1
|
Braendle C, Paaby A. Life history in Caenorhabditis elegans: from molecular genetics to evolutionary ecology. Genetics 2024; 228:iyae151. [PMID: 39422376 PMCID: PMC11538407 DOI: 10.1093/genetics/iyae151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 09/11/2024] [Indexed: 10/19/2024] Open
Abstract
Life history is defined by traits that reflect key components of fitness, especially those relating to reproduction and survival. Research in life history seeks to unravel the relationships among these traits and understand how life history strategies evolve to maximize fitness. As such, life history research integrates the study of the genetic and developmental mechanisms underlying trait determination with the evolutionary and ecological context of Darwinian fitness. As a leading model organism for molecular and developmental genetics, Caenorhabditis elegans is unmatched in the characterization of life history-related processes, including developmental timing and plasticity, reproductive behaviors, sex determination, stress tolerance, and aging. Building on recent studies of natural populations and ecology, the combination of C. elegans' historical research strengths with new insights into trait variation now positions it as a uniquely valuable model for life history research. In this review, we summarize the contributions of C. elegans and related species to life history and its evolution. We begin by reviewing the key characteristics of C. elegans life history, with an emphasis on its distinctive reproductive strategies and notable life cycle plasticity. Next, we explore intraspecific variation in life history traits and its underlying genetic architecture. Finally, we provide an overview of how C. elegans has guided research on major life history transitions both within the genus Caenorhabditis and across the broader phylum Nematoda. While C. elegans is relatively new to life history research, significant progress has been made by leveraging its distinctive biological traits, establishing it as a highly cross-disciplinary system for life history studies.
Collapse
Affiliation(s)
- Christian Braendle
- Université Côte d’Azur, CNRS, Inserm, Institut de Biologie Valrose, 06108 Nice, France
| | - Annalise Paaby
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332, USA
| |
Collapse
|
2
|
Al-Jawabreh R, Anderson R, Atkinson LE, Bickford-Smith J, Bradbury RS, Breloer M, Bryant AS, Buonfrate D, Cadd LC, Crooks B, Deiana M, Grant W, Hallem E, Hedtke SM, Hunt V, Khieu V, Kikuchi T, Kounosu A, Lastik D, van Lieshout L, Liu Y, McSorley HJ, McVeigh P, Mousley A, Murcott B, Nevin WD, Nosková E, Pomari E, Reynolds K, Ross K, Streit A, Suleiman M, Tiberti N, Viney M. Strongyloides questions-a research agenda for the future. Philos Trans R Soc Lond B Biol Sci 2024; 379:20230004. [PMID: 38008122 PMCID: PMC10676812 DOI: 10.1098/rstb.2023.0004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 09/29/2023] [Indexed: 11/28/2023] Open
Abstract
The Strongyloides genus of parasitic nematodes have a fascinating life cycle and biology, but are also important pathogens of people and a World Health Organization-defined neglected tropical disease. Here, a community of Strongyloides researchers have posed thirteen major questions about Strongyloides biology and infection that sets a Strongyloides research agenda for the future. This article is part of the Theo Murphy meeting issue 'Strongyloides: omics to worm-free populations'.
Collapse
Affiliation(s)
| | - Roy Anderson
- Department of Infectious Disease Epidemiology, Imperial College London, London SW7 2BX, UK
| | - Louise E. Atkinson
- School of Biological Sciences, Queen's University Belfast, Belfast BT9 5DL, UK
| | | | | | - Minka Breloer
- Bernhard Nocht Institute for Tropical Medicine, Hamburg 20359, Germany
| | - Astra S. Bryant
- Department of Physiology and Biophysics, University of Washington, Seattle 98195, USA
| | - Dora Buonfrate
- Department of Infectious Tropical Diseases and Microbiology, IRCCS Sacro Cuore Don Calabria Hospital, Verona 37024, Italy
| | - Luke C. Cadd
- School of Biological Sciences, Queen's University Belfast, Belfast BT9 5DL, UK
| | - Bethany Crooks
- School of Biological Sciences, Queen's University Belfast, Belfast BT9 5DL, UK
| | - Michela Deiana
- Department of Infectious Tropical Diseases and Microbiology, IRCCS Sacro Cuore Don Calabria Hospital, Verona 37024, Italy
| | - Warwick Grant
- Department of Environment and Genetics, La Trobe University, Bundoora, Victoria 3083, Australia
| | - Elissa Hallem
- Department of Microbiology, Immunology, and Molecular Genetics, Molecular Biology Institute, University of California Los Angeles, Los Angeles 90095, USA
| | - Shannon M. Hedtke
- Department of Environment and Genetics, La Trobe University, Bundoora, Victoria 3083, Australia
| | - Vicky Hunt
- Life Sciences Department, University of Bath, Bath BA2 7AY, UK
| | - Virak Khieu
- National Centre for Parasitology, Entomology and Malaria Control, Cambodia Ministry of Health, Cambodia
| | - Taisei Kikuchi
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa 277-8652, Japan
| | - Asuka Kounosu
- Division of Parasitology, Department of Infectious Diseases, Faculty of Medicine, University of Miyazaki, Miyazaki 889-1692, Japan
| | - Dominika Lastik
- Life Sciences Department, University of Bath, Bath BA2 7AY, UK
| | - Lisette van Lieshout
- Leiden University Center for Infectious Diseases, Leiden University Medical Center, 2300 RC Leiden, The Netherlands
| | - Yuchen Liu
- Department of Evolution, Ecology & Behaviour, University of Liverpool, Liverpool L69 7ZB, UK
| | - Henry J. McSorley
- Division of Cell Signalling and Immunology, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - Paul McVeigh
- School of Biological Sciences, Queen's University Belfast, Belfast BT9 5DL, UK
| | - Angela Mousley
- School of Biological Sciences, Queen's University Belfast, Belfast BT9 5DL, UK
| | - Ben Murcott
- Life Sciences Department, University of Bath, Bath BA2 7AY, UK
| | - William David Nevin
- Department of Infectious Diseases, Imperial College London, London SW7 2BX, UK
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool L3 5QA, UK
| | - Eva Nosková
- Department of Botany and Zoology, Faculty of Science, Masaryk University, 611 37 Brno, Czech Republic
- Institute of Vertebrate Biology, Czech Academy of Sciences, 603 65 Brno, Czech Republic
| | - Elena Pomari
- Department of Infectious Tropical Diseases and Microbiology, IRCCS Sacro Cuore Don Calabria Hospital, Verona 37024, Italy
| | - Kieran Reynolds
- Life Sciences Department, University of Bath, Bath BA2 7AY, UK
| | - Kirstin Ross
- Environmental Health, College of Science and Engineering, Flinders University, South Australia 5042, Australia
| | - Adrian Streit
- Department of Integrative Evolutionary Biology, Max Planck Institute for Biology Tübingen, Tübingen 72076, Germany
| | - Mona Suleiman
- Life Sciences Department, University of Bath, Bath BA2 7AY, UK
| | - Natalia Tiberti
- Department of Infectious Tropical Diseases and Microbiology, IRCCS Sacro Cuore Don Calabria Hospital, Verona 37024, Italy
| | - Mark Viney
- Department of Evolution, Ecology & Behaviour, University of Liverpool, Liverpool L69 7ZB, UK
| |
Collapse
|
3
|
Cadd LC, Crooks B, Marks NJ, Maule AG, Mousley A, Atkinson LE. The Strongyloides bioassay toolbox: A unique opportunity to accelerate functional biology for nematode parasites. Mol Biochem Parasitol 2022; 252:111526. [PMID: 36240960 DOI: 10.1016/j.molbiopara.2022.111526] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 10/04/2022] [Accepted: 10/10/2022] [Indexed: 12/31/2022]
Abstract
Caenorhabditis elegans is a uniquely powerful tool to aid understanding of fundamental nematode biology. While C. elegans boasts an unrivalled array of functional genomics tools and phenotype bioassays the inherent differences between free-living and parasitic nematodes underscores the need to develop these approaches in tractable parasite models. Advances in functional genomics approaches, including RNA interference and CRISPR/Cas9 gene editing, in the parasitic nematodes Strongyloides ratti and Strongyloides stercoralis provide a unique and timely opportunity to probe basic parasite biology and reveal novel anthelmintic targets in species that are both experimentally and therapeutically relevant pathogens. While Strongyloides functional genomics tools have progressed rapidly, the complementary range of bioassays required to elucidate phenotypic outcomes post-functional genomics remain more limited in scope. To adequately support the exploitation of functional genomic pipelines for studies of gene function in Strongyloides a comprehensive set of species- and parasite-specific quantitative bioassays are required to assess nematode behaviours post-genetic manipulation. Here we review the scope of the current Strongyloides bioassay toolbox, how established Strongyloides bioassays have advanced knowledge of parasite biology, opportunities for Strongyloides bioassay development and, the need for investment in tractable model parasite platforms such as Strongyloides to drive the discovery of novel targets for parasite control.
Collapse
Affiliation(s)
- Luke C Cadd
- Microbes & Pathogen Biology, The Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, 19 Chlorine Gardens, Belfast BT9 5DL, UK
| | - Bethany Crooks
- Microbes & Pathogen Biology, The Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, 19 Chlorine Gardens, Belfast BT9 5DL, UK
| | - Nikki J Marks
- Microbes & Pathogen Biology, The Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, 19 Chlorine Gardens, Belfast BT9 5DL, UK
| | - Aaron G Maule
- Microbes & Pathogen Biology, The Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, 19 Chlorine Gardens, Belfast BT9 5DL, UK
| | - Angela Mousley
- Microbes & Pathogen Biology, The Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, 19 Chlorine Gardens, Belfast BT9 5DL, UK
| | - Louise E Atkinson
- Microbes & Pathogen Biology, The Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, 19 Chlorine Gardens, Belfast BT9 5DL, UK.
| |
Collapse
|
4
|
Mendez P, Walsh B, Hallem EA. Using newly optimized genetic tools to probe Strongyloides sensory behaviors. Mol Biochem Parasitol 2022; 250:111491. [PMID: 35697205 PMCID: PMC9339661 DOI: 10.1016/j.molbiopara.2022.111491] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 05/25/2022] [Accepted: 06/07/2022] [Indexed: 11/26/2022]
Abstract
The oft-neglected human-parasitic threadworm, Strongyloides stercoralis, infects roughly eight percent of the global population, placing disproportionate medical and economic burden upon marginalized communities. While current chemotherapies treat strongyloidiasis, disease recrudescence and the looming threat of anthelminthic resistance necessitate novel strategies for nematode control. Throughout its life cycle, S. stercoralis relies upon sensory cues to aid in environmental navigation and coordinate developmental progression. Odorants, tastants, gases, and temperature have been shown to shape parasite behaviors that drive host seeking and infectivity; however, many of these sensory behaviors remain poorly understood, and their underlying molecular and neural mechanisms are largely uncharacterized. Disruption of sensory circuits essential to parasitism presents a promising strategy for future interventions. In this review, we describe our current understanding of sensory behaviors - namely olfactory, gustatory, gas sensing, and thermosensory behaviors - in Strongyloides spp. We also highlight the ever-growing cache of genetic tools optimized for use in Strongyloides that have facilitated these findings, including transgenesis, CRISPR/Cas9-mediated mutagenesis, RNAi, chemogenetic neuronal silencing, and the use of fluorescent biosensors to measure neuronal activity. Bolstered by these tools, we are poised to enter an era of rapid discovery in Strongyloides sensory neurobiology, which has the potential to shape pioneering advances in the prevention and treatment of strongyloidiasis.
