1
|
Xie H, Liu X, Li S, Wang M, Li Y, Chen T, Li L, Wang F, Xiao X. Tissue adaptation to metabolic stress: insights from SUMOylation. Front Endocrinol (Lausanne) 2024; 15:1434338. [PMID: 39588331 PMCID: PMC11586182 DOI: 10.3389/fendo.2024.1434338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 10/22/2024] [Indexed: 11/27/2024] Open
Abstract
Post-translational modification (PTM) plays a crucial role in adaptation of mammals to environmental changes, enabling them to survive in stressful situations. One such PTM is SUMO modification, which is evolutionarily conserved. It involves the covalent and reversible attachment of a small ubiquitin-like modifier (SUMO) to lysine (Lys) residues in the target protein. SUMOylation regulates various functions, including cell proliferation, differentiation, apoptosis, senescence, and maintenance of specific cellular activities. It achieves this by influencing protein-protein interactions, subcellular localization, protein stability, and DNA binding activity. Mounting evidence suggests that SUMOylation is implicated in the pathogenesis of metabolic disorders such as obesity, insulin resistance, and fatty liver. This review aims to provide an overview of the role of SUMOylation in regulating tissue adaptation to metabolic stress. Recent advancements in spectroscopic techniques have shed light on potential targets of SUMOylation and the underlying regulatory mechanisms have been elucidated, laying the theoretical foundation for the development of targeted SUMOylation interventions for metabolic syndrome while minimizing side effects.
Collapse
Affiliation(s)
- Hao Xie
- Department of Clinical Laboratory, Institute of Translational Medicine, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Xin Liu
- Department of Interventional Radiology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Shuo Li
- Department of Clinical Laboratory, Institute of Translational Medicine, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Ming Wang
- Department of Clinical Laboratory, Institute of Translational Medicine, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Ying Li
- Department of Ophthalmology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Ting Chen
- Department of Ophthalmology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Linwei Li
- Department of Ophthalmology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Faxi Wang
- Department of Clinical Laboratory, Institute of Translational Medicine, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Xuan Xiao
- Department of Clinical Laboratory, Institute of Translational Medicine, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
- Department of Ophthalmology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| |
Collapse
|
2
|
Zhou Y, Zheng Z, Wu S, Zhu J. Ubiquitin-conjugating enzyme E2 for regulating autophagy in diabetic cardiomyopathy: A mini-review. J Diabetes 2024; 16:e13511. [PMID: 38052719 PMCID: PMC10925883 DOI: 10.1111/1753-0407.13511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Accepted: 11/18/2023] [Indexed: 12/07/2023] Open
Abstract
The prevalence of diabetic cardiomyopathy (DCM) increases year by year with the increase in the prevalence of diabetes mellitus (DM), which is one of the most serious cardiovascular complications of DM and a major cause of death in diabetic patients. Although the pathological molecular features of DCM have not been fully elucidated, increasing evidence suggests that impaired autophagy in cardiomyocytes plays a nonnegligible role in the development of DCM. It has been shown that SUMOylation [SUMO = small ubiquitin-like modifier], a post-translational modification of proteins, and its associated ubiquitin-proteasome system mediates protein quality control in the heart and plays an important role in the proteotoxic environment of the heart. Specifically, the expression of ubiquitin-conjugating enzyme E2 (Ubc9), the only SUMO-E2 enzyme, exerts a positive regulatory effect on autophagy in cardiomyocytes with potential cardioprotective effects. This review focuses on the role that autophagy plays in DCM and the potential for Ubc9-regulated autophagy pathways to ameliorate DCM, highlighting the potential of Ubc9 as an interventional target in DCM and providing new insights into the pathogenesis of the disease.
