1
|
Mei Z, Yilamu K, Ni W, Shen P, Pan N, Chen H, Su Y, Guo L, Sun Q, Li Z, Huang D, Fang X, Fan S, Zhang H, Shen S. Chondrocyte fatty acid oxidation drives osteoarthritis via SOX9 degradation and epigenetic regulation. Nat Commun 2025; 16:4892. [PMID: 40425566 PMCID: PMC12117060 DOI: 10.1038/s41467-025-60037-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Accepted: 05/09/2025] [Indexed: 05/29/2025] Open
Abstract
Osteoarthritis is the most prevalent age-related degenerative joint disease and is closely linked to obesity. However, the underlying mechanisms remain unclear. Here we show that altered lipid metabolism in chondrocytes, particularly enhanced fatty acid oxidation (FAO), contributes to osteoarthritis progression. Excessive FAO causes acetyl-CoA accumulation, thereby altering protein-acetylation profiles, where the core FAO enzyme HADHA is hyperacetylated and activated, reciprocally boosting FAO activity and exacerbating OA progression. Mechanistically, elevated FAO reduces AMPK activity, impairs SOX9 phosphorylation, and ultimately promotes its ubiquitination-mediated degradation. Additionally, acetyl-CoA orchestrates epigenetic modulation, affecting multiple cellular processes critical for osteoarthritis pathogenesis, including the transcriptional activation of MMP13 and ADAMTS7. Cartilage-targeted delivery of trimetazidine, an FAO inhibitor and AMPK activator, demonstrates superior efficacy in a mouse model of metabolism-associated post-traumatic osteoarthritis. These findings suggest that targeting chondrocyte-lipid metabolism may offer new therapeutic strategies for osteoarthritis.
Collapse
Affiliation(s)
- Zixuan Mei
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, China
| | - Kamuran Yilamu
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, China
| | - Weiyu Ni
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, China
| | - Panyang Shen
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, China
| | - Nan Pan
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, China
| | - Huasen Chen
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, China
| | - Yingfeng Su
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, China
| | - Lei Guo
- Pooling Institute of Translational Medicine, Hangzhou, China
| | - Qunan Sun
- Department of Medical Oncology, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Zhaomei Li
- Department of Geriatrics, Xiaoshan Geriatric Hospital, Hangzhou, China
| | - Dongdong Huang
- Pooling Institute of Translational Medicine, Hangzhou, China
| | - Xiangqian Fang
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, China
| | - Shunwu Fan
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China.
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, China.
| | - Haitao Zhang
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China.
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, China.
| | - Shuying Shen
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China.
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, China.
| |
Collapse
|
2
|
Sun X, Perl AK, Li R, Bell SM, Sajti E, Kalinichenko VV, Kalin TV, Misra RS, Deshmukh H, Clair G, Kyle J, Crotty Alexander LE, Masso-Silva JA, Kitzmiller JA, Wikenheiser-Brokamp KA, Deutsch G, Guo M, Du Y, Morley MP, Valdez MJ, Yu HV, Jin K, Bardes EE, Zepp JA, Neithamer T, Basil MC, Zacharias WJ, Verheyden J, Young R, Bandyopadhyay G, Lin S, Ansong C, Adkins J, Salomonis N, Aronow BJ, Xu Y, Pryhuber G, Whitsett J, Morrisey EE. A census of the lung: CellCards from LungMAP. Dev Cell 2022; 57:112-145.e2. [PMID: 34936882 PMCID: PMC9202574 DOI: 10.1016/j.devcel.2021.11.007] [Citation(s) in RCA: 89] [Impact Index Per Article: 29.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 07/19/2021] [Accepted: 11/05/2021] [Indexed: 01/07/2023]
Abstract
The human lung plays vital roles in respiration, host defense, and basic physiology. Recent technological advancements such as single-cell RNA sequencing and genetic lineage tracing have revealed novel cell types and enriched functional properties of existing cell types in lung. The time has come to take a new census. Initiated by members of the NHLBI-funded LungMAP Consortium and aided by experts in the lung biology community, we synthesized current data into a comprehensive and practical cellular census of the lung. Identities of cell types in the normal lung are captured in individual cell cards with delineation of function, markers, developmental lineages, heterogeneity, regenerative potential, disease links, and key experimental tools. This publication will serve as the starting point of a live, up-to-date guide for lung research at https://www.lungmap.net/cell-cards/. We hope that Lung CellCards will promote the community-wide effort to establish, maintain, and restore respiratory health.
Collapse
Affiliation(s)
- Xin Sun
- Department of Pediatrics, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA; Department of Biological Sciences, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA.
| | - Anne-Karina Perl
- Division of Neonatology and Pulmonary Biology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH 45229, USA; Department of Pediatrics, University of Cincinnati College of Medicine, 3230 Eden Avenue, Cincinnati, OH 45267, USA
| | - Rongbo Li
- Department of Pediatrics, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Sheila M Bell
- Division of Neonatology and Pulmonary Biology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH 45229, USA
| | - Eniko Sajti
- Department of Pediatrics, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Vladimir V Kalinichenko
- Division of Neonatology and Pulmonary Biology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH 45229, USA; Department of Pediatrics, University of Cincinnati College of Medicine, 3230 Eden Avenue, Cincinnati, OH 45267, USA; Center for Lung Regenerative Medicine, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH 45229, USA
| | - Tanya V Kalin
- Division of Neonatology and Pulmonary Biology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH 45229, USA; Department of Pediatrics, University of Cincinnati College of Medicine, 3230 Eden Avenue, Cincinnati, OH 45267, USA
| | - Ravi S Misra
- Department of Pediatrics Division of Neonatology, The University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Hitesh Deshmukh
- Division of Neonatology and Pulmonary Biology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH 45229, USA; Department of Pediatrics, University of Cincinnati College of Medicine, 3230 Eden Avenue, Cincinnati, OH 45267, USA
| | - Geremy Clair
- Biological Science Division, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Jennifer Kyle
- Biological Science Division, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Laura E Crotty Alexander
- Deparment of Medicine, Division of Pulmonary, Critical Care, and Sleep Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Jorge A Masso-Silva
- Deparment of Medicine, Division of Pulmonary, Critical Care, and Sleep Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Joseph A Kitzmiller
- Division of Neonatology and Pulmonary Biology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH 45229, USA
| | - Kathryn A Wikenheiser-Brokamp
- Division of Neonatology and Pulmonary Biology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH 45229, USA; Division of Pathology and Laboratory Medicine, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH 45229, USA; Department of Pathology & Laboratory Medicine, University of Cincinnati College of Medicine, 3230 Eden Avenue, Cincinnati, OH 45267, USA
