1
|
Velazquez FN, Luberto C, Canals D, Hannun YA. Enzymes of sphingolipid metabolism as transducers of metabolic inputs. Biochem Soc Trans 2024; 52:1795-1808. [PMID: 39101614 PMCID: PMC11783705 DOI: 10.1042/bst20231442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/06/2024]
Abstract
Sphingolipids (SLs) constitute a discrete subdomain of metabolism, and they display both structural and signaling functions. Accumulating evidence also points to intimate connections between intermediary metabolism and SL metabolism. Given that many SLs exhibit bioactive properties (i.e. transduce signals), these raise the possibility that an important function of SLs is to relay information on metabolic changes into specific cell responses. This could occur at various levels. Some metabolites are incorporated into SLs, whereas others may initiate regulatory or signaling events that, in turn, modulate SL metabolism. In this review, we elaborate on the former as it represents a poorly appreciated aspect of SL metabolism, and we develop the hypothesis that the SL network is highly sensitive to several specific metabolic changes, focusing on amino acids (serine and alanine), various fatty acids, choline (and ethanolamine), and glucose.
Collapse
Affiliation(s)
- Fabiola N. Velazquez
- From the Stony Brook Cancer Center, Stony Brook University, Stony Brook, NY 11794
- Department of Medicine, Stony Brook University, Stony Brook, NY 11794
| | - Chiara Luberto
- From the Stony Brook Cancer Center, Stony Brook University, Stony Brook, NY 11794
- Physiology and Biophysics, Stony Brook University, Stony Brook, NY 11794
| | - Daniel Canals
- From the Stony Brook Cancer Center, Stony Brook University, Stony Brook, NY 11794
- Department of Medicine, Stony Brook University, Stony Brook, NY 11794
| | - Yusuf A. Hannun
- From the Stony Brook Cancer Center, Stony Brook University, Stony Brook, NY 11794
- Department of Medicine, Stony Brook University, Stony Brook, NY 11794
| |
Collapse
|
2
|
Iezhitsa I, Agarwal R, Agarwal P. Unveiling enigmatic essence of Sphingolipids: A promising avenue for glaucoma treatment. Vision Res 2024; 221:108434. [PMID: 38805893 DOI: 10.1016/j.visres.2024.108434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 05/05/2024] [Accepted: 05/06/2024] [Indexed: 05/30/2024]
Abstract
Treatment of glaucoma, the leading cause of irreversible blindness, remains challenging. The apoptotic loss of retinal ganglion cells (RGCs) in glaucoma is the pathological hallmark. Current treatments often remain suboptimal as they aim to halt RGC loss secondary to reduction of intraocular pressure. The pathophysiological targets for exploring direct neuroprotective approaches, therefore are highly relevant. Sphingolipids have emerged as significant target molecules as they are not only the structural components of various cell constituents, but they also serve as signaling molecules that regulate molecular pathways involved in cell survival and death. Investigations have shown that a critical balance among various sphingolipid species, particularly the ceramide and sphingosine-1-phosphate play a role in deciding the fate of the cell. In this review we briefly discuss the metabolic interconversion of sphingolipid species to get an insight into "sphingolipid rheostat", the dynamic balance among metabolites. Further we highlight the role of sphingolipids in the key pathophysiological mechanisms that lead to glaucomatous loss of RGCs. Lastly, we summarize the potential drug candidates that have been investigated for their neuroprotective effects in glaucoma via their effects on sphingolipid axis.
Collapse
|
3
|
He M, Hou G, Liu M, Peng Z, Guo H, Wang Y, Sui J, Liu H, Yin X, Zhang M, Chen Z, Rensen PCN, Lin L, Wang Y, Shi B. Lipidomic studies revealing serological markers associated with the occurrence of retinopathy in type 2 diabetes. J Transl Med 2024; 22:448. [PMID: 38741137 PMCID: PMC11089707 DOI: 10.1186/s12967-024-05274-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 05/04/2024] [Indexed: 05/16/2024] Open
Abstract
PURPOSE The duration of type 2 diabetes mellitus (T2DM) and blood glucose levels have a significant impact on the development of T2DM complications. However, currently known risk factors are not good predictors of the onset or progression of diabetic retinopathy (DR). Therefore, we aimed to investigate the differences in the serum lipid composition in patients with T2DM, without and with DR, and search for potential serological indicators associated with the development of DR. METHODS A total of 622 patients with T2DM hospitalized in the Department of Endocrinology of the First Affiliated Hospital of Xi'an JiaoTong University were selected as the discovery set. One-to-one case-control matching was performed according to the traditional risk factors for DR (i.e., age, duration of diabetes, HbA1c level, and hypertension). All cases with comorbid chronic kidney disease were excluded to eliminate confounding factors. A total of 42 pairs were successfully matched. T2DM patients with DR (DR group) were the case group, and T2DM patients without DR (NDR group) served as control subjects. Ultra-performance liquid chromatography-mass spectrometry (LC-MS/MS) was used for untargeted lipidomics analysis on serum, and a partial least squares discriminant analysis (PLS-DA) model was established to screen differential lipid molecules based on variable importance in the projection (VIP) > 1. An additional 531 T2DM patients were selected as the validation set. Next, 1:1 propensity score matching (PSM) was performed for the traditional risk factors for DR, and a combined 95 pairings in the NDR and DR groups were successfully matched. The screened differential lipid molecules were validated by multiple reaction monitoring (MRM) quantification based on mass spectrometry. RESULTS The discovery set showed no differences in traditional risk factors associated with the development of DR (i.e., age, disease duration, HbA1c, blood pressure, and glomerular filtration rate). In the DR group compared with the NDR group, the levels of three ceramides (Cer) and seven sphingomyelins (SM) were significantly lower, and one phosphatidylcholine (PC), two lysophosphatidylcholines (LPC), and two SMs were significantly higher. Furthermore, evaluation of these 15 differential lipid molecules in the validation sample set showed that three Cer and SM(d18:1/24:1) molecules were substantially lower in the DR group. After excluding other confounding factors (e.g., sex, BMI, lipid-lowering drug therapy, and lipid levels), multifactorial logistic regression analysis revealed that a lower abundance of two ceramides, i.e., Cer(d18:0/22:0) and Cer(d18:0/24:0), was an independent risk factor for the occurrence of DR in T2DM patients. CONCLUSION Disturbances in lipid metabolism are closely associated with the occurrence of DR in patients with T2DM, especially in ceramides. Our study revealed for the first time that Cer(d18:0/22:0) and Cer(d18:0/24:0) might be potential serological markers for the diagnosis of DR occurrence in T2DM patients, providing new ideas for the early diagnosis of DR.
Collapse
Affiliation(s)
- Mingqian He
- Department of Endocrinology, the First Affiliated Hospital of Xi'an JiaoTong University, No.277, West Yanta Road, Xi'an, Shaanxi, 710061, P.R. China
| | - Guixue Hou
- BGI-SHENZHEN, No. 21 Hongan 3rd Street, Yantian District, Shenzhen, Guangdong, 518083, P.R. China
| | - Mengmeng Liu
- Department of Endocrinology, the First Affiliated Hospital of Xi'an JiaoTong University, No.277, West Yanta Road, Xi'an, Shaanxi, 710061, P.R. China
| | - Zhaoyi Peng
- Department of Endocrinology, the First Affiliated Hospital of Xi'an JiaoTong University, No.277, West Yanta Road, Xi'an, Shaanxi, 710061, P.R. China
| | - Hui Guo
- Department of Endocrinology, the First Affiliated Hospital of Xi'an JiaoTong University, No.277, West Yanta Road, Xi'an, Shaanxi, 710061, P.R. China
| | - Yue Wang
- Department of Endocrinology, the First Affiliated Hospital of Xi'an JiaoTong University, No.277, West Yanta Road, Xi'an, Shaanxi, 710061, P.R. China
| | - Jing Sui
- Department of Endocrinology and International Medical Center, the First Affiliated Hospital of Xi'an JiaoTong University, No.277, West Yanta Road, Xi'an, Shaanxi, 710061, P.R. China
| | - Hui Liu
- Biobank, The First Affiliated Hospital of Xi'an JiaoTong University, Xi'an, Shaanxi, 710061, China
| | - Xiaoming Yin
- Chengdu HuiXin Life Technology, Chengdu, Sichuan, 610091, P.R. China
| | - Meng Zhang
- Department of Endocrinology, the First Affiliated Hospital of Xi'an JiaoTong University, No.277, West Yanta Road, Xi'an, Shaanxi, 710061, P.R. China
| | - Ziyi Chen
- Department of Endocrinology, the First Affiliated Hospital of Xi'an JiaoTong University, No.277, West Yanta Road, Xi'an, Shaanxi, 710061, P.R. China
| | - Patrick C N Rensen
- Department of Endocrinology, the First Affiliated Hospital of Xi'an JiaoTong University, No.277, West Yanta Road, Xi'an, Shaanxi, 710061, P.R. China
- Department of Medicine, Division of Endocrinology, Leiden University Medical Center, P.O. Box 9600, Leiden, 2300 RA, The Netherlands
| | - Liang Lin
- BGI-SHENZHEN, No. 21 Hongan 3rd Street, Yantian District, Shenzhen, Guangdong, 518083, P.R. China.
- , Building NO.7, BGI Park, No. 21 Hongan 3rd Street, Yantian District, Shenzhen, Guangdong, 518083, P.R. China.
| | - Yanan Wang
- Department of Endocrinology, the First Affiliated Hospital of Xi'an JiaoTong University, No.277, West Yanta Road, Xi'an, Shaanxi, 710061, P.R. China.
- Med-X institute, Center for Immunological and Metabolic Diseases, the First Affiliated Hospital of Xi'an JiaoTong University, Xi'an JiaoTong university, Xi'an, Shaanxi, 710061, P.R. China.
| | - Bingyin Shi
- Department of Endocrinology, the First Affiliated Hospital of Xi'an JiaoTong University, No.277, West Yanta Road, Xi'an, Shaanxi, 710061, P.R. China.
| |
Collapse
|
4
|
Luo H, Yang L, Zhang G, Bao X, Ma D, Li B, Cao L, Cao S, Liu S, Bao L, E J, Zheng Y. Whole transcriptome mapping reveals the lncRNA regulatory network of TFP5 treatment in diabetic nephropathy. Genes Genomics 2024; 46:621-635. [PMID: 38536617 DOI: 10.1007/s13258-024-01504-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 02/04/2024] [Indexed: 04/18/2024]
Abstract
BACKGROUND TFP5 is a Cdk5 inhibitor peptide, which could restore insulin production. However, the role of TFP5 in diabetic nephropathy (DN) is still unclear. OBJECTIVE This study aims to characterize the transcriptome profiles of mRNA and lncRNA in TFP5-treated DN mice to mine key lncRNAs associated with TFP5 efficacy. METHODS We evaluated the role of TFP5 in DN pathology and performed RNA sequencing in C57BL/6J control mice, C57BL/6J db/db model mice, and TFP5 treatment C57BL/6J db/db model mice. The differentially expressed lncRNAs (DElncRNAs) and mRNAs (DEmRNAs) were analyzed. WGCNA was used to screen hub-gene of TFP5 in treatment of DN. RESULTS Our results showed that TFP5 therapy ameliorated renal tubular injury in DN mice. In addition, compared with the control group, the expression profile of lncRNAs in the model group was significantly disordered, while TFP5 alleviated the abnormal expression of lncRNAs. A total of 67 DElncRNAs shared among the three groups, 39 DElncRNAs showed a trend of increasing in the DN group and decreasing after TFP treatment, while the remaining 28 showed the opposite trend. DElncRNAs were enriched in glycosphingolipid biosynthesis signaling pathways, NF-κB signaling pathways, and complement activation signaling pathways. There were 1028 up-regulated and 1117 down-regulated DEmRNAs in the model group compared to control group, and 123 up-regulated and 153 down-regulated DEmRNAs in the TFP5 group compared to the model group. The DEmRNAs were involved in PPAR and MAPK signaling pathway. We confirmed that MSTRG.28304.1 is a key DElncRNA for TFP5 treatment of DN. TFP5 ameliorated DN maybe by inhibiting MSTRG.28304.1 through regulating the insulin resistance and PPAR signaling pathway. The qRT-PCR results confirmed the reliability of the sequencing data through verifying the expression of ENSMUST00000211209, MSTRG.31814.5, MSTRG.28304.1, and MSTRG.45642.14. CONCLUSION Overall, the present study provides novel insights into molecular mechanisms of TFP5 treatment in DN.
Collapse
Affiliation(s)
- Hongyan Luo
- Department of Nephrology, Ningxia Medical University Affiliated People's Hospital of Autonomous Region, No. 301 Zhengyuan North Street, Yinchuan, 750001, People's Republic of China
- The Third Clinical Medical College, Ningxia Medical University, Yinchuan, People's Republic of China
| | - Lirong Yang
- Department of Nephrology, Ningxia Medical University Affiliated People's Hospital of Autonomous Region, No. 301 Zhengyuan North Street, Yinchuan, 750001, People's Republic of China
| | - Guoqing Zhang
- Department of Nephrology, Ningxia Medical University Affiliated People's Hospital of Autonomous Region, No. 301 Zhengyuan North Street, Yinchuan, 750001, People's Republic of China
| | - Xi Bao
- Department of Nephrology, Ningxia Medical University Affiliated People's Hospital of Autonomous Region, No. 301 Zhengyuan North Street, Yinchuan, 750001, People's Republic of China
- The Third Clinical Medical College, Ningxia Medical University, Yinchuan, People's Republic of China
| | - Danna Ma
- Department of Nephrology, Ningxia Medical University Affiliated People's Hospital of Autonomous Region, No. 301 Zhengyuan North Street, Yinchuan, 750001, People's Republic of China
- Department of Nephrology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, People's Republic of China
| | - Bo Li
- Department of Nephrology, Ningxia Medical University Affiliated People's Hospital of Autonomous Region, No. 301 Zhengyuan North Street, Yinchuan, 750001, People's Republic of China
- Department of Nephrology Hospital, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, People's Republic of China
| | - Li Cao
- Department of Nephrology, Ningxia Medical University Affiliated People's Hospital of Autonomous Region, No. 301 Zhengyuan North Street, Yinchuan, 750001, People's Republic of China
| | - Shilu Cao
- Department of Nephrology, Ningxia Medical University Affiliated People's Hospital of Autonomous Region, No. 301 Zhengyuan North Street, Yinchuan, 750001, People's Republic of China
- The Third Clinical Medical College, Ningxia Medical University, Yinchuan, People's Republic of China
| | - Shunyao Liu
- Department of Nephrology, Ningxia Medical University Affiliated People's Hospital of Autonomous Region, No. 301 Zhengyuan North Street, Yinchuan, 750001, People's Republic of China
- The Third Clinical Medical College, Ningxia Medical University, Yinchuan, People's Republic of China
| | - Li Bao
- Department of Nephrology, Ningxia Medical University Affiliated People's Hospital of Autonomous Region, No. 301 Zhengyuan North Street, Yinchuan, 750001, People's Republic of China
- The Third Clinical Medical College, Ningxia Medical University, Yinchuan, People's Republic of China
| | - Jing E
- Department of Nephrology, Ningxia Medical University Affiliated People's Hospital of Autonomous Region, No. 301 Zhengyuan North Street, Yinchuan, 750001, People's Republic of China
- Department of Nephrology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, People's Republic of China
| | - Yali Zheng
- Department of Nephrology, Ningxia Medical University Affiliated People's Hospital of Autonomous Region, No. 301 Zhengyuan North Street, Yinchuan, 750001, People's Republic of China.
