2019] [Indexed: 12/20/2022]
Abstract
Osteoarthritis (OA), as a degenerative joint disease, is the most common form of joint disorder that causes pain, stiffness, and other symptoms associated with OA. Various genetic, biomechanical, and environmental factors have a relevant role in the development of OA. To date, extensive efforts are currently being made to overcome the poor self-healing capacity of articular cartilage. Despite the pivotal role of chondrocytes, their proliferation and repair capacity after tissue injury are limited. Therefore, the development of new strategies to overcome these constraints is urgently needed. Recent advances in regenerative medicine suggest that pluripotent stem cells are promising stem cell sources for cartilage repair. Pluripotent stem cells are undifferentiated cells that have the capacity to differentiate into different types of cells and can self-renew indefinitely. In the past few decades, numerous attempts have been made to regenerate articular cartilage by using induced pluripotent stem cells (iPSCs). The potential applications of patient-specific iPSCs hold great promise for regenerative medicine and OA treatment. However, there are different culture conditions for the preparation and characterization of human iPSCs-derived chondrocytes (hiChondrocytes). Recent biochemical analyses reported that several paracrine factors such as TGFb, BMPs, WNT, Ihh, and Runx have been shown to be involved in cartilage cell proliferation and differentiation from human iPSCs. In this review, we summarize and discuss the paracrine interactions involved in human iPSCs differentiation into chondrocytes in different cell culture media.
Collapse
Affiliation(s)
- Yunchang Zhao
- Department of Orthopedics III, Zhoukou Central Hospital, Zhoukou, Henan 466000, China
| | - Honghao Liu
- Department of Orthopedics III, Zhoukou Central Hospital, Zhoukou, Henan 466000, China
| | - Chunjie Zhao
- Department of Orthopedics III, Zhoukou Central Hospital, Zhoukou, Henan 466000, China
| | - Peng Dang
- Department of Orthopedics III, Zhoukou Central Hospital, Zhoukou, Henan 466000, China
| | - Haijian Li
- Department of Orthopedics III, Zhoukou Central Hospital, Zhoukou, Henan 466000, China
| | - Maryam Farzaneh
- Physiology Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| |
Collapse
|
17
|
Induced Pluripotent Stem Cell-Differentiated Chondrocytes Repair Cartilage Defect in a Rabbit Osteoarthritis Model. Stem Cells Int 2020; 2020:8867349. [PMID: 33224204 PMCID: PMC7671807 DOI: 10.1155/2020/8867349] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 10/08/2020] [Accepted: 10/19/2020] [Indexed: 12/14/2022] Open
Abstract
The aim of this study was to explore the therapeutic effect of iPSC-mesenchymal stem cell (MSC)-derived chondrocytes in a rabbit osteoarthritis (OA) model. The iPSCs were characterized by gene expressions, immunostaining of pluripotent markers, and in vivo teratoma formation. iPSC-differentiated MSCs were characterized by flow cytometry and trilineage differentiation. A rabbit OA model was established by the transection of the anterior cruciate ligament. The therapeutic effect of transplanted iPSC-MSC-chondrocytes on the OA was evaluated by the histology, immunostaining, and qPCR of defective cartilage. The results showed iPSC could express pluripotency markers such as OCT4, SOX2, and NANOG and form an embryoid body and a teratoma. After differentiation of iPSCs for 30 days, MSCs were established. The iPSC-MSC could express typical MSC markers such as CD29, CD44, CD90, CD105, and HLA-ABC. They could differentiate into adipocytes, osteocytes, and chondrocytes. In this model, iPSC-MSC-chondrocytes significantly improved the histology and ICRS (International Cartilage Repair Society) scores. The transplanted cartilage expressed less IL-1β, TNF-α, and MMP13 than control cartilage. In conclusion, the iPSCs we derived might represent an emerging source for differentiated MSC-chondrocyte and might rescue cartilage defects through its anti-inflammatory and anti-catabolic effects.
Collapse
|
18
|
Middendorf JM, Diamantides N, Shortkroff S, Dugopolski C, Kennedy S, Cohen I, Bonassar LJ. Multiscale mechanics of tissue-engineered cartilage grown from human chondrocytes and human-induced pluripotent stem cells. J Orthop Res 2020; 38:1965-1973. [PMID: 32125023 DOI: 10.1002/jor.24643] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 02/17/2020] [Accepted: 02/29/2020] [Indexed: 02/04/2023]
Abstract
Tissue-engineered cartilage has shown promising results in the repair of focal cartilage defects. However, current clinical techniques rely on an extra surgical procedure to biopsy healthy cartilage to obtain human chondrocytes. Alternatively, induced pluripotent stem cells (iPSCs) have the ability to differentiate into chondrocytes and produce cartilaginous matrix without the need to biopsy healthy cartilage. However, the mechanical properties of tissue-engineered cartilage with iPSCs are unknown and might be critical to long-term tissue function and health. This study used confined compression, cartilage on glass tribology, and shear testing on a confocal microscope to assess the macroscale and microscale mechanical properties of two constructs seeded with either chondrocyte-derived iPSCs (Ch-iPSCs) or native human chondrocytes. Macroscale properties of Ch-iPSC constructs provided similar or better mechanical properties than chondrocyte constructs. Under compression, Ch-iPSC constructs had an aggregate modulus that was two times larger than chondrocyte constructs and was closer to native tissue. No differences in the shear modulus and friction coefficients were observed between Ch-iPSC and chondrocyte constructs. On the microscale, Ch-iPSC and chondrocyte constructs had different depth-dependent mechanical properties, neither of which matches native tissue. These observed depth-dependent differences may be important to the function of the implant. Overall, this comparison of multiple mechanical properties of Ch-iPSC and chondrocyte constructs shows that using Ch-iPSCs can produce equivalent or better global mechanical properties to chondrocytes. Therefore, iPSC-seeded cartilage constructs could be a promising solution to repair focal cartilage defects. The chondrocyte constructs used in this study have been implanted into humans for clinical trials. Therefore, Ch-iPSC constructs could also be used clinically in place of the current chondrocyte construct.
Collapse
Affiliation(s)
- Jill M Middendorf
- Sibley School of Mechanical Engineering, Cornell University, Ithaca, New York
| | - Nicole Diamantides
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, New York
| | | | | | | | - Itai Cohen
- Department of Applied Engineering and Physics, Cornell University, Ithaca, New York.,Department of Physics, Cornell University, Ithaca, New York
| | - Lawrence J Bonassar
- Sibley School of Mechanical Engineering, Cornell University, Ithaca, New York.,Meinig School of Biomedical Engineering, Cornell University, Ithaca, New York
| |
Collapse
|
19
|
Tran HD, Park KD, Ching YC, Huynh C, Nguyen DH. A comprehensive review on polymeric hydrogel and its composite: Matrices of choice for bone and cartilage tissue engineering. J IND ENG CHEM 2020. [DOI: 10.1016/j.jiec.2020.06.017] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
20
|
Mavaro I, De Felice E, Palladino A, D'Angelo L, de Girolamo P, Attanasio C. Anatomical templates for tissue (re)generation and beyond. Biotechnol Bioeng 2020; 117:3938-3951. [PMID: 32776516 DOI: 10.1002/bit.27533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 07/27/2020] [Accepted: 08/07/2020] [Indexed: 11/12/2022]
Abstract
Induced pluripotent stem cells (iPSCs) represent a valuable alternative to stem cells in regenerative medicine overcoming their ethical limitations, like embryo disruption. Takahashi and Yamanaka in 2006 reprogrammed, for the first time, mouse fibroblasts into iPSCs through the retroviral delivery of four reprogramming factors: Oct3/4, Sox2, c-Myc, and Klf4. Since then, several studies started reporting the derivation of iPSC lines from animals other than rodents for translational and veterinary medicine. Here, we review the potential of using these cells for further intriguing applications, such as "cellular agriculture." iPSCs, indeed, can be a source of in vitro, skeletal muscle tissue, namely "cultured meat," a product that improves animal welfare and encourages the consumption of healthier meat along with environmental preservation. Also, we report the potential of using iPSCs, obtained from endangered species, for therapeutic treatments for captive animals and for assisted reproductive technologies as well. This review offers a unique opportunity to explore the whole spectrum of iPSC applications from regenerative translational and veterinary medicine to the production of artificial meat and the preservation of currently endangered species.