| | - Gail Deutsch
- Department of Pathology, University of Washington School of Medicine, Seattle, WA, USA; Department of Laboratories, Seattle Children's Hospital, OC.8.720, 4800 Sand Point Way Northeast, Seattle, WA 98105, USA
| | - Minzhe Guo
- Division of Neonatology and Pulmonary Biology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH 45229, USA; Department of Pediatrics, University of Cincinnati College of Medicine, 3230 Eden Avenue, Cincinnati, OH 45267, USA
| | - Yina Du
- Division of Neonatology and Pulmonary Biology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH 45229, USA
| | - Michael P Morley
- Penn-CHOP Lung Biology Institute, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Michael J Valdez
- Department of Pediatrics, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Haoze V Yu
- Department of Pediatrics, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Kang Jin
- Departments of Biomedical Informatics, Developmental Biology, and Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Eric E Bardes
- Departments of Biomedical Informatics, Developmental Biology, and Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Jarod A Zepp
- Penn-CHOP Lung Biology Institute, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Terren Neithamer
- Penn-CHOP Lung Biology Institute, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Maria C Basil
- Penn-CHOP Lung Biology Institute, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - William J Zacharias
- Division of Neonatology and Pulmonary Biology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH 45229, USA; Department of Internal Medicine, University of Cincinnati College of Medicine, 3230 Eden Avenue, Cincinnati, OH 45267, USA
| | - Jamie Verheyden
- Department of Pediatrics, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Randee Young
- Department of Pediatrics, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Gautam Bandyopadhyay
- Department of Pediatrics Division of Neonatology, The University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Sara Lin
- National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Charles Ansong
- Biological Science Division, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Joshua Adkins
- Biological Science Division, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Nathan Salomonis
- Department of Pediatrics, University of Cincinnati College of Medicine, 3230 Eden Avenue, Cincinnati, OH 45267, USA; Division of Biomedical Informatics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Bruce J Aronow
- Departments of Biomedical Informatics, Developmental Biology, and Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Yan Xu
- Division of Neonatology and Pulmonary Biology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH 45229, USA; Department of Pediatrics, University of Cincinnati College of Medicine, 3230 Eden Avenue, Cincinnati, OH 45267, USA
| | - Gloria Pryhuber
- Department of Pediatrics Division of Neonatology, The University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Jeff Whitsett
- Division of Neonatology and Pulmonary Biology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH 45229, USA; Department of Pediatrics, University of Cincinnati College of Medicine, 3230 Eden Avenue, Cincinnati, OH 45267, USA
| | - Edward E Morrisey
- Penn-CHOP Lung Biology Institute, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Cell and Developmental Biology, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
3
|
Couasnay G, Madel MB, Lim J, Lee B, Elefteriou F. Sites of Cre-recombinase activity in mouse lines targeting skeletal cells. J Bone Miner Res 2021; 36:1661-1679. [PMID: 34278610 DOI: 10.1002/jbmr.4415] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 07/12/2021] [Accepted: 07/15/2021] [Indexed: 12/22/2022]
Abstract
The Cre/Lox system is a powerful tool in the biologist's toolbox, allowing loss-of-function and gain-of-function studies, as well as lineage tracing, through gene recombination in a tissue-specific and inducible manner. Evidence indicates, however, that Cre transgenic lines have a far more nuanced and broader pattern of Cre activity than initially thought, exhibiting "off-target" activity in tissues/cells other than the ones they were originally designed to target. With the goal of facilitating the comparison and selection of optimal Cre lines to be used for the study of gene function, we have summarized in a single manuscript the major sites and timing of Cre activity of the main Cre lines available to target bone mesenchymal stem cells, chondrocytes, osteoblasts, osteocytes, tenocytes, and osteoclasts, along with their reported sites of "off-target" Cre activity. We also discuss characteristics, advantages, and limitations of these Cre lines for users to avoid common risks related to overinterpretation or misinterpretation based on the assumption of strict cell-type specificity or unaccounted effect of the Cre transgene or Cre inducers. © 2021 American Society for Bone and Mineral Research (ASBMR).
Collapse
Affiliation(s)
- Greig Couasnay
- Department of Orthopedic Surgery, Baylor College of Medicine, Houston, TX, USA
| | | | - Joohyun Lim
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Brendan Lee
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Florent Elefteriou
- Department of Orthopedic Surgery, Baylor College of Medicine, Houston, TX, USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|
4
|
Silva MJ, Holguin N. Aging aggravates intervertebral disc degeneration by regulating transcription factors toward chondrogenesis. FASEB J 2019; 34:1970-1982. [PMID: 31909538 DOI: 10.1096/fj.201902109r] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2019] [Revised: 10/08/2019] [Accepted: 10/15/2019] [Indexed: 12/17/2022]
Abstract
Osterix is a critical transcription factor of mesenchymal stem cell fate, where its loss or loss of Wnt signaling diverts differentiation to a chondrocytic lineage. Intervertebral disc (IVD) degeneration activates the differentiation of prehypertrophic chondrocyte-like cells and inactivates Wnt signaling, but its interactive role with osterix is unclear. First, compared to young-adult (5 mo), mechanical compression of old (18 mo) IVD induced greater IVD degeneration. Aging (5 vs 12 mo) and/or compression reduced the transcription of osterix and notochordal marker T by 40-75%. Compression elevated the transcription of hypertrophic chondrocyte marker MMP13 and pre-osterix transcription factor RUNX2, but less so in 12 mo IVD. Next, using an Ai9/td reporter and immunohistochemical staining, annulus fibrosus and nucleus pulposus cells of young-adult IVD expressed osterix, but aging and compression reduced its expression. Lastly, in vivo LRP5-deficiency in osterix-expressing cells inactivated Wnt signaling in the nucleus pulposus by 95%, degenerated the IVD to levels similar to aging and compression, reduced the biomechanical properties by 45-70%, and reduced the transcription of osterix, notochordal markers and chondrocytic markers by 60-80%. Overall, these data indicate that age-related inactivation of Wnt signaling in osterix-expressing cells may limit regeneration by depleting the progenitors and attenuating the expansion of chondrocyte-like cells.
