1
|
Abstract
BACKGROUND Statins are one of the most prescribed classes of drugs worldwide. Atorvastatin, the most prescribed statin, is currently used to treat conditions such as hypercholesterolaemia and dyslipidaemia. By reducing the level of cholesterol, which is the precursor of the steroidogenesis pathway, atorvastatin may cause a reduction in levels of testosterone and other androgens. Testosterone and other androgens play important roles in biological functions. A potential reduction in androgen levels, caused by atorvastatin might cause negative effects in most settings. In contrast, in the setting of polycystic ovary syndrome (PCOS), reducing excessive levels of androgens with atorvastatin could be beneficial. OBJECTIVES Primary objective To quantify the magnitude of the effect of atorvastatin on total testosterone in both males and females, compared to placebo or no treatment. Secondary objectives To quantify the magnitude of the effects of atorvastatin on free testosterone, sex hormone binding globin (SHBG), androstenedione, dehydroepiandrosterone sulphate (DHEAS) concentrations, free androgen index (FAI), and withdrawal due to adverse effects (WDAEs) in both males and females, compared to placebo or no treatment. SEARCH METHODS The Cochrane Hypertension Information Specialist searched the following databases for randomized controlled trials (RCTs) up to 9 November 2020: the Cochrane Hypertension Specialised Register; the Cochrane Central Register of Controlled Trials (CENTRAL); MEDLINE; Embase; ;two international trials registries, and the websites of the US Food and Drug Administration, the European Patent Office and the Pfizer pharmaceutical corporation. These searches had no language restrictions. We also contacted authors of relevant articles regarding further published and unpublished work. SELECTION CRITERIA RCTs of daily atorvastatin for at least three weeks, compared with placebo or no treatment, and assessing change in testosterone levels in males or females. DATA COLLECTION AND ANALYSIS Two review authors independently screened the citations, extracted the data and assessed the risk of bias of the included studies. We used the mean difference (MD) with associated 95% confidence intervals (CI) to report the effect size of continuous outcomes,and the risk ratio (RR) to report effect sizes of the sole dichotomous outcome (WDAEs). We used a fixed-effect meta-analytic model to combine effect estimates across studies, and risk ratio to report effect size of the dichotomous outcomes. We used GRADE to assess the certainty of the evidence. MAIN RESULTS We included six RCTs involving 265 participants who completed the study and their data was reported. Participants in two of the studies were male with normal lipid profile or mild dyslipidaemia (N = 140); the mean age of participants was 68 years. Participants in four of the studies were female with PCOS (N = 125); the mean age of participants was 32 years. We found no significant difference in testosterone levels in males between atorvastatin and placebo, MD -0.20 nmol/L (95% CI -0.77 to 0.37). In females, atorvastatin may reduce total testosterone by -0.27 nmol/L (95% CI -0.50 to -0.04), FAI by -2.59 nmol/L (95% CI -3.62 to -1.57), androstenedione by -1.37 nmol/L (95% CI -2.26 to -0.49), and DHEAS by -0.63 μmol/l (95% CI -1.12 to -0.15). Furthermore, compared to placebo, atorvastatin increased SHBG concentrations in females by 3.11 nmol/L (95% CI 0.23 to 5.99). We identified no studies in healthy females (i.e. females with normal testosterone levels) or children (under age 18). Importantly, no study reported on free testosterone levels. AUTHORS' CONCLUSIONS We found no significant difference between atorvastatin and placebo on the levels of total testosterone in males. In females with PCOS, atorvastatin lowered the total testosterone, FAI, androstenedione, and DHEAS. The certainty of evidence ranged from low to very low for both comparisons. More RCTs studying the effect of atorvastatin on testosterone are needed.