Collapse
Affiliation(s)
- Patricia Mendez
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, USA; Molecular Biology Interdepartmental PhD Program, University of California Los Angeles, Los Angeles, CA, USA.
| | - Breanna Walsh
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, USA; Molecular Biology Interdepartmental PhD Program, University of California Los Angeles, Los Angeles, CA, USA; Medical Scientist Training Program, University of California, Los Angeles, Los Angeles, CA, USA.
| | - Elissa A Hallem
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, USA; Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA, USA.
| |
Collapse
|
5
|
Billard B, Gimond C, Braendle C. [Genetics and evolution of developmental plasticity in the nematode C. elegans: Environmental induction of the dauer stage]. Biol Aujourdhui 2020; 214:45-53. [PMID: 32773029 DOI: 10.1051/jbio/2020006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Indexed: 12/28/2022]
Abstract
Adaptive developmental plasticity is a common phenomenon across diverse organisms and allows a single genotype to express multiple phenotypes in response to environmental signals. Developmental plasticity is thus thought to reflect a key adaptation to cope with heterogenous habitats. Adaptive plasticity often relies on highly regulated processes in which organisms sense environmental cues predictive of unfavourable environments. The integration of such cues may involve sophisticated neuro-endocrine signaling pathways to generate subtle or complete developmental shifts. A striking example of adaptive plasticity is found in the nematode C. elegans, which can undergo two different developmental trajectories depending on the environment. In favourable conditions, C. elegans develops through reproductive growth to become an adult in three days at 20 °C. In contrast, in unfavourable conditions (high population density, food scarcity, elevated temperature) larvae can adopt an alternative developmental stage, called dauer. dauer larvae are highly stress-resistant and exhibit specific anatomical, metabolic and behavioural features that allow them to survive and disperse. In C. elegans, the sensation of environmental cues is mediated by amphid ciliated sensory neurons by means of G-coupled protein receptors. In favourable environments, the perception of pro-reproductive cues, such as food and the absence of pro-dauer cues, upregulates insulin and TGF-β signaling in the nervous system. In unfavourable conditions, pro-dauer cues lead to the downregulation of insulin and TGF-β signaling. In favourable conditions, TGF-β and insulin act in parallel to promote synthesis of dafachronic acid (DA) in steroidogenic tissues. Synthetized DA binds to the DAF-12 nuclear receptor throughout the whole body. DA-bound DAF-12 positively regulates genes of reproductive development in all C. elegans tissues. In poor conditions, the inhibition of insulin and TGF-β signaling prevents DA synthesis, thus the unliganded DAF-12 and co-repressor DIN-1 repress genes of reproductive development and promote dauer formation. Wild C. elegans have often been isolated as dauer larvae suggesting that dauer formation is very common in nature. Natural populations of C. elegans have colonized a great variety of habitats across the planet, which may differ substantially in environmental conditions. Consistent with divergent adaptation to distinct ecological niches, wild isolates of C. elegans and other nematode species isolated from different locations show extensive variation in dauer induction. Quantitative genetic and population-genomic approaches have identified many quantitative trait loci (QTL) associated with differences in dauer induction as well as a few underlying causative molecular variants. In this review, we summarize how C. elegans dauer formation is genetically regulated and how this trait evolves- both within and between species.
Collapse
|
6
|
Bernot JP, Rudy G, Erickson PT, Ratnappan R, Haile M, Rosa BA, Mitreva M, O'Halloran DM, Hawdon JM. Transcriptomic analysis of hookworm Ancylostoma ceylanicum life cycle stages reveals changes in G-protein coupled receptor diversity associated with the onset of parasitism. Int J Parasitol 2020; 50:603-610. [PMID: 32592811 PMCID: PMC7454011 DOI: 10.1016/j.ijpara.2020.05.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 05/19/2020] [Accepted: 05/22/2020] [Indexed: 10/24/2022]
Abstract
Free-living nematodes respond to variable and unpredictable environmental stimuli whereas parasitic nematodes exist in a more stable host environment. A positive correlation between the presence of environmental stages in the nematode life cycle and an increasing number of G-protein coupled receptors (GPCRs) reflects this difference in free-living and parasitic lifestyles. As hookworm larvae move from the external environment into a host, they detect uncharacterized host components, initiating a signalling cascade that results in the resumption of development and eventual maturation. Previous studies suggest this process is mediated by GPCRs in amphidial neurons. Here we set out to uncover candidate GPCRs required by a hookworm to recognise its host. First, we identified all potential Ancylostoma ceylanicum GPCRs encoded in the genome. We then used life cycle stage-specific RNA-seq data to identify differentially expressed GPCRs between the free-living infective L3 (iL3) and subsequent parasitic stages to identify receptors involved in the transition to parasitism. We reasoned that GPCRs involved in host recognition and developmental activation would be expressed at higher levels in the environmental iL3 stage than in subsequent stages. Our results support the model that a decrease in GPCR diversity occurs as the larvae develop from the free-living iL3 stage to the parasitic L3 (pL3) in the host over 24-72 h. We find that overall GPCR expression and diversity is highest in the iL3 compared with subsequent parasitic stages. By 72 h, there was an approximately 50% decrease in GPCR richness associated with the moult from the pL3 to the L4. Taken together, our data uncover a negative correlation between GPCR diversity and parasitic development in hookworm. Finally, we demonstrate proof of principal that Caenorhabditis elegans can be used as a heterologous system to examine the expression pattern of candidate host signal chemoreceptors (CRs) from hookworm. We observe expression of candidate host signal CRs in C. elegans, demonstrating that C. elegans can be effectively used as a surrogate to identify expressed hookworm genes. We present several preliminary examples of this strategy and confirm a candidate CR as neuronally expressed.
Collapse
Affiliation(s)
- James P Bernot
- Computational Biology Institute, The George Washington University, Washington DC, USA
| | - Gabriella Rudy
- Department of Biochemistry and Molecular Medicine, The George Washington University, Washington DC, USA
| | - Patti T Erickson
- Department of Biological Sciences, Salisbury University, Salisbury, MD, USA
| | - Ramesh Ratnappan
- Department of Microbiology, Immunology and Tropical Medicine, The George Washington University, Washington DC, USA
| | - Meseret Haile
- Department of Biochemistry, Smith College, Northampton, MA, USA
| | - Bruce A Rosa
- Division of Infectious Diseases, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Makedonka Mitreva
- Division of Infectious Diseases, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA; McDonnell Genome Institute, Washington University School of Medicine, St. Louis, MO, USA
| | - Damien M O'Halloran
- Department of Biological Sciences, The George Washington University, Washington DC, USA
| | - John M Hawdon
- Department of Microbiology, Immunology and Tropical Medicine, The George Washington University, Washington DC, USA.
| |
Collapse
|
7
|
Abstract
Carbon dioxide (CO2) is an important sensory cue for many animals, including both parasitic and free-living nematodes. Many nematodes show context-dependent, experience-dependent and/or life-stage-dependent behavioural responses to CO2, suggesting that CO2 plays crucial roles throughout the nematode life cycle in multiple ethological contexts. Nematodes also show a wide range of physiological responses to CO2. Here, we review the diverse responses of parasitic and free-living nematodes to CO2. We also discuss the molecular, cellular and neural circuit mechanisms that mediate CO2 detection in nematodes, and that drive context-dependent and experience-dependent responses of nematodes to CO2.
Collapse
|
8
|
Bryant AS, Hallem EA. Terror in the dirt: Sensory determinants of host seeking in soil-transmitted mammalian-parasitic nematodes. Int J Parasitol Drugs Drug Resist 2018; 8:496-510. [PMID: 30396862 PMCID: PMC6287541 DOI: 10.1016/j.ijpddr.2018.10.008] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Revised: 10/22/2018] [Accepted: 10/24/2018] [Indexed: 12/12/2022]
Abstract
Infection with gastrointestinal parasitic nematodes is a major cause of chronic morbidity and economic burden around the world, particularly in low-resource settings. Some parasitic nematode species, including the human-parasitic threadworm Strongyloides stercoralis and human-parasitic hookworms in the genera Ancylostoma and Necator, feature a soil-dwelling infective larval stage that seeks out hosts for infection using a variety of host-emitted sensory cues. Here, we review our current understanding of the behavioral responses of soil-dwelling infective larvae to host-emitted sensory cues, and the molecular and cellular mechanisms that mediate these responses. We also discuss the development of methods for transgenesis and CRISPR/Cas9-mediated targeted mutagenesis in Strongyloides stercoralis and the closely related rat parasite Strongyloides ratti. These methods have established S. stercoralis and S. ratti as genetic model systems for gastrointestinal parasitic nematodes and are enabling more detailed investigations into the neural mechanisms that underlie the sensory-driven behaviors of this medically and economically important class of parasites.
Collapse
Affiliation(s)
- Astra S Bryant
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, CA, 90095, USA
| | - Elissa A Hallem
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, CA, 90095, USA.
| |
Collapse
|
9
|
Lok JB, Shao H, Massey HC, Li X. Transgenesis in Strongyloides and related parasitic nematodes: historical perspectives, current functional genomic applications and progress towards gene disruption and editing. Parasitology 2017; 144:327-342. [PMID: 27000743 PMCID: PMC5364836 DOI: 10.1017/s0031182016000391] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Revised: 02/10/2016] [Accepted: 02/10/2016] [Indexed: 12/20/2022]
Abstract
Transgenesis for Strongyloides and Parastrongyloides was accomplished in 2006 and is based on techniques derived for Caenorhabditis elegans over two decades earlier. Adaptation of these techniques has been possible because Strongyloides and related parasite genera carry out at least one generation of free-living development, with adult males and females residing in soil contaminated by feces from an infected host. Transgenesis in this group of parasites is accomplished by microinjecting DNA constructs into the syncytia of the distal gonads of free-living females. In Strongyloides stercoralis, plasmid-encoded transgenes are expressed in promoter-regulated fashion in the F1 generation following gene transfer but are silenced subsequently. Stable inheritance and expression of transgenes in S. stercoralis requires their integration into the genome, and stable lines have been derived from integrants created using the piggyBac transposon system. More direct investigations of gene function involving expression of mutant transgene constructs designed to alter intracellular trafficking and developmental regulation have shed light on the function of the insulin-regulated transcription factor Ss-DAF-16. Transgenesis in Strongyloides and Parastrongyloides opens the possibility of powerful new methods for genome editing and transcriptional manipulation in this group of parasites. Proof of principle for one of these, CRISPR/Cas9, is presented in this review.