Collapse
Affiliation(s)
- Isabella Mavaro
- Department of Veterinary Medicine and Animal Productions, University of Naples Federico II, Naples, Italy.,Interdepartmental Center for Research in Biomaterials (CRIB), University of Naples Federico II, Naples, Italy
| | - Elena De Felice
- School of Biosciences and Veterinary Medicine, University of Camerino, Camerino, Italy
| | - Antonio Palladino
- Department of Veterinary Medicine and Animal Productions, University of Naples Federico II, Naples, Italy
| | - Livia D'Angelo
- Department of Veterinary Medicine and Animal Productions, University of Naples Federico II, Naples, Italy.,Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Naples, Italy
| | - Paolo de Girolamo
- Department of Veterinary Medicine and Animal Productions, University of Naples Federico II, Naples, Italy
| | - Chiara Attanasio
- Department of Veterinary Medicine and Animal Productions, University of Naples Federico II, Naples, Italy.,Interdepartmental Center for Research in Biomaterials (CRIB), University of Naples Federico II, Naples, Italy.,Center for Advanced Biomaterials for Healthcare, Istituto Italiano di Tecnologia, Naples, Italy
| |
Collapse
|
21
|
Zhang Y, Hu W, Ma K, Zhang C, Fu X. Reprogramming of Keratinocytes as Donor or Target Cells Holds Great Promise for Cell Therapy and Regenerative Medicine. Stem Cell Rev Rep 2020; 15:680-689. [PMID: 31197578 DOI: 10.1007/s12015-019-09900-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
One of the most crucial branches of regenerative medicine is cell therapy, in which cellular material is injected into the patient to initiate the regenerative process. Cells obtained by reprogramming of the patient's own cells offer ethical and clinical advantages could provide a new source of material for therapeutic applications. Studies to date have shown that only a subset of differentiated cell types can be reprogrammed. Among these, keratinocytes, which are the most abundant proliferating cell type in the epidermis, have gained increasing attention as both donor and target cells for reprogramming and have become a new focus of regenerative medicine. As target cells for the treatment of skin defects, keratinocytes can be differentiated or reprogrammed from embryonic stem cells, induced pluripotent stem cells, fibroblasts, adipose tissue stem cells, and mesenchymal cells. As donor cells, keratinocytes can be reprogrammed or direct reprogrammed into a number of cell types, including induced pluripotent stem cells, neural cells, and Schwann cells. In this review, we discuss recent advances in keratinocyte reprogramming, focusing on the induction methods, potential molecular mechanisms, conversion efficiency, and safety for clinical applications. Graphical Abstract KCs as target cells can be reprogrammed or differentiated from fibroblasts, iPSCs, ATSCs, and mesenchymal cells. And as donor cells, KCs can be reprogrammed or directly reprogrammded into iPSCs, neural cells, Schwann cells, and epidermal stem cells.
Collapse
Affiliation(s)
- Yuehou Zhang
- School of Medicine, NanKai University, 94 Wei Jin Road, NanKai District, Tianjin, 300071, People's Republic of China.,Key Laboratory of Tissue Repair and Regeneration of PLA and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration, Fourth Medical Center of General Hospital of PLA, 51 Fu Cheng Road, HaiDian District, Beijing, 100048, People's Republic of China
| | - Wenzhi Hu
- Key Laboratory of Tissue Repair and Regeneration of PLA and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration, Fourth Medical Center of General Hospital of PLA, 51 Fu Cheng Road, HaiDian District, Beijing, 100048, People's Republic of China
| | - Kui Ma
- Key Laboratory of Tissue Repair and Regeneration of PLA and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration, Fourth Medical Center of General Hospital of PLA, 51 Fu Cheng Road, HaiDian District, Beijing, 100048, People's Republic of China
| | - Cuiping Zhang
- Key Laboratory of Tissue Repair and Regeneration of PLA and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration, Fourth Medical Center of General Hospital of PLA, 51 Fu Cheng Road, HaiDian District, Beijing, 100048, People's Republic of China.
| | - Xiaobing Fu
- Key Laboratory of Tissue Repair and Regeneration of PLA and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration, Fourth Medical Center of General Hospital of PLA, 51 Fu Cheng Road, HaiDian District, Beijing, 100048, People's Republic of China.
| |
Collapse
|
22
|
Aisenbrey EA, Bilousova G, Payne K, Bryant SJ. Dynamic mechanical loading and growth factors influence chondrogenesis of induced pluripotent mesenchymal progenitor cells in a cartilage-mimetic hydrogel. Biomater Sci 2020; 7:5388-5403. [PMID: 31626251 DOI: 10.1039/c9bm01081e] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Human induced pluripotent stem cells (iPSCs) have emerged as a promising alternative to bone-marrow derived mesenchymal stem/stromal cells for cartilage tissue engineering. However, the effect of biochemical and mechanical cues on iPSC chondrogenesis remains understudied. This study evaluated chondrogenesis of induced pluripotent mesenchymal progenitor cells (iPS-MPs) encapsulated in a cartilage-mimetic hydrogel under different culture conditions: free swelling versus dynamic compressive loading and different growth factors (TGFβ3 and/or BMP2). Human iPSCs were differentiated into iPS-MPs and chondrogenesis was evaluated by gene expression (qPCR) and protein expression (immunohistochemistry) after three weeks. In pellet culture, both TGFβ3 and BMP2 were required to promote chondrogenesis. However, the hydrogel in growth factor-free conditions promoted chondrogenesis, but rapidly progressed to hypertrophy. Dynamic loading in growth factor-free conditions supported chondrogenesis, but delayed the transition to hypertrophy. Findings were similar with TGFβ3, BMP2, and TGFβ3 + BMP2. Dynamic loading with TGFβ3, regardless of BMP2, was the only condition that promoted a stable chondrogenic phenotype (aggrecan + collagen II) accompanied by collagen X down-regulation. Positive TGFβRI expression with load-enhanced Smad2/3 signaling and low SMAD1/5/8 signaling was observed. In summary, this study reports a promising cartilage-mimetic hydrogel for iPS-MPs that when combined with appropriate biochemical and mechanical cues induces a stable chondrogenic phenotype.
Collapse
Affiliation(s)
- Elizabeth A Aisenbrey
- Department of Chemical and Biological Engineering, University of Colorado at Boulder, 3415 Colorado Ave, Boulder, CO 80309, USA.
| | | | | | | |
Collapse
|
23
|
Cota P, Helmi SA, Hsu C, Rancourt DE. Cytokine Directed Chondroblast Trans-Differentiation: JAK Inhibition Facilitates Direct Reprogramming of Fibroblasts to Chondroblasts. Cells 2020; 9:cells9010191. [PMID: 31940860 PMCID: PMC7017373 DOI: 10.3390/cells9010191] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 01/08/2020] [Accepted: 01/09/2020] [Indexed: 12/14/2022] Open
Abstract
Osteoarthritis (OA) is a degenerative disease of the hyaline articular cartilage. This disease is progressive and may lead to disability. Researchers proposed many regenerative approaches to treat osteoarthritis, including stem cells. Trans-differentiation of a fully differentiated cell state directly into another different differentiated cell state avoids the disadvantages of fully reprogramming cells to induced pluripotent stem cells (iPSCs) in terms of faster reprogramming of the needed cells. Trans-differentiation also reduces the risk of tumor formation by avoiding the iPSC state. OSKM factors (Oct4, Sox2, Klf4, and cMyc) accompanied by the JAK-STAT pathway inhibition, followed by the introduction of specific differentiation factors, directly reprogrammed mouse embryonic fibroblasts to chondroblasts. Our results showed the absence of intermediate induced pluripotent stem cell formation. The resulting aggregates showed clear hyaline and hypertrophic cartilage. Tumor formation was absent in sub-cutaneous capsules transplanted in SCID mice.
Collapse
Affiliation(s)
- Perla Cota
- Department of Biochemistry and Molecular Biology, University of Calgary, 3330 Hospital Dr. NW, Calgary, AB T2N 1N4, Canada; (P.C.); (S.A.H.); (C.H.)
- Institute of Diabetes and Regeneration Research, Helmholtz Zentrum München, German Research Center for Health and Environment, 85764 Neuherberg, Germany
| | - Summer A. Helmi
- Department of Biochemistry and Molecular Biology, University of Calgary, 3330 Hospital Dr. NW, Calgary, AB T2N 1N4, Canada; (P.C.); (S.A.H.); (C.H.)
- Department of Oral Biology, Faculty of Dentistry, Mansoura University, Mansoura 35516, Egypt
| | - Charlie Hsu
- Department of Biochemistry and Molecular Biology, University of Calgary, 3330 Hospital Dr. NW, Calgary, AB T2N 1N4, Canada; (P.C.); (S.A.H.); (C.H.)