Collapse
Affiliation(s)
- Matthew J Silva
- Department of Biomedical Engineering, Orthopaedic Surgery, Musculoskeletal Research Center, Washington University, St. Louis, MO, USA
| | - Nilsson Holguin
- Department of Mechanical and Energy Engineering, Indiana Center for Musculoskeletal Health, IUPUI, Indianapolis, IN, USA.,Department of Anatomy and Cell Biology, Indiana Center for Musculoskeletal Health, IUPUI, Indianapolis, IN, USA
| |
Collapse
|
5
|
Wei Y, Tower RJ, Tian Z, Mohanraj B, Mauck RL, Qin L, Zhang Y. Spatial distribution of type II collagen gene expression in the mouse intervertebral disc. JOR Spine 2019; 2:e1070. [PMID: 31891119 PMCID: PMC6920692 DOI: 10.1002/jsp2.1070] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 10/19/2019] [Accepted: 10/22/2019] [Indexed: 02/06/2023] Open
Abstract
Genetic tools such as the Cre-Lox reporter system are powerful aids for tissue-specific cell tracking. For example, it would be useful in examining intervertebral disc (IVD) cell populations in normal and diseased states. A Cre recombinase and its recognition site, loxP have been adapted from the bacteriophage for use in genetic manipulation. The reporter mice used here express the red fluorescent protein, tdTomato with flanking LoxP sites (Rosa26 TdTomato mice). We compared two different Collagen type II (Col2) promoter constructs that drive Cre-recombinase expression in mice: (a) Col2-Cre, which allows constitutive Cre-recombinase expression under the control of the Col2 promoter/enhancer and (b) Col2-CreER, which contains a shorter promoter/enhancer region than Col2-Cre, but has human estrogen binding elements that bind tamoxifen, resulting in Cre-recombinase expression. The goal of the study is to characterize Cre-recombinase distribution pattern in Col2-Cre and Col2-CreER mice using tdTomato as reporter in the spine. The expression patterns of these two mice were further compared with Col2 gene expression in the native mouse NP and AF tissues by real-time PCR. We crossed Col2-Cre mice or Col2-CreER mice with the tdTomato reporter mice, and compared the tdTomato expression patterns. Col2-CreER/tdTomato mice were injected with tamoxifen at postnatal day 7 to activate the Cre-recombinase. TdTomato in the constitutively active Col2-Cre mice was detected in the nucleus pulposus (NP), the entire annulus fibrosus (AF), and in cartilaginous endplate and growth plate cells in the lower lumbar and coccygeal spine. In contrast, when Col2-CreER activity was induced by tamoxifen at P7, tdTomato was limited to the inner AF, and was absent from the NP. We have described the differences in Col2 reporter gene expression, in Col2-Cre/tdTomato and Col2-Cre-ER/tdTomato mouse IVD. The information provided here will help to guide future investigations of IVD biology.
Collapse
Affiliation(s)
- Yulong Wei
- Department of Orthopaedic Surgery, Perelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPA
- Department of OrthopaedicsUnion Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhanChina
| | - Robert J. Tower
- Department of Orthopaedic Surgery, Perelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPA
| | - Zuozhen Tian
- Department of Physical Medicine and Rehabilitation, Perelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPA
| | - Bhavana Mohanraj
- Department of Orthopaedic Surgery, Perelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPA
| | - Robert L. Mauck
- Department of Orthopaedic Surgery, Perelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPA
- Department of Physical Medicine and Rehabilitation, Perelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPA
- Translational Musculoskeletal Research Center (TMRC)Corporal Michael J. Crescenz Veterans Affairs Medical CenterPhiladelphiaPennsylvania
| | - Ling Qin
- Department of Orthopaedic Surgery, Perelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPA
| | - Yejia Zhang
- Department of Orthopaedic Surgery, Perelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPA
- Department of Physical Medicine and Rehabilitation, Perelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPA
- Translational Musculoskeletal Research Center (TMRC)Corporal Michael J. Crescenz Veterans Affairs Medical CenterPhiladelphiaPennsylvania
| |
Collapse
|
6
|
Zheng Y, Fu X, Liu Q, Guan S, Liu C, Xiu C, Gong T, Jin H, Saijilafu, Zhang Z, Chen D, Chen J. Characterization of Cre recombinase mouse lines enabling cell type-specific targeting of postnatal intervertebral discs. J Cell Physiol 2019; 234:14422-14431. [PMID: 30675722 PMCID: PMC6650379 DOI: 10.1002/jcp.28166] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Accepted: 01/10/2019] [Indexed: 01/25/2023]
Abstract
Cre/loxP technology is an important tool for studying cell type-specific gene functions. Cre recombinase mouse lines, including Agc1-CreERT2 , Col2a1-Cre; Col2a1-CreERT2 , Shh-Cre, Shh-CreERT2 , and Osx-Cre, have been proven to be valuable tools to elucidate the biology of long bones, yet the information for their activity in postnatal intervertebral disc (IVD) tissues was very limited. In this study, we used R26-mTmG fluorescent reporter to systematically analyze cell specificity and targeting efficiency of these six mouse lines in IVD tissues at postnatal growing and adult stages. We found that Agc1-CreERT2 is effective to direct recombination in all components of IVDs, including annulus fibrosus (AF), nucleus pulposus (NP), and cartilaginous endplate (CEP), upon tamoxifen induction at either 2 weeks or 2 months of ages. Moreover, Col2a1-Cre targets most of the cells in IVDs, except for some cells in the outer AF (OAF) and NP. In contrast, the activity of Col2a1-CreERT2 is mainly limited to the IAF of IVD tissues at either stage of tamoxifen injection. Similarly, Shh-Cre directs recombination specifically in all NP cells, whereas Shh-CreERT2 is active only in a few NP cells when tamoxifen is administered at either stage. Finally, Osx-Cre targets cells in the CEP, but not in the NP or AF of IVDs tissues at these two stages. Thus, our data demonstrated that all these Cre lines can direct recombination in IVD tissues at postnatal stages with different cell type specificity and/or targeting efficiency, and can, therefore, serve as valuable tools to dissect cell type-specific gene functions in IVD development and homeostasis.
Collapse
Affiliation(s)
- Yixin Zheng
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China,Orthopedic Institute, Medical College, Soochow University, Suzhou, Jiangsu, China
| | - Xuejie Fu
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China,Orthopedic Institute, Medical College, Soochow University, Suzhou, Jiangsu, China
| | - Qingbai Liu
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China,Department of Orthopedics, Lianshui County Peopleʼs Hospital, Huaian, Jiangsu, China
| | - Shengqi Guan
- Laboratory Animal Center, Soochow University, Suzhou, Jiangsu, China
| | - Cunchang Liu
- Orthopedic Institute, Medical College, Soochow University, Suzhou, Jiangsu, China
| | - Chunmei Xiu
- Orthopedic Institute, Medical College, Soochow University, Suzhou, Jiangsu, China
| | - Tingting Gong
- Orthopedic Institute, Medical College, Soochow University, Suzhou, Jiangsu, China
| | - Hongting Jin
- Institute of Orthopaedics and Traumatology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Saijilafu
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China,Orthopedic Institute, Medical College, Soochow University, Suzhou, Jiangsu, China
| | - Zunyi Zhang
- Key Laboratory of Mammalian Organogenesis and Regeneration, College of Life and Environmental Science, Institute of Life Sciences, Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Di Chen
- Department of Orthopedic Surgery, Rush University Medical Center, Chicago, Illinois
| | - Jianquan Chen
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China,Orthopedic Institute, Medical College, Soochow University, Suzhou, Jiangsu, China
| |
Collapse
|
7
|
Wang Q, Tan Q, Xu W, Kuang L, Zhang B, Wang Z, Ni Z, Su N, Jin M, Li C, Jiang W, Huang J, Li F, Zhu Y, Chen H, Du X, Chen D, Deng C, Qi H, Xie Y, Chen L. Postnatal deletion of Alk5 gene in meniscal cartilage accelerates age-dependent meniscal degeneration in mice. J Cell Physiol 2018; 234:595-605. [PMID: 30078186 DOI: 10.1002/jcp.26802] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Accepted: 04/30/2018] [Indexed: 12/13/2022]
Abstract
Activation of transforming growth factor-β (TGF-β) signaling has been used to enhance healing of meniscal degeneration in several models. However, the exact role and molecular mechanism of TGF-β signaling in meniscus maintenance and degeneration are still not understood due to the absence of in vivo evidence. In this study, we found that the expression of activin receptor-like kinases 5 (ALK5) in the meniscus was decreased with the progression of age and/or osteoarthritis induced meniscal degeneration. Col2α1 positive cells were found to be specifically distributed in the superficial and inner zones of the anterior horn, as well as the inner zone of the posterior horn in mice, indicating that Col2α1-CreERT2 mice can be a used for studying gene function in menisci. Furthermore, we deleted Alk5 in Col2α1 positive cells in meniscus by administering tamoxifen. Alterations in the menisci structure were evaluated histologically. The expression levels of genes and proteins associated with meniscus homeostasis and TGF-β signaling were analyzed by quantitative real-time PCR analysis (qRT-PCR) and immunohistochemistry (IHC). Our results revealed severe and progressive meniscal degeneration phenotype in 3- and 6-month-old Alk5 cKO mice compared with Cre-negative control, including aberrantly increased hypertrophic meniscal cells, severe fibrillation, and structure disruption of meniscus. qRT-PCR and IHC results showed that disruption of anabolic and catabolic homeostasis of chondrocytes may contribute to the meniscal degeneration phenotype observed in Alk5 cKO mice. Thus, TGF-β/ALK5 signaling plays a chondro-protective role in menisci homeostasis, in part, by inhibiting matrix degradation and maintaining extracellular matrix proteins levels in meniscal tissues.