Collapse
Affiliation(s)
- Yueran Zhou
- Institute of Clinical Electrocardiology, First Affiliated Hospital of Shantou University Medical CollegeShantouChina
| | - Zequn Zheng
- Institute of Clinical Electrocardiology, First Affiliated Hospital of Shantou University Medical CollegeShantouChina
| | - Shenglin Wu
- Institute of Clinical Electrocardiology, First Affiliated Hospital of Shantou University Medical CollegeShantouChina
| | - Jinxiu Zhu
- Institute of Clinical Electrocardiology, First Affiliated Hospital of Shantou University Medical CollegeShantouChina
- Longgang Maternity and Child Institute of Shantou University Medical College (Longgang District Maternity & Child Healthcare Hospital of Shenzhen City)ShenzhenChina
| |
Collapse
|
3
|
Wang Y, Liu Z, Bian X, Zhao C, Zhang X, Liu X, Wang N. Function and regulation of ubiquitin-like SUMO system in heart. Front Cell Dev Biol 2023; 11:1294717. [PMID: 38033852 PMCID: PMC10687153 DOI: 10.3389/fcell.2023.1294717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 11/06/2023] [Indexed: 12/02/2023] Open
Abstract
The small ubiquitin-related modifier (SUMOylation) system is a conserved, reversible, post-translational protein modification pathway covalently attached to the lysine residues of proteins in eukaryotic cells, and SUMOylation is catalyzed by SUMO-specific activating enzyme (E1), binding enzyme (E2) and ligase (E3). Sentrin-specific proteases (SENPs) can cleave the isopeptide bond of a SUMO conjugate and catalyze the deSUMOylation reaction. SUMOylation can regulate the activity of proteins in many important cellular processes, including transcriptional regulation, cell cycle progression, signal transduction, DNA damage repair and protein stability. Biological experiments in vivo and in vitro have confirmed the key role of the SUMO conjugation/deconjugation system in energy metabolism, Ca2+ cycle homeostasis and protein quality control in cardiomyocytes. In this review, we summarized the research progress of the SUMO conjugation/deconjugation system and SUMOylation-mediated cardiac actions based on related studies published in recent years, and highlighted the further research areas to clarify the role of the SUMO system in the heart by using emerging technologies.
Collapse
Affiliation(s)
- Ying Wang
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin, China
- Central Laboratory, The Fifth Central Hospital of Tianjin, Tianjin, China
| | - Zhihao Liu
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
- State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Xiyun Bian
- Central Laboratory, The Fifth Central Hospital of Tianjin, Tianjin, China
- Tianjin Key Laboratory of Epigenetics for Organ Development in Preterm Infants, The Fifth Central Hospital of Tianjin, Tianjin, China
| | - Chenxu Zhao
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin, China
| | - Xin Zhang
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin, China
| | - Xiaozhi Liu
- Central Laboratory, The Fifth Central Hospital of Tianjin, Tianjin, China
- Tianjin Key Laboratory of Epigenetics for Organ Development in Preterm Infants, The Fifth Central Hospital of Tianjin, Tianjin, China
| | - Nan Wang
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin, China
| |
Collapse
|
4
|
Mitok KA, Keller MP, Attie AD. Sorting through the extensive and confusing roles of sortilin in metabolic disease. J Lipid Res 2022; 63:100243. [PMID: 35724703 PMCID: PMC9356209 DOI: 10.1016/j.jlr.2022.100243] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 06/10/2022] [Accepted: 06/13/2022] [Indexed: 01/06/2023] Open
Abstract
Sortilin is a post-Golgi trafficking receptor homologous to the yeast vacuolar protein sorting receptor 10 (VPS10). The VPS10 motif on sortilin is a 10-bladed β-propeller structure capable of binding more than 50 proteins, covering a wide range of biological functions including lipid and lipoprotein metabolism, neuronal growth and death, inflammation, and lysosomal degradation. Sortilin has a complex cellular trafficking itinerary, where it functions as a receptor in the trans-Golgi network, endosomes, secretory vesicles, multivesicular bodies, and at the cell surface. In addition, sortilin is associated with hypercholesterolemia, Alzheimer's disease, prion diseases, Parkinson's disease, and inflammation syndromes. The 1p13.3 locus containing SORT1, the gene encoding sortilin, carries the strongest association with LDL-C of all loci in human genome-wide association studies. However, the mechanism by which sortilin influences LDL-C is unclear. Here, we review the role sortilin plays in cardiovascular and metabolic diseases and describe in detail the large and often contradictory literature on the role of sortilin in the regulation of LDL-C levels.