Collapse
Affiliation(s)
- J B Lok
- Department of Pathobiology,School of Veterinary Medicine,University of Pennsylvania,3800 Spruce Street,Philadelphia,PA 19104,USA
| | - H Shao
- Department of Pathobiology,School of Veterinary Medicine,University of Pennsylvania,3800 Spruce Street,Philadelphia,PA 19104,USA
| | - H C Massey
- Department of Pathobiology,School of Veterinary Medicine,University of Pennsylvania,3800 Spruce Street,Philadelphia,PA 19104,USA
| | - X Li
- Department of Pathobiology,School of Veterinary Medicine,University of Pennsylvania,3800 Spruce Street,Philadelphia,PA 19104,USA
| |
Collapse
|
10
|
Štrkolcová G, Goldová M, Bocková E, Mojžišová J. The roundworm Strongyloides stercoralis in children, dogs, and soil inside and outside a segregated settlement in Eastern Slovakia: frequent but hardly detectable parasite. Parasitol Res 2017; 116:891-900. [DOI: 10.1007/s00436-016-5362-1] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Accepted: 12/20/2016] [Indexed: 11/29/2022]
|
11
|
Lok JB. Signaling in Parasitic Nematodes: Physicochemical Communication Between Host and Parasite and Endogenous Molecular Transduction Pathways Governing Worm Development and Survival. CURRENT CLINICAL MICROBIOLOGY REPORTS 2016; 3:186-197. [PMID: 28781934 PMCID: PMC5543980 DOI: 10.1007/s40588-016-0046-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Signaling or communication between host and parasite may occur over relatively long ranges to enable host finding and acquisition by infective parasitic nematode larvae. Innate behaviors in infective larvae transmitted from the soil that enhance the likelihood of host contact, such as negative geotaxis and hypermotility, are likely mediated by mechanoreception and neuromuscular signaling. Host cues such as vibration of the substratum, elevated temperature, exhaled CO2, and other volatile odorants are perceived by mechanosensory and chemosensory neurons of the amphidial complex. Beyond this, the molecular systems that transduce these external cues within the worm are unknown at this time. Overall, the signal transduction mechanisms that regulate switching between dauer and continuous reproductive development in Caenorhabditis elegans, and doubtless other free-living nematodes, have provided a useful framework for testing hypotheses about how the morphogenesis and development of infective parasitic nematode larvae and the lifespan of adult parasites are regulated. In C. elegans, four major signal transduction pathways, G protein-coupled receptor signaling, insulin/insulin-like growth factor signaling, TGFβ-like signaling and steroid-nuclear hormone receptor signaling govern the switch between dauer and continuous development and regulate adult lifespan. Parasitic nematodes appear to have conserved the functions of G-protein-coupled signaling, insulin-like signaling and steroid-nuclear hormone receptor signaling to regulate larval development before and during the infective process. By contrast, TGFβ-like signaling appears to have been adapted for some other function, perhaps modulation of the host immune response. Of the three signal transduction pathways that appear to regulate development in parasitic nematodes, steroid-nuclear hormone signaling is the most straightforward to manipulate with administered small molecules and may form the basis of new chemotherapeutic strategies. Signaling between parasites and their hosts' immune systems also occurs and serves to modulate these responses to allow chronic infection and down regulate acute inflammatory responses. Knowledge of the precise nature of this signaling may form the basis of immunological interventions to protect against parasitism or related lesions and to alleviate inflammatory diseases of various etiologies.
Collapse
Affiliation(s)
- James B Lok
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, 3800 Spruce Street, Philadelphia, PA 19104 USA
| |
Collapse
|
12
|
Molecular characterization of the Haemonchus contortus phosphoinositide-dependent protein kinase-1 gene (Hc-pdk-1). Parasit Vectors 2016; 9:65. [PMID: 26842781 PMCID: PMC4741024 DOI: 10.1186/s13071-016-1351-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Accepted: 01/28/2016] [Indexed: 12/22/2022] Open
Abstract
Background Phosphoinositide-dependent protein kinase-1 (PDK-1), which functions downstream of phosphoinositide 3-kinase (AGE-1) and activates protein kinases of the AGC family, plays critical roles in regulating biology processes, such as metabolism, growth, development and survival. In the free-living nematode Caenorhabditis elegans, PDK-1 is a key component of the insulin-like signalling pathway, regulating the entry into and exit from dauer (arrested development). Although it is proposed that similar molecular mechanisms control the transition from the free-living to the parasitic stages of nematodes, nothing is known about PDK-1 in Haemonchus contortus, a socioeconomically important gastric nematode of ruminants. Methods Here, we isolated and characterized the pdk-1 gene (Hc-pdk-1) and its inferred product (Hc-PDK-1) from H. contortus. Using in vitro and in vivo methods, we then studied the transcriptional profiles of Hc-pdk-1 and anatomical gene expression patterns of Hc-PDK-1 in different developmental stages of C. elegans. Results In silico analysis of Hc-PDK-1 displayed conserved functional domains, such as protein kinase and pleckstrin homology (PH) domains and two predicted phosphorylation sites (Thr226/Tyr229), which are crucial for the phosphorylation of downstream signalling. The Hc-pdk-1 gene is transcribed in all of the main developmental stages of H. contortus, with its highest transcription in the infective third-stage larvae (iL3) compared with other stages. Transgene constructs, in which respective promoters were fused to the coding sequence for green fluorescent protein (GFP), were used to transform C. elegans, and to localize and compare the expression of Hc-pdk-1 and Ce-pdk-1. The expression of GFP under the control of the Hc-pdk-1 promoter was localized to the intestine, and head and tail neurons, contrasting somewhat the profile for the C. elegans ortholog, which is expressed in pharynx, intestine and head and tail neurons. Conclusions This is the first characterization of pdk-1/PDK-1 from a trichostrongyloid nematode. Taken together, the findings from this study provide a first glimpse of the involvement of Hc-pdk-1 in the insulin-like signalling pathway in H. contortus. Electronic supplementary material The online version of this article (doi:10.1186/s13071-016-1351-6) contains supplementary material, which is available to authorized users.
Collapse
|
13
|
Albarqi MMY, Stoltzfus JD, Pilgrim AA, Nolan TJ, Wang Z, Kliewer SA, Mangelsdorf DJ, Lok JB. Regulation of Life Cycle Checkpoints and Developmental Activation of Infective Larvae in Strongyloides stercoralis by Dafachronic Acid. PLoS Pathog 2016; 12:e1005358. [PMID: 26727267 PMCID: PMC4703199 DOI: 10.1371/journal.ppat.1005358] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Accepted: 12/02/2015] [Indexed: 12/11/2022] Open
Abstract
The complex life cycle of the parasitic nematode Strongyloides stercoralis leads to either developmental arrest of infectious third-stage larvae (iL3) or growth to reproductive adults. In the free-living nematode Caenorhabditis elegans, analogous determination between dauer arrest and reproductive growth is governed by dafachronic acids (DAs), a class of steroid hormones that are ligands for the nuclear hormone receptor DAF-12. Biosynthesis of DAs requires the cytochrome P450 (CYP) DAF-9. We tested the hypothesis that DAs also regulate S. stercoralis development via DAF-12 signaling at three points. First, we found that 1 μM Δ7-DA stimulated 100% of post-parasitic first-stage larvae (L1s) to develop to free-living adults instead of iL3 at 37°C, while 69.4±12.0% (SD) of post-parasitic L1s developed to iL3 in controls. Second, we found that 1 μM Δ7-DA prevented post-free-living iL3 arrest and stimulated 85.2±16.9% of larvae to develop to free-living rhabditiform third- and fourth-stages, compared to 0% in the control. This induction required 24-48 hours of Δ7-DA exposure. Third, we found that the CYP inhibitor ketoconazole prevented iL3 feeding in host-like conditions, with only 5.6±2.9% of iL3 feeding in 40 μM ketoconazole, compared to 98.8±0.4% in the positive control. This inhibition was partially rescued by Δ7-DA, with 71.2±16.4% of iL3 feeding in 400 nM Δ7-DA and 35 μM ketoconazole, providing the first evidence of endogenous DA production in S. stercoralis. We then characterized the 26 CYP-encoding genes in S. stercoralis and identified a homolog with sequence and developmental regulation similar to DAF-9. Overall, these data demonstrate that DAF-12 signaling regulates S. stercoralis development, showing that in the post-parasitic generation, loss of DAF-12 signaling favors iL3 arrest, while increased DAF-12 signaling favors reproductive development; that in the post-free-living generation, absence of DAF-12 signaling is crucial for iL3 arrest; and that endogenous DA production regulates iL3 activation.
Collapse
Affiliation(s)
- Mennatallah M. Y. Albarqi
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- Department of Biology, Hollins University, Roanoke, Virginia, United States of America
| | - Jonathan D. Stoltzfus
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- Department of Biology, Hollins University, Roanoke, Virginia, United States of America
| | - Adeiye A. Pilgrim
- Department of Biology, Hollins University, Roanoke, Virginia, United States of America
| | - Thomas J. Nolan
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Zhu Wang
- Department of Pharmacology, University of Texas Southwest Medical Center, Dallas, Texas, United States of America
| | - Steven A. Kliewer
- Department of Pharmacology, University of Texas Southwest Medical Center, Dallas, Texas, United States of America
- Department of Molecular Biology, University of Texas Southwest Medical Center, Dallas, Texas, United States of America
| | - David J. Mangelsdorf
- Department of Pharmacology, University of Texas Southwest Medical Center, Dallas, Texas, United States of America
- Howard Hughes Medical Institute, University of Texas Southwest Medical Center, Dallas, Texas, United States of America
| | - James B. Lok
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
14
|
The dauer hypothesis and the evolution of parasitism: 20 years on and still going strong. Int J Parasitol 2013; 44:1-8. [PMID: 24095839 DOI: 10.1016/j.ijpara.2013.08.004] [Citation(s) in RCA: 100] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2013] [Revised: 08/19/2013] [Accepted: 08/21/2013] [Indexed: 01/31/2023]
Abstract
How any complex trait has evolved is a fascinating question, yet the evolution of parasitism among the nematodes is arguably one of the most arresting. How did free-living nematodes cross that seemingly insurmountable evolutionary chasm between soil dwelling and survival inside another organism? Which of the many finely honed responses to the varied and harsh environments of free-living nematodes provided the material upon which natural selection could act? Although several complementary theories explain this phenomenon, I will focus on the dauer hypothesis. The dauer hypothesis posits that the arrested third-stage dauer larvae of free-living nematodes such as Caenorhabditis elegans are, due to their many physiological similarities with infective third-stage larvae of parasitic nematodes, a pre-adaptation to parasitism. If so, then a logical extension of this hypothesis is that the molecular pathways which control entry into and recovery from dauer formation by free-living nematodes in response to environmental cues have been co-opted to control the processes of infective larval arrest and activation in parasitic nematodes. The molecular machinery that controls dauer entry and exit is present in a wide range of parasitic nematodes. However, the developmental outputs of the different pathways are both conserved and divergent, not only between populations of C. elegans or between C. elegans and parasitic nematodes but also between different species of parasitic nematodes. Thus the picture that emerges is more nuanced than originally predicted and may provide insights into the evolution of such an interesting and complex trait.