Collapse
Affiliation(s)
- Quan Wang
- Department of Rehabilitation Medicine, Center of Bone Metabolism and Repair, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Third Military Medical University, Chongqing, China
| | - Qiaoyan Tan
- Department of Rehabilitation Medicine, Center of Bone Metabolism and Repair, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Third Military Medical University, Chongqing, China
| | - Wei Xu
- Department of Rehabilitation Medicine, Center of Bone Metabolism and Repair, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Third Military Medical University, Chongqing, China
| | - Liang Kuang
- Department of Rehabilitation Medicine, Center of Bone Metabolism and Repair, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Third Military Medical University, Chongqing, China
| | - Bin Zhang
- Department of Rehabilitation Medicine, Center of Bone Metabolism and Repair, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Third Military Medical University, Chongqing, China
| | - Zuqiang Wang
- Department of Rehabilitation Medicine, Center of Bone Metabolism and Repair, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Third Military Medical University, Chongqing, China
| | - Zhenhong Ni
- Department of Rehabilitation Medicine, Center of Bone Metabolism and Repair, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Third Military Medical University, Chongqing, China
| | - Nan Su
- Department of Rehabilitation Medicine, Center of Bone Metabolism and Repair, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Third Military Medical University, Chongqing, China
| | - Min Jin
- Department of Rehabilitation Medicine, Center of Bone Metabolism and Repair, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Third Military Medical University, Chongqing, China
| | - Can Li
- Department of Rehabilitation Medicine, Center of Bone Metabolism and Repair, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Third Military Medical University, Chongqing, China
| | - Wanling Jiang
- Department of Rehabilitation Medicine, Center of Bone Metabolism and Repair, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Third Military Medical University, Chongqing, China
| | - Junlan Huang
- Department of Rehabilitation Medicine, Center of Bone Metabolism and Repair, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Third Military Medical University, Chongqing, China
| | - Fangfang Li
- Department of Rehabilitation Medicine, Center of Bone Metabolism and Repair, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Third Military Medical University, Chongqing, China
| | - Ying Zhu
- Department of Rehabilitation Medicine, Center of Bone Metabolism and Repair, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Third Military Medical University, Chongqing, China
| | - Hangang Chen
- Department of Rehabilitation Medicine, Center of Bone Metabolism and Repair, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Third Military Medical University, Chongqing, China
| | - Xiaolan Du
- Department of Rehabilitation Medicine, Center of Bone Metabolism and Repair, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Third Military Medical University, Chongqing, China
| | - Di Chen
- Department of Biochemistry, Rush University Medical Center, Chicago, Illinois
| | - Chuxia Deng
- Faculty of Health Sciences, University of Macau, Macau, China
| | - Huabing Qi
- Department of Rehabilitation Medicine, Center of Bone Metabolism and Repair, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Third Military Medical University, Chongqing, China
| | - Yangli Xie
- Department of Rehabilitation Medicine, Center of Bone Metabolism and Repair, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Third Military Medical University, Chongqing, China
| | - Lin Chen
- Department of Rehabilitation Medicine, Center of Bone Metabolism and Repair, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Third Military Medical University, Chongqing, China
| |
Collapse
|
8
|
Activation of β-catenin signaling in aggrecan-expressing cells in temporomandibular joint causes osteoarthritis-like defects. Int J Oral Sci 2018; 10:13. [PMID: 29686224 PMCID: PMC5966811 DOI: 10.1038/s41368-018-0016-z] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Accepted: 02/06/2018] [Indexed: 02/05/2023] Open
Abstract
β-Catenin plays a critical role in cartilage formation and development. To further understand the role of β-catenin in osteoarthritis (OA) development in temporomandibular joint (TMJ), we have generated β-catenin conditional activation mice (β-cat(ex3)Agc1CreER) by breeding Agc1-CreER mice with β-cateninflox(ex3)/+ mice. Results of histologic analysis showed the progressive TMJ defects in 3- and 6-month-old β-cat(ex3)Agc1CreER mice (tamoxifen induction was performed at 2 weeks of age), including decreased chondrocyte numbers in the superficial layer associated with less Alcian blue staining, increased numbers of hypertrophic chondrocytes in deep layers, and rough articular surface. Compared to the TMJ phenotype of β-cat(ex3)Col2CreER mice, β-cat(ex3)Agc1CreER mice showed much severe morphological defects in the superficial layer of TMJ. This may reflect that Agc1-CreER mice could efficiently target cells in the superficial layer of TMJ. Results of immunostaining showed significantly increased expression of MMP13, Col-X, Adamts4, and Adamts5 in TMJ of β-cat(ex3)Agc1CreER mice. Results of proliferating cell nuclear antigen (PCNA), Ki67, and terminal deoxinucleotidyl transferase-mediated dUTP-fluorescein nick end labeling (TUNEL) staining further demonstrated that cell proliferation was decreased and cell apoptosis was increased in condylar cartilage of β-cat(ex3)Agc1CreER mice. Our findings indicate that abnormal upregulation of β-catenin in TMJ leads to defects assembling to OA-like phenotype, further demonstrating that β-catenin plays a critical role in TMJ pathogenesis. Therapies targeting a cartilage-regulating signaling protein could mitigate painful damage inflicted on the jaw by age-related osteoarthritis. Many older individuals experience degeneration of the temporomandibular joint (TMJ), where the upper and lower jaw connect. Researchers led by Di Chen of Rush University Medical School in Chicago, USA, have developed a genetically-modified mouse model that reveals a likely molecular driver for TMJ osteoarthritis. Previous studies have implicated a protein called β-catenin in this process, and Chen’s team generated mice in which β-catenin levels can be selectively boosted in cartilage-forming cells at skeletal joints. This increased β-catenin markedly altered the organization of TMJ cartilage, with decreased cell proliferation and increased cell death. The effects were strikingly similar to human osteoarthritis, and the researchers hypothesize that compounds that counter β-catenin could offer useful treatments for this condition.