Collapse
Affiliation(s)
- Kelly A Mitok
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, USA
| | - Mark P Keller
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, USA
| | - Alan D Attie
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, USA.
| |
Collapse
|
5
|
Masubuchi Y, Ma J, Suzuki T, Kojima I, Inagaki T, Shibata H. T1R3 homomeric sweet taste receptor negatively regulates insulin-induced glucose transport through Gαs-mediated microtubules disassembly in 3T3-L1 adipocytes. Endocr J 2022; 69:487-493. [PMID: 34803124 DOI: 10.1507/endocrj.ej21-0661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
T1R3 is a class C G protein-coupled receptor family member that forms heterodimeric umami and sweet taste receptors with T1R1 and T1R2, respectively, in the taste cells of taste buds. T1R3 is expressed in 3T3-L1 cells in homomeric form and negatively regulates adipogenesis in a Gαs-dependent but cAMP-independent manner. Although T1R3 expression is markedly upregulated during adipogenesis, its physiological role in mature adipocytes remains obscure. Here, we show that stimulation of T1R3 with sucralose or saccharin induces microtubule disassembly in differentiated 3T3-L1 adipocytes. The effect was reproduced by treatment with cholera toxin or isoproterenol but not with forskolin. Treatment with sucralose or saccharin for 3 h inhibited insulin-stimulated glucose uptake by 32% and 45% in differentiated adipocytes, respectively, similar to the inhibitory effect of nocodazole (by 33%). Isoproterenol treatment inhibited insulin-stimulated glucose transport by 26%, whereas sucralose did not affect the intrinsic activity of the glucose transporter, indicating that it inhibited insulin-induced GLUT4 translocation to the plasma membrane. Immunostaining analysis showed that insulin-stimulated GLUT4 accumulation on the plasma membrane was abrogated in sucralose-treated cells, in association with depolymerization of microtubules. Sucralose-mediated inhibition of GLUT4 translocation was reversed by the overexpression of dominant-negative Gαs (Gαs-G226A) or knockdown of Gαs. Additionally, membrane fractionation analysis showed that sucralose treatment reduced GLUT4 levels in the plasma membrane fraction from insulin-stimulated adipocytes. We have identified a novel non-gustatory role for homomeric T1R3 in adipocytes, and activation of the T1R3 receptor negatively regulates insulin action of glucose transport via Gαs-dependent microtubule disassembly.
Collapse
Affiliation(s)
- Yosuke Masubuchi
- Department of Molecular and Cellular Biology, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi 371-8512, Japan
| | - Jinhui Ma
- Department of Molecular and Cellular Biology, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi 371-8512, Japan
| | - Tomohiro Suzuki
- Laboratory of Epigenetics and Metabolism, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi 371-8512, Japan
| | - Itaru Kojima
- Department of Molecular and Cellular Biology, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi 371-8512, Japan
| | - Takeshi Inagaki
- Laboratory of Epigenetics and Metabolism, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi 371-8512, Japan
| | - Hiroshi Shibata
- Department of Molecular and Cellular Biology, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi 371-8512, Japan
- Laboratory of Epigenetics and Metabolism, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi 371-8512, Japan
| |
Collapse
|
6
|
Ma J, Zhang X, Song Y, Qin Y, Tan Y, Zheng L, Cheng B, Xi X. D609 inhibition of phosphatidylcholine-specific phospholipase C attenuates prolonged insulin stimulation-mediated GLUT4 downregulation in 3T3-L1 adipocytes. J Physiol Biochem 2022; 78:355-363. [PMID: 35048323 PMCID: PMC9242966 DOI: 10.1007/s13105-022-00872-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 01/06/2022] [Indexed: 11/30/2022]
Abstract
Glucose uptake is stimulated by insulin via stimulation of glucose transporter 4 (GLUT4) translocation to the plasma membrane from intracellular compartments in adipose tissue and muscles. Insulin stimulation for prolonged periods depletes GLUT4 protein, particularly in highly insulin-responsive GLUT4 storage vesicles. This depletion mainly occurs via H2O2-mediated retromer inhibition. However, the post-receptor mechanism of insulin activation of oxidative stress remains unknown. Here, we show that phosphatidylcholine-specific phospholipase C (PC-PLC) plays an important role in insulin-mediated downregulation of GLUT4. In the study, 3T3-L1 adipocytes were exposed to a PC-PLC inhibitor, tricyclodecan-9-yl-xanthogenate (D609), for 30 min prior to the stimulation with 500 nM insulin for 4 h, weakening the depletion of GLUT4. D609 also prevents insulin-driven H2O2 generation in 3T3-L1 adipocytes. Exogenous PC-PLC and its product, phosphocholine (PCho), also caused GLUT4 depletion and promoted H2O2 generation in 3T3-L1 adipocytes. Furthermore, insulin-mediated the increase in the cellular membrane PC-PLC activity was observed in Amplex Red assays. These results suggested that PC-PLC plays an important role in insulin-mediated downregulation of GLUT4 and that PCho may serve as a signaling molecule.