Collapse
Affiliation(s)
- Muhammad Ismail Shawish
- Department of Anesthesiology, Pharmacology and Therapeutics, University of British Columbia, Vancouver, Canada
| | - Bahador Bagheri
- Cancer Research Center, Semnan University of Medical Sciences, Semnan, Iran
- Center for Molecular Cardiology, University of Zurich, Schlieren, Switzerland
| | - Vijaya M Musini
- Department of Anesthesiology, Pharmacology and Therapeutics, University of British Columbia, Vancouver, Canada
| | - Stephen P Adams
- Department of Anesthesiology, Pharmacology and Therapeutics, University of British Columbia, Vancouver, Canada
| | - James M Wright
- Department of Anesthesiology, Pharmacology and Therapeutics, University of British Columbia, Vancouver, Canada
| |
Collapse
|
2
|
van Dijk PR, Abdulle AE, Bulthuis ML, Perton FG, Connelly MA, van Goor H, Dullaart RP. The Systemic Redox Status Is Maintained in Non-Smoking Type 2 Diabetic Subjects Without Cardiovascular Disease: Association with Elevated Triglycerides and Large VLDL. J Clin Med 2019; 9:jcm9010049. [PMID: 31878321 PMCID: PMC7019670 DOI: 10.3390/jcm9010049] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 12/10/2019] [Accepted: 12/22/2019] [Indexed: 12/11/2022] Open
Abstract
Decreased circulating levels of free thiols (R-SH, sulfhydryl groups) reflect enhanced oxidative stress, which plays an important role in the pathogenesis of cardiometabolic diseases. Since hyperglycemia causes oxidative stress, we questioned whether plasma free thiols are altered in patients with type 2 diabetes mellitus (T2DM) without cardiovascular disease or renal function impairment. We also determined their relationship with elevated triglycerides and very low density lipoproteins (VLDL), a central feature of diabetic dyslipidemia. Fasting plasma free thiols (colorimetric method), lipoproteins, VLDL (nuclear magnetic resonance spectrometry), free fatty acids (FFA), phospholipid transfer protein (PLTP) activity and adiponectin were measured in 79 adult non-smoking T2DM subjects (HbA1c 51 ± 8 mmol/mol, no use of insulin or lipid lowering drugs), and in 89 non-smoking subjects without T2DM. Plasma free thiols were univariately correlated with glucose (r = 0.196, p < 0.05), but were not decreased in T2DM subjects versus non-diabetic subjects (p = 0.31). Free thiols were higher in subjects with (663 ± 84 µmol/L) versus subjects without elevated triglycerides (619 ± 91 µmol/L; p = 0.002). Age- and sex-adjusted multivariable linear regression analysis demonstrated that plasma triglycerides were positively and independently associated with free thiols (β = 0.215, p = 0.004), FFA (β = 0.168, p = 0.029) and PLTP activity (β = 0.228, p = 0.002), inversely with adiponectin (β = −0.308, p < 0.001) but not with glucose (β = 0.052, p = 0.51). Notably, the positive association of free thiols with (elevated) triglycerides appeared to be particularly evident in men. Additionally, large VLDL were independently associated with free thiols (β = 0.188, p = 0.029). In conclusion, circulating free thiols are not decreased in this cohort of non-smoking and generally well-controlled T2DM subjects. Paradoxically, higher triglycerides and more large VLDL particles are likely associated with higher plasma levels of thiols, reflecting lower systemic oxidative stress.
Collapse
Affiliation(s)
- Peter R. van Dijk
- Department of Endocrinology, University Medical Center Groningen, University of Groningen, 9700 RB Groningen, The Netherlands;
- Correspondence:
| | - Amaal Eman Abdulle
- Department of Internal Medicine, division vascular medicine, University Medical Center Groningen, University of Groningen, 9700 RB Groningen, The Netherlands
| | - Marian L.C. Bulthuis
- Department of Pathology and Medical, Biology, Section Pathology, University Medical Center Groningen, University of Groningen, 9700 RB Groningen, The Netherlands (H.v.G.)
| | - Frank G. Perton
- Laboratory Center, University Medical Center Groningen, University of Groningen, 9700 RB Groningen, The Netherlands;
| | - Margery A. Connelly
- Laboratory Corporation of America® Holdings (LabCorp), Morrisville, NC 27560, USA;
| | - Harry van Goor
- Department of Pathology and Medical, Biology, Section Pathology, University Medical Center Groningen, University of Groningen, 9700 RB Groningen, The Netherlands (H.v.G.)