Collapse
|
9
|
Pan Z, Sun H, Xie B, Xia D, Zhang X, Yu D, Li J, Xu Y, Wang Z, Wu Y, Zhang X, Wang Y, Fu Q, Hu W, Yang Y, Bunpetch V, Shen W, Heng BC, Zhang S, Ouyang H. Therapeutic effects of gefitinib-encapsulated thermosensitive injectable hydrogel in intervertebral disc degeneration. Biomaterials 2018; 160:56-68. [PMID: 29396379 DOI: 10.1016/j.biomaterials.2018.01.016] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Revised: 01/01/2018] [Accepted: 01/10/2018] [Indexed: 12/21/2022]
Abstract
Intervertebral disc (IVD) degeneration is one of the most widespread musculoskeletal diseases worldwide, which remains an intractable clinical challenge. The aim of this study is to investigate the therapeutic potential of the small molecule gefitinib (an epidermal growth factor receptor (EGFR) inhibitor) in ameliorating IVD degeneration. Aberrant EGFR activation levels were detected in both human and rat degenerative IVDs, which prompted us to investigate the functional roles of EGFR by utilizing inducible cartilage-specific EGFR-deficient mice. We demonstrated that conditional EGFR deletion in mice increased nucleus pulposus (NP) extracellular matrix (ECM) production and autophagy marker activation while MMP13 expression decreased. These outcomes are comparable to the use of a controlled-release injectable thermosensitive hydrogel of gefitinib to block EGFR activity in a puncture-induced rat model. We also conducted a case series study involving patients with non-small cell lung cancer and IVD degeneration who received gefitinib treatment from 2010 to 2015. Gefitinib-treated patients displayed a relative slower disc degenerating progression, in contrast to control subjects. These findings thus provide evidence that suppression of EGFR by the FDA-approved drug gefitinib can protect IVD degeneration in rats, implying the potential application of gefitinib as a small molecule drug for treating IVD degeneration.
Collapse
Affiliation(s)
- Zongyou Pan
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Zhejiang University-University of Edinburgh Institute, Zhejiang University, Hangzhou, Zhejiang 310058, China; Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, Hangzhou, Zhejiang 310058, China; Department of Sports Medicine, School of Medicine, Zhejiang University, Zhejiang 310000, China
| | - Heng Sun
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Zhejiang University-University of Edinburgh Institute, Zhejiang University, Hangzhou, Zhejiang 310058, China; Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, Hangzhou, Zhejiang 310058, China; Department of Sports Medicine, School of Medicine, Zhejiang University, Zhejiang 310000, China
| | - Binbin Xie
- Department of Medical Oncology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, 310000 Hangzhou, China
| | - Dongdong Xia
- Orthopedic Department, Ningbo No.1 Hospital, 315000 Ningbo, China
| | - Xiaoan Zhang
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Zhejiang University-University of Edinburgh Institute, Zhejiang University, Hangzhou, Zhejiang 310058, China; Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, Hangzhou, Zhejiang 310058, China; Department of Sports Medicine, School of Medicine, Zhejiang University, Zhejiang 310000, China
| | - Dongsheng Yu
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Zhejiang University-University of Edinburgh Institute, Zhejiang University, Hangzhou, Zhejiang 310058, China; Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, Hangzhou, Zhejiang 310058, China; Department of Sports Medicine, School of Medicine, Zhejiang University, Zhejiang 310000, China
| | - Jun Li
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Zhejiang University-University of Edinburgh Institute, Zhejiang University, Hangzhou, Zhejiang 310058, China; Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, Hangzhou, Zhejiang 310058, China; Department of Sports Medicine, School of Medicine, Zhejiang University, Zhejiang 310000, China
| | - Yuzi Xu
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Zhejiang University-University of Edinburgh Institute, Zhejiang University, Hangzhou, Zhejiang 310058, China; Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, Hangzhou, Zhejiang 310058, China; Department of Sports Medicine, School of Medicine, Zhejiang University, Zhejiang 310000, China
| | - Zuhua Wang
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Zhejiang University-University of Edinburgh Institute, Zhejiang University, Hangzhou, Zhejiang 310058, China; Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, Hangzhou, Zhejiang 310058, China; Department of Sports Medicine, School of Medicine, Zhejiang University, Zhejiang 310000, China
| | - Yan Wu
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Zhejiang University-University of Edinburgh Institute, Zhejiang University, Hangzhou, Zhejiang 310058, China; Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, Hangzhou, Zhejiang 310058, China; Department of Sports Medicine, School of Medicine, Zhejiang University, Zhejiang 310000, China
| | - Xiaolei Zhang
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Zhejiang University-University of Edinburgh Institute, Zhejiang University, Hangzhou, Zhejiang 310058, China; Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, Hangzhou, Zhejiang 310058, China; Department of Sports Medicine, School of Medicine, Zhejiang University, Zhejiang 310000, China; Department of Orthopaedics, The Second Affiliated Hospital, Wenzhou Medical University, 325000, Wenzhou, China; China Orthopedic Regenerative Medicine Group, 310000 Hangzhou, China
| | - Yafei Wang
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Zhejiang University-University of Edinburgh Institute, Zhejiang University, Hangzhou, Zhejiang 310058, China; Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, Hangzhou, Zhejiang 310058, China; Department of Sports Medicine, School of Medicine, Zhejiang University, Zhejiang 310000, China
| | - Qianbao Fu
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Zhejiang University-University of Edinburgh Institute, Zhejiang University, Hangzhou, Zhejiang 310058, China; Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, Hangzhou, Zhejiang 310058, China; Department of Sports Medicine, School of Medicine, Zhejiang University, Zhejiang 310000, China
| | - Wei Hu
- Department of Orthopaedics, The Second Affiliated Hospital, Wenzhou Medical University, 325000, Wenzhou, China
| | - Yang Yang
- Department of Orthopaedics, The Second Affiliated Hospital, Wenzhou Medical University, 325000, Wenzhou, China
| | - Varitsara Bunpetch
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Zhejiang University-University of Edinburgh Institute, Zhejiang University, Hangzhou, Zhejiang 310058, China; Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, Hangzhou, Zhejiang 310058, China; Department of Sports Medicine, School of Medicine, Zhejiang University, Zhejiang 310000, China
| | - Weiliang Shen
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Zhejiang University-University of Edinburgh Institute, Zhejiang University, Hangzhou, Zhejiang 310058, China; Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, Hangzhou, Zhejiang 310058, China; Department of Sports Medicine, School of Medicine, Zhejiang University, Zhejiang 310000, China
| | - Boon Chin Heng
- Faculty of Dentistry, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Shufang Zhang
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Zhejiang University-University of Edinburgh Institute, Zhejiang University, Hangzhou, Zhejiang 310058, China; Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, Hangzhou, Zhejiang 310058, China; Department of Sports Medicine, School of Medicine, Zhejiang University, Zhejiang 310000, China; China Orthopedic Regenerative Medicine Group, 310000 Hangzhou, China.