- The Third Clinical Medical College, Ningxia Medical University, Yinchuan, People's Republic of China.
| |
Collapse
|
5
|
Chang WL, Chen YE, Tseng HT, Cheng CF, Wu JH, Hou YC. Gut Microbiota in Patients with Prediabetes. Nutrients 2024; 16:1105. [PMID: 38674796 PMCID: PMC11053759 DOI: 10.3390/nu16081105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 03/27/2024] [Accepted: 04/03/2024] [Indexed: 04/28/2024] Open
Abstract
Prediabetes is characterized by abnormal glycemic levels below the type 2 diabetes threshold, and effective control of blood glucose may prevent the progression to type 2 diabetes. While the association between the gut microbiota, glucose metabolism, and insulin resistance in diabetic patients has been established in previous studies, there is a lack of research regarding these aspects in prediabetic patients in Asia. We aim to investigate the composition of the gut microbiota in prediabetic patients and their differences compared to healthy individuals. In total, 57 prediabetic patients and 60 healthy adult individuals aged 18 to 65 years old were included in this study. Biochemistry data, fecal samples, and 3 days of food records were collected. Deoxyribonucleic acid extraction and next-generation sequencing via 16S ribosomal ribonucleic acid metagenomic sequencing were conducted to analyze the relationship between the gut microbiota and dietary habits. Prediabetic patients showed a lower microbial diversity than healthy individuals, with 9 bacterial genera being less abundant and 14 others more abundant. Prediabetic patients who consumed a low-carbohydrate (LC) diet exhibited higher diversity in the gut microbiota than those who consumed a high-carbohydrate diet. A higher abundance of Coprococcus was observed in the prediabetic patients on an LC diet. Compared to healthy individuals, the gut microbiota of prediabetic patients was significantly different, and adopting an LC diet with high dietary fiber consumption may positively impact the gut microbiota. Future studies should aim to understand the relationship between the gut microbiota and glycemic control in the Asian population.
Collapse
Affiliation(s)
- Wei-Lin Chang
- Department of Nutrition, Taipei Tzu-Chi Hospital, Buddhist Tzu-Chi Medical Foundation, New Taipei City 23142, Taiwan; (W.-L.C.); (Y.-E.C.); (H.-T.T.); (J.-H.W.)
| | - Yu-En Chen
- Department of Nutrition, Taipei Tzu-Chi Hospital, Buddhist Tzu-Chi Medical Foundation, New Taipei City 23142, Taiwan; (W.-L.C.); (Y.-E.C.); (H.-T.T.); (J.-H.W.)
| | - Hsiang-Tung Tseng
- Department of Nutrition, Taipei Tzu-Chi Hospital, Buddhist Tzu-Chi Medical Foundation, New Taipei City 23142, Taiwan; (W.-L.C.); (Y.-E.C.); (H.-T.T.); (J.-H.W.)
| | - Ching-Feng Cheng
- Department of Pediatrics, Taipei Tzu-Chi Hospital, Buddhist Tzu-Chi Medical Foundation, New Taipei City 23142, Taiwan;
- Institute of Biomedical Sciences, Academia Sinica, Taipei City 11529, Taiwan
- Department of Pediatrics, Tzu Chi University, Hualien 970374, Taiwan
| | - Jing-Hui Wu
- Department of Nutrition, Taipei Tzu-Chi Hospital, Buddhist Tzu-Chi Medical Foundation, New Taipei City 23142, Taiwan; (W.-L.C.); (Y.-E.C.); (H.-T.T.); (J.-H.W.)
| | - Yi-Cheng Hou
- Department of Nutrition, Taipei Tzu-Chi Hospital, Buddhist Tzu-Chi Medical Foundation, New Taipei City 23142, Taiwan; (W.-L.C.); (Y.-E.C.); (H.-T.T.); (J.-H.W.)
| |
Collapse
|
6
|
Ahmad Z, Singh S, Lee TJ, Sharma A, Lydic TA, Giri S, Kumar A. Untargeted and temporal analysis of retinal lipidome in bacterial endophthalmitis. Prostaglandins Other Lipid Mediat 2024; 171:106806. [PMID: 38185280 PMCID: PMC10939753 DOI: 10.1016/j.prostaglandins.2023.106806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 11/22/2023] [Accepted: 12/26/2023] [Indexed: 01/09/2024]
Abstract
Bacterial endophthalmitis is a blinding infectious disease typically acquired during ocular surgery. We previously reported significant alterations in retinal metabolism during Staphylococcus (S) aureus endophthalmitis. However, the changes in retinal lipid composition during endophthalmitis are unknown. Here, using a mouse model of S. aureus endophthalmitis and an untargeted lipidomic approach, we comprehensively analyzed temporal alterations in total lipids and oxylipin in retina. Our data showed a time-dependent increase in the levels of lipid classes, sphingolipids, glycerolipids, sterols, and non-esterified fatty acids, whereas levels of phospholipids decreased. Among lipid subclasses, phosphatidylcholine decreased over time. The oxylipin analysis revealed increased prostaglandin-E2, hydroxyeicosatetraenoic acids, docosahexaenoic acid, eicosapentaenoic acid, and α-linolenic acid. In-vitro studies using mouse bone marrow-derived macrophages showed increased lipid droplets and lipid-peroxide formation in response to S. aureus infection. Collectively, these findings suggest that S. aureus-infection alters the retinal lipid profile, which may contribute to the pathogenesis of bacterial endophthalmitis.
Collapse
Affiliation(s)
- Zeeshan Ahmad
- Department of Ophthalmology, Visual and Anatomical Sciences/ Kresge Eye Institute, Wayne State University School of Medicine, Detroit, MI, USA
| | - Sukhvinder Singh
- Department of Ophthalmology, Visual and Anatomical Sciences/ Kresge Eye Institute, Wayne State University School of Medicine, Detroit, MI, USA
| | - Tae Jin Lee
- Augusta University, Augusta, GA, USA. 4 Department of Ophthalmology, Augusta University, Augusta, GA, USA
| | - Ashok Sharma
- Augusta University, Augusta, GA, USA. 4 Department of Ophthalmology, Augusta University, Augusta, GA, USA
| | - Todd A Lydic
- Department of Physiology, Michigan State University, East Lansing, MI, USA
| | - Shailendra Giri
- Department of Neurology, Henry Ford Health System, Detroit, MI, USA
| | - Ashok Kumar
- Department of Ophthalmology, Visual and Anatomical Sciences/ Kresge Eye Institute, Wayne State University School of Medicine, Detroit, MI, USA; Department of Biochemistry, Microbiology, and Immunology, Wayne State University School of Medicine, Detroit, MI, USA.
| |
Collapse
|
7
|
Yao X, Zhao Z, Zhang W, Liu R, Ni T, Cui B, Lei Y, Du J, Ai D, Jiang H, Lv H, Li X. Specialized Retinal Endothelial Cells Modulate Blood-Retina Barrier in Diabetic Retinopathy. Diabetes 2024; 73:225-236. [PMID: 37976214 DOI: 10.2337/db23-0368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 11/06/2023] [Indexed: 11/19/2023]
Abstract
Endothelial cells (EC) play essential roles in retinal vascular homeostasis. This study aimed to characterize retinal EC heterogeneity and functional diversity using single-cell RNA sequencing. Systematic analysis of cellular compositions and cell-cell interaction networks identified a unique EC cluster with high inflammatory gene expression in diabetic retina; sphingolipid metabolism is a prominent aspect correlated with changes in retinal function. Among sphingolipid-related genes, alkaline ceramidase 2 (ACER2) showed the most significant increase. Plasma samples of patients with nonproliferative diabetic retinopathy (NPDR) with diabetic macular edema (DME) or without DME (NDME) and active proliferative DR (PDR) were collected for mass spectrometry analysis. Metabolomic profiling revealed that the ceramide levels were significantly elevated in NPDR-NDME/DME and further increased in active PDR compared with control patients. In vitro analyses showed that ACER2 overexpression retarded endothelial barrier breakdown induced by ceramide, while silencing of ACER2 further disrupted the injury. Moreover, intravitreal injection of the recombinant ACER2 adeno-associated virus rescued diabetes-induced vessel leakiness, inflammatory response, and neurovascular disease in diabetic mouse models. Together, this study revealed a new diabetes-specific retinal EC population and a negative feedback regulation pathway that reduces ceramide content and endothelial dysfunction by upregulating ACER2 expression. These findings provide insights into cell-type targeted interventions for diabetic retinopathy. ARTICLE HIGHLIGHTS
Collapse
Affiliation(s)
- Xuyang Yao
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Centre for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin Medical University, Tianjin, China
| | - Ziyan Zhao
- Department of Physiology and Pathophysiology, Tianjin Medical University, Tianjin, China
| | - Wenhui Zhang
- Department of Physiology and Pathophysiology, Tianjin Medical University, Tianjin, China
| | - Ruixin Liu
- Department of Physiology and Pathophysiology, Tianjin Medical University, Tianjin, China
| | - Tianwen Ni
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Centre for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin Medical University, Tianjin, China
| | - Bohao Cui
- Department of Ophthalmology, Tianjin Medical University General Hospital, Tianjin, China
| | - Yi Lei
- Department of Ophthalmology, Tianjin Medical University General Hospital, Tianjin, China
| | - Jie Du
- Experimental Research Center, Beijing Institute of Heart Lung and Blood Vessel Disease, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Ding Ai
- Department of Physiology and Pathophysiology, Tianjin Medical University, Tianjin, China
| | - Hongfeng Jiang
- Experimental Research Center, Beijing Institute of Heart Lung and Blood Vessel Disease, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Huizhen Lv
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Centre for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin Medical University, Tianjin, China
- Department of Physiology and Pathophysiology, Tianjin Medical University, Tianjin, China
| | - Xiaorong Li
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Centre for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin Medical University, Tianjin, China
| |
Collapse
|
8
|
Ebrahimi M, Thompson P, Lauer AK, Sivaprasad S, Perry G. The retina-brain axis and diabetic retinopathy. Eur J Ophthalmol 2023; 33:2079-2095. [PMID: 37259525 DOI: 10.1177/11206721231172229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Diabetic retinopathy (DR) is a major contributor to permanent vision loss and blindness. Changes in retinal neurons, glia, and microvasculature have been the focus of intensive study in the quest to better understand DR. However, the impact of diabetes on the rest of the visual system has received less attention. There are reports of associations of changes in the visual system with preclinical and clinical manifestations of diabetes. Simultaneous investigation of the retina and the brain may shed light on the mechanisms underlying neurodegeneration in diabetics. Additionally, investigating the links between DR and other neurodegenerative disorders of the brain including Alzheimer's and Parkinson's disease may reveal shared mechanisms for neurodegeneration and potential therapy options.
Collapse
Affiliation(s)
- Moein Ebrahimi
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Network of Immunity in Infection, Malignancy, and Autoimmunity, Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Paul Thompson
- Imaging Genetics Center, Mark and Mary Stevens Institute for Neuroimaging and Informatics, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Andreas K Lauer
- Department of Ophthalmology, Casey Eye Institute, Oregon Health & Science University, Portland, Oregon, USA
| | - Sobha Sivaprasad
- National Institute of Health and Care Research Moorfields Biomedical Research Centre, Moorfields Eye Hospital, London, UK
| | - George Perry
- Department of Neuroscience, Developmental and Regenerative Biology, University of Texas and San Antonio, San Antonio, TX, USA
| |
Collapse
|
9
|
Mirza I, Haloul M, Hassan C, Masrur M, Mostafa A, Bianco FM, Ali MM, Minshall RD, Mahmoud AM. Adiposomes from Obese-Diabetic Individuals Promote Endothelial Dysfunction and Loss of Surface Caveolae. Cells 2023; 12:2453. [PMID: 37887297 PMCID: PMC10605845 DOI: 10.3390/cells12202453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 10/08/2023] [Accepted: 10/10/2023] [Indexed: 10/28/2023] Open
Abstract
Glycosphingolipids (GSLs) are products of lipid glycosylation that have been implicated in the development of cardiovascular diseases. In diabetes, the adipocyte microenvironment is characterized by hyperglycemia and inflammation, resulting in high levels of GSLs. Therefore, we sought to assess the GSL content in extracellular vesicles derived from the adipose tissues (adiposomes) of obese-diabetic (OB-T2D) subjects and their impact on endothelial cell function. To this end, endothelial cells were exposed to adiposomes isolated from OB-T2D versus healthy subjects. Cells were assessed for caveolar integrity and related signaling, such as Src-kinase and caveolin-1 (cav-1) phosphorylation, and functional pathways, such as endothelial nitric oxide synthase (eNOS) activity. Compared with adiposomes from healthy subjects, OB-T2D adiposomes had higher levels of GSLs, especially LacCer and GM3; they promoted cav-1 phosphorylation coupled to an obvious loss of endothelial surface caveolae and induced eNOS-uncoupling, peroxynitrite generation, and cav-1 nitrosylation. These effects were abolished by Src kinase inhibition and were not observed in GSL-depleted adiposomes. At the functional levels, OB-T2D adiposomes reduced nitric oxide production, shear response, and albumin intake in endothelial cells and impaired flow-induced dilation in healthy arterioles. In conclusion, OB-T2D adiposomes carried a detrimental GSL cargo that disturbed endothelial caveolae and the associated signaling.
Collapse
Affiliation(s)
- Imaduddin Mirza
- Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, College of Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA; (I.M.); (M.H.)
| | - Mohamed Haloul
- Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, College of Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA; (I.M.); (M.H.)
| | - Chandra Hassan
- Department of Surgery, College of Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA; (C.H.); (M.M.); (F.M.B.); (R.D.M.)
| | - Mario Masrur
- Department of Surgery, College of Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA; (C.H.); (M.M.); (F.M.B.); (R.D.M.)
| | - Amro Mostafa
- Departments of Anesthesiology and Pharmacology, College of Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA;
| | - Francesco M. Bianco
- Department of Surgery, College of Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA; (C.H.); (M.M.); (F.M.B.); (R.D.M.)
| | - Mohamed M. Ali
- School of Business and Non-Profit Management, North Park University, Chicago, IL 60625, USA;
| | - Richard D. Minshall
- Department of Surgery, College of Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA; (C.H.); (M.M.); (F.M.B.); (R.D.M.)
| | - Abeer M. Mahmoud
- Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, College of Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA; (I.M.); (M.H.)
- Department of Kinesiology and Nutrition, College of Applied Health Sciences, University of Illinois at Chicago, Chicago, IL 60612, USA
| |
Collapse
|
10
|
Starr CR, Zhylkibayev A, Mobley JA, Gorbatyuk MS. Proteomic analysis of diabetic retinas. Front Endocrinol (Lausanne) 2023; 14:1229089. [PMID: 37693346 PMCID: PMC10486886 DOI: 10.3389/fendo.2023.1229089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 07/28/2023] [Indexed: 09/12/2023] Open
Abstract
Introduction As a metabolic disease, diabetes often leads to health complications such as heart failure, nephropathy, neurological disorders, and vision loss. Diabetic retinopathy (DR) affects as many as 100 million people worldwide. The mechanism of DR is complex and known to impact both neural and vascular components in the retina. While recent advances in the field have identified major cellular signaling contributing to DR pathogenesis, little has been reported on the protein post-translational modifications (PTM) - known to define protein localization, function, and activity - in the diabetic retina overall. Protein glycosylation is the enzymatic addition of carbohydrates to proteins, which can influence many protein attributes including folding, stability, function, and subcellular localization. O-linked glycosylation is the addition of sugars to an oxygen atom in amino acids with a free oxygen atom in their side chain (i.e., threonine, serine). To date, more than 100 congenital disorders of glycosylation have been described. However, no studies have identified the retinal O-linked glycoproteome in health or disease. With a critical need to expedite the discovery of PTMomics in diabetic retinas, we identified both global changes in protein levels and the retinal O-glycoproteome of control and diabetic mice. Methods We used liquid chromatography/mass spectrometry-based proteomics and high throughput screening to identify proteins differentially expressed and proteins differentially O-glycosylated in the retinas of wildtype and diabetic mice. Results Changes in both global expression levels of proteins and proteins differentially glycosylated in the retinas of wild-type and diabetic mice have been identified. We provide evidence that diabetes shifts both global expression levels and O-glycosylation of metabolic and synaptic proteins in the retina. Discussion Here we report changes in the retinal proteome of diabetic mice. We highlight alterations in global proteins involved in metabolic processes, maintaining cellular structure, trafficking, and neuronal processes. We then showed changes in O-linked glycosylation of individual proteins in the diabetic retina.