Collapse
Affiliation(s)
- Jinhui Ma
- Department of Endocrinology, Affiliated Hospital of Hebei University, Baoding, 071000, China
| | - Xu Zhang
- Baoding Maternal and Child Hospital, Baoding, 071000, China
| | - Yankun Song
- School of Medicine, Hebei University, Baoding, 071000, China
| | - Yan Qin
- Central Laboratory, Affiliated Hospital of Hebei University, Baoding, 071000, China
| | - Yinghui Tan
- Central Laboratory, Affiliated Hospital of Hebei University, Baoding, 071000, China
| | - Lishuang Zheng
- Central Laboratory, Affiliated Hospital of Hebei University, Baoding, 071000, China
| | - Baoqian Cheng
- School of Medicine, Hebei Medical University, Shijiazhuang, 050017, China
| | - Xin Xi
- Central Laboratory, Affiliated Hospital of Hebei University, Baoding, 071000, China.
| |
Collapse
|
7
|
Bogan JS. Ubiquitin-like processing of TUG proteins as a mechanism to regulate glucose uptake and energy metabolism in fat and muscle. Front Endocrinol (Lausanne) 2022; 13:1019405. [PMID: 36246906 PMCID: PMC9556833 DOI: 10.3389/fendo.2022.1019405] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 09/06/2022] [Indexed: 12/02/2022] Open
Abstract
In response to insulin stimulation, fat and muscle cells mobilize GLUT4 glucose transporters to the cell surface to enhance glucose uptake. Ubiquitin-like processing of TUG (Aspscr1, UBXD9) proteins is a central mechanism to regulate this process. Here, recent advances in this area are reviewed. The data support a model in which intact TUG traps insulin-responsive "GLUT4 storage vesicles" at the Golgi matrix by binding vesicle cargoes with its N-terminus and matrix proteins with its C-terminus. Insulin stimulation liberates these vesicles by triggering endoproteolytic cleavage of TUG, mediated by the Usp25m protease. Cleavage occurs in fat and muscle cells, but not in fibroblasts or other cell types. Proteolytic processing of intact TUG generates TUGUL, a ubiquitin-like protein modifier, as the N-terminal cleavage product. In adipocytes, TUGUL modifies a single protein, the KIF5B kinesin motor, which carries GLUT4 and other vesicle cargoes to the cell surface. In muscle, this or another motor may be modified. After cleavage of intact TUG, the TUG C-terminal product is extracted from the Golgi matrix by the p97 (VCP) ATPase. In both muscle and fat, this cleavage product enters the nucleus, binds PPARγ and PGC-1α, and regulates gene expression to promote fatty acid oxidation and thermogenesis. The stability of the TUG C-terminal product is regulated by an Ate1 arginyltransferase-dependent N-degron pathway, which may create a feedback mechanism to control oxidative metabolism. Although it is now clear that TUG processing coordinates glucose uptake with other aspects of physiology and metabolism, many questions remain about how this pathway is regulated and how it is altered in metabolic disease in humans.