| | - Hongwei Ouyang
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Zhejiang University-University of Edinburgh Institute, Zhejiang University, Hangzhou, Zhejiang 310058, China; Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, Hangzhou, Zhejiang 310058, China; Department of Sports Medicine, School of Medicine, Zhejiang University, Zhejiang 310000, China; State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, 310003 Hangzhou, China; China Orthopedic Regenerative Medicine Group, 310000 Hangzhou, China.
| |
Collapse
|
10
|
Wang T, Li J, Zhou GQ, Ma P, Zhao Y, Wang B, Chen D. Specific Deletion of β-Catenin in Col2-Expressing Cells Leads to Defects in Epiphyseal Bone. Int J Biol Sci 2017; 13:1540-1546. [PMID: 29230102 PMCID: PMC5723920 DOI: 10.7150/ijbs.23000] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Accepted: 10/15/2017] [Indexed: 01/07/2023] Open
Abstract
The role of canonical Wnt/β-catenin signaling in postnatal bone growth has not been fully defined. In the present studies, we generated β-catenin conditional knockout (KO) mice and deleted β-catenin in Col2-expressing chondrocytes and mesenchymal progenitor cells. Findings from analyzing the β-cateninCol2CreER KO mice revealed severe bone destruction and bone loss phenotype in epiphyseal bone, probably due to the increase in osteoclast formation and the accumulation of adipocytes in this area. In addition, we also found bone destruction and bone loss phenotype in vertebral bone in β-cateninCol2CreER KO mice. These findings indicate that β-catenin signaling plays a critical role in postnatal bone remodeling. Our study provides new insights into the regulation of epiphyseal bone homeostasis at postnatal stage.
Collapse
Affiliation(s)
- Tingyu Wang
- Department of Pharmacy, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai 200011, China
| | - Jun Li
- Department of Orthopedic Surgery, Rush University Medical Center, Chicago, IL 60612, USA
- Department of Medical Cell Biology and Genetics, Shenzhen Key Laboratory and the Center for Anti-Ageing and Regenerative Medicine, Shenzhen University Medical School, Shenzhen 518060, China
| | - Guang-Qian Zhou
- Department of Medical Cell Biology and Genetics, Shenzhen Key Laboratory and the Center for Anti-Ageing and Regenerative Medicine, Shenzhen University Medical School, Shenzhen 518060, China
| | - Peter Ma
- Department of Biologic and Materials Science, University of Michigan, Ann Arbor, MI 48109, USA
| | - Yue Zhao
- Zhejiang Cancer Research Institute, Zhejiang Cancer Hospital, Hangzhou, Zhejiang Province 310022, China
| | - Baoli Wang
- Collaborative Innovation Center of Tianjin Metabolic Diseases Hospital, Key Laboratory of Hormones and Development (Ministry of Health), Metabolic Diseases Hospital & Institute of Endocrinology, Tianjin Medical University, Tianjin 300070, China
| | - Di Chen
- Department of Orthopedic Surgery, Rush University Medical Center, Chicago, IL 60612, USA
| |
Collapse
|
11
|
Delivery of epidermal growth factor receptor inhibitor via a customized collagen scaffold promotes meniscal defect regeneration in a rabbit model. Acta Biomater 2017; 62:210-221. [PMID: 28757192 DOI: 10.1016/j.actbio.2017.07.008] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Revised: 07/01/2017] [Accepted: 07/05/2017] [Indexed: 01/01/2023]
Abstract
Meniscal injury is one of the most common knee joint injuries, which remains an intractable challenge in clinical practice to date. Aberrant epidermal growth factor receptor (EGFR) activation levels in both human and mice menisci following injury, prompted us to investigate the functional role of EGFR by utilizing an inducible cartilage-specific EGFR-deficient mouse model. We demonstrated that conditional EGFR deletion in mice resulted in increased partial meniscectomy-induced ECM production within the meniscus, which is comparable to utilization of the small molecule EGFR inhibitor, gefitinib, to block EGFR activity. Here, we combined intra-articular delivery of gefitinib with an implanted customized collagen scaffold to substitute for lost meniscal tissue, as well as to promote meniscal regeneration and prevent osteoarthritis (OA) progression in a rabbit meniscectomy model. STATEMENT OF SIGNIFICANCE The main novelty of this study is the finding of a new application for small molecule EGFR inhibitor in meniscal injury therapy. This study also highlights the importance of using a customized collagen scaffold to provide robust mechanical strength and effectively promote meniscus regeneration. In summary, our study finds that intra-articular delivery of gefitinib together with implantation of a customized, multi-layer collagen scaffold not only enhanced meniscal regeneration, but also protected articular cartilage from degeneration in rabbit model. These results provide valuable insight for meniscal tissue engineering studies and clinical practice.
Collapse
|
12
|
Tang J, Su N, Zhou S, Xie Y, Huang J, Wen X, Wang Z, Wang Q, Xu W, Du X, Chen H, Chen L. Fibroblast Growth Factor Receptor 3 Inhibits Osteoarthritis Progression in the Knee Joints of Adult Mice. Arthritis Rheumatol 2017; 68:2432-43. [PMID: 27159076 DOI: 10.1002/art.39739] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Accepted: 04/26/2016] [Indexed: 01/19/2023]
Abstract
OBJECTIVE Fibroblast growth factor (FGF) signaling is involved in articular cartilage homeostasis. This study was undertaken to investigate the role and mechanisms of FGF receptor 3 (FGFR-3) in the pathogenesis of osteoarthritis (OA) caused by surgery and aging in mice. METHODS FGFR-3 was conditionally deleted or activated in articular chondrocytes in adult mice subjected to surgical destabilization of the medial meniscus (DMM). A mouse model of human achondroplasia was also used to assess the role of FGFR-3 in age-associated spontaneous OA. Knee joint cartilage was histologically evaluated and scored using the Osteoarthritis Research Society International system. The expression of genes associated with articular cartilage maintenance was quantitatively evaluated in hip cartilage explants. The effect of inhibiting Indian hedgehog (IHH) signaling in Fgfr3-deficient explants was analyzed. RESULTS Conditional Fgfr3 deletion in mice aggravated DMM-induced cartilage degeneration. Matrix metalloproteinase 13 and type X collagen levels were up-regulated, while type II collagen levels were down-regulated, in the articular cartilage of these mice. Conversely, FGFR-3 activation attenuated cartilage degeneration induced by DMM surgery and age. IHH signaling and runt-related transcription factor 2 levels in mouse articular chondrocytes were up-regulated in the absence of Fgfr3, while inhibition of IHH signaling suppressed the increases in the expression of Runx2, Mmp13, and other factors in Fgfr3-deficient mouse cartilage explants. CONCLUSION Our findings indicate that FGFR-3 delays OA progression in mouse knee joints at least in part via down-regulation of IHH signaling in articular chondrocytes.