Collapse
Affiliation(s)
- Christopher R. Starr
- Department of Optometry and Vision Science, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Assylbek Zhylkibayev
- Department of Optometry and Vision Science, University of Alabama at Birmingham, Birmingham, AL, United States
| | - James A. Mobley
- Department of Anesthesiology and Perioperative Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Marina S. Gorbatyuk
- Department of Optometry and Vision Science, University of Alabama at Birmingham, Birmingham, AL, United States
| |
Collapse
|
11
|
Fang J, Wang H, Niu T, Shi X, Xing X, Qu Y, Liu Y, Liu X, Xiao Y, Dou T, Shen Y, Liu K. Integration of Vitreous Lipidomics and Metabolomics for Comprehensive Understanding of the Pathogenesis of Proliferative Diabetic Retinopathy. J Proteome Res 2023. [PMID: 37329324 DOI: 10.1021/acs.jproteome.3c00007] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
As a vision-threatening complication of diabetes mellitus (DM), proliferative diabetic retinopathy (PDR) is associated with sustained metabolic disorders. Herein, we collected the vitreous cavity fluid of 49 patients with PDR and 23 control subjects without DM for metabolomics and lipidomics analyses. Multivariate statistical methods were performed to explore relationships between samples. For each group of metabolites, gene set variation analysis scores were generated, and we constructed a lipid network by using weighted gene co-expression network analysis. The association between lipid co-expression modules and metabolite set scores was investigated using the two-way orthogonal partial least squares (O2PLS) model. A total of 390 lipids and 314 metabolites were identified. Multivariate statistical analysis revealed significant vitreous metabolic and lipid differences between PDR and controls. Pathway analysis showed that 8 metabolic processes might be associated with the development of PDR, and 14 lipid species were found to be altered in PDR patients. Combining metabolomics and lipidomics, we identified fatty acid desaturase 2 (FADS2) as an important potential contributor to the pathogenesis of PDR. Collectively, this study integrates vitreous metabolomics and lipidomics to comprehensively unravel metabolic dysregulation and identifies genetic variants associated with altered lipid species in the mechanistic pathways for PDR.
Collapse
Affiliation(s)
- Junwei Fang
- Department of Ophthalmology, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200080, China
- National Clinical Research Center for Eye Diseases, Shanghai 200080, China
- Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai 200080, China
- Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai 200080, China
- Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai 200080, China
| | - Hanying Wang
- Department of Ophthalmology, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200080, China
- National Clinical Research Center for Eye Diseases, Shanghai 200080, China
- Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai 200080, China
- Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai 200080, China
- Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai 200080, China
| | - Tian Niu
- Department of Ophthalmology, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200080, China
- National Clinical Research Center for Eye Diseases, Shanghai 200080, China
- Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai 200080, China
- Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai 200080, China
- Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai 200080, China
| | - Xin Shi
- Department of Ophthalmology, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200080, China
- National Clinical Research Center for Eye Diseases, Shanghai 200080, China
- Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai 200080, China
- Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai 200080, China
- Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai 200080, China
| | - Xindan Xing
- Department of Ophthalmology, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200080, China
- National Clinical Research Center for Eye Diseases, Shanghai 200080, China
- Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai 200080, China
- Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai 200080, China
- Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai 200080, China
| | - Yuan Qu
- Department of Ophthalmology, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200080, China
- National Clinical Research Center for Eye Diseases, Shanghai 200080, China
- Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai 200080, China
- Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai 200080, China
- Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai 200080, China
| | - Yujuan Liu
- Department of Ophthalmology, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200080, China
- National Clinical Research Center for Eye Diseases, Shanghai 200080, China
- Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai 200080, China
- Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai 200080, China
- Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai 200080, China
| | - Xinyi Liu
- Department of Ophthalmology, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200080, China
- National Clinical Research Center for Eye Diseases, Shanghai 200080, China
- Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai 200080, China
- Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai 200080, China
- Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai 200080, China
| | - Yu Xiao
- Department of Ophthalmology, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200080, China
- National Clinical Research Center for Eye Diseases, Shanghai 200080, China
- Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai 200080, China
- Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai 200080, China
- Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai 200080, China
| | - Tianyu Dou
- Department of Ophthalmology, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200080, China
- National Clinical Research Center for Eye Diseases, Shanghai 200080, China
- Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai 200080, China
- Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai 200080, China
- Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai 200080, China
| | - Yinchen Shen
- Department of Ophthalmology, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200080, China
- National Clinical Research Center for Eye Diseases, Shanghai 200080, China
- Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai 200080, China
- Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai 200080, China
- Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai 200080, China
| | - Kun Liu
- Department of Ophthalmology, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200080, China
- National Clinical Research Center for Eye Diseases, Shanghai 200080, China
- Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai 200080, China
- Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai 200080, China
- Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai 200080, China
| |
Collapse
|
12
|
Vasku G, Peltier C, He Z, Thuret G, Gain P, Gabrielle PH, Acar N, Berdeaux O. Comprehensive mass spectrometry lipidomics of human biofluids and ocular tissues. J Lipid Res 2023; 64:100343. [PMID: 36773847 PMCID: PMC10027555 DOI: 10.1016/j.jlr.2023.100343] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 01/25/2023] [Accepted: 01/28/2023] [Indexed: 02/12/2023] Open
Abstract
Evaluating lipid profiles in human tissues and biofluids is critical in identifying lipid metabolites in dysregulated metabolic pathways. Due to various chemical characteristics, single-run lipid analysis has not yet been documented. Such approach is essential for analyzing pathology-related lipid metabolites. Age-related macular degeneration, the leading cause of vision loss in western countries, is emblematic of this limitation. Several studies have identified alterations in individual lipids but the majority are based on targeted approaches. In this study, we analyzed and identified approximately 500 lipid species in human biofluids (plasma and erythrocytes) and ocular tissues (retina and retinal pigment epithelium) using the complementarity of hydrophilic interaction liquid chromatography (HILIC) and reversed-phase chromatography (RPC), coupled to high-resolution mass spectrometry. For that, lipids were extracted from human eye globes and blood from 10 subjects and lipidomic analysis was carried out through analysis in HILIC and RPC, alternately. Furthermore, we illustrate the advantages and disadvantages of both techniques for lipid characterization. RPC showed greater sensitivity in hydrophobicity-based lipid separation, detecting diglycerides, triglycerides, cholesterol, and cholesteryl esters, whereas no signal of these molecules was obtained in HILIC. However, due to coelution, RPC was less effective in separating polar lipids like phospholipids, which were separated effectively in HILIC in both ionization modes. The complementary nature of these analytical approaches was essential for the detection and identification of lipid classes/subclasses, which can then provide distinct insights into lipid metabolism, a determinant of the pathophysiology of several diseases involving lipids, notably age-related macular degeneration.
Collapse
Affiliation(s)
- Glenda Vasku
- Eye and Nutrition Research Group, Centre des Sciences du Goût et de l'Alimentation, CNRS, INRAE, Institut Agro, Université de Bourgogne Franche-Comté, Dijon, France; ChemoSens Platform, Centre des Sciences du Goût et de l'Alimentation, Institut Agro, CNRS, INRAE, Université Bourgogne Franche-Comté, Dijon, France; INRAE, PROBE Research infrastructure, ChemoSens facility, Dijon, France
| | - Caroline Peltier
- ChemoSens Platform, Centre des Sciences du Goût et de l'Alimentation, Institut Agro, CNRS, INRAE, Université Bourgogne Franche-Comté, Dijon, France; INRAE, PROBE Research infrastructure, ChemoSens facility, Dijon, France
| | - Zhiguo He
- Department of Ophthalmology, Biology, Imaging, and Engineering of Corneal Grafts, Faculty of Medicine, Saint Etienne, France
| | - Gilles Thuret
- Department of Ophthalmology, Biology, Imaging, and Engineering of Corneal Grafts, Faculty of Medicine, Saint Etienne, France
| | - Philippe Gain
- Department of Ophthalmology, Biology, Imaging, and Engineering of Corneal Grafts, Faculty of Medicine, Saint Etienne, France
| | - Pierre-Henry Gabrielle
- Eye and Nutrition Research Group, Centre des Sciences du Goût et de l'Alimentation, CNRS, INRAE, Institut Agro, Université de Bourgogne Franche-Comté, Dijon, France; Department of Ophthalmology, University Hospital, Dijon, France
| | - Niyazi Acar
- Eye and Nutrition Research Group, Centre des Sciences du Goût et de l'Alimentation, CNRS, INRAE, Institut Agro, Université de Bourgogne Franche-Comté, Dijon, France
| | - Olivier Berdeaux
- ChemoSens Platform, Centre des Sciences du Goût et de l'Alimentation, Institut Agro, CNRS, INRAE, Université Bourgogne Franche-Comté, Dijon, France; INRAE, PROBE Research infrastructure, ChemoSens facility, Dijon, France.
| |
Collapse
|
13
|
A Comprehensive Profiling of Cellular Sphingolipids in Mammalian Endothelial and Microglial Cells Cultured in Normal and High-Glucose Conditions. Cells 2022; 11:cells11193082. [PMID: 36231042 PMCID: PMC9563724 DOI: 10.3390/cells11193082] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 09/20/2022] [Accepted: 09/23/2022] [Indexed: 11/17/2022] Open
Abstract
Sphingolipids (SPLs) play a diverse role in maintaining cellular homeostasis. Dysregulated SPL metabolism is associated with pathological changes in stressed and diseased cells. This study investigates differences in SPL metabolism between cultured human primary retinal endothelial (HREC) and murine microglial cells (BV2) in normal conditions (normal glucose, NG, 5 mM) and under high-glucose (HG, 25 mM)-induced stress by sphingolipidomics, immunohistochemistry, biochemical, and molecular assays. Measurable differences were observed in SPL profiles between HREC and BV2 cells. High-glucose treatment caused a >2.5-fold increase in the levels of Lactosyl-ceramide (LacCer) in HREC, but in BV2 cells, it induced Hexosyl-Ceramides (HexCer) by threefold and a significant increase in Sphingosine-1-phosphate (S1P) compared to NG. Altered SPL profiles coincided with changes in transcript levels of inflammatory and vascular permeability mediators in HREC and inflammatory mediators in BV2 cells. Differences in SPL profiles and differential responses to HG stress between endothelial and microglial cells suggest that SPL metabolism and signaling differ in mammalian cell types and, therefore, their pathological association with those cell types.
Collapse
|
14
|
Diterpenoid DGA induces apoptosis via endoplasmic reticulum stress caused by changes in glycosphingolipid composition and inhibition of STAT3 in glioma cells. Biochem Pharmacol 2022; 205:115254. [DOI: 10.1016/j.bcp.2022.115254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 08/25/2022] [Accepted: 09/13/2022] [Indexed: 11/20/2022]
|
15
|
Aldosari DI, Malik A, Alhomida AS, Ola MS. Implications of Diabetes-Induced Altered Metabolites on Retinal Neurodegeneration. Front Neurosci 2022; 16:938029. [PMID: 35911994 PMCID: PMC9328693 DOI: 10.3389/fnins.2022.938029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 06/09/2022] [Indexed: 11/13/2022] Open
Abstract
Diabetic retinopathy (DR) is one of the major complications of diabetic eye diseases, causing vision loss and blindness worldwide. The concept of diabetic retinopathy has evolved from microvascular disease into more complex neurovascular disorders. Early in the disease progression of diabetes, the neuronal and glial cells are compromised before any microvascular abnormalities clinically detected by the ophthalmoscopic examination. This implies understanding the pathophysiological mechanisms at the early stage of disease progression especially due to diabetes-induced metabolic alterations to damage the neural retina so that early intervention and treatments options can be identified to prevent and inhibit the progression of DR. Hyperglycemia has been widely considered the major contributor to the progression of the retinal damage, even though tight control of glucose does not seem to have a bigger effect on the incidence or progression of retinal damage that leads to DR. Emerging evidence suggests that besides diabetes-induced hyperglycemia, dyslipidemia and amino acid defects might be a major contributor to the progression of early neurovascular retinal damage. In this review, we have discussed recent advances in the alterations of key metabolites of carbohydrate, lipid, and amino acids and their implications for neurovascular damage in DR.
Collapse
Affiliation(s)
| | | | | | - Mohammad S. Ola
- Department of Biochemistry, College of Science, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
16
|
Ban Q, Sun X, Jiang Y, Cheng J, Guo M. Effect of synbiotic yogurt fortified with monk fruit extract on hepatic lipid biomarkers and metabolism in rats with type 2 diabetes. J Dairy Sci 2022; 105:3758-3769. [PMID: 35248379 DOI: 10.3168/jds.2021-21204] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 01/14/2022] [Indexed: 01/03/2024]
Abstract
Monk fruit extract (MFE) is widely used as a sweetener in foods. In this study, the effects of the consumption of MFE-sweetened synbiotic yogurt on the lipid biomarkers and metabolism in the livers of type 2 diabetic rats were evaluated. The results revealed that the MFE-sweetened symbiotic yogurt affected the phosphatidylcholines, phosphatidylethanolamines, phosphatidylglycerol, lysophosphatidic acids, lysophosphatidylcholines, lysophosphatidylethanolamines, lysophosphatidylglycerols, lysophosphatidylinositols, lysophosphatidylserines, and fatty acid-hydroxy fatty acids biomarkers in the livers of type 2 diabetic rats. In addition, the consumption of the MFE-sweetened synbiotic yogurt significantly altered 12 hepatic metabolites, which are involved in phenylalanine metabolism, sphingolipid metabolism, bile secretion, and glyoxylate and dicarboxylate metabolism in the liver. Furthermore, a multiomics (metabolomic and transcriptomic) association study revealed that there was a significant correlation between the MFE-sweetened synbiotic yogurt and the metabolites and genes involved in fatty acid biosynthesis, bile secretion, and glyoxylate and dicarboxylate metabolism. The findings of this study will provide new insights on exploring the function of sweeteners for improving type 2 diabetes mellitus liver lipid biomarkers.
Collapse
Affiliation(s)
- Qingfeng Ban
- College of Food Science, Northeast Agricultural University, Harbin, 150030, China; Key Laboratory of Dairy Science of Ministry of Education, Northeast Agricultural University, Harbin 150030, China
| | - Xiaomeng Sun
- College of Food Science, Northeast Agricultural University, Harbin, 150030, China
| | - Yunqing Jiang
- College of Food Science, Northeast Agricultural University, Harbin, 150030, China
| | - Jianjun Cheng
- College of Food Science, Northeast Agricultural University, Harbin, 150030, China.
| | - Mingruo Guo
- Department of Nutrition and Food Sciences, College of Agriculture and Life Sciences, University of Vermont, Burlington 05405.
| |
Collapse
|
17
|
Fort PE, Rajendiran TM, Soni T, Byun J, Shan Y, Looker HC, Nelson RG, Kretzler M, Michailidis G, Roger JE, Gardner TW, Abcouwer SF, Pennathur S, Afshinnia F. Diminished retinal complex lipid synthesis and impaired fatty acid β-oxidation associated with human diabetic retinopathy. JCI Insight 2021; 6:e152109. [PMID: 34437304 PMCID: PMC8525591 DOI: 10.1172/jci.insight.152109] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 08/25/2021] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND This study systematically investigated circulating and retinal tissue lipid determinants of human diabetic retinopathy (DR) to identify underlying lipid alterations associated with severity of DR. METHODS Retinal tissues were retrieved from postmortem human eyes, including 19 individuals without diabetes, 20 with diabetes but without DR, and 20 with diabetes and DR, for lipidomic study. In a parallel study, serum samples from 28 American Indians with type 2 diabetes from the Gila River Indian Community, including 12 without DR, 7 with mild nonproliferative DR (NPDR), and 9 with moderate NPDR, were selected. A mass-spectrometry–based lipidomic platform was used to measure serum and tissue lipids. RESULTS In the postmortem retinas, we found a graded decrease of long-chain acylcarnitines and longer-chain fatty acid ester of hydroxyl fatty acids, diacylglycerols, triacylglycerols, phosphatidylcholines, and ceramide(NS) in central retina from individuals with no diabetes to those with diabetes with DR. The American Indians’ sera also exhibited a graded decrease in circulating long-chain acylcarnitines and a graded increase in the intermediate-length saturated and monounsaturated triacylglycerols from no DR to moderate NPDR. CONCLUSION These findings suggest diminished synthesis of complex lipids and impaired mitochondrial β-oxidation of fatty acids in retinal DR, with parallel changes in circulating lipids. TRIAL REGISTRATION ClinicalTrials.gov NCT00340678. FUNDING This work was supported by NIH grants R24 DK082841, K08DK106523, R03DK121941, P30DK089503, P30DK081943, P30DK020572, P30 EY007003; The Thomas Beatson Foundation; and JDRF Center for Excellence (5-COE-2019-861-S-B).