Collapse
Affiliation(s)
- Jonathan S. Bogan
- Section of Endocrinology and Metabolism, Department of Internal Medicine, Yale School of Medicine, New Haven, CT, United States
- Department of Cell Biology, Yale School of Medicine, New Haven, CT, United States
- Yale Center for Molecular and Systems Metabolism, Yale School of Medicine, New Haven, CT, United States
- *Correspondence: Jonathan S. Bogan,
| |
Collapse
|
8
|
Kreyden VA, Mawi EB, Rush KM, Kowalski JR. UBC-9 Acts in GABA Neurons to Control Neuromuscular Signaling in C. elegans. Neurosci Insights 2020; 15:2633105520962792. [PMID: 33089216 PMCID: PMC7543134 DOI: 10.1177/2633105520962792] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 09/10/2020] [Indexed: 11/20/2022] Open
Abstract
Regulation of excitatory to inhibitory signaling balance is essential to nervous system health and is maintained by numerous enzyme systems that modulate the activity, localization, and abundance of synaptic proteins. SUMOylation is a key post-translational regulator of protein function in diverse cells, including neurons. There, its role in regulating synaptic transmission through pre- and postsynaptic effects has been shown primarily at glutamatergic central nervous system synapses, where the sole SUMO-conjugating enzyme Ubc9 is a critical player. However, whether Ubc9 functions globally at other synapses, including inhibitory synapses, has not been explored. Here, we investigated the role of UBC-9 and the SUMOylation pathway in controlling the balance of excitatory cholinergic and inhibitory GABAergic signaling required for muscle contraction in Caenorhabditis elegans. We found inhibition or overexpression of UBC-9 in neurons modestly increased muscle excitation. Similar and even stronger phenotypes were seen with UBC-9 overexpression specifically in GABAergic neurons, but not in cholinergic neurons. These effects correlated with accumulation of synaptic vesicle-associated proteins at GABAergic presynapses, where UBC-9 and the C. elegans SUMO ortholog SMO-1 localized, and with defects in GABA-dependent behaviors. Experiments involving expression of catalytically inactive UBC-9 [UBC-9(C93S)], as well as co-expression of UBC-9 and SMO-1, suggested wild type UBC-9 overexpressed alone may act via substrate sequestration in the absence of sufficient free SUMO, underscoring the importance of tightly regulated SUMO enzyme function. Similar effects on muscle excitation, GABAergic signaling, and synaptic vesicle localization occurred with overexpression of the SUMO activating enzyme subunit AOS-1. Together, these data support a model in which UBC-9 and the SUMOylation system act at presynaptic sites in inhibitory motor neurons to control synaptic signaling balance in C. elegans. Future studies will be important to define UBC-9 targets at this synapse, as well as mechanisms by which UBC-9 and the SUMO pathway are regulated.
Collapse
Affiliation(s)
- Victoria A Kreyden
- Department of Biological Sciences, Butler University, Indianapolis, IN, USA
| | - Elly B Mawi
- Department of Biological Sciences, Butler University, Indianapolis, IN, USA
| | - Kristen M Rush
- Department of Biological Sciences, Butler University, Indianapolis, IN, USA
| | | |
Collapse
|
9
|
Glucose transporters in adipose tissue, liver, and skeletal muscle in metabolic health and disease. Pflugers Arch 2020; 472:1273-1298. [PMID: 32591906 PMCID: PMC7462924 DOI: 10.1007/s00424-020-02417-x] [Citation(s) in RCA: 274] [Impact Index Per Article: 54.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 06/01/2020] [Accepted: 06/05/2020] [Indexed: 12/13/2022]
Abstract
A family of facilitative glucose transporters (GLUTs) is involved in regulating tissue-specific glucose uptake and metabolism in the liver, skeletal muscle, and adipose tissue to ensure homeostatic control of blood glucose levels. Reduced glucose transport activity results in aberrant use of energy substrates and is associated with insulin resistance and type 2 diabetes. It is well established that GLUT2, the main regulator of hepatic hexose flux, and GLUT4, the workhorse in insulin- and contraction-stimulated glucose uptake in skeletal muscle, are critical contributors in the control of whole-body glycemia. However, the molecular mechanism how insulin controls glucose transport across membranes and its relation to impaired glycemic control in type 2 diabetes remains not sufficiently understood. An array of circulating metabolites and hormone-like molecules and potential supplementary glucose transporters play roles in fine-tuning glucose flux between the different organs in response to an altered energy demand.