Collapse
|
15
|
Stoltzfus JD, Massey HC, Nolan TJ, Griffith SD, Lok JB. Strongyloides stercoralis age-1: a potential regulator of infective larval development in a parasitic nematode. PLoS One 2012; 7:e38587. [PMID: 22701676 PMCID: PMC3368883 DOI: 10.1371/journal.pone.0038587] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2012] [Accepted: 05/11/2012] [Indexed: 01/13/2023] Open
Abstract
Infective third-stage larvae (L3i) of the human parasite Strongyloides stercoralis share many morphological, developmental, and behavioral attributes with Caenorhabditis elegans dauer larvae. The ‘dauer hypothesis’ predicts that the same molecular genetic mechanisms control both dauer larval development in C. elegans and L3i morphogenesis in S. stercoralis. In C. elegans, the phosphatidylinositol-3 (PI3) kinase catalytic subunit AGE-1 functions in the insulin/IGF-1 signaling (IIS) pathway to regulate formation of dauer larvae. Here we identify and characterize Ss-age-1, the S. stercoralis homolog of the gene encoding C. elegans AGE-1. Our analysis of the Ss-age-1 genomic region revealed three exons encoding a predicted protein of 1,209 amino acids, which clustered with C. elegans AGE-1 in phylogenetic analysis. We examined temporal patterns of expression in the S. stercoralis life cycle by reverse transcription quantitative PCR and observed low levels of Ss-age-1 transcripts in all stages. To compare anatomical patterns of expression between the two species, we used Ss-age-1 or Ce-age-1 promoter::enhanced green fluorescent protein reporter constructs expressed in transgenic animals for each species. We observed conservation of expression in amphidial neurons, which play a critical role in developmental regulation of both dauer larvae and L3i. Application of the PI3 kinase inhibitor LY294002 suppressed L3i in vitro activation in a dose-dependent fashion, with 100 µM resulting in a 90% decrease (odds ratio: 0.10, 95% confidence interval: 0.08–0.13) in the odds of resumption of feeding for treated L3i in comparison to the control. Together, these data support the hypothesis that Ss-age-1 regulates the development of S. stercoralis L3i via an IIS pathway in a manner similar to that observed in C. elegans dauer larvae. Understanding the mechanisms by which infective larvae are formed and activated may lead to novel control measures and treatments for strongyloidiasis and other soil-transmitted helminthiases.
Collapse
Affiliation(s)
- Jonathan D. Stoltzfus
- Department of Pathobiology, University of Pennsylvania School of Veterinary Medicine, Philadelphia, Pennsylvania, United States of America
| | - Holman C. Massey
- Department of Pathobiology, University of Pennsylvania School of Veterinary Medicine, Philadelphia, Pennsylvania, United States of America
| | - Thomas J. Nolan
- Department of Pathobiology, University of Pennsylvania School of Veterinary Medicine, Philadelphia, Pennsylvania, United States of America
| | - Sandra D. Griffith
- Department of Biostatistics and Epidemiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, United States of America
| | - James B. Lok
- Department of Pathobiology, University of Pennsylvania School of Veterinary Medicine, Philadelphia, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
16
|
|
17
|
Zhu H, Li J, Nolan TJ, Schad GA, Lok JB. Sensory neuroanatomy of Parastrongyloides trichosuri, a nematode parasite of mammals: Amphidial neurons of the first-stage larva. J Comp Neurol 2011; 519:2493-507. [PMID: 21456026 PMCID: PMC3125480 DOI: 10.1002/cne.22637] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Owing to its ability to switch between free-living and parasitic modes of development, Parastrongyloides trichosuri represents a valuable model with which to study the evolution of parasitism among the nematodes, especially aspects pertaining to morphogenesis of infective third-stage larvae. In the free-living nematode Caenorhabditis elegans, developmental fates of third-stage larvae are determined in part by environmental cues received by chemosensory neurons in the amphidial sensillae. As a basis for comparative study, we have described the neuroanatomy of the amphidial sensillae of P. trichosuri. By using computational methods, we incorporated serial electron micrographs into a three-dimensional reconstruction of the amphidial neurons of this parasite. Each amphid is innervated by 13 neurons, and the dendritic processes of 10 of these extend nearly to the amphidial pore. Dendritic processes of two specialized neurons leave the amphidial channel and terminate within invaginations of the sheath cell. One of these is similar to the finger cell of C. elegans, terminating in digitiform projections. The other projects a single cilium into the sheath cell. The dendritic process of a third specialized neuron terminates within the tight junction of the amphid. Each amphidial neuron was traced from the tip of its dendrite(s) to its cell body in the lateral ganglion. Positions of these cell bodies approximate those of morphologically similar amphidial neurons in Caenorhabditis elegans, so the standard nomenclature for amphidial neurons in C. elegans was adopted. A map of cell bodies within the lateral ganglion of P. trichosuri was prepared to facilitate functional study of these neurons.
Collapse
Affiliation(s)
- He Zhu
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Jian Li
- Department of Neurology, School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Thomas J. Nolan
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Gerhard A. Schad
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - James B. Lok
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| |
Collapse
|
18
|
|
19
|
Bumbarger DJ, Wijeratne S, Carter C, Crum J, Ellisman MH, Baldwin JG. Three-dimensional reconstruction of the amphid sensilla in the microbial feeding nematode, Acrobeles complexus (Nematoda: Rhabditida). J Comp Neurol 2009; 512:271-81. [PMID: 19003904 PMCID: PMC2750866 DOI: 10.1002/cne.21882] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Amphid sensilla are the primary olfactory, chemoreceptive, and thermoreceptive organs in nematodes. Their function is well described for the model organism Caenorhabditis elegans, but it is not clear to what extent we can generalize these findings to distantly related nematodes of medical, economic, and agricultural importance. Current detailed descriptions of anatomy and sensory function are limited to nematodes that recent molecular phylogenies would place in the same taxonomic family, the Rhabditidae. Using serial thin-section transmission electron microscopy, we reconstructed the anatomy of the amphid sensilla in the more distantly related nematode, Acrobeles complexus (Cephalobidae). Amphid structure is broadly conserved in number and arrangement of cells. Details of cell anatomy differ, particularly for the sensory neurite termini. We identify an additional sensory neuron not found in the amphid of C. elegans and propose homology with the C. elegans interneuron AUA. Hypotheses of homology for the remaining sensory neurons are also proposed based on comparisons between C. elegans, Strongyloides stercoralis, and Haemonchus contortus.
Collapse
Affiliation(s)
- Daniel J Bumbarger
- Department of Nematology, University of California, Riverside, California 92521, USA.
| | | | | | | | | | | |
Collapse
|
20
|
Srinivasan J, Durak O, Sternberg PW. Evolution of a polymodal sensory response network. BMC Biol 2008; 6:52. [PMID: 19077305 PMCID: PMC2636771 DOI: 10.1186/1741-7007-6-52] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2008] [Accepted: 12/15/2008] [Indexed: 11/10/2022] Open
Abstract
Background Avoidance of noxious stimuli is essential for the survival of an animal in its natural habitat. Some avoidance responses require polymodal sensory neurons, which sense a range of diverse stimuli, whereas other stimuli require a unimodal sensory neuron, which senses a single stimulus. Polymodality might have evolved to help animals quickly detect and respond to diverse noxious stimuli. Nematodes inhabit diverse habitats and most nematode nervous systems are composed of a small number of neurons, despite a wide assortment in nematode sizes. Given this observation, we speculated that cellular contribution to stereotyped avoidance behaviors would also be conserved between nematode species. The ASH neuron mediates avoidance of three classes of noxious stimuli in Caenorhabditis elegans. Two species of parasitic nematodes also utilize the ASH neuron to avoid certain stimuli. We wanted to extend our knowledge of avoidance behaviors by comparing multiple stimuli in a set of free-living nematode species. Results We used comparative behavioral analysis and laser microsurgery to examine three avoidance behaviors in six diverse species of free-living nematodes. We found that all species tested exhibit avoidance of chemo-, mechano- and osmosensory stimuli. In C. elegans, the bilaterally symmetric polymodal ASH neurons detect all three classes of repellant. We identified the putative ASH neurons in different nematode species by their anatomical positions and showed that in all six species ablation of the ASH neurons resulted in an inability to avoid noxious stimuli. However, in the nematode Pristionchus pacificus, the ADL neuron in addition to the ASH neuron contributed to osmosensation. In the species Caenorhabditis sp. 3, only the ASH neuron was required to mediate nose touch avoidance instead of three neurons in C. elegans. These data suggest that different species can increase or decrease the contribution of additional, non-ASH sensory neurons mediating osmosensation and mechanosensation. Conclusion The overall conservation of ASH mediated polymodal nociception suggests that it is an ancestral evolutionarily stable feature of sensation. However, the finding that contribution from non-ASH sensory neurons mediates polymodal nociception in some nematode species suggests that even in conserved sensory behaviors, the cellular response network is dynamic over evolutionary time, perhaps shaped by adaptation of each species to its environment.
Collapse
Affiliation(s)
- Jagan Srinivasan
- Howard Hughes Medical Institute, Division of Biology, California Institute of Technology, 1200 East California Boulevard, Pasadena, CA 91125, USA.
| | | | | |
Collapse
|
21
|
Lok JB, Artis D. Transgenesis and neuronal ablation in parasitic nematodes: revolutionary new tools to dissect host-parasite interactions. Parasite Immunol 2008; 30:203-14. [PMID: 18324923 DOI: 10.1111/j.1365-3024.2008.01006.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Ease of experimental gene transfer into viral and prokaryotic pathogens has made transgenesis a powerful tool for investigating the interactions of these pathogens with the host immune system. Recent advances have made this approach feasible for more complex protozoan parasites. By contrast, the lack of a system for heritable transgenesis in parasitic nematodes has hampered progress toward understanding the development of nematode-specific cellular responses. Recently, however, significant strides towards such a system have been made in several parasitic nematodes, and the possible applications of these in immunological research should now be contemplated. In addition, methods for targeted cell ablation have been successfully adapted from Caenorhabditis elegans methodology and applied to studies of neurobiology and behaviour in Strongyloides stercoralis. Together, these new technical developments offer exciting new tools to interrogate multiple aspects of the host-parasite interaction following nematode infection.