| | - Robin P.F. Dullaart
- Department of Endocrinology, University Medical Center Groningen, University of Groningen, 9700 RB Groningen, The Netherlands;
| |
Collapse
|
3
|
Dullaart RPF, Vergeer M, de Vries R, Kappelle PJWH, Dallinga-Thie GM. Type 2 diabetes mellitus interacts with obesity and common variations in PLTP to affect plasma phospholipid transfer protein activity. J Intern Med 2012; 271:490-8. [PMID: 21973210 DOI: 10.1111/j.1365-2796.2011.02465.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
BACKGROUND Phospholipid transfer protein (PLTP) is an emerging cardiometabolic risk marker that is important in high-density lipoprotein (HDL) and triglyceride metabolism. Plasma PLTP activity is elevated in type 2 diabetes mellitus, whereas glucose may regulate PLTP gene transcription in vitro. Of interest, common PLTP variations that predict cardiovascular disease have been identified recently. We investigated whether the diabetic state is able to amplify relationships between obesity and PLTP gene variations with circulating PLTP levels. SUBJECTS AND METHODS Plasma PLTP activity (using a phospholipid vesicles-HDL system), PLTP gene score [number of PLTP activity-decreasing alleles based on two tagging polymorphisms (rs378114 and rs60- 65904)] and waist circumference were determined in two Dutch cohorts comprising 237 patients with type 2 diabetes and 78 control subjects. RESULTS Patients with diabetes were more obese (P < 0.001 for prevalence of increased waist circumference) and had 13% higher plasma PLTP activity (P < 0.001). PLTP gene score was not different in diabetic and control subjects (P = 0.40). PLTP activity was highest in patients with diabetes with an enlarged waist and lowest in control subjects with a normal waist circumference (P < 0.001). Multiple linear regression analysis revealed a positive interaction between diabetes status and waist circumference on PLTP activity (β = 0.200, P = 0.005). Furthermore, diabetes status (β = -0.485, P = 0.046) or HbA1c (β = -0.240, P = 0.035) interacted with PLTP gene score to affect PLTP activity. CONCLUSIONS Type 2 diabetes and enlarged waist circumference interact to impact on plasma PLTP activity. Diabetes may also amplify the association between plasma PLTP activity and common PLTP gene variations. Our findings support the hypothesis that diabetes-environment and diabetes-gene interactions govern plasma PLTP activity.
Collapse
Affiliation(s)
- R P F Dullaart
- Department of Endocrinology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands.
| | | | | | | | | |
Collapse
|
4
|
Karalis IK, Bergheanu SC, Wolterbeek R, Dallinga-Thie GM, Hattori H, van Tol A, Liem AH, Wouter Jukema J. Effect of increasing doses of Rosuvastatin and Atorvastatin on apolipoproteins, enzymes and lipid transfer proteins involved in lipoprotein metabolism and inflammatory parameters. Curr Med Res Opin 2010; 26:2301-13. [PMID: 20731529 DOI: 10.1185/03007995.2010.509264] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
UNLABELLED This paper contains detailed results of a sub-population of the prospective randomized RADAR (Rosuvastatin and Atorvastatin in different Dosages And Reverse cholesterol transport) study. OBJECTIVE Statin treatment results in substantially decreased incidence of cardiovascular events but the exact pathophysiological mechanism of their beneficial effect is yet unclear. We aimed to examine the effects of up-titrated doses of two widely used statins (atorvastatin (ATOR) and rosuvastatin (ROSU)) on parameters involved in lipoprotein metabolism, in patients with low high density lipoprotein cholesterol values (HDL-C). RESEARCH DESIGN AND METHODS In this RADAR substudy, 80 patients, aged 40-80 years, with known cardiovascular disease and low HDL-C (<1.0 mmol/l), were randomized to receive, after an initial 6 week dietary run-in phase, either ATOR 20 mg (n = 41) or ROSU 10 mg (n = 39). The doses were up-titrated (in 6 week intervals) to 80 mg of ATOR or 40 mg of ROSU at 12 weeks. Serum lipoproteins and lipoprotein metabolism parameters were measured at baseline and at 6 and 18 weeks of follow up. RESULTS Both statins significantly reduced total cholesterol (TChol) and non-HDL-C values with ROSU being more effective for the doses studied (p < 0.05). No statistically significant effect on HDL-C was observed for either statin. Apolipoproteins (apo) B, CI, CIII, AV and E were significantly reduced in both groups (p < 0.05), while the ratio of HDL particles containing both apoAI and apoAII (LpAI-AII) over HDL containing apoAI alone (LpAI) was changed for both statins with the decrease of LpAI being more prominent in the ATOR group (p = 0.028). Cholesterol ester transfer protein (CETP) mass and activity, phospholipid transfer protein (PLTP) activity and lipoprotein-associated phospholipase A2 (Lp-PLA2) mass and activity were all significantly reduced in both treatment groups over the follow-up period (p < 0.001). ATOR displayed a more prominent decrease of PLTP activity compared to ROSU (p = 0.043), while ROSU displayed a more prominent decrease of Lp-PLA2 activity compared to ATOR (p = 0.04). Both statins effectively reduced, in a dose-dependent way, high sensitivity C-reactive protein values over time, while no effect on the levels of circulating inter cellular adhesion molecule 1 (cICAM-1) was observed. CONCLUSIONS The effects of statin treatment extend further and beyond a mere TChol and LDL cholesterol reduction, as demonstrated by the aforementioned alterations of lipoproteins, enzymes and lipid transfer proteins involved in lipoprotein metabolism and pro-atherogenic and inflammatory molecules. ROSU and ATOR displayed a similar pattern of effect on lipid metabolism with discrete differences in the magnitude of this effect in certain variables. Despite the limitations of small population size and lack of clinical end points, reported data provide an insight for the possible pathophysiological mechanisms implicated in the effect of increasing dosages of different statin treatments.