Collapse
Affiliation(s)
- Patrice E Fort
- Department of Ophthalmology and Visual Sciences.,Department of Molecular and Integrative Physiology
| | | | | | - Jaeman Byun
- Department of Internal Medicine-Nephrology, University of Michigan, Ann Arbor, Michigan, USA
| | - Yang Shan
- Department of Ophthalmology and Visual Sciences
| | - Helen C Looker
- Chronic Kidney Disease Section, National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), Phoenix, Arizona, USA
| | - Robert G Nelson
- Chronic Kidney Disease Section, National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), Phoenix, Arizona, USA
| | - Matthias Kretzler
- Department of Internal Medicine-Nephrology, University of Michigan, Ann Arbor, Michigan, USA
| | - George Michailidis
- Department of Statistics and the Informatics Institute, University of Florida, Gainesville, Florida, USA
| | - Jerome E Roger
- Paris-Saclay Institute of Neuroscience, CERTO-Retina France, CNRS, Université Paris-Saclay, Orsay, France
| | - Thomas W Gardner
- Department of Ophthalmology and Visual Sciences.,Department of Molecular and Integrative Physiology.,Department of Internal Medicine-Metabolism, Endocrinology and Diabetes, and
| | | | - Subramaniam Pennathur
- Department of Molecular and Integrative Physiology.,Department of Internal Medicine-Nephrology, University of Michigan, Ann Arbor, Michigan, USA.,Michigan Regional Comprehensive Metabolomics Resource Core, University of Michigan, Ann Arbor, Michigan, USA
| | - Farsad Afshinnia
- Department of Internal Medicine-Nephrology, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
18
|
Shiwani HA, Elfaki MY, Memon D, Ali S, Aziz A, Egom EE. Updates on sphingolipids: Spotlight on retinopathy. Biomed Pharmacother 2021; 143:112197. [PMID: 34560541 DOI: 10.1016/j.biopha.2021.112197] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 09/08/2021] [Accepted: 09/13/2021] [Indexed: 02/05/2023] Open
Abstract
The sphingolipids ceramide (Cer), ceramide-1-phosphate (C1P), sphingosine (Sph), and sphingosine-1-phosphate (S1P)) are key signaling molecules that regulate many patho-biological processes. During the last decade, they have gained increasing attention since they may participate in important and numerous retinal processes, such as neuronal survival and death, proliferation and migration of neuronal and vascular cells, inflammation, and neovascularization. Cer for instance has emerged as a key mediator of inflammation and death of neuronal and retinal pigment epithelium cells in experimental models of retinopathies such as glaucoma, age-related macular degeneration (AMD), and retinitis pigmentosa. S1P may have opposite biological actions, preventing photoreceptor and ganglion cell degeneration but also promoting inflammation, fibrosis, and neovascularization in AMD, glaucoma, and pro-fibrotic disorders. Alterations in Cer, S1P, and ceramide 1- phosphate may also contribute to uveitis. Furthermore, use of inhibitors that either prevent Cer increase or modulate S1P signaling, such as Myriocin, desipramine, and Fingolimod (FTY720), have been shown to preserve neuronal viability and retinal function. Collectively, the expanding role for these sphingolipids in the modulation of vital processes in retina cell types and in their dysregulation in retinal degenerations makes them attractive therapeutic targets.
Collapse
Affiliation(s)
- Haaris A Shiwani
- Department of Ophthalmology, Royal Preston Hospital, United Kingdom.
| | | | - Danyal Memon
- Department of Cardiology, Children's Health Ireland at Crumlin, Dublin, Ireland
| | - Suhayb Ali
- Department of Acute Medicine, Ulster Hospital, Belfast, United Kingdom
| | - Abdul Aziz
- Department of Respiratory Medicine, Royal Liverpool University Hospital, Liverpool, United Kingdom
| | - Emmanuel E Egom
- Institut du Savoir Montfort (ISM), Hôpital Montfort, University of Ottawa, Ottawa, ON, Canada; Laboratory of Endocrinology and Radioisotopes, Institute of Medical Research and Medicinal Plants Studies (IMPM), Yaoundé, Cameroon.
| |
Collapse
|
19
|
Zhou Y, Zhou G. Alterations of Lipidomes in Rat Photoreceptor Degeneration Induced by N-Methyl-N-nitrosourea. Lipids 2021; 56:437-448. [PMID: 34058794 DOI: 10.1002/lipd.12306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 04/14/2021] [Indexed: 11/11/2022]
Abstract
To investigate alterations of lipidomes in the progress of photoreceptor degeneration induced by N-methyl-N-nitrosourea (MNU) in a rat model, retinal lipid molecular species in adult Sprague-Dawley (SD) rats at 1, 3, and 7 days after MNU administration and age-matched controls were analyzed by the shotgun lipidomics technology. Moreover, total fatty acid levels in retinal, liver, and plasma samples of different groups were determined with gas chromatography. Generally, at day 1, the levels of ethanolamine plasmalogen species in retinas were markedly elevated after treatment with MNU, while the contents of other phospholipids and sphingolipids in the retina were not significantly changed than those of the control group. The compositions of almost all of unsaturated fatty acids in the retina increased significantly at day 1 after MNU administration. At day 7, the MNU treatment group has significant increases in lipid species in the retina. However, the majority of lipids containing docosahexaenoic acid (DHA, 22:6n-3) and docosapentaenoic acid (22:5n-6) declined, especially di-DHA phospholipids were dramatically reduced in the retina. In contrast, similar alterations did not occur in plasma or the liver after MNU treatment. These results suggested that at the early stage of photoreceptor degeneration, lipidome remodeling in the retina might involve protection of photoreceptor from apoptosis and continue their transduction of light. However, at the late stage of photoreceptor apoptosis, increases in comprehensive lipid species occurred, likely due to the myelination of the retina. Finally, the deficiency of DHA in photoreceptor degeneration could exacerbate the influence of myelination on retinal function. We further investigated the effects of unsaturated fatty acids on neuronal apoptosis. The preliminary experiments confirmed our observation from lipidomics analysis that unsaturated fatty acids can protect neurons from apoptosis. Collectively, our study suggests that increased levels of DHA should be protective from photoreceptor degeneration.
Collapse
Affiliation(s)
- Yunhua Zhou
- Department of Anatomy, Histology and Embryology, School of Basic Medical Sciences, Fudan University, 138 Yi Xue Yuan Road, Shanghai, 200032, China
| | - Guomin Zhou
- Department of Anatomy, Histology and Embryology, School of Basic Medical Sciences, Fudan University, 138 Yi Xue Yuan Road, Shanghai, 200032, China
- Key Laboratory of Medical Imaging Computing and Computer Assisted Intervention of Shanghai, 138 Yi Xue Yuan Road, Shanghai, 200032, China
| |
Collapse
|
20
|
Absence of retbindin blocks glycolytic flux, disrupts metabolic homeostasis, and leads to photoreceptor degeneration. Proc Natl Acad Sci U S A 2021; 118:2018956118. [PMID: 33526685 DOI: 10.1073/pnas.2018956118] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
We previously reported a model of progressive retinal degeneration resulting from the knockout of the retina-specific riboflavin binding protein, retbindin (Rtbdn -/- ). We also demonstrated a reduction in neural retinal flavins as a result of the elimination of RTBDN. Given the role of flavins in metabolism, herein we investigated the underlying mechanism of this retinal degeneration by performing metabolomic analyses on predegeneration at postnatal day (P) 45 and at the onset of functional degeneration in the P120 retinas. Metabolomics of hydrophilic metabolites revealed that individual glycolytic products accumulated in the P45 Rtbdn -/- neural retinas along with the elevation of pentose phosphate pathway, while TCA cycle intermediates remained unchanged. This was confirmed by using 13C-labeled flux measurements and immunoblotting, revealing that the key regulatory step of phosphoenolpyruvate to pyruvate was inhibited via down-regulation of the tetrameric pyruvate kinase M2 (PKM2). Separate metabolite assessments revealed that almost all intermediates of acylcarnitine fatty acid oxidation, ceramides, sphingomyelins, and multiple toxic metabolites were significantly elevated in the predegeneration Rtbdn -/- neural retina. Our data show that lack of RTBDN, and hence reduction in flavins, forced the neural retina into repurposing glucose for free-radical mitigation over ATP production. However, such sustained metabolic reprogramming resulted in an eventual metabolic collapse leading to neurodegeneration.
Collapse
|
21
|
Pal S, Rao GN, Pal A. Inflammation and apoptosis, two key events induced by hyperglycemia mediated reactive nitrogen species in RGC-5 cells. Life Sci 2021; 279:119693. [PMID: 34111464 DOI: 10.1016/j.lfs.2021.119693] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 05/23/2021] [Accepted: 05/31/2021] [Indexed: 12/21/2022]
Abstract
Nitrosative stress plays a critical role in retinal injury in high glucose (HG) environment of eye, but the mechanisms remain poorly understood. Here we tested the hypothesis that HG induced reactive nitrogen species (RNS) production acts as a key functional mediator of antioxidant depletion, mitochondrial dysfunction, biomolecule damage, inflammation and apoptosis. Our findings illustrated that exposure of cultured RGC-5 cells to HG significantly disrupts the antioxidant defense mechanism and mitochondrial machineries by increasing the loss of mitochondrial membrane potential (ΔѰM) and elevating mitochondrial mass. Furthermore, we used biochemical tools to analyze the changes in metabolites, sulfur amino acids (SAAs) such as L-glutathione (GSH) and L-cysteine (Cys), in the presence of HG environment. These metabolic changes were followed by an increase in glycolytic flux that is phosphofructokinase-2 (PFK-2) activity. Moreover, HG exposure results in a significant disruption of protein carbonylation (PC) and lipid peroxidation (LPO), downregulation of OGG1 and increase in 8-OHdG accumulations in RGC-5 cells. In addition, our results demonstrated that HG environment coinciding with increased expression of inflammatory mediators, cell cycle deregulation, decreased in cell viability and expression of FoxOs, increased lysosomal content leading to apoptosis. Pre-treatment of selective inhibitors of RNS significantly reduced the HG-induced cell cycle deregulation and apoptosis in RGC-5 cells. Collectively, these results illustrated that accumulated RNS exacerbates the antioxidant depletion, mitochondrial dysfunction, biomolecule damage, inflammation and apoptosis induced by HG exposure in RGC-5 cells. Treatment of pharmacological inhibitors attenuated the HG induced in retinal cells.
Collapse
Affiliation(s)
- Sweta Pal
- School of Biotechnology, Kalinga Institute of Industrial Technology, Bhubaneswar 751024, India
| | - G Nageswar Rao
- Department of Ophthalmology, Kalinga Institute of Medical Sciences, Kalinga Institute of Industrial Technology, Bhubaneswar 751024, India
| | - Arttatrana Pal
- School of Biotechnology, Kalinga Institute of Industrial Technology, Bhubaneswar 751024, India; Department of Zoology, School of Life Sciences, Mahatma Gandhi Central University, Motihari 845401, India.
| |
Collapse
|
22
|
Becker K, Klein H, Simon E, Viollet C, Haslinger C, Leparc G, Schultheis C, Chong V, Kuehn MH, Fernandez-Albert F, Bakker RA. In-depth transcriptomic analysis of human retina reveals molecular mechanisms underlying diabetic retinopathy. Sci Rep 2021; 11:10494. [PMID: 34006945 PMCID: PMC8131353 DOI: 10.1038/s41598-021-88698-3] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 04/15/2021] [Indexed: 02/03/2023] Open
Abstract
Diabetic Retinopathy (DR) is among the major global causes for vision loss. With the rise in diabetes prevalence, an increase in DR incidence is expected. Current understanding of both the molecular etiology and pathways involved in the initiation and progression of DR is limited. Via RNA-Sequencing, we analyzed mRNA and miRNA expression profiles of 80 human post-mortem retinal samples from 43 patients diagnosed with various stages of DR. We found differentially expressed transcripts to be predominantly associated with late stage DR and pathways such as hippo and gap junction signaling. A multivariate regression model identified transcripts with progressive changes throughout disease stages, which in turn displayed significant overlap with sphingolipid and cGMP-PKG signaling. Combined analysis of miRNA and mRNA expression further uncovered disease-relevant miRNA/mRNA associations as potential mechanisms of post-transcriptional regulation. Finally, integrating human retinal single cell RNA-Sequencing data revealed a continuous loss of retinal ganglion cells, and Müller cell mediated changes in histidine and β-alanine signaling. While previously considered primarily a vascular disease, attention in DR has shifted to additional mechanisms and cell-types. Our findings offer an unprecedented and unbiased insight into molecular pathways and cell-specific changes in the development of DR, and provide potential avenues for future therapeutic intervention.
Collapse
Affiliation(s)
- Kolja Becker
- Global Computational Biology & Digital Sciences, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riß, Germany
| | - Holger Klein
- Global Computational Biology & Digital Sciences, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riß, Germany
| | - Eric Simon
- Global Computational Biology & Digital Sciences, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riß, Germany
| | - Coralie Viollet
- Global Computational Biology & Digital Sciences, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riß, Germany
| | - Christian Haslinger
- Global Computational Biology & Digital Sciences, Boehringer Ingelheim RCV GmbH & Co. KG, Vienna, Austria
| | - German Leparc
- Translational Medicine & Clinical Pharmacology, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riß, Germany
| | - Christian Schultheis
- Translational Medicine & Clinical Pharmacology, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riß, Germany
| | - Victor Chong
- Therapeutic Area CNS Retinopathies Emerging Areas, BI International GmbH, Ingelheim, Germany
| | - Markus H Kuehn
- Department of Ophthalmology and Visual Sciences, University of Iowa, Iowa City, IA, USA
- Department of Veterans Affairs, Center for the Prevention and Treatment of Visual Loss, Iowa City, IA, 52246, USA
| | - Francesc Fernandez-Albert
- Global Computational Biology & Digital Sciences, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riß, Germany.
| | - Remko A Bakker
- Global Department Cardio-Metabolic Diseases Research, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riß, Germany.
| |
Collapse
|
23
|
Yang Q, Li B, Sheng M. Meibum lipid composition in type 2 diabetics with dry eye. Exp Eye Res 2021; 206:108522. [PMID: 33781754 DOI: 10.1016/j.exer.2021.108522] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 01/16/2021] [Accepted: 02/23/2021] [Indexed: 12/17/2022]
Abstract
PURPOSE The purpose of this investigation was to analyze and compare the composition of meibum between type 2 diabetics with dry eye disease (DED) and control subjects to better reveal the pathologic mechanisms of the meibomian gland degeneration (MGD) and DED in type 2 diabetes mellitus (T2DM). METHODS 90 subjects were divided into the following 4 groups: DM-DED group: T2DM patients with DED (n = 30); DM control group: DM patients without DED (n = 18); DED group: DED patients without DM (n = 26); naive control group: normal subjects (n = 16). The lipid composition of meibum samples collected from these subjects was analyzed by high-pressure liquid chromatography-mass spectrometry (HPLC-MS) system. The content of lipid features from 12 major lipid classes was compared among the 4 groups. RESULTS A significantly lower level of triacylglycerols (TG) and wax esters (WE) was found between DM-DED patients and normal controls (P < 0.01), whereas the level of Cholesteryl Ester (CE) in DM-DED patients increased compared with DED patients (P < 0.05). The level of (O-acyl)-omega-hydroxy fatty acids (OAHFA) in DM-DED patients was significantly lower than that in normal controls (P < 0.01). An opposite higher level of phospholipids (PLs) was observed in DM-DED patients than that in normal controls (P < 0.01). CONCLUSIONS T2DM could influence the expression of meibum lipids to further aggravate DED and MGD. Lower expression of TG,WE and OAHFA, higher expression of CE and PLs were discovered in meibum lipids of T2DM-DED.