Collapse
Affiliation(s)
- Junzhou Tang
- Center of Bone Metabolism and Repair, State Key Laboratory of Trauma, Burns, and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Third Military Medical University, Chongqing, China
| | - Nan Su
- Center of Bone Metabolism and Repair, State Key Laboratory of Trauma, Burns, and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Third Military Medical University, Chongqing, China
| | - Siru Zhou
- Center of Bone Metabolism and Repair, State Key Laboratory of Trauma, Burns, and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Third Military Medical University, Chongqing, China
| | - Yangli Xie
- Center of Bone Metabolism and Repair, State Key Laboratory of Trauma, Burns, and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Third Military Medical University, Chongqing, China
| | - Junlan Huang
- Center of Bone Metabolism and Repair, State Key Laboratory of Trauma, Burns, and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Third Military Medical University, Chongqing, China
| | - Xuan Wen
- Center of Bone Metabolism and Repair, State Key Laboratory of Trauma, Burns, and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Third Military Medical University, Chongqing, China
| | - Zuqiang Wang
- Center of Bone Metabolism and Repair, State Key Laboratory of Trauma, Burns, and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Third Military Medical University, Chongqing, China
| | - Quan Wang
- Center of Bone Metabolism and Repair, State Key Laboratory of Trauma, Burns, and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Third Military Medical University, Chongqing, China
| | - Wei Xu
- Center of Bone Metabolism and Repair, State Key Laboratory of Trauma, Burns, and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Third Military Medical University, Chongqing, China
| | - Xiaolan Du
- Center of Bone Metabolism and Repair, State Key Laboratory of Trauma, Burns, and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Third Military Medical University, Chongqing, China
| | - Hangang Chen
- Center of Bone Metabolism and Repair, State Key Laboratory of Trauma, Burns, and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Third Military Medical University, Chongqing, China
| | - Lin Chen
- Center of Bone Metabolism and Repair, State Key Laboratory of Trauma, Burns, and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Third Military Medical University, Chongqing, China.
| |
Collapse
|
13
|
Liao L, Zhang S, Gu J, Takarada T, Yoneda Y, Huang J, Zhao L, Oh CD, Li J, Wang B, Wang M, Chen D. Deletion of Runx2 in Articular Chondrocytes Decelerates the Progression of DMM-Induced Osteoarthritis in Adult Mice. Sci Rep 2017; 7:2371. [PMID: 28539595 PMCID: PMC5443810 DOI: 10.1038/s41598-017-02490-w] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Accepted: 04/12/2017] [Indexed: 01/24/2023] Open
Abstract
Runx2 may play an important role in development of osteoarthritis (OA). However, the specific role of Runx2 in articular chondrocyte function and in OA development in adult mice has not been fully defined. In this study, we performed the destabilization of the medial meniscus (DMM) surgery at 12-week-old mice to induce OA in adult Runx2Agc1CreER mice, in which Runx2 was specifically deleted in Aggrecan-expressing chondrocytes by administering tamoxifen at 8-weeks of age. Knee joint samples were collected 8- and 12-weeks post-surgery and analyzed through histology, histomorphometry and micro-computed tomography (μCT). Our results showed that severe OA-like defects were observed after DMM surgery in Cre-negative control mice, including articular cartilage degradation and subchondral sclerosis, while the defects were significantly ameliorated in Runx2Agc1CreER KO mice. Immunohistochemical (IHC) results showed significantly reduced expression of MMP13 in Runx2Agc1CreER KO mice compared to that in Cre-negative control mice. Results of quantitative reverse-transcription PCR (qRT-PCR) demonstrated that expression of the genes encoding for matrix degradation enzymes was significantly decreased in Runx2Agc1CreER KO mice. Thus, our findings suggest that inhibition of Runx2 in chondrocytes could at least partially rescue DMM-induced OA-like defects in adult mice.
Collapse
Affiliation(s)
- Lifan Liao
- Department of Orthopedic Surgery, Rush University Medical Center, Chicago, IL, 60612, USA.,State Key Laboratory of Military Stomatology, Department of Oral Anatomy and Physiology and TMD, School of Stomatology, Fourth Military Medical University, Xi'an, 710032, China
| | - Shanxing Zhang
- Department of Orthopedic Surgery, Rush University Medical Center, Chicago, IL, 60612, USA.,Institute of Orthopaedics and Traumatology, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Jianhong Gu
- Department of Orthopedic Surgery, Rush University Medical Center, Chicago, IL, 60612, USA.,College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, China
| | - Takeshi Takarada
- Department of Regenerative Science, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8558, Japan
| | - Yukio Yoneda
- Section of Prophylactic Pharmacology, Venture Business Laboratory, Kanazawa University Kakuma-machi, Kanazawa, Ishikawa, 920-1192, Japan
| | - Jian Huang
- Department of Orthopedic Surgery, Rush University Medical Center, Chicago, IL, 60612, USA
| | - Lan Zhao
- Department of Orthopedic Surgery, Rush University Medical Center, Chicago, IL, 60612, USA
| | - Chun-do Oh
- Department of Orthopedic Surgery, Rush University Medical Center, Chicago, IL, 60612, USA
| | - Jun Li
- Department of Medical Cell Biology and Genetics, Shenzhen Key Laboratory and the Center for Anti-Ageing and Regenerative Medicine, Shenzhen University Medical School, Shenzhen, 518060, China
| | - Baoli Wang
- Key Lab of Hormones and Development (Ministry of Health), Tianjin Key Lab of Metabolic Diseases, Tianjin Medical University, Tianjin, 300070, China
| | - Meiqing Wang
- State Key Laboratory of Military Stomatology, Department of Oral Anatomy and Physiology and TMD, School of Stomatology, Fourth Military Medical University, Xi'an, 710032, China.
| | - Di Chen
- Department of Orthopedic Surgery, Rush University Medical Center, Chicago, IL, 60612, USA.