- Faculty of Medicine University of Queensland. 20 Weightman St, Herston 4006, QLD, Australia
| | - Derrick E. Rancourt
- Department of Biochemistry and Molecular Biology, University of Calgary, 3330 Hospital Dr. NW, Calgary, AB T2N 1N4, Canada; (P.C.); (S.A.H.); (C.H.)
- Correspondence: ; Tel.: +1-403-220-2888
| |
Collapse
|
24
|
Woods S, Bates N, Dunn SL, Serracino‐Inglott F, Hardingham TE, Kimber SJ. Generation of Human-Induced Pluripotent Stem Cells From Anterior Cruciate Ligament. J Orthop Res 2020; 38:92-104. [PMID: 31613026 PMCID: PMC6972590 DOI: 10.1002/jor.24493] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Accepted: 10/04/2019] [Indexed: 02/04/2023]
Abstract
Human-induced pluripotent stem cells (hiPSCs) are reprogrammed somatic cells and are an excellent cell source for tissue engineering applications, disease modeling, and for understanding human development. HiPSC lines have now been generated from a diverse range of somatic cell types and have been reported to retain an epigenetic memory of their somatic origin. To date, the reprogramming of a true ligament has not been reported. The aim of this study is to generate iPSCs from human anterior cruciate ligament (ACL) cells. ACL cells from three above-knee amputation donors, with donor matched dermal fibroblasts (DFs) were tested for reprogramming using an existing DF reprogramming protocol. ACL cells were, however, more sensitive than donor matched DF to transforming growth factor-β (TGF-β); displaying marked contraction, increased proliferation and increased TNC and COMP expression in vitro, which hindered reprogramming to iPSCs. Modification of the protocol by scoring the cell monolayer or by removal of TGF-β during ACL reprogramming resulted in emerging colonies being easier to identify and extract, increasing reprogramming efficiency. Following 30 passages in culture, the generated ACL derived iPSCs displayed pluripotency markers, normal karyotype and can successfully differentiate to cells of the three embryonic germ layers. This study illustrates it is possible to generate hiPSCs from ligament and identifies optimized ligament reprogramming conditions. ACL derived iPSCs may provide a promising cell source for ligament and related tissue engineering applications. © 2019 The Authors. Journal of Orthopaedic Research® published by Wiley Periodicals, Inc. on behalf of Orthopaedic Research Society J Orthop Res 38:92-104, 2020.
Collapse
Affiliation(s)
- Steven Woods
- Division of Cell Matrix Biology and Regenerative Medicine, School of Biological SciencesUniversity of ManchesterMichael Smith Building, Oxford RdManchesterM13 9PTUnited Kingdom
| | - Nicola Bates
- Division of Cell Matrix Biology and Regenerative Medicine, School of Biological SciencesUniversity of ManchesterMichael Smith Building, Oxford RdManchesterM13 9PTUnited Kingdom
| | - Sara L. Dunn
- Division of Cell‐Matrix Biology and Regenerative Medicine, Wellcome Trust Centre for Cell‐Matrix Research, Faculty of Biology, Medicine and Health, School of Biological SciencesUniversity of ManchesterManchesterUnited Kingdom
| | | | - Tim E. Hardingham
- Division of Cell‐Matrix Biology and Regenerative Medicine, Wellcome Trust Centre for Cell‐Matrix Research, Faculty of Biology, Medicine and Health, School of Biological SciencesUniversity of ManchesterManchesterUnited Kingdom
| | - Susan J. Kimber
- Division of Cell Matrix Biology and Regenerative Medicine, School of Biological SciencesUniversity of ManchesterMichael Smith Building, Oxford RdManchesterM13 9PTUnited Kingdom
| |
Collapse
|
25
|
Shih YV, Varghese S. Tissue engineered bone mimetics to study bone disorders ex vivo: Role of bioinspired materials. Biomaterials 2019; 198:107-121. [PMID: 29903640 PMCID: PMC6281816 DOI: 10.1016/j.biomaterials.2018.06.005] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Revised: 05/25/2018] [Accepted: 06/05/2018] [Indexed: 12/15/2022]
Abstract
Recent advances in materials development and tissue engineering has resulted in a substantial number of bioinspired materials that recapitulate cardinal features of bone extracellular matrix (ECM) such as dynamic inorganic and organic environment(s), hierarchical organization, and topographical features. Bone mimicking materials, as defined by its self-explanatory term, are developed based on the current understandings of the natural bone ECM during development, remodeling, and fracture repair. Compared to conventional plastic cultures, biomaterials that resemble some aspects of the native environment could elicit a more natural molecular and cellular response relevant to the bone tissue. Although current bioinspired materials are mainly developed to assist tissue repair or engineer bone tissues, such materials could nevertheless be applied to model various skeletal diseases in vitro. This review summarizes the use of bioinspired materials for bone tissue engineering, and their potential to model diseases of bone development and remodeling ex vivo. We largely focus on biomaterials, designed to re-create different aspects of the chemical and physical cues of native bone ECM. Employing these bone-inspired materials and tissue engineered bone surrogates to study bone diseases has tremendous potential and will provide a closer portrayal of disease progression and maintenance, both at the cellular and tissue level. We also briefly touch upon the application of patient-derived stem cells and introduce emerging technologies such as organ-on-chip in disease modeling. Faithful recapitulation of disease pathologies will not only offer novel insights into diseases, but also lead to enabling technologies for drug discovery and new approaches for cell-based therapies.
Collapse
Affiliation(s)
- Yuru Vernon Shih
- Department of Orthopaedic Surgery, Duke University, Durham, NC 27710, USA.
| | - Shyni Varghese
- Department of Orthopaedic Surgery, Duke University, Durham, NC 27710, USA; Department of Biomedical Engineering, Duke University, Durham, NC 27710, USA; Department of Materials Science and Engineering, Duke University, Durham, NC 27710, USA.
| |
Collapse
|
26
|
Li WJ, Jiao H, Walczak BE. Emerging opportunities for induced pluripotent stem cells in orthopaedics. J Orthop Translat 2019; 17:73-81. [PMID: 31194067 PMCID: PMC6551359 DOI: 10.1016/j.jot.2019.03.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 02/27/2019] [Accepted: 03/01/2019] [Indexed: 01/15/2023] Open
Abstract
The discovery of induced pluripotent stem cells (iPSCs) has revolutionized biomedicine. Although the potential of iPSCs for tissue regeneration, disease modeling and drug screening has been largely recognized, findings of iPSC research to date are mostly focused on neurology, cardiology and haematology. For orthopaedics, growing interest in the unique cell type has prompted more researchers to get involved in iPSC research. In this article, we introduce the brief history of cellular reprogramming and different reprogramming methods that have been developed, discuss the biology of iPSCs and review previously reported findings of iPSC studies in orthopaedics. The Translational potential of this article Stem cell therapies hold great promise for treating orthopaedic diseases, manifested in recent study findings and results of clinical trials. iPSCs are a unique stem cell type derived from a patient’s own cells while still possessing the embryonic stem cell-featured pluripotency for generation of all tissues in the body. The distinctive properties make iPSCs much desirable to fulfill the promise of regenerative medicine for clinical orthopaedics.
Collapse
Affiliation(s)
- Wan-Ju Li
- Department of Orthopedics and Rehabilitation, University of Wisconsin-Madison, Madison WI, USA.,Department of Biomedical Engineering, University of Wisconsin-Madison, Madison WI, USA
| | - Hongli Jiao
- Department of Orthopedics and Rehabilitation, University of Wisconsin-Madison, Madison WI, USA
| | - Brian E Walczak
- Department of Orthopedics and Rehabilitation, University of Wisconsin-Madison, Madison WI, USA
| |
Collapse
|
27
|
Graceffa V, Vinatier C, Guicheux J, Stoddart M, Alini M, Zeugolis DI. Chasing Chimeras - The elusive stable chondrogenic phenotype. Biomaterials 2018; 192:199-225. [PMID: 30453216 DOI: 10.1016/j.biomaterials.2018.11.014] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Revised: 11/02/2018] [Accepted: 11/09/2018] [Indexed: 12/27/2022]
Abstract
The choice of the best-suited cell population for the regeneration of damaged or diseased cartilage depends on the effectiveness of culture conditions (e.g. media supplements, three-dimensional scaffolds, mechanical stimulation, oxygen tension, co-culture systems) to induce stable chondrogenic phenotype. Herein, advances and shortfalls in in vitro, preclinical and clinical setting of various in vitro microenvironment modulators on maintaining chondrocyte phenotype or directing stem cells towards chondrogenic lineage are critically discussed. Chondrocytes possess low isolation efficiency, limited proliferative potential and rapid phenotypic drift in culture. Mesenchymal stem cells are relatively readily available, possess high proliferation potential, exhibit great chondrogenic differentiation capacity, but they tend to acquire a hypertrophic phenotype when exposed to chondrogenic stimuli. Embryonic and induced pluripotent stem cells, despite their promising in vitro and preclinical data, are still under-investigated. Although a stable chondrogenic phenotype remains elusive, recent advances in in vitro microenvironment modulators are likely to develop clinically- and commercially-relevant therapies in the years to come.