Collapse
Affiliation(s)
- Qin Yang
- Department of Ophthalmology,Yangpu Hospital, Tongji University School of Medicine, Shanghai, 20090, China.
| | - Bing Li
- Department of Ophthalmology,Yangpu Hospital, Tongji University School of Medicine, Shanghai, 20090, China.
| | - Minjie Sheng
- Department of Ophthalmology,Yangpu Hospital, Tongji University School of Medicine, Shanghai, 20090, China.
| |
Collapse
|
24
|
Simon MV, Basu SK, Qaladize B, Grambergs R, Rotstein NP, Mandal N. Sphingolipids as critical players in retinal physiology and pathology. J Lipid Res 2021; 62:100037. [PMID: 32948663 PMCID: PMC7933806 DOI: 10.1194/jlr.tr120000972] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 09/04/2020] [Indexed: 12/24/2022] Open
Abstract
Sphingolipids have emerged as bioactive lipids involved in the regulation of many physiological and pathological processes. In the retina, they have been established to participate in numerous processes, such as neuronal survival and death, proliferation and migration of neuronal and vascular cells, inflammation, and neovascularization. Dysregulation of sphingolipids is therefore crucial in the onset and progression of retinal diseases. This review examines the involvement of sphingolipids in retinal physiology and diseases. Ceramide (Cer) has emerged as a common mediator of inflammation and death of neuronal and retinal pigment epithelium cells in animal models of retinopathies such as glaucoma, age-related macular degeneration (AMD), and retinitis pigmentosa. Sphingosine-1-phosphate (S1P) has opposite roles, preventing photoreceptor and ganglion cell degeneration but also promoting inflammation, fibrosis, and neovascularization in AMD, glaucoma, and pro-fibrotic disorders. Alterations in Cer, S1P, and ceramide 1-phosphate may also contribute to uveitis. Notably, use of inhibitors that either prevent Cer increase or modulate S1P signaling, such as Myriocin, desipramine, and Fingolimod (FTY720), preserves neuronal viability and retinal function. These findings underscore the relevance of alterations in the sphingolipid metabolic network in the etiology of multiple retinopathies and highlight the potential of modulating their metabolism for the design of novel therapeutic approaches.
Collapse
Affiliation(s)
- M Victoria Simon
- Instituto de Investigaciones Bioquímicas de Bahía Blanca (INIBIBB), Departamento De Biología, Bioquímica y Farmacia, Universidad Nacional del Sur (UNS), Argentine National Research Council (CONICET), Bahía Blanca, Argentina
| | - Sandip K Basu
- Departments of Ophthalmology and Anatomy and Neurobiology, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Bano Qaladize
- Departments of Ophthalmology and Anatomy and Neurobiology, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Richard Grambergs
- Departments of Ophthalmology and Anatomy and Neurobiology, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Nora P Rotstein
- Instituto de Investigaciones Bioquímicas de Bahía Blanca (INIBIBB), Departamento De Biología, Bioquímica y Farmacia, Universidad Nacional del Sur (UNS), Argentine National Research Council (CONICET), Bahía Blanca, Argentina.
| | - Nawajes Mandal
- Departments of Ophthalmology and Anatomy and Neurobiology, University of Tennessee Health Science Center, Memphis, TN, USA.
| |
Collapse
|
25
|
Mandal N, Grambergs R, Mondal K, Basu SK, Tahia F, Dagogo-Jack S. Role of ceramides in the pathogenesis of diabetes mellitus and its complications. J Diabetes Complications 2021; 35:107734. [PMID: 33268241 PMCID: PMC8663915 DOI: 10.1016/j.jdiacomp.2020.107734] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 08/24/2020] [Accepted: 08/24/2020] [Indexed: 12/12/2022]
Abstract
Diabetes mellitus (DM) is a systemic metabolic disease that affects 463 million adults worldwide and is a leading cause of cardiovascular disease, blindness, nephropathy, peripheral neuropathy, and lower-limb amputation. Lipids have long been recognized as contributors to the pathogenesis and pathophysiology of DM and its complications, but recent discoveries have highlighted ceramides, a class of bioactive sphingolipids with cell signaling and second messenger capabilities, as particularly important contributors to insulin resistance and the underlying mechanisms of DM complications. Besides their association with insulin resistance and pathophysiology of type 2 diabetes, evidence is emerging that certain species of ceramides are mediators of cellular mechanisms involved in the initiation and progression of microvascular and macrovascular complications of DM. Advances in our understanding of these associations provide unique opportunities for exploring ceramide species as potential novel therapeutic targets and biomarkers. This review discusses the links between ceramides and the pathogenesis of DM and diabetic complications and identifies opportunities for novel discoveries and applications.
Collapse
Affiliation(s)
- Nawajes Mandal
- The University of Tennessee Health Science Center, Department of Ophthalmology, Memphis, TN 38163, USA.; The University of Tennessee Health Science Center, Department of Anatomy and Neurobiology, Memphis, TN 38163, USA..
| | - Richard Grambergs
- The University of Tennessee Health Science Center, Department of Ophthalmology, Memphis, TN 38163, USA
| | - Koushik Mondal
- The University of Tennessee Health Science Center, Department of Ophthalmology, Memphis, TN 38163, USA
| | - Sandip K Basu
- The University of Tennessee Health Science Center, Department of Ophthalmology, Memphis, TN 38163, USA
| | - Faiza Tahia
- The University of Tennessee Health Science Center, Department of Ophthalmology, Memphis, TN 38163, USA.; The University of Tennessee Health Science Center, Department of Pharmaceutical Sciences, College of Pharmacy, Memphis, TN 38163, USA
| | - Sam Dagogo-Jack
- The University of Tennessee Health Science Center, Division of Endocrinology, Memphis, TN 38163, USA.; The University of Tennessee Health Science Center, Clinical Research Center, Memphis, TN 38163, USA..
| |
Collapse
|
26
|
Becker S, Carroll LS, Vinberg F. Diabetic photoreceptors: Mechanisms underlying changes in structure and function. Vis Neurosci 2020; 37:E008. [PMID: 33019947 PMCID: PMC8694110 DOI: 10.1017/s0952523820000097] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Based on clinical findings, diabetic retinopathy (DR) has traditionally been defined as a retinal microvasculopathy. Retinal neuronal dysfunction is now recognized as an early event in the diabetic retina before development of overt DR. While detrimental effects of diabetes on the survival and function of inner retinal cells, such as retinal ganglion cells and amacrine cells, are widely recognized, evidence that photoreceptors in the outer retina undergo early alterations in diabetes has emerged more recently. We review data from preclinical and clinical studies demonstrating a conserved reduction of electrophysiological function in diabetic retinas, as well as evidence for photoreceptor loss. Complementing in vivo studies, we discuss the ex vivo electroretinography technique as a useful method to investigate photoreceptor function in isolated retinas from diabetic animal models. Finally, we consider the possibility that early photoreceptor pathology contributes to the progression of DR, and discuss possible mechanisms of photoreceptor damage in the diabetic retina, such as enhanced production of reactive oxygen species and other inflammatory factors whose detrimental effects may be augmented by phototransduction.
Collapse
Affiliation(s)
- Silke Becker
- John A. Moran Eye Center, University of Utah, Salt Lake City, Utah
| | - Lara S Carroll
- John A. Moran Eye Center, University of Utah, Salt Lake City, Utah
| | - Frans Vinberg
- John A. Moran Eye Center, University of Utah, Salt Lake City, Utah
| |
Collapse
|
27
|
Rong R, Xia X, Peng H, Li H, You M, Liang Z, Yao F, Yao X, Xiong K, Huang J, Zhou R, Ji D. Cdk5-mediated Drp1 phosphorylation drives mitochondrial defects and neuronal apoptosis in radiation-induced optic neuropathy. Cell Death Dis 2020; 11:720. [PMID: 32883957 PMCID: PMC7473761 DOI: 10.1038/s41419-020-02922-y] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 08/22/2020] [Accepted: 08/24/2020] [Indexed: 12/14/2022]
Abstract
Radiation-induced optic neuropathy (RION) is a devastating complication following external beam radiation therapy (EBRT) that leads to acute vision loss. To date, no efficient, available treatment for this complication, due partly to the lack of understanding regarding the developmental processes behind RION. Here, we report radiation caused changes in mitochondrial dynamics by regulating the mitochondrial fission proteins dynamin-related protein 1 (Drp1) and fission-1 (Fis1). Concurrent with an excessive production of reactive oxygen species (ROS), both neuronal injury and visual dysfunction resulted. Further, our findings delineate an important mechanism by which cyclin-dependent kinase 5 (Cdk5)-mediated phosphorylation of Drp1 (Ser616) regulates defects in mitochondrial dynamics associated with neuronal injury in the development of RION. Both the pharmacological inhibition of Cdk5 by roscovitine and the inhibition of Drp1 by mdivi-1 inhibited mitochondrial fission and the production of ROS associated with radiation-induced neuronal loss. Taken together, these findings may have clinical significance in preventing the development of RION.
Collapse
Affiliation(s)
- Rong Rong
- Eye Center of Xiangya Hospital, Central South University, 410008, Changsha, Hunan, P.R. China
- Hunan Key Laboratory of Ophthalmology, 410008, Changsha, Hunan, P.R. China
| | - Xiaobo Xia
- Eye Center of Xiangya Hospital, Central South University, 410008, Changsha, Hunan, P.R. China
- Hunan Key Laboratory of Ophthalmology, 410008, Changsha, Hunan, P.R. China
| | - Haiqin Peng
- Department of Oncology, Xiangya Hospital, Central South University, 410008, Changsha, Hunan, P.R. China
| | - Haibo Li
- Eye Center of Xiangya Hospital, Central South University, 410008, Changsha, Hunan, P.R. China
- Hunan Key Laboratory of Ophthalmology, 410008, Changsha, Hunan, P.R. China
| | - Mengling You
- Eye Center of Xiangya Hospital, Central South University, 410008, Changsha, Hunan, P.R. China
- Hunan Key Laboratory of Ophthalmology, 410008, Changsha, Hunan, P.R. China
| | - Zhuotao Liang
- Department of Spine Surgery, Xiangya Hospital, Central South University, 410008, Changsha, Hunan, P.R. China
| | - Fei Yao
- Eye Center of Xiangya Hospital, Central South University, 410008, Changsha, Hunan, P.R. China
- Hunan Key Laboratory of Ophthalmology, 410008, Changsha, Hunan, P.R. China
| | - Xueyan Yao
- Eye Center of Xiangya Hospital, Central South University, 410008, Changsha, Hunan, P.R. China
- Hunan Key Laboratory of Ophthalmology, 410008, Changsha, Hunan, P.R. China
| | - Kun Xiong
- Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Central South University, 410008, Changsha, Hunan, P.R. China
| | - Jufang Huang
- Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Central South University, 410008, Changsha, Hunan, P.R. China
| | - Rongrong Zhou
- Department of Oncology, Xiangya Hospital, Central South University, 410008, Changsha, Hunan, P.R. China.
| | - Dan Ji
- Eye Center of Xiangya Hospital, Central South University, 410008, Changsha, Hunan, P.R. China.
- Hunan Key Laboratory of Ophthalmology, 410008, Changsha, Hunan, P.R. China.
| |
Collapse
|
28
|
Schnichels S, Paquet-Durand F, Löscher M, Tsai T, Hurst J, Joachim SC, Klettner A. Retina in a dish: Cell cultures, retinal explants and animal models for common diseases of the retina. Prog Retin Eye Res 2020; 81:100880. [PMID: 32721458 DOI: 10.1016/j.preteyeres.2020.100880] [Citation(s) in RCA: 77] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Revised: 06/23/2020] [Accepted: 06/26/2020] [Indexed: 12/11/2022]
Abstract
For many retinal diseases, including age-related macular degeneration (AMD), glaucoma, and diabetic retinopathy (DR), the exact pathogenesis is still unclear. Moreover, the currently available therapeutic options are often unsatisfactory. Research designed to remedy this situation heavily relies on experimental animals. However, animal models often do not faithfully reproduce human disease and, currently, there is strong pressure from society to reduce animal research. Overall, this creates a need for improved disease models to understand pathologies and develop treatment options that, at the same time, require fewer or no experimental animals. Here, we review recent advances in the field of in vitro and ex vivo models for AMD, glaucoma, and DR. We highlight the difficulties associated with studies on complex diseases, in which both the initial trigger and the ensuing pathomechanisms are unclear, and then delineate which model systems are optimal for disease modelling. To this end, we present a variety of model systems, ranging from primary cell cultures, over organotypic cultures and whole eye cultures, to animal models. Specific advantages and disadvantages of such models are discussed, with a special focus on their relevance to putative in vivo disease mechanisms. In many cases, a replacement of in vivo research will mean that several different in vitro models are used in conjunction, for instance to analyze and validate causative molecular pathways. Finally, we argue that the analytical decomposition into appropriate cell and tissue model systems will allow making significant progress in our understanding of complex retinal diseases and may furthermore advance the treatment testing.
Collapse
Affiliation(s)
- Sven Schnichels
- University Eye Hospital, Centre for Ophthalmology, University of Tübingen, Germany.
| | - François Paquet-Durand
- Institute for Ophthalmic Research, Centre for Ophthalmology, University of Tübingen, Germany
| | - Marina Löscher
- University Eye Hospital, Centre for Ophthalmology, University of Tübingen, Germany
| | - Teresa Tsai
- Experimental Eye Research Institute, University Eye Hospital, Ruhr-University Bochum, Germany
| | - José Hurst
- University Eye Hospital, Centre for Ophthalmology, University of Tübingen, Germany
| | - Stephanie C Joachim
- Experimental Eye Research Institute, University Eye Hospital, Ruhr-University Bochum, Germany
| | - Alexa Klettner
- Department of Ophthalmology, University Medical Center, University of Kiel, Kiel, Germany
| |
Collapse
|
29
|
Levitsky Y, Hammer SS, Fisher KP, Huang C, Gentles TL, Pegouske DJ, Xi C, Lydic TA, Busik JV, Proshlyakov DA. Mitochondrial Ceramide Effects on the Retinal Pigment Epithelium in Diabetes. Int J Mol Sci 2020; 21:E3830. [PMID: 32481596 PMCID: PMC7312467 DOI: 10.3390/ijms21113830] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 05/24/2020] [Accepted: 05/26/2020] [Indexed: 12/15/2022] Open
Abstract
Mitochondrial damage in the cells comprising inner (retinal endothelial cells) and outer (retinal pigment epithelium (RPE)) blood-retinal barriers (BRB) is known to precede the initial BRB breakdown and further histopathological abnormalities in diabetic retinopathy (DR). We previously demonstrated that activation of acid sphingomyelinase (ASM) is an important early event in the pathogenesis of DR, and recent studies have demonstrated that there is an intricate connection between ceramide and mitochondrial function. This study aimed to determine the role of ASM-dependent mitochondrial ceramide accumulation in diabetes-induced RPE cell damage. Mitochondria isolated from streptozotocin (STZ)-induced diabetic rat retinas (7 weeks duration) showed a 1.64 ± 0.29-fold increase in the ceramide-to-sphingomyelin ratio compared to controls. Conversely, the ceramide-to-sphingomyelin ratio was decreased in the mitochondria isolated from ASM-knockout mouse retinas compared to wild-type littermates, confirming the role of ASM in mitochondrial ceramide production. Cellular ceramide was elevated 2.67 ± 1.07-fold in RPE cells derived from diabetic donors compared to control donors, and these changes correlated with increased gene expression of IL-1β, IL-6, and ASM. Treatment of RPE cells derived from control donors with high glucose resulted in elevated ASM, vascular endothelial growth factor (VEGF), and intercellular adhesion molecule 1 (ICAM-1) mRNA. RPE from diabetic donors showed fragmented mitochondria and a 2.68 ± 0.66-fold decreased respiratory control ratio (RCR). Treatment of immortalized cell in vision research (ARPE-19) cells with high glucose resulted in a 25% ± 1.6% decrease in citrate synthase activity at 72 h. Inhibition of ASM with desipramine (15 μM, 1 h daily) abolished the decreases in metabolic functional parameters. Our results are consistent with diabetes-induced increase in mitochondrial ceramide through an ASM-dependent pathway leading to impaired mitochondrial function in the RPE cells of the retina.