Collapse
Affiliation(s)
- J B Lok
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104-6008, USA.
| | | |
Collapse
|
22
|
Junio AB, Li X, Massey HC, Nolan TJ, Todd Lamitina S, Sundaram MV, Lok JB. Strongyloides stercoralis: cell- and tissue-specific transgene expression and co-transformation with vector constructs incorporating a common multifunctional 3' UTR. Exp Parasitol 2007; 118:253-65. [PMID: 17945217 DOI: 10.1016/j.exppara.2007.08.018] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2007] [Revised: 08/21/2007] [Accepted: 08/28/2007] [Indexed: 11/26/2022]
Abstract
Transgenesis is a valuable methodology for studying gene expression patterns and gene function. It has recently become available for research on some parasitic nematodes, including Strongyloides stercoralis. Previously, we described a vector construct, comprising the promoter and 3' UTR of the S. stercoralis gene Ss era-1 that gives expression of GFP in intestinal cells of developing F1 progeny. In the present study, we identified three new S. stercoralis promoters, which, in combination with the Ss era-1 3' UTR, can drive expression of GFP or the red fluorescent protein, mRFPmars, in tissue-specific fashion. These include Ss act-2, which drives expression in body wall muscle cells, Ss gpa-3, which drives expression in amphidial and phasmidial neurons and Ss rps-21, which drives ubiquitous expression in F1 transformants and in the gonads of microinjected P0 female worms. Concomitant microinjection of vectors containing GFP and mRFPmars gave dually transformed F1 progeny, suggesting that these constructs could be used as co-injection markers for other transgenes of interest. We have developed a vector "toolkit" for S. stercoralis including constructs with the Ss era-1 3' UTR and each of the promoters described above.
Collapse
Affiliation(s)
- Ariel B Junio
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | | | | | | | | | | | | |
Collapse
|
23
|
Ashton FT, Zhu X, Boston R, Lok JB, Schad GA. Strongyloides stercoralis: Amphidial neuron pair ASJ triggers significant resumption of development by infective larvae under host-mimicking in vitro conditions. Exp Parasitol 2006; 115:92-7. [PMID: 17067579 PMCID: PMC3091007 DOI: 10.1016/j.exppara.2006.08.010] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2006] [Revised: 08/18/2006] [Accepted: 08/18/2006] [Indexed: 10/24/2022]
Abstract
Resumption of development by infective larvae (L3i) of parasitic nematodes upon entering a host is a critical first step in establishing a parasitic relationship with a definitive host. It is also considered equivalent to exit from the dauer stage by the free-living nematode Caenorhabditis elegans. Initiation of feeding, an early event in this process, is induced in vitro in L3i of Strongyloides stercoralis, a parasite of humans, other primates and dogs, by culturing the larvae in DMEM with 10% canine serum and 5mM glutathione at 37 degrees C with 5% CO(2). Based on the developmental neurobiology of C. elegans, resumption of development by S. stercoralis L3i should be mediated, in part at least, by neurons homologous to the ASJ pair of C. elegans. To test this hypothesis, the ASJ neurons in S. stercoralis first-stage larvae (L1) were ablated with a laser microbeam. This resulted in a statistically significant (33%) reduction in the number of L3i that resumed feeding in culture. In a second expanded investigation, the thermosensitive ALD neurons, along with the ASJ neurons, were ablated, but there was no further decrease in the initiation of feeding by these worms compared to those in which only the ASJ pair was ablated.
Collapse
Affiliation(s)
- Francis T. Ashton
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, 3800 Spruce Street, Philadelphia, PA 19104, USA
| | - Xiaodong Zhu
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, 3800 Spruce Street, Philadelphia, PA 19104, USA
| | - Ray Boston
- Department of Clinical Studies/New Bolton Center, School of Veterinary Medicine, University of Pennsylvania, 382 West Street Road, Kennett Square, PA 19348, USA
| | - James B. Lok
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, 3800 Spruce Street, Philadelphia, PA 19104, USA
| | - Gerhard A. Schad
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, 3800 Spruce Street, Philadelphia, PA 19104, USA
- Corresponding author. Fax: +1 215 573 7023. (G.A. Schad)
| |
Collapse
|
24
|
Massey HC, Bhopale MK, Li X, Castelletto M, Lok JB. The fork head transcription factor FKTF-1b from Strongyloides stercoralis restores DAF-16 developmental function to mutant Caenorhabditis elegans. Int J Parasitol 2006; 36:347-52. [PMID: 16442538 PMCID: PMC3638016 DOI: 10.1016/j.ijpara.2005.11.007] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2005] [Revised: 11/10/2005] [Accepted: 11/15/2005] [Indexed: 11/21/2022]
Abstract
The purpose of this study was to determine whether Strongyloides stercoralis FKTF-1, a transcription factor of the FOXO/FKH family and the likely output of insulin/IGF signal transduction in that parasite, has the same or similar developmental regulatory capabilities as DAF-16, its structural ortholog in Caenorhabditis elegans. To this end, both splice variants of the fktf-1 message were expressed under the control of the daf-16alpha promoter in C. elegans carrying loss of function mutations in both daf-2 (the insulin/IGF receptor kinase) and daf-16. Under well-fed culture conditions the majority (91%) of untransformed daf-2; daf-16 double mutants developed via the continuous reproductive cycle, whereas under the same conditions 100% of daf-2 single mutants formed dauers. Transgenic daf-2; daf-16 individuals expressing fktf-1b showed a reversal of the double mutant phenotype with 75% of the population forming dauers under well-fed conditions. This phenotype was even more pronounced than that of daf-2; daf-16 mutants transformed with a homologous rescuing construct, daf-16alpha::daf-16a (56% dauers under well fed conditions), indicating that S. stercoralis fktf-1b can almost fully rescue loss-of-function mutants in C. elegans daf-16. By contrast, daf-2; daf-16 mutants expressing S. stercoralis fktf-1a, encoding the second splice variant of FKTF-1, showed a predominantly continuous pattern of development identical to that of the parental double mutant stock. This indicates that, unlike FKTF-1b, the S. stercoralis transcription factor FKTF-1a cannot trigger the shift to dauer-specific gene expression in C. elegans.
Collapse
Affiliation(s)
- Holman C. Massey
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, 3800 Spruce Street, Philadelphia, PA 19104, USA
| | - Mahendra K. Bhopale
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, 3800 Spruce Street, Philadelphia, PA 19104, USA
| | - Xinshe Li
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, 3800 Spruce Street, Philadelphia, PA 19104, USA
| | - Michelle Castelletto
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, 3800 Spruce Street, Philadelphia, PA 19104, USA
| | - James B. Lok
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, 3800 Spruce Street, Philadelphia, PA 19104, USA
| |
Collapse
|
25
|
Grant WN, Stasiuk S, Newton-Howes J, Ralston M, Bisset SA, Heath DD, Shoemaker CB. Parastrongyloides trichosuri, a nematode parasite of mammals that is uniquely suited to genetic analysis. Int J Parasitol 2006; 36:453-66. [PMID: 16500655 DOI: 10.1016/j.ijpara.2005.11.009] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2005] [Revised: 11/28/2005] [Accepted: 11/29/2005] [Indexed: 11/22/2022]
Abstract
Commonly studied nematode parasites have not proven amenable to simple genetic analyses and this has significantly reduced the available research options. We introduce here a nematode parasite of mammals, Parastrongyloides trichosuri, which has features uniquely suited for genetic analysis. This parasite has the capacity to undergo multiple reproductive cycles as a free-living worm and thereby amplify the numbers of its infective L3s in faeces. Culture conditions are presented that permit facile laboratory maintenance of this worm for >90 free-living life cycles (to date) without the need for re-entry into a permissive host. Even after long maintenance as a free-living worm, culture conditions can be manipulated to favour development of infective L3 worms, which remain able to successfully infect their marsupial hosts. The switch to infective L3 development is triggered by a secreted factor contained in culture medium conditioned by multiple generations of free-living worm culture. It is simple to perform single pair crosses with P. trichosuri to carry out Mendelian genetics in the laboratory and this has been done multiple times with sibling pairs to generate highly inbred lines. Lines of worms can readily be cryopreserved and recovered. Over 7000 expressed sequence tags have been produced from cDNAs at different life cycle stages and used to identify single nucleotide polymorphisms and microsatellites as genetic markers. Free-living worms live only a few days on average while the patency of parasitic infections can last for several months. Since we show this is not the result of re-infection, we conclude that parasitic worms have a lifespan capacity at least 20-30 times longer than their free-living counterparts. We discuss how it should be possible to exploit these unique features of P. trichosuri as a model for future studies that explore the genetic basis of longevity and parasitism.
Collapse
Affiliation(s)
- W N Grant
- AgResearch Ltd, Wallaceville Animal Research Centre, Ward Street, P.O. Box 40063, Upper Hutt, New Zealand.
| | | | | | | | | | | | | |
Collapse
|
26
|
Tobata-Kudo H, Kudo H, Tada I. Strongyloides ratti: chemokinesis of glycolytic enzyme- and lectin-treated third-stage infective larvae in vitro. Parasitol Int 2005; 54:147-52. [PMID: 15866477 DOI: 10.1016/j.parint.2005.03.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2004] [Accepted: 03/04/2005] [Indexed: 11/28/2022]
Abstract
The infective third-stage larvae (L3s) of Strongyloides ratti, a parasitic nematode in rodents, showed two types of chemokinesis on a gradient of sodium chloride (NaCl) in an in vitro agarose tracking assay. The types were a consistent directional avoidance behavior under unfavorable environmental conditions and a reduced avoidance behavior under favorable conditions. We examined the effects of treatments with glycolytic enzymes and lectins by analyzing the avoidance behavior. L-Fucose dehydrogenase, hyaluronidase, beta-glucosidase, alpha-mannosidase, beta-galactosidase, concanavalin A, wheat germ agglutinin and soybean agglutinin exhibited inhibitory or enhancive effects on chemokinesis. We also confirmed the sites of the amphids of L3s aside from the mouth at the anterior end by scanning electron microscopy, and that concanavalin A-binding sites existed in the vicinity of the amphids using lectin-histochemistry. The carbohydrate moieties in the amphids of S. ratti L3s may play an important role as chemosensors in perceiving environmental cues.
Collapse
Affiliation(s)
- Hiroe Tobata-Kudo
- Tobata Laboratory, 1-20-10 Asakawagakuendai, Yahatanishi-ku, Kitakyushu 807-0871, Japan.
| | | | | |
Collapse
|
27
|
Tobata-Kudo H, Kudo H, Tada I. Strongyloides ratti: thermokinesis of glycolytic enzyme- and lectin-treated third-stage infective larvae in vitro. Parasitol Res 2005; 95:314-8. [PMID: 15696317 DOI: 10.1007/s00436-004-1282-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2004] [Accepted: 11/23/2004] [Indexed: 11/28/2022]
Abstract
The infective third-stage larvae (L3s) of a parasitic nematode of rodents, Strongyloides ratti, showed three types of thermokinesis on a temperature gradient using an in vitro agarose tracking assay method. These depended both on the pattern of gradient temperature and the prior culture temperature. Most L3s (> or = 80%) isolated from rat feces cultured at 25 degrees C and placed on a gradient at temperatures between 30 degrees C and 37 degrees C showed no directional response, at 22-29 degrees C more than 50% of the L3s showed positive thermokinesis, at 21 degrees C L3s showed positive, negative and no directional responses in the same ratio, while at 18-20 degrees C, L3s showed negative thermokinesis (approx. 40%) or no directional response (approx. 60%) as in our previous study. The present study describes the effects of glycolytic enzyme- and lectin-treated positive thermokinesis of L3s. alpha-Glucosidase or concanavalin A significantly exhibited inhibitory effects on thermokinesis.