Collapse
Affiliation(s)
- Valeria Graceffa
- Regenerative, Modular & Developmental Engineering Laboratory (REMODEL), Centre for Research in Medical Devices (CÚRAM), Biomedical Sciences Building, National University of Ireland Galway (NUI Galway), Galway, Ireland
| | - Claire Vinatier
- INSERMU1229, Regenerative Medicine and Skeleton (RMeS), University of Nantes, UFR Odontologie & CHU Nantes, PHU 4 OTONN, 44042 Nantes, France
| | - Jerome Guicheux
- INSERMU1229, Regenerative Medicine and Skeleton (RMeS), University of Nantes, UFR Odontologie & CHU Nantes, PHU 4 OTONN, 44042 Nantes, France
| | - Martin Stoddart
- AO Research Institute, Clavadelerstrasse 8, 7270 Davos, Switzerland
| | - Mauro Alini
- AO Research Institute, Clavadelerstrasse 8, 7270 Davos, Switzerland
| | - Dimitrios I Zeugolis
- Regenerative, Modular & Developmental Engineering Laboratory (REMODEL), Centre for Research in Medical Devices (CÚRAM), Biomedical Sciences Building, National University of Ireland Galway (NUI Galway), Galway, Ireland.
| |
Collapse
|
28
|
Graceffa V, Vinatier C, Guicheux J, Evans CH, Stoddart M, Alini M, Zeugolis DI. State of art and limitations in genetic engineering to induce stable chondrogenic phenotype. Biotechnol Adv 2018; 36:1855-1869. [PMID: 30012541 DOI: 10.1016/j.biotechadv.2018.07.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Revised: 05/16/2018] [Accepted: 07/12/2018] [Indexed: 12/18/2022]
|
29
|
Inhibition of miR-449a Promotes Cartilage Regeneration and Prevents Progression of Osteoarthritis in In Vivo Rat Models. MOLECULAR THERAPY. NUCLEIC ACIDS 2018; 13:322-333. [PMID: 30326428 PMCID: PMC6197768 DOI: 10.1016/j.omtn.2018.09.015] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Revised: 09/21/2018] [Accepted: 09/23/2018] [Indexed: 12/20/2022]
Abstract
Traumatic and degenerative lesions of articular cartilage usually progress to osteoarthritis (OA), a leading cause of disability in humans. MicroRNAs (miRNAs) can regulate the differentiation of human bone marrow-derived mesenchymal stem cells (hBMSCs) and play important roles in the expression of genes related to OA. However, their functional roles in OA remain poorly understood. Here, we have examined miR-449a, which targets sirtuin 1 (SIRT1) and lymphoid enhancer-binding factor-1 (LEF-1), and observed its effects on damaged cartilage. The levels of chondrogenic markers and miR-449a target genes increased during chondrogenesis in anti-miR-449a-transfected hBMSCs. A locked nucleic acid (LNA)-anti-miR-449a increased cartilage regeneration and expression of type II collagen and aggrecan on the regenerated cartilage surface in acute defect and OA models. Furthermore, intra-articular injection of LNA-anti-miR-449a prevented disease progression in the OA model. Our study indicates that miR-449a may be a novel potential therapeutic target for age-related joint diseases like OA.
Collapse
|
30
|
Rim YA, Nam Y, Park N, Lee J, Park SH, Ju JH. Repair potential of nonsurgically delivered induced pluripotent stem cell-derived chondrocytes in a rat osteochondral defect model. J Tissue Eng Regen Med 2018; 12:1843-1855. [PMID: 29770595 DOI: 10.1002/term.2705] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Revised: 04/13/2018] [Accepted: 05/03/2018] [Indexed: 12/12/2022]
Abstract
Human induced pluripotent stem cells (hiPSCs) are thought to be an alternative cell source for future regenerative medicine. hiPSCs may allow unlimited production of cell types that have low turnover rates and are difficult to obtain such as autologous chondrocytes. In this study, we generated hiPSC-derived chondrogenic pellets, and chondrocytes were isolated. To confirm the curative effects, chondrogenic pellets and isolated chondrocytes were transplanted into rat joints with osteochondral defects. Isolated hiPSC-derived chondrocytes were delivered in the defect by a single intra-articular injection. The generated hiPSC-derived chondrogenic pellets had increased chondrogenic marker expression and accumulated extracellular matrix proteins. Chondrocytes were successfully isolated from the pellets. Alcian blue staining and collagen type II were detected in the cells. Chondrogenic marker expression was also increased in the isolated cells. Transplanted chondrogenic pellets and chondrocytes both had curative effects in the osteochondral defect rat model. Detection of human proteins in the joints proved that the cells were successfully delivered into the defect. Chondrogenic pellets or chondrocytes generated from hiPSCs have potential as regenerative medicine for cartilage recovery or regeneration. Chondrocytes isolated from hiPSC-derived chondrogenic pellets had curative effects in damaged cartilage. Injectable hiPSC-derived chondrocytes show the possibility of noninvasive delivery of regenerative medicine for cartilage recovery.
Collapse
Affiliation(s)
- Yeri Alice Rim
- CiSTEM Laboratory, Catholic iPSC Research Center, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Yoojun Nam
- CiSTEM Laboratory, Catholic iPSC Research Center, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Narae Park
- CiSTEM Laboratory, Catholic iPSC Research Center, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Jennifer Lee
- Division of Rheumatology, Department of Internal Medicine, Seoul St. Mary's Hospital, Institute of Medical Science, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Sung-Hwan Park
- Division of Rheumatology, Department of Internal Medicine, Seoul St. Mary's Hospital, Institute of Medical Science, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Ji Hyeon Ju
- CiSTEM Laboratory, Catholic iPSC Research Center, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea.,Division of Rheumatology, Department of Internal Medicine, Seoul St. Mary's Hospital, Institute of Medical Science, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| |
Collapse
|
31
|
Stem Cells for Osteochondral Regeneration. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1059:219-240. [DOI: 10.1007/978-3-319-76735-2_10] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
32
|
Jin GZ, Kim HW. Chondrogenic Potential of Dedifferentiated Rat Chondrocytes Reevaluated in Two- and Three-Dimensional Culture Conditions. Tissue Eng Regen Med 2018; 15:163-172. [PMID: 30603544 PMCID: PMC6171694 DOI: 10.1007/s13770-017-0094-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Revised: 10/25/2017] [Accepted: 11/01/2017] [Indexed: 01/22/2023] Open
Abstract
For the cartilage repair, the cell sources currently adopted are primarily chondrocytes or mesenchymal stem cells (MSCs). Due to the fact that chondrocytes dedifferentiate during 2-dimensional (2D) expansion, MSCs are generally more studied and considered to have higher potential for cartilage repair purposes. Here we question if the dedifferentiated chondrocytes can regain the chondrogenic potential, to find potential applications in cartilage repair. For this we chose chondrocytes at passage 12 (considered to have sufficiently dedifferentiated) and the expression of chondrogenic phenotypes and matrix syntheses were examined over 14 days. In particular, the chondrogenic potential of MSCs was also compared. Results showed that the dedifferentiated chondrocytes proliferated actively over 14 days with almost 2.5-fold increase relative to MSCs. Moreover, the chondrogenic ability of chondrocytes was significantly higher than that of MSCs, as confirmed by the expression of a series of mRNA levels and the production of cartilage extracellular matrix molecules in 2D-monolayer and 3-dimensional (3D)-spheroid cultures. Of note, the significance was higher in 3D-culture than in 2D-culture. Although more studies are needed such as the use of different cell passages and human cell source, and the chondrogenic confirmation under in vivo conditions, this study showing that the dedifferentiated chondrocytes can also be a suitable cell source for the cell-based cartilage repair, as a counterpart of MSCs, will encourage further studies regarding this issue.