Collapse
Affiliation(s)
- Yan Levitsky
- Department of Physiology, Michigan State University, East Lansing, MI 48824, USA; (Y.L.); (S.S.H.); (K.P.F.); (C.H.); (T.L.G.); (T.A.L.)
- Department of Chemistry, Michigan State University, East Lansing, MI 48824, USA; (D.J.P.); (C.X.)
| | - Sandra S. Hammer
- Department of Physiology, Michigan State University, East Lansing, MI 48824, USA; (Y.L.); (S.S.H.); (K.P.F.); (C.H.); (T.L.G.); (T.A.L.)
| | - Kiera P. Fisher
- Department of Physiology, Michigan State University, East Lansing, MI 48824, USA; (Y.L.); (S.S.H.); (K.P.F.); (C.H.); (T.L.G.); (T.A.L.)
| | - Chao Huang
- Department of Physiology, Michigan State University, East Lansing, MI 48824, USA; (Y.L.); (S.S.H.); (K.P.F.); (C.H.); (T.L.G.); (T.A.L.)
| | - Travan L. Gentles
- Department of Physiology, Michigan State University, East Lansing, MI 48824, USA; (Y.L.); (S.S.H.); (K.P.F.); (C.H.); (T.L.G.); (T.A.L.)
| | - David J. Pegouske
- Department of Chemistry, Michigan State University, East Lansing, MI 48824, USA; (D.J.P.); (C.X.)
| | - Caimin Xi
- Department of Chemistry, Michigan State University, East Lansing, MI 48824, USA; (D.J.P.); (C.X.)
| | - Todd A. Lydic
- Department of Physiology, Michigan State University, East Lansing, MI 48824, USA; (Y.L.); (S.S.H.); (K.P.F.); (C.H.); (T.L.G.); (T.A.L.)
| | - Julia V. Busik
- Department of Physiology, Michigan State University, East Lansing, MI 48824, USA; (Y.L.); (S.S.H.); (K.P.F.); (C.H.); (T.L.G.); (T.A.L.)
| | - Denis A. Proshlyakov
- Department of Chemistry, Michigan State University, East Lansing, MI 48824, USA; (D.J.P.); (C.X.)
| |
Collapse
|
30
|
Sinha T, Ikelle L, Naash MI, Al-Ubaidi MR. The Intersection of Serine Metabolism and Cellular Dysfunction in Retinal Degeneration. Cells 2020; 9:cells9030674. [PMID: 32164325 PMCID: PMC7140600 DOI: 10.3390/cells9030674] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 03/05/2020] [Accepted: 03/06/2020] [Indexed: 12/14/2022] Open
Abstract
In the past, the importance of serine to pathologic or physiologic anomalies was inadequately addressed. Omics research has significantly advanced in the last two decades, and metabolomic data of various tissues has finally brought serine metabolism to the forefront of metabolic research, primarily for its varied role throughout the central nervous system. The retina is one of the most complex neuronal tissues with a multitude of functions. Although recent studies have highlighted the importance of free serine and its derivatives to retinal homeostasis, currently few reviews exist that comprehensively analyze the topic. Here, we address this gap by emphasizing how and why the de novo production and demand for serine is exceptionally elevated in the retina. Many basic physiological functions of the retina require serine. Serine-derived sphingolipids and phosphatidylserine for phagocytosis by the retinal pigment epithelium (RPE) and neuronal crosstalk of the inner retina via D-serine require proper serine metabolism. Moreover, serine is involved in sphingolipid–ceramide balance for both the outer retina and the RPE and the reductive currency generation for the RPE via serine biosynthesis. Finally and perhaps the most vital part of serine metabolism is free radical scavenging in the entire retina via serine-derived scavengers like glycine and GSH. It is hard to imagine that a single tissue could have such a broad and extensive dependency on serine homeostasis. Any dysregulation in serine mechanisms can result in a wide spectrum of retinopathies. Therefore, most critically, this review provides a strong argument for the exploration of serine-based clinical interventions for retinal pathologies.
Collapse
Affiliation(s)
| | | | - Muna I. Naash
- Correspondence: (M.I.N.); (M.R.A.-U.); Tel.: +1-713-743-1651 (M.I.N.); Fax: +1-713-743-0226 (M.I.N.)
| | - Muayyad R. Al-Ubaidi
- Correspondence: (M.I.N.); (M.R.A.-U.); Tel.: +1-713-743-1651 (M.I.N.); Fax: +1-713-743-0226 (M.I.N.)
| |
Collapse
|
31
|
Fu Z, Chen CT, Cagnone G, Heckel E, Sun Y, Cakir B, Tomita Y, Huang S, Li Q, Britton W, Cho SS, Kern TS, Hellström A, Joyal JS, Smith LE. Dyslipidemia in retinal metabolic disorders. EMBO Mol Med 2019; 11:e10473. [PMID: 31486227 PMCID: PMC6783651 DOI: 10.15252/emmm.201910473] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 06/10/2019] [Accepted: 08/15/2019] [Indexed: 12/24/2022] Open
Abstract
The light‐sensitive photoreceptors in the retina are extremely metabolically demanding and have the highest density of mitochondria of any cell in the body. Both physiological and pathological retinal vascular growth and regression are controlled by photoreceptor energy demands. It is critical to understand the energy demands of photoreceptors and fuel sources supplying them to understand neurovascular diseases. Retinas are very rich in lipids, which are continuously recycled as lipid‐rich photoreceptor outer segments are shed and reformed and dietary intake of lipids modulates retinal lipid composition. Lipids (as well as glucose) are fuel substrates for photoreceptor mitochondria. Dyslipidemia contributes to the development and progression of retinal dysfunction in many eye diseases. Here, we review photoreceptor energy demands with a focus on lipid metabolism in retinal neurovascular disorders.
Collapse
Affiliation(s)
- Zhongjie Fu
- Department of Ophthalmology, Harvard Medical School, Boston Children's Hospital, Boston, MA, USA.,Manton Center for Orphan Disease, Harvard Medical School, Boston Children's Hospital, Boston, MA, USA
| | - Chuck T Chen
- National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA
| | - Gael Cagnone
- Department of Pediatrics, Pharmacology and Ophthalmology, CHU Sainte-Justine Research Center, Université de Montréal, Montreal, QC, Canada.,Department of Pharmacology and Therapeutics, University of Montreal, Montreal, QC, Canada
| | - Emilie Heckel
- Department of Pediatrics, Pharmacology and Ophthalmology, CHU Sainte-Justine Research Center, Université de Montréal, Montreal, QC, Canada.,Department of Pharmacology and Therapeutics, University of Montreal, Montreal, QC, Canada
| | - Ye Sun
- Department of Ophthalmology, Harvard Medical School, Boston Children's Hospital, Boston, MA, USA
| | - Bertan Cakir
- Department of Ophthalmology, Harvard Medical School, Boston Children's Hospital, Boston, MA, USA
| | - Yohei Tomita
- Department of Ophthalmology, Harvard Medical School, Boston Children's Hospital, Boston, MA, USA
| | - Shuo Huang
- Department of Ophthalmology, Harvard Medical School, Boston Children's Hospital, Boston, MA, USA
| | - Qian Li
- Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - William Britton
- Department of Ophthalmology, Harvard Medical School, Boston Children's Hospital, Boston, MA, USA
| | - Steve S Cho
- Department of Ophthalmology, Harvard Medical School, Boston Children's Hospital, Boston, MA, USA
| | - Timothy S Kern
- Center for Translational Vision Research, Gavin Herbert Eye Institute, Irvine, CA, USA
| | - Ann Hellström
- Section for Ophthalmology, Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Göteborg, Sweden
| | - Jean-Sébastien Joyal
- Department of Pediatrics, Pharmacology and Ophthalmology, CHU Sainte-Justine Research Center, Université de Montréal, Montreal, QC, Canada.,Department of Pharmacology and Therapeutics, University of Montreal, Montreal, QC, Canada
| | - Lois Eh Smith
- Department of Ophthalmology, Harvard Medical School, Boston Children's Hospital, Boston, MA, USA
| |
Collapse
|
32
|
Simón MV, Prado Spalm FH, Vera MS, Rotstein NP. Sphingolipids as Emerging Mediators in Retina Degeneration. Front Cell Neurosci 2019; 13:246. [PMID: 31244608 PMCID: PMC6581011 DOI: 10.3389/fncel.2019.00246] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Accepted: 05/17/2019] [Indexed: 12/12/2022] Open
Abstract
The sphingolipids ceramide (Cer), sphingosine-1-phosphate (S1P), sphingosine (Sph), and ceramide-1-phosphate (C1P) are key signaling molecules that regulate major cellular functions. Their roles in the retina have gained increasing attention during the last decade since they emerge as mediators of proliferation, survival, migration, neovascularization, inflammation and death in retina cells. As exacerbation of these processes is central to retina degenerative diseases, they appear as crucial players in their progression. This review analyzes the functions of these sphingolipids in retina cell types and their possible pathological roles. Cer appears as a key arbitrator in diverse retinal pathologies; it promotes inflammation in endothelial and retina pigment epithelium (RPE) cells and its increase is a common feature in photoreceptor death in vitro and in animal models of retina degeneration; noteworthy, inhibiting Cer synthesis preserves photoreceptor viability and functionality. In turn, S1P acts as a double edge sword in the retina. It is essential for retina development, promoting the survival of photoreceptors and ganglion cells and regulating proliferation and differentiation of photoreceptor progenitors. However, S1P has also deleterious effects, stimulating migration of Müller glial cells, angiogenesis and fibrosis, contributing to the inflammatory scenario of proliferative retinopathies and age related macular degeneration (AMD). C1P, as S1P, promotes photoreceptor survival and differentiation. Collectively, the expanding role for these sphingolipids in the regulation of critical processes in retina cell types and in their dysregulation in retina degenerations makes them attractive targets for treating these diseases.
Collapse
Affiliation(s)
- M Victoria Simón
- Instituto de Investigaciones Bioquímicas de Bahía Blanca (INIBIBB), Departamento De Biología, Bioquímica y Farmacia, Universidad Nacional del Sur (UNS), Argentine National Research Council (CONICET), Bahía Blanca, Argentina
| | - Facundo H Prado Spalm
- Instituto de Investigaciones Bioquímicas de Bahía Blanca (INIBIBB), Departamento De Biología, Bioquímica y Farmacia, Universidad Nacional del Sur (UNS), Argentine National Research Council (CONICET), Bahía Blanca, Argentina
| | - Marcela S Vera
- Instituto de Investigaciones Bioquímicas de Bahía Blanca (INIBIBB), Departamento De Biología, Bioquímica y Farmacia, Universidad Nacional del Sur (UNS), Argentine National Research Council (CONICET), Bahía Blanca, Argentina
| | - Nora P Rotstein
- Instituto de Investigaciones Bioquímicas de Bahía Blanca (INIBIBB), Departamento De Biología, Bioquímica y Farmacia, Universidad Nacional del Sur (UNS), Argentine National Research Council (CONICET), Bahía Blanca, Argentina
| |
Collapse
|
33
|
Wilmott LA, Grambergs RC, Allegood JC, Lyons TJ, Mandal N. Analysis of sphingolipid composition in human vitreous from control and diabetic individuals. J Diabetes Complications 2019; 33:195-201. [PMID: 30630661 PMCID: PMC6368445 DOI: 10.1016/j.jdiacomp.2018.12.005] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Revised: 10/08/2018] [Accepted: 12/07/2018] [Indexed: 12/22/2022]
Abstract
OBJECTIVE Sphingolipids have a fundamental role in many cellular processes, and they have been implicated in insulin resistance and Diabetes Mellitus (DM) and its complications, including diabetic retinopathy (DR). Little is known about how bioactive sphingolipids relate to retinopathies in human DM. In this study, we analyzed the sphingolipid composition of type 2 diabetic (T2DM) and non-diabetic human vitreous samples. METHODS We conducted an observational study on post-mortem human vitreous samples from non-diabetic (Controls; n = 4; age: 71.6 ± 11.0 years, mean ± SD) and type 2 diabetic (T2DM; n = 9; age: 67.0 ± 9.2 years) donors to identify changes in sphingolipid composition. Samples were analyzed by a triple quadrupole mass spectrometer and individual sphingolipid species were identified and quantified using established protocols. RESULTS The total quantity (pmol/mg) of ceramide (Cer), lactosylceramide (Lac-Cer), and sphingomyelin (SM) were increased in type 2 diabetic vitreous samples. Among individual species, we found a general trend of increase in the longer chain species of ceramides, hexosylceramides (Hex-Cer), Lac-Cer, and SM. CONCLUSIONS This study shows the presence of measurable levels of sphingolipids in human vitreous. The results indicate changes in sphingolipid composition in the vitreous due to type 2 diabetes, which could be connected to the disease pathologies of the retina, retinal vessels, vitreous and the surrounding tissues.
Collapse
Affiliation(s)
- Lynda A Wilmott
- The University of Tennessee Health Science Center, Department of Ophthalmology, Memphis, TN 38163, USA
| | - Richard C Grambergs
- The University of Tennessee Health Science Center, Department of Ophthalmology, Memphis, TN 38163, USA
| | - Jeremy C Allegood
- Virginia Commonwealth University School of Medicine, Lipidomics Core, Department of Biochemistry and Molecular Biology, Richmond, VA 23298, USA
| | - Timothy J Lyons
- Medical University of South Carolina, Division of Endocrinology, Diabetes & Medical Genetics, Charleston, SC 29425, USA
| | - Nawajes Mandal
- The University of Tennessee Health Science Center, Department of Ophthalmology, Memphis, TN 38163, USA; The University of Tennessee Health Science Center, Department of Anatomy and Neurobiology, Memphis, TN 38163, USA; The University of Oklahoma Health Science Center, Department of Ophthalmology, Oklahoma City, OK 73104, USA.
| |
Collapse
|
34
|
Role of Bioactive Sphingolipids in Inflammation and Eye Diseases. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1161:149-167. [PMID: 31562629 DOI: 10.1007/978-3-030-21735-8_14] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Inflammation is a common underlying factor in a diversity of ocular diseases, ranging from macular degeneration, autoimmune uveitis, glaucoma, diabetic retinopathy and microbial infection. In addition to the variety of known cellular mediators of inflammation, such as cytokines, chemokines and lipid mediators, there is now considerable evidence that sphingolipid metabolites also play a central role in the regulation of inflammatory pathways. Various sphingolipid metabolites, such as ceramide (Cer), ceramide-1-phosphate (C1P), sphingosine-1-phosphate (S1P), and lactosylceramide (LacCer) can contribute to ocular inflammatory diseases through multiple pathways. For example, inflammation generates Cer from sphingomyelins (SM) in the plasma membrane, which induces death receptor ligand formation and leads to apoptosis of retinal pigment epithelial (RPE) and photoreceptor cells. Inflammatory stress by reactive oxygen species leads to LacCer accumulation and S1P secretion and induces proliferation of retinal endothelial cells and eventual formation of new vessels. In sphingolipid/lysosomal storage disorders, sphingolipid metabolites accumulate in lysosomes and can cause ocular disorders that have an inflammatory etiology. Sphingolipid metabolites activate complement factors in the immune-response mediated pathogenesis of macular degeneration. These examples highlight the integral association between sphingolipids and inflammation in ocular diseases.