Collapse
|
5
|
Vergeer M, Boekholdt SM, Sandhu MS, Ricketts SL, Wareham NJ, Brown MJ, de Faire U, Leander K, Gigante B, Kavousi M, Hofman A, Uitterlinden AG, van Duijn CM, Witteman JCM, Jukema JW, Schadt EE, van der Schoot E, Kastelein JJP, Khaw KT, Dullaart RPF, van Tol A, Trip MD, Dallinga-Thie GM. Genetic variation at the phospholipid transfer protein locus affects its activity and high-density lipoprotein size and is a novel marker of cardiovascular disease susceptibility. Circulation 2010; 122:470-7. [PMID: 20644014 DOI: 10.1161/circulationaha.109.912519] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND In contrast to clear associations between variants in genes participating in low-density lipoprotein metabolism and cardiovascular disease risk, such associations for high-density lipoprotein (HDL)-related genes are not well supported by recent large studies. We aimed to determine whether genetic variants at the locus encoding phospholipid transfer protein (PLTP), a protein involved in HDL remodeling, underlie altered PLTP activity, HDL particle concentration and size, and cardiovascular disease risk. METHODS AND RESULTS We assessed associations between 6 PLTP tagging single nucleotide polymorphisms and PLTP activity in 2 studies (combined n=384) and identified 2 variants that show reproducible associations with altered plasma PLTP activity. A gene score based on these variants is associated with lower hepatic PLTP transcription (P=3.2x10(-18)) in a third study (n=957) and with an increased number of HDL particles of smaller size (P=3.4x10(-17)) in a fourth study (n=3375). In a combination of 5 cardiovascular disease case-control studies (n=4658 cases and 11 459 controls), a higher gene score was associated with a lower cardiovascular disease risk (per-allele odds ratio, 0.94; 95% confidence interval, 0.90 to 0.98; P=1.2x10(-3); odds ratio for highest versus lowest gene score, 0.69; 95% confidence interval, 0.55 to 0.86; P=1.0x10(-3)). CONCLUSIONS A gene score based on 2 PLTP single nucleotide polymorphisms is associated with lower PLTP transcription and activity, an increased number of HDL particles, smaller HDL size, and decreased risk of cardiovascular disease. These findings indicate that PLTP is a proatherogenic entity and suggest that modulation of specific elements of HDL metabolism may offer cardiovascular benefit.