Collapse
Affiliation(s)
- Guang-Zhen Jin
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, 119 Dandae-ro, Dongnam-gu, Cheonan, 31116 Korea
- Department of Nanobiomedical Science and BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, 31116 Korea
| | - Hae-Won Kim
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, 119 Dandae-ro, Dongnam-gu, Cheonan, 31116 Korea
- Department of Nanobiomedical Science and BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, 31116 Korea
- Department of Biomaterials Science, School of Dentistry, Dankook University, Cheonan, 31116 Korea
| |
Collapse
|
33
|
Jevons LA, Houghton FD, Tare RS. Augmentation of musculoskeletal regeneration: role for pluripotent stem cells. Regen Med 2018; 13:189-206. [PMID: 29557248 DOI: 10.2217/rme-2017-0113] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The rise in the incidence of musculoskeletal diseases is attributed to an increasing ageing population. The debilitating effects of musculoskeletal diseases, coupled with a lack of effective therapies, contribute to huge financial strains on healthcare systems. The focus of regenerative medicine has shifted to pluripotent stem cells (PSCs), namely, human embryonic stem cells and human-induced PSCs, due to the limited success of adult stem cell-based interventions. PSCs constitute a valuable cell source for musculoskeletal regeneration due to their capacity for unlimited self-renewal, ability to differentiate into all cell lineages of the three germ layers and perceived immunoprivileged characteristics. This review summarizes methods for chondrogenic, osteogenic, myogenic and adipogenic differentiation of PSCs and their potential for therapeutic applications.
Collapse
Affiliation(s)
- Lauren A Jevons
- Centre for Human Development, Stem Cells & Regeneration, Faculty of Medicine, University of Southampton, Southampton, SO16 6YD, UK
| | - Franchesca D Houghton
- Centre for Human Development, Stem Cells & Regeneration, Faculty of Medicine, University of Southampton, Southampton, SO16 6YD, UK
| | - Rahul S Tare
- Centre for Human Development, Stem Cells & Regeneration, Faculty of Medicine, University of Southampton, Southampton, SO16 6YD, UK.,Department of Mechanical Engineering, Faculty of Engineering & the Environment, University of Southampton, Southampton, SO17 1BJ, UK
| |
Collapse
|
34
|
Stem Cells for Cartilage Repair: Preclinical Studies and Insights in Translational Animal Models and Outcome Measures. Stem Cells Int 2018. [PMID: 29535784 PMCID: PMC5832141 DOI: 10.1155/2018/9079538] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Due to the restricted intrinsic capacity of resident chondrocytes to regenerate the lost cartilage postinjury, stem cell-based therapies have been proposed as a novel therapeutic approach for cartilage repair. Moreover, stem cell-based therapies using mesenchymal stem cells (MSCs) or induced pluripotent stem cells (iPSCs) have been used successfully in preclinical and clinical settings. Despite these promising reports, the exact mechanisms underlying stem cell-mediated cartilage repair remain uncertain. Stem cells can contribute to cartilage repair via chondrogenic differentiation, via immunomodulation, or by the production of paracrine factors and extracellular vesicles. But before novel cell-based therapies for cartilage repair can be introduced into the clinic, rigorous testing in preclinical animal models is required. Preclinical models used in regenerative cartilage studies include murine, lapine, caprine, ovine, porcine, canine, and equine models, each associated with its specific advantages and limitations. This review presents a summary of recent in vitro data and from in vivo preclinical studies justifying the use of MSCs and iPSCs in cartilage tissue engineering. Moreover, the advantages and disadvantages of utilizing small and large animals will be discussed, while also describing suitable outcome measures for evaluating cartilage repair.
Collapse
|
35
|
Liu X, Meng H, Guo Q, Sun B, Zhang K, Yu W, Liu S, Wang Y, Jing X, Zhang Z, Peng J, Yang J. Tissue-derived scaffolds and cells for articular cartilage tissue engineering: characteristics, applications and progress. Cell Tissue Res 2018; 372:13-22. [PMID: 29368258 DOI: 10.1007/s00441-017-2772-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Accepted: 11/23/2017] [Indexed: 12/22/2022]
Abstract
There are many factors to consider in the field of tissue engineering. For articular cartilage repair, this includes seed cells, scaffolds and chondrotrophic hormones. This review primarily focuses on the seed cells and scaffolds. Extracellular matrix proteins provide a natural scaffold for cell attachment, proliferation and differentiation. The structure and composition of tissue-derived scaffolds and native tissue are almost identical. As such, tissue-derived scaffolds hold great promise for biomedical applications. However, autologous tissue-derived scaffolds also have many drawbacks for transplantation, as harvesting autografts is limited to available donor sites and requires secondary surgery, therefore imparting additional damage to the body. This review summarizes and analyzes various cell sources and tissue-derived scaffolds applied in orthopedic tissue engineering.
Collapse
Affiliation(s)
- Xuejian Liu
- Institute of Orthopedics, Chinese PLA General Hospital, Beijing, China
- First Affiliated Hospital of Jiamusi University, Jiamusi University, Jiamusi, China
| | - Haoye Meng
- Institute of Orthopedics, Chinese PLA General Hospital, Beijing, China
- Beijing Key Lab of Regenerative Medicine in Orthopaedics, Beijing, China
| | - Quanyi Guo
- Institute of Orthopedics, Chinese PLA General Hospital, Beijing, China
- Beijing Key Lab of Regenerative Medicine in Orthopaedics, Beijing, China
| | - Baichuan Sun
- Institute of Orthopedics, Chinese PLA General Hospital, Beijing, China
- First Affiliated Hospital of Jiamusi University, Jiamusi University, Jiamusi, China
| | - Kaihong Zhang
- Institute of Orthopedics, Chinese PLA General Hospital, Beijing, China
| | - Wen Yu
- Institute of Orthopedics, Chinese PLA General Hospital, Beijing, China
- Beijing Key Lab of Regenerative Medicine in Orthopaedics, Beijing, China
| | - Shichen Liu
- First Affiliated Hospital of Jiamusi University, Jiamusi University, Jiamusi, China
| | - Yu Wang
- Institute of Orthopedics, Chinese PLA General Hospital, Beijing, China
- Beijing Key Lab of Regenerative Medicine in Orthopaedics, Beijing, China
| | - Xiaoguang Jing
- Institute of Orthopedics, Chinese PLA General Hospital, Beijing, China
- First Affiliated Hospital of Jiamusi University, Jiamusi University, Jiamusi, China
| | - Zengzeng Zhang
- Institute of Orthopedics, Chinese PLA General Hospital, Beijing, China
- First Affiliated Hospital of Jiamusi University, Jiamusi University, Jiamusi, China
| | - Jiang Peng
- Institute of Orthopedics, Chinese PLA General Hospital, Beijing, China.
- Beijing Key Lab of Regenerative Medicine in Orthopaedics, Beijing, China.
| | - Jianhua Yang
- First Affiliated Hospital of Jiamusi University, Jiamusi University, Jiamusi, China.
- Longgang District People's Hospital of Shenzhen, Shenzhen, China.
| |
Collapse
|
36
|
Ondrésik M, Oliveira JM, Reis RL. Advances for Treatment of Knee OC Defects. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1059:3-24. [PMID: 29736567 DOI: 10.1007/978-3-319-76735-2_1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Osteochondral (OC) defects are prevalent among young adults and are notorious for being unable to heal. Although they are traumatic in nature, they often develop silently. Detection of many OC defects is challenging, despite the criticality of early care. Current repair approaches face limitations and cannot provide regenerative or long-standing solution. Clinicians and researchers are working together in order to develop approaches that can regenerate the damaged tissues and protect the joint from developing osteoarthritis. The current concepts of tissue engineering and regenerative medicine, which have brought many promising applications to OC management, are overviewed herein. We will also review the types of stem cells that aim to provide sustainable cell sources overcoming the limitation of autologous chondrocyte-based applications. The various scaffolding materials that can be used as extracellular matrix mimetic and having functional properties similar to the OC unit are also discussed.
Collapse
Affiliation(s)
- Marta Ondrésik
- 3B's Research Group - Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Barco, Guimarães, Portugal.
- ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal.
| | - J Miguel Oliveira
- 3B's Research Group - Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Barco, Guimarães, Portugal
- ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
- The Discoveries Centre for Regenerative and Precision Medicine, Headquarters at University of Minho, Barco, Guimarães, Portugal
| | - Rui L Reis
- 3B's Research Group - Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Barco, Guimarães, Portugal
- ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
- The Discoveries Centre for Regenerative and Precision Medicine, Headquarters at University of Minho, Barco, Guimarães, Portugal
| |
Collapse
|
37
|
Establishment of integration-free induced pluripotent stem cells from human recessive dystrophic epidermolysis bullosa keratinocytes. J Dermatol Sci 2017; 89:263-271. [PMID: 29229433 DOI: 10.1016/j.jdermsci.2017.11.017] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Revised: 11/15/2017] [Accepted: 11/27/2017] [Indexed: 11/21/2022]
Abstract
BACKGROUND Induced pluripotent stem cell (iPSC) technology enables patient-specific pluripotent stem cells to be derived from adult somatic cells without the use of an embryonic cell source. To date, recessive dystrophic epidermolysis bullosa (RDEB)-specific iPSCs have been generated from patients using integrating retroviral vectors. However, vector integration into the host genome can endanger the biosafety and differentiation propensities of iPSCs. Although various integration-free reprogramming systems have been reported, their utility in reprogramming somatic cells from patients remains largely undetermined. OBJECTIVE Our study aims to establish safe iPSCs from keratinocytes of RDEB patients using non-integration vector. METHOD We optimized and infected non-integrating Sendai viral vectors to reprogram keratinocytes from healthy volunteers and RDEB patients. RESULTS Sendai vector infection led to the reproducible generation of genomic modification-free iPSCs from these keratinocytes, which was proved by immunohistochemistry, reverse transcription polymerase chain reaction, methylation assay, teratoma assay and embryoid body formation assay. Furthermore, we confirmed that these iPSCs have the potential to differentiate into dermal fibroblasts and epidermal keratinocytes. CONCLUSION This is the first report to prove that the Sendai vector system facilitates the reliable reprogramming of patient keratinocytes into transgene-free iPSCs, providing another pluripotent platform for personalized diagnostic and therapeutic approaches to RDEB.
Collapse
|
38
|
Mika J, Clanton TO, Ambrose CG, Kinne RW. Surgical Preparation for Articular Cartilage Regeneration in the Osteoarthritic Knee Joint. Cartilage 2017; 8:365-368. [PMID: 28934878 PMCID: PMC5613893 DOI: 10.1177/1947603516670710] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
PURPOSE Autologous chondrocyte implantation (ACI) is a treatment option even in early osteoarthritis (OA). Surgical preparation for ACI should avoid penetration of the subchondral bone plate to prevent hemorrhage, fibrin clot formation, and subsequent activation of the inflammatory response. HYPOTHESIS Current surgical procedures with ring curettes preserve the integrity of the subchondral bone plate, even in patients with OA. METHODS Subchondral femoral bone plates ( n = 40) of OA knees undergoing total knee arthroplasty were prepared in vivo using standard, non-brute-force debridement for ACI. To approach regular wear/early OA, only cartilage with maximally grade 3A International Cartilage Repair Society score was prepared. Effects were analyzed by light microscopy. RESULTS In 87.5% of the specimens (35/40), standard debridement did not violate the tide mark, except for occasional minor openings with a smooth edge (diameter approximately 20 µm). In contrast, 5/40 samples (12.5%) showed one large area with a missing bone plate and an open bone marrow space. Twenty-eight specimens (70%) showed at least remnants of uncalcified cartilage. CONCLUSION On the basis of size/fine structure, the occasional minor openings are likely due to increased vascular penetration through the tide mark in the pathologically altered bone-cartilage interface in OA. The consequences of limited hemorrhage through minor openings or selected large defects following in vivo debridement are still unknown. Thus, standard debridement appears suitable for cartilage regeneration even in OA defects.
Collapse
Affiliation(s)
- Joerg Mika
- Department of Orthopaedic Surgery, University Hospital Jena, Eisenberg, Germany,Experimental Rheumatology Unit, Department of Orthopaedic Surgery, University Hospital Jena, Eisenberg, Germany,Department of Trauma, Hand and Reconstructive Surgery, University Hospital Giessen-Marburg, Campus Giessen, Giessen, Germany,Laboratory of Experimental Trauma Surgery, Justus-Liebig-University Giessen, Giessen, Germany,Joerg Mika, Department of Trauma, Hand and Reconstructive Surgery Giessen, University Hospital Giessen-Marburg, Campus Giessen, Rudolf-Buchheim-Str. 7, 35385 Giessen, Germany.
| | | | - Catherine G. Ambrose
- Department of Orthopaedic Surgery, University of Texas Health Science Center at Houston, TX, USA
| | - Raimund W. Kinne
- Experimental Rheumatology Unit, Department of Orthopaedic Surgery, University Hospital Jena, Eisenberg, Germany
| |
Collapse
|
39
|
Mouser VHM, Levato R, Bonassar LJ, D’Lima DD, Grande DA, Klein TJ, Saris DBF, Zenobi-Wong M, Gawlitta D, Malda J. Three-Dimensional Bioprinting and Its Potential in the Field of Articular Cartilage Regeneration. Cartilage 2017; 8:327-340. [PMID: 28934880 PMCID: PMC5613889 DOI: 10.1177/1947603516665445] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Three-dimensional (3D) bioprinting techniques can be used for the fabrication of personalized, regenerative constructs for tissue repair. The current article provides insight into the potential and opportunities of 3D bioprinting for the fabrication of cartilage regenerative constructs. Although 3D printing is already used in the orthopedic clinic, the shift toward 3D bioprinting has not yet occurred. We believe that this shift will provide an important step forward in the field of cartilage regeneration. Three-dimensional bioprinting techniques allow incorporation of cells and biological cues during the manufacturing process, to generate biologically active implants. The outer shape of the construct can be personalized based on clinical images of the patient's defect. Additionally, by printing with multiple bio-inks, osteochondral or zonally organized constructs can be generated. Relevant mechanical properties can be obtained by hybrid printing with thermoplastic polymers and hydrogels, as well as by the incorporation of electrospun meshes in hydrogels. Finally, bioprinting techniques contribute to the automation of the implant production process, reducing the infection risk. To prompt the shift from nonliving implants toward living 3D bioprinted cartilage constructs in the clinic, some challenges need to be addressed. The bio-inks and required cartilage construct architecture need to be further optimized. The bio-ink and printing process need to meet the sterility requirements for implantation. Finally, standards are essential to ensure a reproducible quality of the 3D printed constructs. Once these challenges are addressed, 3D bioprinted living articular cartilage implants may find their way into daily clinical practice.
Collapse
Affiliation(s)
- Vivian H. M. Mouser
- Department of Orthopaedics, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Riccardo Levato
- Department of Orthopaedics, University Medical Center Utrecht, Utrecht, The Netherlands
| | | | - Darryl D. D’Lima
- Shiley Center for Orthopaedic Research, Scripps Health, La Jolla, CA, USA
| | - Daniel A. Grande
- Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, Northwell Health System, Manhasset, NY, USA
| | - Travis J. Klein
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Daniel B. F. Saris
- Department of Orthopaedics, University Medical Center Utrecht, Utrecht, The Netherlands
| | | | - Debby Gawlitta
- Department of Oral and Maxillofacial Surgery & Special Dental Care, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Jos Malda
- Department of Orthopaedics, University Medical Center Utrecht, Utrecht, The Netherlands
- Department of Equine Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
40
|
Olivos-Meza A, Velasquillo Martínez C, Olivos Díaz B, Landa-Solís C, Brittberg M, Pichardo Bahena R, Ortega Sanchez C, Martínez V, Alvarez Lara E, Ibarra-Ponce de León JC. Co-culture of dedifferentiated and primary human chondrocytes obtained from cadaveric donor enhance the histological quality of repair tissue: an in-vivo animal study. Cell Tissue Bank 2017; 18:369-381. [PMID: 28584920 DOI: 10.1007/s10561-017-9635-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Accepted: 05/26/2017] [Indexed: 12/26/2022]
Abstract
To compare the quality of the repair tissue in three-dimensional co-culture of human chondrocytes implanted in an in vivo model. Six cadaveric and five live human donors were included. Osteochondral biopsies from the donor knees were harvested for chondrocyte isolation. Fifty percent of cadaveric chondrocytes were expanded until passage-2 (P2) while the remaining cells were cryopreserved in passage-0 (P0). Fresh primary chondrocytes (P0f) obtained from live human donors were co-cultured. Three-dimensional constructs were prepared with a monolayer of passage-2 chondrocytes, collagen membrane (Geistlich Bio-Gide®), and pellet of non-co-cultured (P2) or co-cultured chondrocytes (P2 + P0c, P2 + P0f). Constructs were implanted in the subcutaneous tissue of athymic mice and left for 3 months growth. Safranin-O and Alcian blue staining were used to glycosaminoglycan content assessment. Aggrecan and type-II collagen were evaluated by immunohistochemistry. New-formed tissue quality was evaluated with an adaptation of the modified O'Driscoll score. Histological quality of non-co-cultured group was 4.37 (SD ±4.71), while co-cultured groups had a mean score of 8.71 (SD ±3.98) for the fresh primary chondrocytes and 9.57 (SD ±1.27) in the cryopreserved chondrocytes. In immunohistochemistry, Co-culture groups were strongly stained for type-II and aggrecan not seen in the non-co-cultured group. It is possible to isolate viable chondrocytes from cadaveric human donors in samples processed in the first 48-h of dead. There is non-significant difference between the numbers of chondrocytes isolated from live or cadaveric donors. Cryopreservation of cadaveric primary chondrocytes does not alter the capability to form cartilage like tissue. Co-culture of primary and passaged chondrocytes enhances the histological quality of new-formed tissue compared to non-co-cultured cells.