Collapse
|
35
|
Inflammatory Ocular Diseases and Sphingolipid Signaling. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1159:139-152. [DOI: 10.1007/978-3-030-21162-2_8] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
36
|
Evaluation of serum sphingolipids and the influence of genetic risk factors in age-related macular degeneration. PLoS One 2018; 13:e0200739. [PMID: 30071029 PMCID: PMC6071970 DOI: 10.1371/journal.pone.0200739] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Accepted: 07/02/2018] [Indexed: 12/22/2022] Open
Abstract
Sphingolipids are bioactive molecules associated with oxidative stress, inflammation, and neurodegenerative diseases, but poorly studied in the context of age-related macular degeneration (AMD), a prevalent sight-threatening disease of the ageing retina. Here, we found higher serum levels of hexosylceramide (HexCer) d18:1/16:0 in patients with choroidal neovascularization (CNV) and geographic atrophy (GA), two manifestations of late stage AMD, and higher ceramide (Cer) d18:1/16:0 levels in GA patients. A sensitivity analysis of genetic variants known to be associated with late stage AMD showed that rs1061170 (p.Y402H) in the complement factor H (CFH) gene influences the association of Cer d18:1/16:0 with GA. To understand the possible influence of this genetic variant on ceramide levels, we established a cell-based assay to test the modulation of genes in the ceramide metabolism by factor H-like protein 1 (FHL-1), an alternative splicing variant of CFH that also harbors the 402 residue. We first showed that malondialdehyde-acetaldehyde adducts, an oxidation product commonly found in AMD retinas, induces an increase in ceramide levels in WERI-Rb1 cells in accordance with an increased expression of ceramide synthesis genes. Then, we observed that cells exposed to the non-risk FHL-1:Y402, but not the risk associated variant FHL-1:H402 or full-length CFH, downregulated ceramide synthase 2 and ceramide glucosyltransferase gene expression. Together, our findings show that serum ceramide and hexosylceramide species are altered in AMD patients and that ceramide levels may be influenced by AMD associated risk variants.
Collapse
|
37
|
Dai W, Miller WP, Toro AL, Black AJ, Dierschke SK, Feehan RP, Kimball SR, Dennis MD. Deletion of the stress-response protein REDD1 promotes ceramide-induced retinal cell death and JNK activation. FASEB J 2018; 32:fj201800413RR. [PMID: 29920218 PMCID: PMC6219834 DOI: 10.1096/fj.201800413rr] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The role of dyslipidemia in the development of retinal dysfunction remains poorly understood. Using an animal model of diet-induced obesity/pre-type 2 diabetes, we investigated molecular defects in the retina arising from consumption of a diet high in saturated fats and sugars ( i.e., a Western diet). We found that feeding mice a Western diet increased the abundance of retinal sphingolipids, attenuated protein kinase B (Akt) phosphorylation, enhanced JNK activation, and increased retinal cell death. When we used palmitate or C6-ceramide (Cer) to assess sphingolipid-mediated signaling in cultured murine and human cells, we observed similar effects on Akt, JNK, and cell death. Furthermore, both Western diet and C6-Cer exposure enhanced expression of the stress-response protein regulated in development and DNA damage response 1 (REDD1) and loss of REDD1 increased C6-Cer-induced JNK activation and cell death. Exogenous REDD1 expression repressed JNK-mediated phosphorylation in cultured cells. We found that thioredoxin-interacting protein (TXNIP) expression was elevated in REDD1-deficient cell lines and C6-Cer promoted TXNIP expression in both wild-type and REDD1-deficient cells. Likewise, TXNIP knockdown attenuated JNK activation and caspase 3 cleavage after either C6-Cer exposure or REDD1 deletion. The results support a model wherein Cer-induced REDD1 expression attenuates TXNIP-dependent JNK activation and retinal cell death.-Dai, W., Miller, W. P., Toro, A. L., Black, A. J., Dierschke, S. K., Feehan, R. P., Kimball, S. R., Dennis, M. D. Deletion of the stress-response protein REDD1 promotes ceramide-induced retinal cell death and JNK activation.
Collapse
Affiliation(s)
- Weiwei Dai
- Department of Cellular and Molecular Physiology, Penn State College of Medicine, Hershey, Pennsylvania, USA
| | - William P Miller
- Department of Cellular and Molecular Physiology, Penn State College of Medicine, Hershey, Pennsylvania, USA
| | - Allyson L Toro
- Department of Cellular and Molecular Physiology, Penn State College of Medicine, Hershey, Pennsylvania, USA
| | - Adam J Black
- Department of Cellular and Molecular Physiology, Penn State College of Medicine, Hershey, Pennsylvania, USA
| | - Sadie K Dierschke
- Department of Cellular and Molecular Physiology, Penn State College of Medicine, Hershey, Pennsylvania, USA
| | - Robert P Feehan
- Department of Cellular and Molecular Physiology, Penn State College of Medicine, Hershey, Pennsylvania, USA
| | - Scot R Kimball
- Department of Cellular and Molecular Physiology, Penn State College of Medicine, Hershey, Pennsylvania, USA
| | - Michael D Dennis
- Department of Cellular and Molecular Physiology, Penn State College of Medicine, Hershey, Pennsylvania, USA
| |
Collapse
|
38
|
Zhou Y, Men L, Pi Z, Wei M, Song F, Zhao C, Liu Z. Fecal Metabolomics of Type 2 Diabetic Rats and Treatment with Gardenia jasminoides Ellis Based on Mass Spectrometry Technique. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:1591-1599. [PMID: 29363305 DOI: 10.1021/acs.jafc.7b06082] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Modern studies have indicated Gardenia jasminoides Ellis (G. jasminoides) showed positive effect in treating type 2 diabetes mellitus (T2DM). In this study, 60 streptozotocin-induced T2DM rats were divided into four groups: type 2 diabetes control group, geniposide-treated group, total iridoid glycosides-treated group, and crude extraction of gardenlae fructus-treated group. The other ten healthy rats were the healthy control group. During 12 weeks of treatment, rat's feces samples were collected for the metabolomics study based on mass spectrometry technique. On the basis of the fecal metabolomics method, 19 potential biomarkers were screened and their relative intensities in each group were compared. The results revealed G. jasminoides mainly regulated dysfunctions in phenylalanine metabolism, tryptophan metabolism, and secondary bile acid biosynthesis pathways induced by diabetes. The current study provides new insight for metabonomics methodology toward T2DM, and the results show that feces can preferably reflect the liver and intestines disorders.
Collapse
Affiliation(s)
- Yuan Zhou
- School of Pharmaceutical Sciences, Jilin University , Changchun 130012, China
- Key Laboratory of Magnetic Resonance in Biological Systems, National Center for Magnetic Resonance in Wuhan, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences , Wuhan 430071, China
| | - Lihui Men
- School of Pharmaceutical Sciences, Jilin University , Changchun 130012, China
| | - Zifeng Pi
- National Center for Mass Spectrometry in Changchun & Jilin Province Key Laboratory of Chinese Medicine Chemistry and Mass Spectrometry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences , Changchun 130022, China
| | - Mengying Wei
- School of Pharmaceutical Sciences, Jilin University , Changchun 130012, China
| | - Fengrui Song
- National Center for Mass Spectrometry in Changchun & Jilin Province Key Laboratory of Chinese Medicine Chemistry and Mass Spectrometry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences , Changchun 130022, China
| | - Chunfang Zhao
- School of Pharmaceutical Sciences, Jilin University , Changchun 130012, China
| | - Zhiqiang Liu
- National Center for Mass Spectrometry in Changchun & Jilin Province Key Laboratory of Chinese Medicine Chemistry and Mass Spectrometry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences , Changchun 130022, China
| |
Collapse
|
39
|
Gardner TW, Sundstrom JM. A proposal for early and personalized treatment of diabetic retinopathy based on clinical pathophysiology and molecular phenotyping. Vision Res 2017; 139:153-160. [PMID: 28438679 DOI: 10.1016/j.visres.2017.03.006] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Revised: 03/16/2017] [Accepted: 03/20/2017] [Indexed: 01/23/2023]
Abstract
This paper presents a new approach to the prevention and treatment of early stage diabetic retinopathy before vision is severely impaired. This approach includes two major steps. The first step is to understand the mechanisms of vision impairment and classify diabetic retinopathy on the basis of pathophysiologic adaptations, rather than on the presence of advanced pathologic lesions, as defined by current clinical practice conventions. The second step is to develop patient-specific molecular diagnoses of diabetic retinopathy so that patients can be treated based on their individual characteristics, a process analogous to the individualized diagnosis and treatment of cancer patients. This step is illustrated by proteomic analysis of vitreous fluid that reveals evidence of neuroretinal degeneration and inflammation, as well as vascular proliferation. Together, these steps may lead to improved means to preserve vision in the ever-increasing number of patients with diabetes worldwide.
Collapse
Affiliation(s)
- Thomas W Gardner
- Kellogg Eye Center, University of Michigan Medical School, 1000 Wall Street, Ann Arbor, MI 48105, United States.
| | - Jeffrey M Sundstrom
- Penn State Hershey Eye Center, Penn State College of Medicine, 500 University Drive, HU19, Hershey, PA 17033, United States.
| |
Collapse
|
40
|
Hammer SS, Busik JV. The role of dyslipidemia in diabetic retinopathy. Vision Res 2017; 139:228-236. [PMID: 28545981 DOI: 10.1016/j.visres.2017.04.010] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Revised: 04/06/2017] [Accepted: 04/13/2017] [Indexed: 02/08/2023]
Abstract
Diabetic retinopathy (DR) affects over 93million people worldwide and is the number one cause of blindness among working age adults. These indicators coupled with the projected rise of patients diagnosed with diabetes, makes DR a serious and prevalent vision threating disease. Data from recent clinical trials demonstrate that in addition to the well accepted role of hyperglycemia, dyslipidemia is an important, but often overlooked factor in the development of DR. The central aim of this review article is to showcase the critical role of dyslipidemia in DR progression as well as highlight novel therapeutic solutions that take advantage of the vital roles lipid metabolism plays in DR progression.
Collapse
Affiliation(s)
- Sandra S Hammer
- Department of Physiology, Michigan State University, East Lansing, MI, United States
| | - Julia V Busik
- Department of Physiology, Michigan State University, East Lansing, MI, United States.
| |
Collapse
|
41
|
Gardner TW, Davila JR. The neurovascular unit and the pathophysiologic basis of diabetic retinopathy. Graefes Arch Clin Exp Ophthalmol 2016; 255:1-6. [PMID: 27832340 DOI: 10.1007/s00417-016-3548-y] [Citation(s) in RCA: 126] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Revised: 10/25/2016] [Accepted: 10/31/2016] [Indexed: 01/17/2023] Open
Abstract
PURPOSE To relate the concept of the retinal neurovascular unit and its alterations in diabetes to the pathophysiology of diabetic retinopathy. METHODS Case illustrations and conceptual frameworks are presented that illustrate adaptive and maladaptive "dis-integration" of the retinal neurovascular unit with the progression of diabetes. RESULTS Retinopathy treatment should address pathophysiologic processes rather than pathologic lesions as is current practice. CONCLUSIONS Future improvements in the treatment of diabetic retinopathy requires deeper understanding of the cellular and molecular changes induced by diabetes, coupled with the use of quantitative phenotyping methods that assess the pathophysiologic processes.
Collapse
Affiliation(s)
- Thomas W Gardner
- Department of Ophthalmology and Visual Sciences, W.K. Kellogg Eye Center, University of Michigan Medical School, 1000 Wall St, Ann Arbor, MI, 48105, USA.
| | - Jose R Davila
- Department of Ophthalmology and Visual Sciences, W.K. Kellogg Eye Center, University of Michigan Medical School, 1000 Wall St, Ann Arbor, MI, 48105, USA
| |
Collapse
|
42
|
Kamat SG, Roy R. Evaluation of the effect of n-3 PUFA-rich dietary fish oils on lipid profile and membrane fluidity in alloxan-induced diabetic mice (Mus musculus). Mol Cell Biochem 2016; 416:117-29. [PMID: 27101827 DOI: 10.1007/s11010-016-2701-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Accepted: 04/06/2016] [Indexed: 02/02/2023]
Abstract
Marine fishes are important to health due to their high content of polyunsaturated fatty acids particularly those of the omega-3 family. These fatty acids play an important role in various physiological processes and as a consequence they may modulate and even prevent some human diseases. The aim of the present study was to investigate and compare the effect of fish oils of different origins (Sardinella longiceps, Rastrelliger kanagurta and Clarias batrachus) on lipid metabolism and membrane fluidity in diabetes. Alloxan was injected in repetitive doses for 1 month (100 mg/kg body weight every 5th day) to induce diabetes in Swiss albino mice. 10 % S. longiceps, R. kanagurta or C. batrachus fish oil was freshly blended with pellet feed which was provided to diabetic mice for 1 month. The serum lipid profile (serum total cholesterol, triglyceride, HDL, VLDL and LDL) along with liver, kidney and heart tissue lipid profile (i.e. triglyceride, total cholesterol, glycolipid and phospholipid) was analysed. Besides, the enzymatic activity of HMG-CoA reductase, HMG-CoA synthase and glucose-6-phosphate-dehydrogenase along with the membrane fluidity of these tissues was evaluated. Altered tissue lipid composition, enzyme activities and membrane fluidity due to diabetes were returned towards normal with the supplementation of 10 % fish oils. Fish oil from S. longiceps brought maximum changes in level of neutral lipid composition in heart, and increased the concentration of phospholipid and decreased the activity of HMG-CoA reductase in comparison with the fish oil from R. kanagurta and C. batrachus.
Collapse
Affiliation(s)
| | - Ramaballav Roy
- Department of Zoology, Goa University, Taleigao Plateau, Goa, 403206, India.
| |
Collapse
|
43
|
Novgorodov SA, Riley CL, Yu J, Keffler JA, Clarke CJ, Van Laer AO, Baicu CF, Zile MR, Gudz TI. Lactosylceramide contributes to mitochondrial dysfunction in diabetes. J Lipid Res 2016; 57:546-62. [PMID: 26900161 PMCID: PMC4808764 DOI: 10.1194/jlr.m060061] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2015] [Revised: 02/16/2016] [Indexed: 02/02/2023] Open
Abstract
Sphingolipids have been implicated as key mediators of cell-stress responses and effectors of mitochondrial function. To investigate potential mechanisms underlying mitochondrial dysfunction, an important contributor to diabetic cardiomyopathy, we examined alterations of cardiac sphingolipid metabolism in a mouse with streptozotocin-induced type 1 diabetes. Diabetes increased expression of desaturase 1, (dihydro)ceramide synthase (CerS)2, serine palmitoyl transferase 1, and the rate of ceramide formation by mitochondria-resident CerSs, indicating an activation of ceramide biosynthesis. However, the lack of an increase in mitochondrial ceramide suggests concomitant upregulation of ceramide-metabolizing pathways. Elevated levels of lactosylceramide, one of the initial products in the formation of glycosphingolipids were accompanied with decreased respiration and calcium retention capacity (CRC) in mitochondria from diabetic heart tissue. In baseline mitochondria, lactosylceramide potently suppressed state 3 respiration and decreased CRC, suggesting lactosylceramide as the primary sphingolipid responsible for mitochondrial defects in diabetic hearts. Moreover, knocking down the neutral ceramidase (NCDase) resulted in an increase in lactosylceramide level, suggesting a crosstalk between glucosylceramide synthase- and NCDase-mediated ceramide utilization pathways. These data suggest the glycosphingolipid pathway of ceramide metabolism as a promising target to correct mitochondrial abnormalities associated with type 1 diabetes.