Collapse
Affiliation(s)
- Menno Vergeer
- Department of Vascular Medicine, Academic Medical Center, 1105 AZ Amsterdam, the Netherlands.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Henderson RJ, Leon CG, Wasan KM. Differences in human phospholipid transfer protein activity following incubation of Fungizone compared to lipid-based Amphotericin-B formulations in normolipidemic and hyperlipidemic plasma. Drug Dev Ind Pharm 2010; 35:1139-46. [PMID: 19381990 DOI: 10.1080/03639040902824852] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
AIM To investigate how different formulations of Amphotericin-B (Amp-B) affect the activity of phospholipid transfer protein (PLTP) when incubated with hyperlipidemic and normolipidemic plasma at physiological temperature (37 degrees C). METHODS Six hyperlipidemic and six normolipidemic plasma samples were collected and tested for protein concentration. Equivalent protein levels (25 microg) were then tested for PLTP activity using an in vitro established kit at physiological temperature (37 degrees C). Increasing concentrations of different Amp-B formulations (1, 2, and 5 microg/mL) in the pharmacological range were then added to the plasma and tested for activity from 5 to 90 minutes. The Amp-B formulations used in the study were Fungizone, Abelcet, and AmBisome. RESULTS In normolipidemic plasma, PLTP activity was found to be increased by Abelcet and AmBisome but inhibited by Fungizone. In hyperlipidemic plasma, PLTP activity was found to be increased by Abelcet and AmBisome but not changed by Fungizone. The Vm value for Abelcet and AmBisome was higher than Fungizone(; although, no difference was observed in the Km values between formulations. CONCLUSIONS Findings suggest that lipid-based formulations of Amp-B promote the transfer of Amp-B into high-density lipoprotein fractions at a degree of increase inversely proportional to the lipid levels in the plasma.
Collapse
Affiliation(s)
- Ryan J Henderson
- Division of Pharmaceutics and Biopharmaceutics, Faculty of Pharmaceutical Sciences, The University of British Columbia, Vancouver, British Columbia, Canada
| | | | | |
Collapse
|
7
|
Dallinga-Thie G, van Tol A, Dullaart R. Plasma pre β-HDL formation is decreased by atorvastatin treatment in type 2 diabetes mellitus: Role of phospholipid transfer protein. Biochim Biophys Acta Mol Cell Biol Lipids 2009; 1791:714-8. [DOI: 10.1016/j.bbalip.2009.03.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2009] [Revised: 02/28/2009] [Accepted: 03/09/2009] [Indexed: 11/27/2022]
|
8
|
Tzotzas T, Desrumaux C, Lagrost L. Plasma phospholipid transfer protein (PLTP): review of an emerging cardiometabolic risk factor. Obes Rev 2009; 10:403-11. [PMID: 19413703 DOI: 10.1111/j.1467-789x.2009.00586.x] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Plasma phospholipid transfer protein (PLTP) is a lipid transfer glycoprotein that binds to and transfers a number of amphipathic compounds. In earlier studies, the attention of the scientific community focused on the positive role of PLTP in high-density lipoprotein (HDL) metabolism. However, this potentially anti-atherogenic role of PLTP has been challenged recently by another picture: PLTP arose as a pro-atherogenic factor through its ability to increase the production of apolipoprotein B-containing lipoproteins, to decrease their antioxidative protection and to trigger inflammation. In humans, PLTP has mostly been studied in patients with cardiometabolic disorders. Both PLTP and related cholesteryl ester transfer protein (CETP) are secreted proteins, and adipose tissue is an important contributor to the systemic pools of these two proteins. Coincidently, high levels of PLTP and CETP have been found in the plasma of obese patients. PLTP activity and mass have been reported to be abnormally elevated in type 2 diabetes mellitus (T2DM) and insulin-resistant states, and this elevation is frequently associated with hypertriglyceridemia and obesity. This review article presents the state of knowledge on the implication of PLTP in lipoprotein metabolism, on its atherogenic potential, and the complexity of its implication in obesity, insulin resistance and T2DM.
Collapse
Affiliation(s)
- T Tzotzas
- Department of Nutrition and Dietetics, Technological Educational Institution, Thessaloniki, Greece.
| | | | | |
Collapse
|
9
|
Schlitt A, Blankenberg S, Bickel C, Lackner KJ, Heine GH, Buerke M, Werdan K, Maegdefessel L, Raaz U, Rupprecht HJ, Munzel T, Jiang XC. PLTP activity is a risk factor for subsequent cardiovascular events in CAD patients under statin therapy: the AtheroGene study. J Lipid Res 2008; 50:723-9. [PMID: 19001358 DOI: 10.1194/jlr.m800414-jlr200] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Phospholipid transferprotein (PLTP) mediates both net transfer and exchange of phospholipids between different lipoproteins. Although many studies have investigated the role of PLTP in atherogenesis, the role of PLTP in atherosclerotic diseases is unclear. We investigated the association of serum PLTP activity with the incidence of a combined endpoint (myocardial infarction and cardiovascular death) and its relation to other markers of atherosclerosis in 1,085 patients with angiographically documented coronary artery disease (CAD). In the median follow-up of 5.1 years, 156 patients had suffered from the combined endpoint of myocardial infarction or cardiovascular death including 47 of 395 patients who were on statins at baseline. In Kaplan-Meyer analyses serum PLTP activity was not associated with the combined endpoint in all patients. However, in the subgroup of patients receiving statins at baseline, PLTP was shown to be a significant predictor of cardiovascular outcome (P = 0.019), and this also remained stable in univariate (P = 0.027) and multivariate cox regression analyses (P = 0.041) including potential confounders (classical risk factors, HDL cholesterol (HDL-C), and others). We showed in our study that, under statin treatment, high plasma PLTP activity was related to fatal and nonfatal cardiovascular events in CAD patients.