Collapse
Affiliation(s)
- Anell Olivos-Meza
- Orthopedic Sports Medicine and Arthroscopy Service, Instituto Nacional de Rehabilitación, Mexico City, Mexico
| | | | - Brenda Olivos Díaz
- Universidad Nacional Autónoma de México, Mexico City, Mexico.,Instituto Nacional de Rehabilitación, Mexico City, Mexico
| | - Carlos Landa-Solís
- Tissue Engineering, Cell Therapy and Regenerative Medicine Unit, Instituto Nacional de Rehabilitación, Mexico City, Mexico
| | - Mats Brittberg
- Region Halland Orthopaedics, Kungsbacka Hospital, Kungsbacka, Sweden
| | | | - Carmina Ortega Sanchez
- Tissue Engineering, Cell Therapy and Regenerative Medicine Unit, Instituto Nacional de Rehabilitación, Mexico City, Mexico
| | - Valentin Martínez
- Tissue Engineering, Cell Therapy and Regenerative Medicine Unit, Instituto Nacional de Rehabilitación, Mexico City, Mexico
| | | | | |
Collapse
|
41
|
The potential of induced pluripotent stem cells as a tool to study skeletal dysplasias and cartilage-related pathologic conditions. Osteoarthritis Cartilage 2017; 25:616-624. [PMID: 27919783 DOI: 10.1016/j.joca.2016.11.015] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Revised: 11/10/2016] [Accepted: 11/28/2016] [Indexed: 02/07/2023]
Abstract
The development of induced pluripotent stem cells (iPSCs) technology has opened up new horizons for development of new research tools especially for skeletal dysplasias, which often lack human disease models. Regenerative medicine and tissue engineering could be the next areas to benefit from refinement of iPSC methods to repair focal cartilage defects, while applications for osteoarthritis (OA) and drug screening have evolved rather slowly. Although the advances in iPSC research of skeletal dysplasias and repair of focal cartilage lesions are not directly relevant to OA, they can be considered to pave the way to future prospects and solutions to OA research, too. The same problems which face the present cell-based treatments of cartilage injuries concern also the iPSC-based ones. However, established iPSC lines, which have no genomic aberrations and which efficiently differentiate into extracellular matrix secreting chondrocytes, could be an invaluable cell source for cell transplantations in the future. The safety issues concerning the recipient risks of teratoma formation and immune response still have to be solved before the potential use of iPSCs in cartilage repair of focal cartilage defects and OA.
Collapse
|
42
|
Cartilage Tissue Engineering by the 3D Bioprinting of iPS Cells in a Nanocellulose/Alginate Bioink. Sci Rep 2017; 7:658. [PMID: 28386058 PMCID: PMC5428803 DOI: 10.1038/s41598-017-00690-y] [Citation(s) in RCA: 259] [Impact Index Per Article: 32.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Accepted: 03/03/2017] [Indexed: 11/25/2022] Open
Abstract
Cartilage lesions can progress into secondary osteoarthritis and cause severe clinical problems in numerous patients. As a prospective treatment of such lesions, human-derived induced pluripotent stem cells (iPSCs) were shown to be 3D bioprinted into cartilage mimics using a nanofibrillated cellulose (NFC) composite bioink when co-printed with irradiated human chondrocytes. Two bioinks were investigated: NFC with alginate (NFC/A) or hyaluronic acid (NFC/HA). Low proliferation and phenotypic changes away from pluripotency were seen in the case of NFC/HA. However, in the case of the 3D-bioprinted NFC/A (60/40, dry weight % ratio) constructs, pluripotency was initially maintained, and after five weeks, hyaline-like cartilaginous tissue with collagen type II expression and lacking tumorigenic Oct4 expression was observed in 3D -bioprinted NFC/A (60/40, dry weight % relation) constructs. Moreover, a marked increase in cell number within the cartilaginous tissue was detected by 2-photon fluorescence microscopy, indicating the importance of high cell densities in the pursuit of achieving good survival after printing. We conclude that NFC/A bioink is suitable for bioprinting iPSCs to support cartilage production in co-cultures with irradiated chondrocytes.
Collapse
|
43
|
Goldberg A, Mitchell K, Soans J, Kim L, Zaidi R. The use of mesenchymal stem cells for cartilage repair and regeneration: a systematic review. J Orthop Surg Res 2017; 12:39. [PMID: 28279182 PMCID: PMC5345159 DOI: 10.1186/s13018-017-0534-y] [Citation(s) in RCA: 167] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2017] [Accepted: 02/13/2017] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND The management of articular cartilage defects presents many clinical challenges due to its avascular, aneural and alymphatic nature. Bone marrow stimulation techniques, such as microfracture, are the most frequently used method in clinical practice however the resulting mixed fibrocartilage tissue which is inferior to native hyaline cartilage. Other methods have shown promise but are far from perfect. There is an unmet need and growing interest in regenerative medicine and tissue engineering to improve the outcome for patients requiring cartilage repair. Many published reviews on cartilage repair only list human clinical trials, underestimating the wealth of basic sciences and animal studies that are precursors to future research. We therefore set out to perform a systematic review of the literature to assess the translation of stem cell therapy to explore what research had been carried out at each of the stages of translation from bench-top (in vitro), animal (pre-clinical) and human studies (clinical) and assemble an evidence-based cascade for the responsible introduction of stem cell therapy for cartilage defects. This review was conducted in accordance to PRISMA guidelines using CINHAL, MEDLINE, EMBASE, Scopus and Web of Knowledge databases from 1st January 1900 to 30th June 2015. In total, there were 2880 studies identified of which 252 studies were included for analysis (100 articles for in vitro studies, 111 studies for animal studies; and 31 studies for human studies). There was a huge variance in cell source in pre-clinical studies both of terms of animal used, location of harvest (fat, marrow, blood or synovium) and allogeneicity. The use of scaffolds, growth factors, number of cell passages and number of cells used was hugely heterogeneous. SHORT CONCLUSIONS This review offers a comprehensive assessment of the evidence behind the translation of basic science to the clinical practice of cartilage repair. It has revealed a lack of connectivity between the in vitro, pre-clinical and human data and a patchwork quilt of synergistic evidence. Drivers for progress in this space are largely driven by patient demand, surgeon inquisition and a regulatory framework that is learning at the same pace as new developments take place.
Collapse
Affiliation(s)
- Andy Goldberg
- Institute of Orthopaedics and Musculoskeletal Science, Royal National Orthopaedic Hospital (RNOH), Brockley Hill Stanmore, London, HA7 4LP UK
| | - Katrina Mitchell
- Institute of Orthopaedics and Musculoskeletal Science, Royal National Orthopaedic Hospital (RNOH), Brockley Hill Stanmore, London, HA7 4LP UK
| | - Julian Soans
- Institute of Orthopaedics and Musculoskeletal Science, Royal National Orthopaedic Hospital (RNOH), Brockley Hill Stanmore, London, HA7 4LP UK
| | - Louise Kim
- Joint Research and Enterprise Office, St George’s University of London and St George’s University Hospitals NHS Foundation Trust, Hunter Wing, Cranmer Terrace, London, SW17 0RE UK
| | - Razi Zaidi
- Institute of Orthopaedics and Musculoskeletal Science, Royal National Orthopaedic Hospital (RNOH), Brockley Hill Stanmore, London, HA7 4LP UK
| |
Collapse
|
44
|
Jeon OH, Elisseeff J. Orthopedic tissue regeneration: cells, scaffolds, and small molecules. Drug Deliv Transl Res 2016; 6:105-20. [PMID: 26625850 DOI: 10.1007/s13346-015-0266-7] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Orthopedic tissue regeneration would benefit the aging population or patients with degenerative bone and cartilage diseases, especially osteoporosis and osteoarthritis. Despite progress in surgical and pharmacological interventions, new regenerative approaches are needed to meet the challenge of creating bone and articular cartilage tissues that are not only structurally sound but also functional, primarily to maintain mechanical integrity in their high load-bearing environments. In this review, we discuss new advances made in exploiting the three classes of materials in bone and cartilage regenerative medicine--cells, biomaterial-based scaffolds, and small molecules--and their successes and challenges reported in the clinic. In particular, the focus will be on the development of tissue-engineered bone and cartilage ex vivo by combining stem cells with biomaterials, providing appropriate structural, compositional, and mechanical cues to restore damaged tissue function. In addition, using small molecules to locally promote regeneration will be discussed, with potential approaches that combine bone and cartilage targeted therapeutics for the orthopedic-related disease, especially osteoporosis and osteoarthritis.