Collapse
Affiliation(s)
- Sergei A Novgorodov
- Departments of Neuroscience Medical University of South Carolina, Charleston, SC 29425
| | | | - Jin Yu
- Departments of Neuroscience Medical University of South Carolina, Charleston, SC 29425
| | - Jarryd A Keffler
- Departments of Neuroscience Medical University of South Carolina, Charleston, SC 29425
| | | | - An O Van Laer
- Ralph H. Johnson Veteran Affairs Medical Center, Charleston, SC 29401 Medicine, Medical University of South Carolina, Charleston, SC 29425
| | - Catalin F Baicu
- Ralph H. Johnson Veteran Affairs Medical Center, Charleston, SC 29401 Medicine, Medical University of South Carolina, Charleston, SC 29425
| | - Michael R Zile
- Ralph H. Johnson Veteran Affairs Medical Center, Charleston, SC 29401 Medicine, Medical University of South Carolina, Charleston, SC 29425
| | - Tatyana I Gudz
- Departments of Neuroscience Medical University of South Carolina, Charleston, SC 29425 Ralph H. Johnson Veteran Affairs Medical Center, Charleston, SC 29401
| |
Collapse
|
44
|
Chakravarthy H, Beli E, Navitskaya S, O’Reilly S, Wang Q, Kady N, Huang C, Grant MB, Busik JV. Imbalances in Mobilization and Activation of Pro-Inflammatory and Vascular Reparative Bone Marrow-Derived Cells in Diabetic Retinopathy. PLoS One 2016; 11:e0146829. [PMID: 26760976 PMCID: PMC4711951 DOI: 10.1371/journal.pone.0146829] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Accepted: 12/22/2015] [Indexed: 12/30/2022] Open
Abstract
Diabetic retinopathy is a sight-threatening complication of diabetes, affecting 65% of patients after 10 years of the disease. Diabetic metabolic insult leads to chronic low-grade inflammation, retinal endothelial cell loss and inadequate vascular repair. This is partly due to bone marrow (BM) pathology leading to increased activity of BM-derived pro-inflammatory monocytes and impaired function of BM-derived reparative circulating angiogenic cells (CACs). We propose that diabetes has a significant long-term effect on the nature and proportion of BM-derived cells that circulate in the blood, localize to the retina and home back to their BM niche. Using a streptozotocin mouse model of diabetic retinopathy with GFP BM-transplantation, we have demonstrated that BM-derived circulating pro-inflammatory monocytes are increased in diabetes while reparative CACs are trapped in the BM and spleen, with impaired release into circulation. Diabetes also alters activation of splenocytes and BM-derived dendritic cells in response to LPS stimulation. A majority of the BM-derived GFP cells that migrate to the retina express microglial markers, while others express endothelial, pericyte and Müller cell markers. Diabetes significantly increases infiltration of BM-derived microglia in an activated state, while reducing infiltration of BM-derived endothelial progenitor cells in the retina. Further, control CACs injected into the vitreous are very efficient at migrating back to their BM niche, whereas diabetic CACs have lost this ability, indicating that the in vivo homing efficiency of diabetic CACs is dramatically decreased. Moreover, diabetes causes a significant reduction in expression of specific integrins regulating CAC migration. Collectively, these findings indicate that BM pathology in diabetes could play a role in both increased pro-inflammatory state and inadequate vascular repair contributing to diabetic retinopathy.
Collapse
Affiliation(s)
- Harshini Chakravarthy
- Department of Physiology, Michigan State University, East Lansing, Michigan, United States of America
| | - Eleni Beli
- Department of Ophthalmology, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
| | - Svetlana Navitskaya
- Department of Physiology, Michigan State University, East Lansing, Michigan, United States of America
| | - Sandra O’Reilly
- Department of Physiology, Michigan State University, East Lansing, Michigan, United States of America
| | - Qi Wang
- Department of Physiology, Michigan State University, East Lansing, Michigan, United States of America
| | - Nermin Kady
- Department of Physiology, Michigan State University, East Lansing, Michigan, United States of America
| | - Chao Huang
- Department of Physiology, Michigan State University, East Lansing, Michigan, United States of America
| | - Maria B. Grant
- Department of Ophthalmology, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
| | - Julia V. Busik
- Department of Physiology, Michigan State University, East Lansing, Michigan, United States of America
- * E-mail:
| |
Collapse
|
45
|
Chakravarthy H, Navitskaya S, O'Reilly S, Gallimore J, Mize H, Beli E, Wang Q, Kady N, Huang C, Blanchard GJ, Grant MB, Busik JV. Role of Acid Sphingomyelinase in Shifting the Balance Between Proinflammatory and Reparative Bone Marrow Cells in Diabetic Retinopathy. Stem Cells 2016; 34:972-83. [PMID: 26676316 DOI: 10.1002/stem.2259] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2015] [Revised: 10/31/2015] [Accepted: 11/12/2015] [Indexed: 12/20/2022]
Abstract
The metabolic insults associated with diabetes lead to low-grade chronic inflammation, retinal endothelial cell damage, and inadequate vascular repair. This is partly due to the increased activation of bone marrow (BM)-derived proinflammatory monocytes infiltrating the retina, and the compromised function of BM-derived reparative circulating angiogenic cells (CACs), which home to sites of endothelial injury and foster vascular repair. We now propose that a metabolic link leading to activated monocytes and dysfunctional CACs in diabetes involves upregulation of a central enzyme of sphingolipid signaling, acid sphingomyelinase (ASM). Selective inhibition of ASM in the BM prevented diabetes-induced activation of BM-derived microglia-like cells and normalized proinflammatory cytokine levels in the retina. ASM upregulation in diabetic CACs caused accumulation of ceramide on their cell membrane, thereby reducing membrane fluidity and impairing CAC migration. Replacing sphingomyelin with ceramide in synthetic membrane vesicles caused a similar decrease in membrane fluidity. Inhibition of ASM in diabetic CACs improved membrane fluidity and homing of these cells to damaged retinal vessels. Collectively, these findings indicate that selective modulation of sphingolipid metabolism in BM-derived cell populations in diabetes normalizes the reparative/proinflammatory cell balance and can be explored as a novel therapeutic strategy for treating diabetic retinopathy.
Collapse
Affiliation(s)
| | - Svetlana Navitskaya
- Department of Physiology, Michigan State University, East Lansing, Michigan, USA
| | - Sandra O'Reilly
- Department of Physiology, Michigan State University, East Lansing, Michigan, USA
| | - Jacob Gallimore
- Department of Chemistry, Michigan State University, East Lansing, Michigan, USA
| | - Hannah Mize
- Department of Chemistry, Michigan State University, East Lansing, Michigan, USA
| | - Eleni Beli
- Department of Ophthalmology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Qi Wang
- Department of Physiology, Michigan State University, East Lansing, Michigan, USA
| | - Nermin Kady
- Department of Physiology, Michigan State University, East Lansing, Michigan, USA
| | - Chao Huang
- Department of Physiology, Michigan State University, East Lansing, Michigan, USA
| | - Gary J Blanchard
- Department of Chemistry, Michigan State University, East Lansing, Michigan, USA
| | - Maria B Grant
- Department of Ophthalmology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Julia V Busik
- Department of Physiology, Michigan State University, East Lansing, Michigan, USA
| |
Collapse
|
46
|
Kumar B, Kowluru A, Kowluru RA. Lipotoxicity augments glucotoxicity-induced mitochondrial damage in the development of diabetic retinopathy. Invest Ophthalmol Vis Sci 2015; 56:2985-92. [PMID: 26024084 DOI: 10.1167/iovs.15-16466] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
PURPOSE Although hyperglycemia is the main instigator in the development of diabetic retinopathy, dyslipidemia is also considered to play an important role. In the pathogenesis of diabetic retinopathy, cytosolic NADPH oxidase 2 (Nox2) is activated before retinal mitochondria are damaged. Our aim was to investigate the effect of lipids in the development of diabetic retinopathy. METHODS Reactive oxygen species (ROS, by 2',7'-dichlorofluorescein diacetate) and activities of Nox2 (by a lucigenin-based method) and Rac1 (by G-LISA) were quantified in retinal endothelial cells incubated with 50 μM palmitate in 5 mM glucose (lipotoxicity) or 20 mM glucose (glucolipotoxicity) for 6 to 96 hours. Mitochondrial DNA (mtDNA) damage was evaluated by extended-length PCR and its transcription by quantifying cytochrome b transcripts. RESULTS Within 6 hours of exposure of endothelial cells to lipotoxicity, or glucotoxicity (20 mM glucose, without palmitate), significant increase in ROS, Nox2, and Rac1 was observed, which was exacerbated by glucolipotoxic insult. At 48 hours, neither lipotoxicity nor glucotoxicity had any effect on mtDNA and its transcription, but glucolipotoxicity significantly damaged mtDNA and decreased cytochrome b transcripts, and at 96 hours, glucotoxicity and glucolipotoxicity produced similar detrimental effects on mitochondrial damage. CONCLUSIONS Although during initial exposure, lipotoxic or glucotoxic insult produces similar increase in ROS, addition of lipotoxicity in a glucotoxic environment further exacerbates ROS production, and also accelerates their damaging effects on mitochondrial homeostasis. Thus, modulation of Nox2 by pharmacological agents in prediabetic patients with dyslipidemia could retard the development of retinopathy before their hyperglycemia is observable.
Collapse
Affiliation(s)
- Binit Kumar
- Kresge Eye Institute Wayne State University, Detroit, Michigan, United States
| | - Anjan Kowluru
- Pharmaceutical Sciences, Wayne State University, Detroit, Michigan, United States 3ß-Cell Biochemistry Laboratory, John D. Dingell VA Medical Center, Detroit, Michigan, United States
| | - Renu A Kowluru
- Kresge Eye Institute Wayne State University, Detroit, Michigan, United States
| |
Collapse
|
47
|
Lydic TA, Busik JV, Reid GE. A monophasic extraction strategy for the simultaneous lipidome analysis of polar and nonpolar retina lipids. J Lipid Res 2014; 55:1797-809. [PMID: 24879804 DOI: 10.1194/jlr.d050302] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2014] [Indexed: 01/03/2023] Open
Abstract
Lipid extraction using a monophasic chloroform/methanol/water mixture, coupled with functional group selective derivatization and direct infusion nano-ESI-high-resolution/accurate MS, is shown to facilitate the simultaneous analysis of both highly polar and nonpolar lipids from a single retina lipid extract, including low abundance highly polar ganglioside lipids, nonpolar sphingolipids, and abundant glycerophospholipids. Quantitative comparison showed that the monophasic lipid extraction method yielded similar lipid distributions to those obtained from established "gold standard" biphasic lipid extraction methods known to enrich for either highly polar gangliosides or nonpolar lipids, respectively, with only modest relative ion suppression effects. This improved lipid extraction and analysis strategy therefore enables detailed lipidome analyses of lipid species across a broad range of polarities and abundances, from minimal amounts of biological samples and without need for multiple lipid class-specific extractions or chromatographic separation prior to analysis.
Collapse
Affiliation(s)
- Todd A Lydic
- Departments of Chemistry, Michigan State University, East Lansing, MI 48824
| | - Julia V Busik
- Physiology, Michigan State University, East Lansing, MI 48824
| | - Gavin E Reid
- Departments of Chemistry, Michigan State University, East Lansing, MI 48824 Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824
| |
Collapse
|
48
|
Abcouwer SF, Gardner TW. Diabetic retinopathy: loss of neuroretinal adaptation to the diabetic metabolic environment. Ann N Y Acad Sci 2014; 1311:174-90. [PMID: 24673341 DOI: 10.1111/nyas.12412] [Citation(s) in RCA: 177] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Diabetic retinopathy (DR) impairs vision of patients with type 1 and type 2 diabetes, associated with vascular dysfunction and occlusion, retinal edema, hemorrhage, and inappropriate growth of new blood vessels. The recent success of biologic treatments targeting vascular endothelial growth factor (VEGF) demonstrates that treating the vascular aspects in the later stages of the disease can preserve vision in many patients. It would also be highly desirable to prevent the onset of the disease or arrest its progression at a stage preceding the appearance of overt microvascular pathologies. The progression of DR is not necessarily linear but may follow a series of steps that evolve over the course of multiple years. Abundant data suggest that diabetes affects the entire neurovascular unit of the retina, with an early loss of neurovascular coupling, gradual neurodegeneration, gliosis, and neuroinflammation occurring before observable vascular pathologies. In this article, we consider the pathology of DR from the point of view that diabetes causes measurable dysfunctions in the complex integral network of cell types that produce and maintain human vision.
Collapse
Affiliation(s)
- Steven F Abcouwer
- Department of Ophthalmology and Visual Sciences, University of Michigan Kellogg Eye Center, Ann Arbor, Michigan
| | | |
Collapse
|
49
|
Chan AY, Mann SN, Chen H, Stone DU, Carr DJJ, Mandal NA. Sphingolipids in ocular inflammation. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2014; 801:623-9. [PMID: 24664751 DOI: 10.1007/978-1-4614-3209-8_78] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Sphingolipids are essential to cell membrane structure and the development and maintenance of neural tissues. The role of bioactive sphingolipids has been established in numerous cellular events, including cell survival, growth, and apoptosis. Ocular inflammatory and autoimmune diseases involve activation and migration of endothelial cells, neovascularization, and infiltration of immune cells into various tissues. Clinically, the impact and role of sphingolipid-mediated signaling is increasingly being appreciated in the pathogenesis and treatment of diseases ranging from multiple sclerosis to neovascularization in age-related macular degeneration and diabetic retinopathy. In this review, we discuss our current knowledge and understanding of sphingolipid metabolism and signaling associated with the pathogenesis of ocular diseases.
Collapse
Affiliation(s)
- Annie Y Chan
- Department of Ophthalmology, OUHSC, Oklahoma City, OK, USA,
| | | | | | | | | | | |
Collapse
|
50
|
Chen H, Chan AY, Stone DU, Mandal NA. Beyond the cherry-red spot: Ocular manifestations of sphingolipid-mediated neurodegenerative and inflammatory disorders. Surv Ophthalmol 2013; 59:64-76. [PMID: 24011710 DOI: 10.1016/j.survophthal.2013.02.005] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2011] [Revised: 02/06/2013] [Accepted: 02/12/2013] [Indexed: 01/05/2023]
Abstract
Sphingolipids are a ubiquitous membrane lipid present in every cell and found most abundantly in neural tissues. Disorders such as Tay-Sachs or Niemann-Pick disease are the most familiar examples of dysfunction in sphingolipid metabolism and are typically associated with neurodegeneration and ocular findings such as blindness. More recently, the role of bioactive sphingolipids has been established in a multitude of cellular events, including cell survival, growth, senescence and apoptosis, inflammation, and neovascularization. We discuss our current knowledge and understanding of sphingolipid metabolism and signaling in the pathogenesis of ocular diseases.
Collapse
Affiliation(s)
- Hui Chen
- Department of Ophthalmology, University of Oklahoma Health Sciences Center (OUHSC), Oklahoma City, Oklahoma, USA.,Dean A. McGee Eye Institute, Oklahoma City, Oklahoma, USA
| | - Annie Y Chan
- Department of Ophthalmology, University of Oklahoma Health Sciences Center (OUHSC), Oklahoma City, Oklahoma, USA.,Dean A. McGee Eye Institute, Oklahoma City, Oklahoma, USA
| | - Donald U Stone
- Department of Ophthalmology, University of Oklahoma Health Sciences Center (OUHSC), Oklahoma City, Oklahoma, USA.,Dean A. McGee Eye Institute, Oklahoma City, Oklahoma, USA
| | - Nawajes A Mandal
- Department of Ophthalmology, University of Oklahoma Health Sciences Center (OUHSC), Oklahoma City, Oklahoma, USA.,Dean A. McGee Eye Institute, Oklahoma City, Oklahoma, USA
| |
Collapse
|