| |
Collapse
|
14
|
Bedore J, Quesnel K, Quinonez D, Séguin CA, Leask A. Targeting the annulus fibrosus of the intervertebral disc: Col1a2-Cre(ER)T mice show specific activity of Cre recombinase in the outer annulus fibrosus. J Cell Commun Signal 2016; 10:137-42. [PMID: 27173473 DOI: 10.1007/s12079-016-0329-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Accepted: 05/03/2016] [Indexed: 12/19/2022] Open
Abstract
Degeneration of the intervertebral disc (IVD) is a major underlying contributor to back pain-the single leading cause of disability worldwide. However, we possess a limited understanding of the etiology underlying IVD degeneration. To date, there are a limited number of mouse models that have been used to target proteins in specific compartments of the IVD to explore their functions in disc development, homeostasis and disease. Furthermore, the majority of reports exploring the composition and function of the outer encapsulating annulus fibrosus (AF) of the IVD have considered it as one tissue, without considering the numerous structural and functional differences existing between the inner and outer AF. In addition, no mouse models have yet been reported that enable specific targeting of genes within the outer AF. In the current report, we discuss these issues and demonstrate the localized activity of Cre recombinase in the IVD of Col1a2-Cre(ER)T;ROSA26mTmG mice possessing a tamoxifen-dependent Cre recombinase driven by a Cola2 promoter and distal enhancer and the mTmG fluorescent reporter. Following tamoxifen injection of 3-week-old Col1a2-Cre(ER)T;ROSA26mTmG mice, we show Cre activity specifically in the outer AF of the IVD, as indicated by expression of the GFP reporter. Thus, Col1a2-Cre(ER)T;ROSA26mTmG mice may prove to be a valuable tool in delineating the function of proteins in this unique compartment of the IVD, and in further exploring the compositional differences between the inner and outer AF in disc homeostasis, aging and disease.
Collapse
Affiliation(s)
- Jake Bedore
- Department of Physiology and Pharmacology, Schulich School of Medicine & Dentistry, The University of Western Ontario, London, ON, N6A 5C1, Canada
| | - Katherine Quesnel
- Department of Dentistry, Schulich School of Medicine & Dentistry, The University of Western Ontario, London, ON, N6A 5C1, Canada
| | - Diana Quinonez
- Department of Physiology and Pharmacology, Schulich School of Medicine & Dentistry, The University of Western Ontario, London, ON, N6A 5C1, Canada
| | - Cheryle A Séguin
- Department of Physiology and Pharmacology, Schulich School of Medicine & Dentistry, The University of Western Ontario, London, ON, N6A 5C1, Canada
| | - Andrew Leask
- Department of Physiology and Pharmacology, Schulich School of Medicine & Dentistry, The University of Western Ontario, London, ON, N6A 5C1, Canada.
- Department of Dentistry, Schulich School of Medicine & Dentistry, The University of Western Ontario, London, ON, N6A 5C1, Canada.
| |
Collapse
|
15
|
Conditional Deletion of Fgfr3 in Chondrocytes leads to Osteoarthritis-like Defects in Temporomandibular Joint of Adult Mice. Sci Rep 2016; 6:24039. [PMID: 27041063 PMCID: PMC4819201 DOI: 10.1038/srep24039] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Accepted: 03/21/2016] [Indexed: 02/05/2023] Open
Abstract
Osteoarthritis (OA) in the temporomandibular joint (TMJ) is a common degenerative disease in adult, which is characterized by progressive destruction of the articular cartilage. To investigate the role of FGFR3 in the homeostasis of TMJ cartilage during adult stage, we generated Fgfr3f/f; Col2a1-CreERT2 (Fgfr3 cKO) mice, in which Fgfr3 was deleted in chondrocytes at 2 months of age. OA-like defects were observed in Fgfr3 cKO TMJ cartilage. Immunohistochemical staining and quantitative real-time PCR analyses revealed a significant increase in expressions of COL10, MMP13 and AMAMTS5. In addition, there was a sharp increase in chondrocyte apoptosis at the Fgfr3 cKO articular surface, which was accompanied by a down-regulation of lubricin expression. Importantly, the expressions of RUNX2 and Indian hedgehog (IHH) were up-regulated in Fgfr3 cKO TMJ. Primary Fgfr3 cKO chondrocytes were treated with IHH signaling inhibitor, which significantly reduced expressions of Runx2, Col10, Mmp13 and Adamts5. Furthermore, the IHH signaling inhibitor partially alleviated OA-like defects in the TMJ of Fgfr3 cKO mice, including restoration of lubricin expression and improvement of the integrity of the articular surface. In conclusion, our study proposes that FGFR3/IHH signaling pathway plays a critical role in maintaining the homeostasis of TMJ articular cartilage during adult stage.
Collapse
|
16
|
Wang B, Jin H, Shu B, Mira RR, Chen D. Chondrocytes-Specific Expression of Osteoprotegerin Modulates Osteoclast Formation in Metaphyseal Bone. Sci Rep 2015; 5:13667. [PMID: 26329493 PMCID: PMC4556963 DOI: 10.1038/srep13667] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2015] [Accepted: 07/21/2015] [Indexed: 12/21/2022] Open
Abstract
Bone marrow stromal cells/osteoblasts were originally thought to be the major player in regulating osteoclast differentiation through expressing RANKL/OPG cytokines. Recent studies have established that chondrocytes also express RANKL/OPG and support osteoclast formation. Till now, the in vivo function of chondrocyte-produced OPG in osteoclast formation and postnatal bone growth has not been directly investigated. In this study, chondrocyte-specific Opg transgenic mice were generated by using type II collagen promoter. The Col2-Opg transgenic mice showed delayed formation of secondary ossification center and localized increase of bone mass in proximal metaphysis of tibiae. TRAP staining showed that osteoclast numbers were reduced in both secondary ossification center and proximal metaphysis. This finding was further confirmed by in vitro chondrocyte/spleen cell co-culture assay. In contrast, the mineral apposition rates were not changed in Col2-Opg transgenic mice. TUNEL staining revealed more apoptotic hypertrophic chondrocytes in the growth plate of Col2-Opg mice. Flow cytometry analysis showed fewer RANK-expressing cells in the marrow of Col2a1-Opg mice, suggesting the role of OPG in blocking the differentiation of early mesenchymal progenitors into RANK-expressing pre-osteoclasts. Our results demonstrated that OPG expression in chondrocyte increases bone mass in the proximal metaphysis of tibiae through negative regulation of osteoclast formation.
Collapse
Affiliation(s)
- Baoli Wang
- Key Lab of Hormone and Development (Ministry of Health), Metabolic Diseases Hospital and Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin 300070, China.,Department of Orthopaedics, Center for Musculoskeletal Research, University of Rochester School of Medicine, Rochester, NY 14642, USA
| | - Hongting Jin
- Department of Orthopaedics, Center for Musculoskeletal Research, University of Rochester School of Medicine, Rochester, NY 14642, USA
| | - Bing Shu
- Department of Orthopaedics, Center for Musculoskeletal Research, University of Rochester School of Medicine, Rochester, NY 14642, USA
| | - Ranim R Mira
- Department of Biochemistry, Rush University Medical Center, Chicago, IL 60612, USA
| | - Di Chen
- Department of Orthopaedics, Center for Musculoskeletal Research, University of Rochester School of Medicine, Rochester, NY 14642, USA.,Department of Biochemistry, Rush University Medical Center, Chicago, IL 60612, USA
| |
Collapse
|