Collapse
Affiliation(s)
- Hiroe Tobata-Kudo
- Tobata Laboratory, 1-20-10 Asakawagakuendai, Yahatanishi-ku, 807-0871 Kitakyushu, Japan.
| | | | | |
Collapse
|
28
|
Nolan TJ, Brenes M, Ashton FT, Zhu X, Forbes WM, Boston R, Schad GA. The amphidial neuron pair ALD controls the temperature-sensitive choice of alternative developmental pathways in the parasitic nematode, Strongyloides stercoralis. Parasitology 2005; 129:753-9. [PMID: 15648698 DOI: 10.1017/s0031182004006092] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The parasitic nematode Strongyloides stercoralis, has several alternative developmental pathways. Upon exiting the host (humans, other primates and dogs) in faeces, 1st-stage larvae (L1) can enter the direct pathway, in which they moult twice to reach the infective 3rd-stage. Alternatively, if they enter the indirect pathway, they moult 4 times and become free-living adults. The choice of route depends, in part, on environmental cues. In this investigation it was shown that at temperatures below 34 degrees C the larvae enter the indirect pathway and develop to free-living adulthood. Conversely, at temperatures approaching body temperature (34 degrees C and above), that are unfavorable for the survival of free-living stages, larvae develop directly to infectivity. The time-period within the L1's development during which temperature influenced the choice of the pathway depended on the temperature, but, at any given temperature, occurred approximately in the middle of the time-span spent in the L1 stage, which varied inversely with temperature. This critical period was associated with the time-interval in which the number of cells in the genital primordium began to increase, thus providing a morphological marker for the pathway decision in individual worms. Sensing the environment is the function of the amphidial neurons, and therefore we examined the role of individual amphidial neurons in controlling entry into the direct pathway to infectivity. The temperature-sensitive developmental switch is controlled by the neuron pair ALD (which also controls thermotaxis), as seen by the loss of control when these neurons are ablated. Thus, in S. stercoralis a single amphidial neuron pair controls both developmental and behavioural functions.
Collapse
Affiliation(s)
- T J Nolan
- Laboratory of Parasitology, University of Pennsylvania School of Veterinary Medicine, Philadelphia, PA 19104, USA.
| | | | | | | | | | | | | |
Collapse
|
29
|
Forbes WM, Ashton FT, Boston R, Zhu X, Schad GA. Chemoattraction and chemorepulsion of Strongyloides stercoralis infective larvae on a sodium chloride gradient is mediated by amphidial neuron pairs ASE and ASH, respectively. Vet Parasitol 2004; 120:189-98. [PMID: 15041094 DOI: 10.1016/j.vetpar.2004.01.005] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2003] [Accepted: 01/09/2004] [Indexed: 11/27/2022]
Abstract
Depending on its concentration, sodium chloride acts as either an attractant or a repellant to the infective larvae (L3i) of Strongyloides stercoralis. On a concentration gradient, L3i are attracted to 0.05 M NaCl, but repelled by 2.8M. To test the hypothesis that amphidial neurons ASE and ASH might mediate attraction and repulsion, respectively, these neurons, and control neurons as well, were ablated in hatchling larvae with a laser microbeam. After the larvae attained infectivity (L3i), they were tested on a NaCl gradient. When placed at low salinity, 73.5% of normal controls migrated "up" the gradient, while 26.4% crawled randomly. In contrast, only 20.6% of ASE-ablated L3i migrated "up" the gradient, while 79.4% migrated randomly. Ablation-control ASK-ablated L3i (58.8%) migrated "up" the gradient while 41.1% crawled randomly. When placed at a region of high salinity, 100% of normal control L3i migrated "down" the gradient, whereas 62.5% of ASH-ablated L3i migrated randomly, the remaining 37.5% migrating "down" the gradient. In sharp contrast with ASH-ablated L3i, 94.1% of ablation-control larvae, i.e. ASK-ablated L3i, migrated "down" the gradient. Migration behavior of ASE- and ASH-ablated L3i was significantly different (P < 0.001) from that of ASK-ablated L3i and normal controls. It is noteworthy that 87.5% of ASE-ablated L3i that failed to exhibit chemoattractive behavior were actively chemorepelled from high salinity. Also, 70.0% of ASH-ablated L3i that failed to be chemorepelled from high salinity were capable of chemoattractive behavior, indicating that the worms had retained their behavioral responses except for those associated with the targeted neurons.
Collapse
Affiliation(s)
- W M Forbes
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, 3800 Spruce Street, Rosenthal Building, Room 212, Philadelphia, PA 19104, USA
| | | | | | | | | |
Collapse
|
30
|
Fagerholm HP, Brunanská M, Roepstorff A, Eriksen L. PHASMID ULTRASTRUCTURE OF AN ASCARIDOID NEMATODE HYSTEROTHYLACIUM AUCTUM. J Parasitol 2004; 90:499-506. [PMID: 15270092 DOI: 10.1645/ge-3168] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Here, for the first time in an ascaridoid (Hysterothylacium auctum), we present structural features of the phasmids, paired sense organs, positioned in a bilateral manner close to the point of the tail; the features were obtained using scanning and transmission electron microscopy. We found that each phasmid consists of a single ciliated dendritic process situated in a phasmidial canal surrounded by 2 supporting cells, a socket and a sheath cell. The socket cell contains clusters of electron-dense fibrous material in its apical region and covers the phasmidial canal along its whole length. The sheath cell is characterized by a well-developed endoplasmic reticulum. The phasmidial canal is lined with a thin layer of cuticle that becomes incomplete at the base of the ciliated dendritic process. In this region, the dendritic process consists primarily of a high number of microtubule singlets and some peripheral microtubule doublets. The base of the dendritic process, containing numerous striated rootlets, gives off a large number of fingerlike offshoots, villi, invading the surrounding sheath cell. The systematic significance and functional implication of the phasmid in nematodes are also discussed.
Collapse
Affiliation(s)
- Hans-Peter Fagerholm
- Laboratory of Aquatic Pathobiology, Department of Biology, Abo Akademi University, BioCity, Artillerigatan 6, FIN-20520 Abo/Turku, Finland.
| | | | | | | |
Collapse
|
31
|
Mitreva M, McCarter JP, Martin J, Dante M, Wylie T, Chiapelli B, Pape D, Clifton SW, Nutman TB, Waterston RH. Comparative genomics of gene expression in the parasitic and free-living nematodes Strongyloides stercoralis and Caenorhabditis elegans. Genome Res 2004; 14:209-20. [PMID: 14762059 PMCID: PMC327096 DOI: 10.1101/gr.1524804] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Although developmental timing of gene expression is used to infer potential gene function, studies have yet to correlate this information between species. We analyzed 10,921 ESTs in 3311 clusters from first- and infective third-stage larva (L1, L3i) of the parasitic nematode Strongyloides stercoralis and compared the results to Caenorhabditis elegans, a species that has an L3i-like dauer stage. In the comparison of S. stercoralis clusters with stage-specific expression to C. elegans homologs expressed in either dauer or nondauer stages, matches between S. stercoralis L1 and C. elegans nondauer-expressed genes dominated, suggesting conservation in the repertoire of genes expressed during growth in nutrient-rich conditions. For example, S. stercoralis collagen transcripts were abundant in L1 but not L3i, a pattern consistent with C. elegans collagens. Although a greater proportion of S. stercoralis L3i than L1 genes have homologs among the C. elegans dauer-specific transcripts, we did not uncover evidence of a robust conserved L3i/dauer 'expression signature.' Strikingly, in comparisons of S. stercoralis clusters to C. elegans homologs with RNAi knockouts, those with significant L1-specific expression were more than twice as likely as L3i-specific clusters to match genes with phenotypes. We also provide functional classifications of S. stercoralis clusters.
Collapse
Affiliation(s)
- Makedonka Mitreva
- Department of Genetics, Washington University School of Medicine, St Louis, Missouri 63108, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Nisbet AJ, Cottee P, Gasser RB. Molecular biology of reproduction and development in parasitic nematodes: progress and opportunities. Int J Parasitol 2004; 34:125-38. [PMID: 15037100 DOI: 10.1016/j.ijpara.2003.09.012] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2003] [Revised: 09/05/2003] [Accepted: 09/11/2003] [Indexed: 10/26/2022]
Abstract
Molecular biological research on the development and reproduction of parasites is of major significance for many fundamental and applied areas of medical and veterinary parasitology. Together with knowledge of parasite biology and epidemiology, the application of molecular tools and technologies provides unique opportunities for elucidating developmental and reproductive processes in helminths. This article focuses specifically on recent progress in studying the molecular mechanisms of development, sexual differentiation and reproduction in parasitic nematodes of socio-economic importance and comparative analyses, where appropriate, with the free-living nematode Caenorhabditis elegans. It also describes the implications of such work for understanding reproduction, tissue migration, hypobiosis, signal transduction and host-parasite interactions at the molecular level, and for seeking new means of parasite intervention.
Collapse
Affiliation(s)
- Alasdair J Nisbet
- Department of Veterinary Science, The University of Melbourne, 250 Princes Highway, Werribee, Victoria 3030, Australia
| | | | | |
Collapse
|
33
|
Massey HC, Nishi M, Chaudhary K, Pakpour N, Lok JB. Structure and developmental expression of Strongyloides stercoralis fktf-1, a proposed ortholog of daf-16 in Caenorhabditis elegans. Int J Parasitol 2003; 33:1537-44. [PMID: 14572516 PMCID: PMC3637023 DOI: 10.1016/s0020-7519(03)00205-4] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
A forkhead transcription factor gene, fktf-1, which we propose to be orthologous to the Caenorhabditis elegans dauer-regulatory gene daf-16 has been discovered in the parasitic nematode Strongyloides stercoralis. Genomic and cDNA sequences from both species predict alternately spliced a and b message isoforms. In contrast to C. elegans, where two a isoforms, daf-16a1 and daf-16a2, are found, a single fktf-1a isoform is found in S. stercoralis. Five of the 10 introns found in the C. elegans gene are found in the proposed S. stercoralis ortholog. Functional motifs common to DAF-16 and several mammalian forkhead transcription factors are conserved in FKTF-1. These include the forkhead DNA binding domain, four Akt/protein kinase B phosphorylation sites and a C-terminal domain that may associate with factors such as the steroid receptor coactivator and other factors necessary for transcriptional regulation. An N-terminal serine-rich domain found in DAF-16A is greatly expanded in FKTF-1A. This domain is missing in DAF-16B, FKTF-1B and all mammalian orthologs. FKTF-1 shows the closest phylogenetic relationship to DAF-16 among all known mammalian and nematode forkhead transcription factors. Like its proposed Caenorhabditis ortholog, the fktf-1 message is expressed at all stages of the life cycle examined thus far. Discovery of fktf-1 indicates the presence of an insulin-like signalling pathway in S. stercoralis similar to that known to regulate dauer development in C. elegans. This pathway is a likely candidate to control infective larval arrest and reactivation as well as regulation of the switch between parasitic and free-living development in the parasite.