Collapse
Affiliation(s)
- Axel Schlitt
- Department of Medicine III, Martin Luther-University Halle-Wittenberg, Germany.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Vergeer M, Dallinga-Thie GM, Dullaart RPF, van Tol A. Evaluation of phospholipid transfer protein as a therapeutic target. ACTA ACUST UNITED AC 2008. [DOI: 10.2217/17460875.3.3.327] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
11
|
Dallinga-Thie GM, Dullaart RPF, van Tol A. Concerted actions of cholesteryl ester transfer protein and phospholipid transfer protein in type 2 diabetes: effects of apolipoproteins. Curr Opin Lipidol 2007; 18:251-7. [PMID: 17495597 DOI: 10.1097/mol.0b013e3280e12685] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE OF REVIEW Type 2 diabetes frequently coincides with dyslipidemia, characterized by elevated plasma triglycerides, low high-density lipoprotein cholesterol levels and the presence of small dense low-density lipoprotein particles. Plasma lipid transfer proteins play an essential role in lipoprotein metabolism. It is thus vital to understand their pathophysiology and determine which factors influence their functioning in type 2 diabetes. RECENT FINDINGS Cholesteryl ester transfer protein-mediated transfer is increased in diabetic patients and contributes to low plasma high-density lipoprotein cholesterol levels. Apolipoproteins A-I, A-II and E are components of the donor lipoprotein particles that participate in the transfer of cholesteryl esters from high-density lipoprotein to apolipoprotein B-containing lipoproteins. Current evidence for functional roles of apolipoproteins C-I, F and A-IV as modulators of cholesteryl ester transfer is discussed. Phospholipid transfer protein activity is increased in diabetic patients and may contribute to hepatic very low-density lipoprotein synthesis and secretion and vitamin E transfer. Apolipoprotein E could stimulate the phospholipid transfer protein-mediated transfer of surface fragments of triglyceride-rich lipoproteins to high-density lipoprotein, and promote high-density lipoprotein remodelling. SUMMARY Both phospholipid and cholesteryl ester transfer proteins are important in very low and high-density lipoprotein metabolism and display concerted actions in patients with type 2 diabetes.
Collapse
Affiliation(s)
- Geesje M Dallinga-Thie
- Department of Vascular Medicine, Erasmus University Medical Center, Rotterdam, The Netherlands.
| | | | | |
Collapse
|
12
|
Lewis GF. Are the lipid-modifying effects of fibrates mediated by alterations in plasma lipid transfer activity? Clin Sci (Lond) 2007; 111:185-7. [PMID: 16761953 DOI: 10.1042/cs20060140] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Fenofibrate, a PPAR-alpha (peroxisome-proliferator-activated receptor-alpha) agonist, has been shown to modify plasma lipid and lipoprotein composition and metabolism by a variety of mechanisms. In addition, fenofibrate has been shown to increase the activity of PLTP (phospholipid transfer protein) and to reduce the activity of CETP (cholesteryl ester transfer protein). It is not known, however, whether the changes in PLTP and CETP plasma activity play an active role in the lipid changes observed with fenofibrate therapy, and this is investigated by Watts and co-workers in the present issue of Clinical Science.