Collapse
Affiliation(s)
- Ok Hee Jeon
- Translational Tissue Engineering Center, Wilmer Eye Institute and the Department of Biomedical Engineering, Johns Hopkins University, 5031 Smith Building, 400N. Broadway, Baltimore, MD, 21231, USA
| | - Jennifer Elisseeff
- Translational Tissue Engineering Center, Wilmer Eye Institute and the Department of Biomedical Engineering, Johns Hopkins University, 5031 Smith Building, 400N. Broadway, Baltimore, MD, 21231, USA.
| |
Collapse
|
45
|
Park JH, Jang J, Lee JS, Cho DW. Current advances in three-dimensional tissue/organ printing. Tissue Eng Regen Med 2016; 13:612-621. [PMID: 30603443 PMCID: PMC6170865 DOI: 10.1007/s13770-016-8111-8] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2015] [Revised: 12/14/2015] [Accepted: 12/22/2015] [Indexed: 01/04/2023] Open
Abstract
Three-dimensional (3D) tissue/organ printing is a major aspect of recent innovation in the field of tissue engineering and regenerative medicine. 3D tissue/organ printing aims to create 3D living tissue/organ analogues, and have evolved along with advances in 3D printing techniques. A diverse range of computer-aided 3D printing techniques have been applied to dispose living cells together with biomaterials and supporting biochemical factors within pre-designed 3D tissue/organ analogues. Recent developments in printable biomaterials, such as decellularized extracellular matrix bio-inks have enabled improvements in the functionality of the resulting 3D tissue/organ analogues. Here, we provide an overview of the 3D printing techniques and biomaterials that have been used, including the development of 3D tissue/organ analogues. In addition, in vitro models are described, and future perspectives in 3D tissue/organ printing are identified.
Collapse
Affiliation(s)
- Jeong Hun Park
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, Korea
| | - Jinah Jang
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, Korea
| | - Jung-Seob Lee
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, Korea
| | - Dong-Woo Cho
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, Korea
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Nam-gu, Pohang, 37673 Korea
| |
Collapse
|
46
|
Prenatal exposure to environmental factors and congenital limb defects. ACTA ACUST UNITED AC 2016; 108:243-273. [DOI: 10.1002/bdrc.21140] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Accepted: 09/29/2016] [Indexed: 12/26/2022]
|
47
|
Frisch J, Cucchiarini M. Gene- and Stem Cell-Based Approaches to Regulate Hypertrophic Differentiation in Articular Cartilage Disorders. Stem Cells Dev 2016; 25:1495-1512. [DOI: 10.1089/scd.2016.0106] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Affiliation(s)
- Janina Frisch
- Center of Experimental Orthopaedics, Saarland University and Saarland University Medical Center, Homburg, Germany
| | - Magali Cucchiarini
- Center of Experimental Orthopaedics, Saarland University and Saarland University Medical Center, Homburg, Germany
| |
Collapse
|
48
|
Burke J, Hunter M, Kolhe R, Isales C, Hamrick M, Fulzele S. Therapeutic potential of mesenchymal stem cell based therapy for osteoarthritis. Clin Transl Med 2016; 5:27. [PMID: 27510262 PMCID: PMC4980326 DOI: 10.1186/s40169-016-0112-7] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Accepted: 07/28/2016] [Indexed: 12/19/2022] Open
Abstract
Osteoarthritis (OA) is a chronic degenerative disease affecting articular cartilage in joints, and it is a leading cause of disability in the United States. Current pharmacological treatment strategies are ineffective to prevent the OA progression; however, cellular therapies have the potential to regenerate the lost cartilage, combat cartilage degeneration, provide pain relief, and improve patient mobility. One of the most promising sources of cellular regenerative medicine is from mesenchymal stem cells (MSCs). MSCs can be isolated from adipose tissue, bone marrow, synovial tissue, and other sources. The aim of this review is to compile recent advancement in cellular based therapy more specifically in relation to MSCs in the treatment of osteoarthritis.
Collapse
Affiliation(s)
- John Burke
- Department of Orthopedics, Georgia Regents University, Augusta, GA, USA
| | - Monte Hunter
- Department of Orthopedics, Georgia Regents University, Augusta, GA, USA
| | - Ravindra Kolhe
- Department of Pathology, Georgia Regents University, Augusta, GA, USA
| | - Carlos Isales
- Department of Orthopedics, Georgia Regents University, Augusta, GA, USA.,Institute of Regenerative and Reparative Medicine, Georgia Regents University, Augusta, GA, USA
| | - Mark Hamrick
- Department of Cell Biology and Anatomy, Georgia Regents University, Augusta, GA, USA.,Institute of Regenerative and Reparative Medicine, Georgia Regents University, Augusta, GA, USA
| | - Sadanand Fulzele
- Department of Orthopedics, Georgia Regents University, Augusta, GA, USA. .,Institute of Regenerative and Reparative Medicine, Georgia Regents University, Augusta, GA, USA. .,Department of Orthopedics Surgery, Augusta University, Augusta, GA, 30904, USA.
| |
Collapse
|
49
|
Langhans MT, Yu S, Tuan RS. Stem Cells in Skeletal Tissue Engineering: Technologies and Models. Curr Stem Cell Res Ther 2016; 11:453-474. [PMID: 26423296 DOI: 10.2174/1574888x10666151001115248] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Revised: 04/01/2015] [Accepted: 04/01/2015] [Indexed: 12/14/2022]
Abstract
This review surveys the use of pluripotent and multipotent stem cells in skeletal tissue engineering. Specific emphasis is focused on evaluating the function and activities of these cells in the context of development in vivo, and how technologies and methods of stem cell-based tissue engineering for stem cells must draw inspiration from developmental biology. Information on the embryonic origin and in vivo differentiation of skeletal tissues is first reviewed, to shed light on the persistence and activities of adult stem cells that remain in skeletal tissues after embryogenesis. Next, the development and differentiation of pluripotent stem cells is discussed, and some of their advantages and disadvantages in the context of tissue engineering are presented. The final section highlights current use of multipotent adult mesenchymal stem cells, reviewing their origin, differentiation capacity, and potential applications to tissue engineering.
Collapse
Affiliation(s)
| | | | - Rocky S Tuan
- Center for Cellular and Molecular Engineering, Department of Orthopaedic Surgery, University of Pittsburgh School of Medicine, 450 Technology Drive, Room 221, Pittsburgh, PA 15219, USA.
| |
Collapse
|
50
|
Abstract
Temporomandibular Disorders (TMD) represent a heterogeneous group of musculoskeletal and neuromuscular conditions involving the temporomandibular joint (TMJ), masticatory muscles and/or associated structures. They are a major cause of non-dental orofacial pain. As a group, they are often multi-factorial in nature and have no common etiology or biological explanations. TMD can be broadly divided into masticatory muscle and TMJ disorders. TMJ disorders are characterized by intra-articular positional and/or structural abnormalities. The most common type of TMJ disorders involves displacement of the TMJ articular disc that precedes progressive degenerative changes of the joint leading to osteoarthritis (OA). In the past decade, progress made in the development of stem cell-based therapies and tissue engineering have provided alternative methods to attenuate the disease symptoms and even replace the diseased tissue in the treatment of TMJ disorders. Resident mesenchymal stem cells (MSCs) have been isolated from the synovia of TMJ, suggesting an important role in the repair and regeneration of TMJ. The seminal discovery of pluripotent stem cells including embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs) have provided promising cell sources for drug discovery, transplantation as well as for tissue engineering of TMJ condylar cartilage and disc. This review discusses the most recent advances in development of stem cell-based treatments for TMJ disorders through innovative approaches of cell-based therapeutics, tissue engineering and drug discovery.
Collapse
|