Collapse
Affiliation(s)
- Holman C Massey
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, 3800 Spruce Street, Philadelphia, PA 19104-6050, USA.
| | | | | | | | | |
Collapse
|
34
|
Abstract
Developmental plasticity in helminth life cycles serves, in most cases, to increase the probability of transmission between hosts, suggesting that the necessity to achieve transmission is a prominent selective pressure in the evolution of this phenomenon. Some evidence suggests that digenean trematodes from the genus Schistosoma are also capable of limited developmental responses to host factors. Here we review the currently available data on this phenomenon and attempt to draw comparisons with similar processes in the life cycles of other helminths. At present the biological significance of developmental responses by schistosomes under laboratory conditions remains unclear. Further work is needed to determine whether developmental plasticity plays any role in increasing the probability of schistosome transmission and life cycle propagation under adverse conditions, as it does in other helminth life cycles.
Collapse
Affiliation(s)
- Stephen J Davies
- Tropical Disease Research Unit, Department of Pathology, University of California San Francisco, 513 Parnassus Avenue, San Francisco, CA 94143, USA.
| | | |
Collapse
|
35
|
Viney ME, Green LD, Brooks JA, Grant WN. Chemical mutagenesis of the parasitic nematode Strongyloides ratti to isolate ivermectin resistant mutants. Int J Parasitol 2002; 32:1677-82. [PMID: 12464413 DOI: 10.1016/s0020-7519(02)00157-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
We describe a strategy for the mutagenesis of the free-living adult generation of Strongyloides ratti and selection of worms carrying new mutations in the subsequent F2 generation of infective larvae. We demonstrate that this strategy is successful via the selection of infective larvae that are resistant to the anthelmintic ivermectin at a concentration of 10 ng/ml. The majority of these larvae were unable to give rise to patent infections when used to infect parasite naive rats, implying that the majority of the ivermectin resistance mutations confer pleiotropic defects on parasitic, but not on free-living, development.
Collapse
Affiliation(s)
- M E Viney
- School of Biological Sciences, University of Bristol, Woodland Road, Bristol BS8 1UG, UK.
| | | | | | | |
Collapse
|
36
|
Beall MJ, Pearce EJ. Transforming growth factor-beta and insulin-like signalling pathways in parasitic helminths. Int J Parasitol 2002; 32:399-404. [PMID: 11849636 DOI: 10.1016/s0020-7519(01)00348-4] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The signal transduction pathways involved in regulating developmental arrest in the free-living nematode, Caenorhabditis elegans, are fairly well characterised. However, much less is known about how these processes may influence the developmental timing and maturation in helminth parasites. Here, we provide an overview of two signalling pathways implicated in the regulation of dauer larva formation in C. elegans, the insulin-like signalling pathway and the transforming growth factor-beta pathway, and explore what is known about these signalling pathways in a variety of parasitic helminths. Understanding the differences about how these pathways are affected by environmental cues in free-living versus parasitic species of helminths may provide insights into novel mechanisms for the control or prevention of helminth-induced disease.
Collapse
Affiliation(s)
- Melissa J Beall
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA
| | | |
Collapse
|
37
|
Sciacca J, Forbes WM, Ashton FT, Lombardini E, Gamble HR, Schad GA. Response to carbon dioxide by the infective larvae of three species of parasitic nematodes. Parasitol Int 2002; 51:53-62. [PMID: 11880227 DOI: 10.1016/s1383-5769(01)00105-2] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The response of infective third-stage larvae (L3) of three species of parasitic nematodes, Ancylostoma caninum, Strongyloides stercoralis, and Haemonchus contortus to carbon dioxide (CO(2)) at physiological concentrations was investigated. L3 of the skin-penetrating species, A. caninum and S. stercoralis, were stimulated by CO(2) at the concentration found in human breath (3.3-4%); these larvae responded by crawling actively, but not directionally. Crawling was not stimulated by breath passed through a CO(2)-removing "scrubber" or by "bench air". Both A. caninum and S. stercoralis L3 stopped crawling when exposed to 5% CO(2) for 1 min. L3 of A. caninum became active 9-14 min after exposure to 5% CO(2) ended, but activity resumed more rapidly (10-15 s) if larvae were subsequently exposed to breath or breath through the scrubber. L3 of S. stercoralis resumed crawling 30-35 s after exposure to 5% CO(2), but resumed crawling within a very few seconds when exposed to breath or breath through the scrubber. Thus, while 5% CO(2) was inhibitory, lower concentrations of this gas stimulated L3 of both species. Apparently, exposing immobilized larvae to breath or breath through the scrubber causes the environmental CO(2) concentration to drop to a level that is stimulatory. The L3 of H. contortus ceased crawling and coiled when exposed to human breath or to 1% CO(2), but continued to move within the coil in both cases. The crawling response of the L3 of the two skin-penetrating species, A. caninum and S. stercoralis, to stimulation by CO(2) probably relates to their active host-finding behavior, while the cessation response elicited by CO(2) in H. contortus larvae may relate to the fact that they rely on passive ingestion by a ruminant host.
Collapse
Affiliation(s)
- Joslyn Sciacca
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, 3800 Spruce St., Philadelphia, PA 19104, USA
| | | | | | | | | | | |
Collapse
|
38
|
Abstract
The organism about which most is known on a molecular level is a nematode, the free-living organism Caenorhabditis elegans. This organism has served as a reasonable model for the discovery of anthelmintic drugs and for research on the mechanism of action of anthelmintics. Useful information on mechanisms of anthelmintic resistance has also been obtained from studies on C. elegans. Unfortunately, there has not been a large-scale extension of genetic techniques developed in C. elegans to research on parasitic species of veterinary (or human) parasites. Much can be learned about the essentials of nematode biology by studying C. elegans, but discovering the basic biology of nematode parasitism can only be gained through comparative studies on multiple parasitic species.
Collapse
Affiliation(s)
- T G Geary
- Discovery Research, Pharmacia Animal Health, 7923-25-111, 7000 Portage Road, Kalamazoo, MI 49001-0199, USA.
| | | |
Collapse
|
39
|
Arasu P. In vitro reactivation of Ancylostoma caninum tissue-arrested third-stage larvae by transforming growth factor-beta. J Parasitol 2001; 87:733-8. [PMID: 11534634 DOI: 10.1645/0022-3395(2001)087[0733:ivroac]2.0.co;2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Developmental arrest in Ancylostoma caninum is associated with preparasitic, free-living third-stage (L3) larvae, as well as anthelmintic-resilient hypobiotic L3 larvae within the tissues of an infected dog. With the tissue-arrested larvae, pregnancy and, more specifically, the hormonal effects of estrogen and prolactin mediate reactivation resulting in transmammary transmission of infection to nursing puppies. Estrogen and prolactin have been shown to be critically involved in upregulation of transforming growth factor (TGF)-beta2 during pregnancy, and studies on the soil nematode Caenorhabditis elegans further implicate TGF-beta and insulin-like signaling pathways with larval arrest and reactivation. In this report, an in vitro assay was used to show that neither estrogen, prolactin, nor insulin had a direct effect on the feeding/reactivation response of tissue-arrested larvae; however, TGF-beta isoforms 1 and 2 both had significant stimulatory effects that were comparable to the effects of dog serum. The stimulatory effects of serum could be blocked by preincubation with anti-TGF-beta antibodies. Taken together, the results support the hypothesis that during pregnancy, host-derived TGF-beta can signal a parasite-encoded receptor to trigger the reactivation of tissue-arrested larvae. TGF-beta had no effect on preparasitic larvae, suggesting that different signals may be involved in reactivation of the 2 different arrested forms of A. caninum L3 larvae.
Collapse
Affiliation(s)
- P Arasu
- Department of Microbiology, Pathology and Parasitology, College of Veterinary Medicine, North Carolina State University, Raleigh 27606, USA
| |
Collapse
|
40
|
Bhopale VM, Kupprion EK, Ashton FT, Boston R, Schad GA. Ancylostoma caninum: the finger cell neurons mediate thermotactic behavior by infective larvae of the dog hookworm. Exp Parasitol 2001; 97:70-6. [PMID: 11281703 DOI: 10.1006/expr.2000.4575] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Bhopale, V. M., Kupprion, E. K., Ashton, F. T., Boston, R., and Schad, G. A. 2001. Ancylostoma caninum: The finger cell neurons mediate thermotactic behavior by infective larvae of the dog hookworm. Experimental Parasitology 97, 70-76. In the amphids (anteriorly positioned, paired sensilla) of the free-living nematode Caenorhabditis elegans, the so-called finger cells (AFD), a pair of neurons, each of which ends in a cluster of microvilli-like projections, are known to be the primary thermoreceptors. A similar neuron pair in the amphids of the parasitic nematode Haemonchus contortus is also known to be thermoreceptive. The hookworm of dogs, Ancylostoma caninum, has apparent structural homologs of finger cells in its amphids. The neuroanatomy of the amphids of A. caninum and H. contortus is strikingly similar, and the amphidial cell bodies in the lateral ganglia of the latter nematode have been identified and mapped. When the lateral ganglia of first-stage larvae (L1) of A. caninum are examined with differential interference contrast microscopy, positional homologs of the recognized amphidial cell bodies in the lateral ganglia of H. contortus L1 are readily identified in A. caninum. The amphidial neurons in A. caninum were consequently given the same names as those of their apparent homologs in H. contortus. It was hypothesized that the finger cell neurons (AFD) might mediate thermotaxis by the skin-penetrating infective larvae (L3) of A. caninum. Laser microbeam ablation experiments with A. caninum were conducted, using the H. contortus L1 neuronal map as a guide. A. caninum L1 were anesthetized and the paired AFD class neurons were ablated. The larvae were then cultured to L3 and assayed for thermotaxis on a thermal gradient. L3 with ablated AFD-class neuron pairs showed significantly reduced thermotaxis compared to control groups. The thermoreceptive function of the AFD-class neurons associates this neuron pair with the host-finding process of the A. caninum infective larva and shows functional homology with the neurons of class AFD in C. elegans and in H. contortus.
Collapse
Affiliation(s)
- V M Bhopale
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, 3800 Spruce Street, Philadelphia, PA 19104, U.S.A
| | | | | | | | | |
Collapse
|
41
|
Harvey SC, Gemmill AW, Read AF, Viney ME. The control of morph development in the parasitic nematode Strongyloides ratti. Proc Biol Sci 2000; 267:2057-63. [PMID: 11416909 PMCID: PMC1690777 DOI: 10.1098/rspb.2000.1249] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The parasitic nematode Strongyloides ratti has a complex life cycle. The progeny of the parasitic females can develop into three distinct morphs, namely directly developing infective third-stage larvae (iL3s), free-living adult males and free-living adult females. We have analysed of the effect of host immune status (an intra-host factor), environmental temperature (an extra-host factor) and their interaction on the proportion of larvae that develop into these three morphs. The results are consistent with the developmental decision of larvae being controlled by at least two discrete developmental switches. One is a sex-determination event that is affected by host immune status and the other is a switch between alternative female morphs that is affected by both host immune status and environmental temperature. These findings clarify the basis of the life cycle of S. ratti and demonstrate how such complex life cycles can result from a combination of simple developmental switches.