Collapse
Affiliation(s)
- Gary F Lewis
- Toronto General Hospital, 200 Elizabeth Street, EN12-218, Toronto, ON, Canada M5G 2C4.
| |
Collapse
|
13
|
Dullaart RPF, de Vries R, Dallinga-Thie GM, van Tol A, Sluiter WJ. Plasma cholesteryl ester transfer protein mass and phospholipid transfer protein activity are associated with leptin in type 2 diabetes mellitus. Biochim Biophys Acta Mol Cell Biol Lipids 2007; 1771:113-8. [PMID: 17185032 DOI: 10.1016/j.bbalip.2006.11.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2006] [Revised: 11/02/2006] [Accepted: 11/10/2006] [Indexed: 10/23/2022]
Abstract
Adipose tissue contributes to plasma levels of lipid transfer proteins and is also the major source of plasma adipokines. We hypothesized that plasma cholesteryl ester transfer protein (CETP) mass, phospholipid transfer protein (PLTP) activity and cholesteryl ester transfer (CET, a measure of CETP action) are determined by adipokine levels. In this study, relationships of plasma CETP mass, PLTP activity and CET with leptin, resistin and adiponectin were analyzed in type 2 diabetic patients and control subjects. Plasma PLTP activity (P<0.001), CET (P<0.001), leptin (P=0.003), resistin (P<0.001), high sensitive C-reactive protein (P=0.005), and insulin resistance (HOMA(ir)) (P<0.001) were higher, whereas HDL cholesterol (P<0.001) and plasma adiponectin (P<0.001) were lower in 83 type 2 diabetic patients (32 females) than in 83 sex-matched control subjects. Multiple linear regression analysis demonstrated that in diabetic patients plasma leptin levels were related to plasma CETP mass (P=0.018) and PLTP activity (P<0.001), but not to the other adipokines measured. Plasma CET was inversely correlated with adiponectin in univariate analysis, but this association disappeared in multivariate models that included plasma lipids and CETP. In conclusion, both plasma CETP mass and PLTP activity are associated with plasma leptin in type 2 diabetes. The elevated CET in these patients is not independently related to any of the measured plasma adipokines.
Collapse
Affiliation(s)
- R P F Dullaart
- Department of Endocrinology, University of Groningen and University Medical Center Groningen, Groningen, The Netherlands
| | | | | | | | | |
Collapse
|
14
|
Affiliation(s)
- David Akopian
- Department of Chemistry and Biochemistry, California State University at Northridge, Northridge, California 91330-8262, USA
| | | |
Collapse
|
15
|
Liu R, Hojjati MR, Devlin CM, Hansen IH, Jiang XC. Macrophage phospholipid transfer protein deficiency and ApoE secretion: impact on mouse plasma cholesterol levels and atherosclerosis. Arterioscler Thromb Vasc Biol 2006; 27:190-6. [PMID: 17038631 DOI: 10.1161/01.atv.0000249721.96666.e5] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
OBJECTIVE PLTP and apoE play important roles in lipoprotein metabolism and atherosclerosis. It is known that formation of macrophage-derived foam cells (which highly express PLTP and apoE) is the critical step in the process of atherosclerosis. We investigated the relationship between PLTP and apoE in macrophages and the atherogenic relevance in a mouse model. METHODS AND RESULTS We transplanted PLTP-deficient mouse bone marrow into apoE-deficient mice (PLTP-/- --> apoE-/-), creating a mouse model with PLTP deficiency and apoE expression exclusively in the macrophages. We found that PLTP-/- --> apoE-/- mice have significantly lower PLTP activity, compared with controls (WT --> apoE-/-; 20%, P<0.01). On a Western diet, PLTP-/- --> apoE-/- mice have significantly lower plasma apoE than that of WT --> apoE-/- mice (63%, P<0.001), and PLTP-deficient macrophages secrete significantly less apoE than WT macrophages (44%, P<0.01). Moreover, PLTP-/- --> apoE-/- mice have significantly higher plasma cholesterol (98%, P<0.001) and phospholipid (107%, P<0.001) than that of WT --> apoE-/- mice, thus increasing atherosclerotic lesions in the aortic arch and root (403%, P<0.001), as well as the entire aorta (298%, P<0.001). CONCLUSIONS Macrophage PLTP deficiency causes a significant reduction of apoE secretion from the cells, and this in turn promotes the accumulation of cholesterol in the circulation and accelerates the development of atherosclerosis.
Collapse
Affiliation(s)
- Ruijie Liu
- Department of Anatomy and Cell Biology, SUNY Downstate Medical Center, 450 Clarkson Ave, Brooklyn, NY 11203, USA
| | | | | | | | | |
Collapse
|