Collapse
Affiliation(s)
- S C Harvey
- Division of Biological Sciences, University of Edinburgh, West Mains Road, Edinburgh EH9 3JT, UK
| | | | | | | |
Collapse
|
42
|
Lopez PM, Boston R, Ashton FT, Schad GA. The neurons of class ALD mediate thermotaxis in the parasitic nematode, Strongyloides stercoralis. Int J Parasitol 2000; 30:1115-21. [PMID: 10996330 DOI: 10.1016/s0020-7519(00)00087-4] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Strongyloides stercoralis, a skin-penetrating nematode parasite of homeotherms, migrates to warmth. In nematodes, the amphids, anteriorly positioned, paired sensilla, each contain a bundle of sensory neurons. In the amphids of the free-living nematode Caenorhabditis elegans, a pair of neurons, each of which ends in a cluster of microvilli-like projections, are known to be the primary thermoreceptors, and have been named the finger cells (class AFD). A similar neuron pair in the amphids of the parasite Haemonchus contortus is also known to be thermosensory. Strongyloides stercoralis lacks finger cells but, in its amphids, it has a pair of neurons whose dendrites end in a multi-layered complex of lamellae, the so-called lamellar cells (class ALD). Consequently, it was hypothesised that these lamellar cells might mediate thermotaxis by the skin-penetrating infective larva of this species. To investigate this, first stage S. stercoralis larvae were anaesthetised and the paired ALD class neurons were ablated with a laser microbeam. The larvae were then cultured to the infective third stage (L3) and assayed for thermotaxis on a thermal gradient. L3 with ablated ALD class neuron pairs showed significantly reduced thermotaxis compared with control groups. The thermoreceptive function of the ALD class neurons (i) associates this neuron pair with the host-finding process of S. stercoralis and (ii) demonstrates a functional similarity with the neurons of class AFD in C. elegans. The structural and positional characteristics of the ALD neurons suggest that these neurons may, in fact, be homologous with one pair of flattened dendritic processes known as wing cells (AWC) in C. elegans, while their florid development and thermosensory function suggest homology with the finger cells (AFD) of that nematode.
Collapse
Affiliation(s)
- P M Lopez
- Department of Pathobiology, University of Pennsylvania School of Veterinary Medicine, 3800 Spruce Street, Rosenthal Building, Room 212, Philadelphia, PA 19104, USA
| | | | | | | |
Collapse
|
43
|
Li J, Zhu X, Boston R, Ashton FT, Gamble HR, Schad GA. Thermotaxis and thermosensory neurons in infective larvae of Haemonchus contortus, a passively ingested nematode parasite. J Comp Neurol 2000; 424:58-73. [PMID: 10888739 DOI: 10.1002/1096-9861(20000814)424:1<58::aid-cne5>3.0.co;2-z] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
As a basis for studies of thermal behavior of infective larvae (L3) of Haemonchus contortus resulting from ablation of amphidial neurons, the locations of the amphidial cell bodies in the hatchling larva (L1) were compared with their locations in the L3. We sought to verify that killing each targeted cell body in L1 destroys the putative corresponding dendrite of the L3. These comparisons confirmed the predicted cell body-to-dendrite connections, as well as similarities in the general amphidial structure of the two stages. We then conducted a series of studies using laser microbeam ablation of amphidial cell bodies in the L1 to determine the role of specific neurons in the thermal behavior of the L3. In a thermal gradient, normal L3 of H. contortus migrate to the temperature at which they were cultured and/or maintained. Larvae grown at 16 degrees or 26 degrees C migrate appropriately to either of these temperatures. Larvae grown to the L3 stage at 16 degrees C and then moved to 26 degrees C become acclimated to this temperature and thereafter migrate to it. However, when the putative thermosensory neurons, the finger cell neurons (AFD), were ablated in hatchling larvae with a laser microbeam, and these were grown to the L3 stage and tested on a radial thermal gradient, they failed to migrate to their culture temperature. Instead, they moved actively and continuously over much of the assay plate surface, with no obviously oriented cryo- or thermotactic movement. Ablation-control larvae, those in which putatively chemosensory neuron classes ASE or AWC were killed, migrated normally to their culture temperature. When the RIA interneurons (identified by positional homology with those of Caenorhabditis elegans) were ablated, the operated larvae moved actively, but circled near the initial placement point; control larvae, in which other nonamphidial neurons were killed, migrated normally. These results indicate that the finger cell neurons (AFD) are the primary thermosensory class in H. contortus. The RIA-class neurons integrate thermal responses in H. contortus, as do their putative structural homologs in C. elegans, but the behavior of H. contortus subsequent to RIA ablation is strikingly different.
Collapse
Affiliation(s)
- J Li
- School of Veterinary Medicine, University of Pennsylvania, 3800 Spruce St., Philadelphia, Pennsylvania 19104, USA
| | | | | | | | | | | |
Collapse
|
44
|
Lopez PM, Nolan T, Schad GA. Growth of the genital primordium as a marker to describe a time course for the heterogonic larval development in Strongyloides stercoralis. J Parasitol 2000; 86:882-3. [PMID: 10958481 DOI: 10.1645/0022-3395(2000)086[0882:gotgpa]2.0.co;2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
A time course for the heterogonic development of Strongyloides stercoralis is described and a method for distinguishing the early larval stages of this nematode is proposed. The number of cells in the developing gonad were counted at various time intervals of incubation, along with the percentage of larvae in molt at each interval. The time course of growth of the gonad follows a pattern comparable to that reported for body length in an idealized general nematode. A model for the heterogonic development of S. stercoralis is proposed, which, although similar to other nematode developmental models, is stage specific for S. stercoralis, allowing the otherwise morphologically similar rhabditiform stages (L1, L2) to be distinguished.
Collapse
Affiliation(s)
- P M Lopez
- Department of Pathobiology, University of Pennsylvania School of Veterinary Medicine, Philadelphia 19104, USA
| | | | | |
Collapse
|
45
|
Li J, Ashton FT, Gamble HR, Schad GA. Sensory neuroanatomy of a passively ingested nematode parasite,Haemonchus contortus: Amphidial neurons of the first stage larva. J Comp Neurol 2000. [DOI: 10.1002/(sici)1096-9861(20000214)417:3<299::aid-cne4>3.0.co;2-o] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
46
|
Ashton FT, Li J, Schad GA. Chemo- and thermosensory neurons: structure and function in animal parasitic nematodes. Vet Parasitol 1999; 84:297-316. [PMID: 10456420 DOI: 10.1016/s0304-4017(99)00037-0] [Citation(s) in RCA: 79] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Nematode parasites of warm-blooded hosts use chemical and thermal signals in host-finding and in the subsequent resumption of development. The free-living nematode Caenorhabditis elegans is a useful model for investigating the chemo- and thermosensory neurons of such parasites, because the functions of its amphidial neurons are well known from laser microbeam ablation studies. The neurons found in the amphidial channel detect aqueous chemoattractants and repellants; the wing cells-flattened amphidial neurons-detect volatile odorants. The finger cells-digitiform amphidial neurons-are the primary thermoreceptors. Two neuron classes, named ADF and ASI, control entry into the environmentally resistant resting and dispersal dauer larval stage, while the paired ASJ neurons control exit from this stage. Skin-penetrating nematode parasites, i.e. the dog hookworm Ancylostoma caninum, and the threadworm, Strongyloides stercoralis, use thermal and chemical signals for host-finding, while the passively ingested sheep stomach worm, Haemonchus contortus, uses environmental signals to position itself for ingestion. Amphidial neurons presumably recognize these signals. In all species, resumption of development, on entering a host, is probably triggered by host signals also perceived by amphidial neurons. In the amphids of the A. caninum infective larva, there are wing- and finger-cell neurons, as well as neurons ending in cilia-like dendritic processes, some of which presumably recognize a sequence of signals that stimulate these larvae to attach to suitable hosts. The functions of these neurons can be postulated, based on the known functions of their homologs in C. elegans. The threadworm, S. stercoralis, has a complex life cycle. After leaving the host, soil-dwelling larvae may develop either to infective larvae (the life-stage equivalent of dauer larvae) or to free-living adults. As with the dauer larva of C. elegans, two neuron classes control this developmental switch. Amphidial neurons control chemotaxis to a skin extract, and a highly modified amphidial neuron, the lamellar cell, appears to be the primary thermoreceptor, in addition to having chemosensory function. The stomach worm, Haemonchus contortus, depends on ingestion by a grazing host. Once ingested, the infective larva is exposed to profound environmental changes in the rumen. These changes stimulate resumption of development in this species. We hypothesize that resumption of development is under the control of the ASJ neuronal pair. Identification of the neurons that control the infective process could provide the basis for entirely new approaches to parasite control involving interference with development at the time and place of initial host-contact.
Collapse
Affiliation(s)
- F T Ashton
- Department of Pathobiology School of Veterinary Medicine, University of Pennsylvania, Philadelphia 19104, USA
| | | | | |
Collapse
|
47
|
Abstract
The nematode Strongyloides ratti has a remarkable life cycle, which has both a parasitic and a free-living phase. The free-living phase includes a choice between two developmental routes. Here, Mark Viney discusses recent advances in understanding the biology of this developmental switch and shows how the life cycle of this nematode can be used to explore the lifestyle transitions common to all parasitic nematodes, as well as to address other basic biological questions.
Collapse
Affiliation(s)
- M E Viney
- School of Biological Sciences, University of Bristol, Woodland Road, Bristol, UK.
| |
Collapse
|
48
|
Masler EP, Kovaleva ES, Sardanelli S. Comparison of FaRP immunoreactivity in free-living nematodes and in the plant-parasitic nematode Heterodera glycines. Ann N Y Acad Sci 1999; 897:253-63. [PMID: 10676453 DOI: 10.1111/j.1749-6632.1999.tb07896.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The family of FMRFamide-related peptides (FaRPs) is widely distributed among invertebrates, where the peptides serve as neuromodulators. Published reports indicate that numerous FaRP sequences exist in free-living and animal parasitic nematodes. Using a FMRFamide ELISA, FaRP immunoreactivity was detected in extracts of the soybean cyst nematode, Heterodera glycines, in both sexes and at all developmental stages. HPLC-ELISA results revealed a number of immunoreactive components in H. glycines preparations, and a comparison with extracts of the free-living nematodes Caenorhabditis elegans and Panagrellus redivivus showed significant qualitative differences in FaRP immunoreactivity between the plant parasite and the two free-living nematodes. Total and specific immunoreactivities varied during H. glycines development, with the highest specific activity in juveniles and males, and the highest total activity in mature females. Total female immunoreactivity was located primarily within the mature eggs. A significant portion, however, was associated with the female body, perhaps with egg laying.
Collapse
Affiliation(s)
- E P Masler
- Agricultural Research Service, U.S. Department of Agriculture, Beltsville, Maryland 20705-2350, USA.
| | | | | |
Collapse
|