Collapse
|
10
|
Mori RC, Poças da Silva T, Campello RS, Machado UF. Carbenoxolone enhances peripheral insulin sensitivity and GLUT4 expression in skeletal muscle of obese rats: Potential participation of UBC9 protein. Life Sci 2019; 229:157-165. [PMID: 31077719 DOI: 10.1016/j.lfs.2019.05.017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 05/06/2019] [Accepted: 05/07/2019] [Indexed: 01/06/2023]
Abstract
AIM This study investigates the insulin sensitizer effect of carbenoxolone (CBX) and potentially involved peripheral mechanisms. MAIN METHODS Taking glucose transporter 4 (GLUT4) as a marker of glucose disposal, we investigated the CBX effects on whole-body insulin sensitivity and solute carrier 2a4 (Slc2a4)/GLUT4 expression in visceral (VAT) and subcutaneous (SAT) adipose tissues and soleus muscle of monosodium glutamate (MSG)-induced obese rats. Sterol regulatory element binding protein (SREBP1), an enhancer of Slc2a4 expression was analyzed through mRNA content and SREBP1-binding to Slc2a4 promoter. Finally, the small ubiquitin-modifier conjugating enzyme 9 (UBC9), whose low content indicates accelerated GLUT4 degradation was analyzed in soleus. KEY FINDINGS Hypercorticosteronemia, hyperinsulinemia and low glucose decay rate in the insulin tolerance test of obese rats were restored by CBX (P < 0.05). Slc2a4/GLUT4 increased in SAT (P < 0.05) and decreased in VAT (P < 0.01) of obese rats. In soleus, obesity increased Slc2a4 but decreased GLUT4 (P < 0.01), possibly by accelerating GLUT4 degradation, as suggested by decreased UBC9 (P < 0.01). CBX restored both UBC9 and GLUT4 contents. SREBP1 did not participate in the Slc2a4 transcriptional regulation. SIGNIFICANCE The insulin sensitizer effect of CBX involves the increase of GLUT4 expression in soleus, indicating an increased glucose disposal in skeletal muscle. This observation reinforces the skeletal muscle as the main site of insulin-induced glucose uptake and sheds new light on the metabolic effects of 11βHSD1 inhibitors, since most of the studies so far have focused on its effects on liver and adipose tissues.
Collapse
Affiliation(s)
- Rosana Cristina Mori
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, SP, Brazil.
| | - Thaís Poças da Silva
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, SP, Brazil
| | - Raquel Saldanha Campello
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, SP, Brazil
| | - Ubiratan Fabres Machado
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, SP, Brazil
| |
Collapse
|
11
|
Carmichael RE, Wilkinson KA, Craig TJ. Insulin-dependent GLUT4 trafficking is not regulated by protein SUMOylation in L6 myocytes. Sci Rep 2019; 9:6477. [PMID: 31019221 PMCID: PMC6482176 DOI: 10.1038/s41598-019-42574-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Accepted: 02/06/2019] [Indexed: 01/26/2023] Open
Abstract
Type-II Diabetes Mellitus (T2DM) is one of the fastest growing public health issues today, consuming 12% of worldwide health budgets and affecting an estimated 400 million people. One of the key pathological traits of this disease is insulin resistance at ‘glucose sink’ tissues (mostly skeletal muscle), and this remains one of the features of this disease most intractable to therapeutic intervention. Several lines of evidence have implicated the post-translational modification, SUMOylation, in insulin signalling and insulin resistance in skeletal muscle. In this study, we examined this possibility by manipulation of cellular SUMOylation levels using multiple different tools, and assaying the effect on insulin-stimulated GLUT4 surface expression in differentiated L6 rat myocytes. Although insulin stimulation of L6 myocytes produced a robust decrease in total cellular SUMO1-ylation levels, manipulating cellular SUMOylation had no effect on insulin-responsive GLUT4 surface trafficking using any of the tools we employed. Whilst we cannot totally exclude the possibility that SUMOylation plays a role in the insulin signalling pathway in human health and disease, our data strongly argue that GLUT4 trafficking in response to insulin is not regulated by protein SUMOylation, and that SUMOylation does not therefore represent a viable therapeutic target for the treatment of insulin resistance.
Collapse
Affiliation(s)
- Ruth E Carmichael
- College of Life and Environmental Sciences, Geoffrey Pope Building, University of Exeter, Stocker Road, Exeter EX4 4QD, Exeter, United Kingdom
| | - Kevin A Wilkinson
- School of Biochemistry, Biomedical Sciences Building, University of Bristol, University Walk, Bristol, BS8 1TD, UK
| | - Tim J Craig
- Centre for Research in Biosciences, University of the West of England, Coldharbour Lane, Frenchay, BS16 1QY, UK.
| |
Collapse
|
12
|
Appriou Z, Nay K, Pierre N, Saligaut D, Lefeuvre-Orfila L, Martin B, Cavey T, Ropert M, Loréal O, Rannou-Bekono F, Derbré F. Skeletal muscle ceramides do not contribute to physical-inactivity-induced insulin resistance. Appl Physiol Nutr Metab 2019; 44:1180-1188. [PMID: 30889368 DOI: 10.1139/apnm-2018-0850] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Physical inactivity increases the risk to develop type 2 diabetes, a disease characterized by a state of insulin resistance. By promoting inflammatory state, ceramides are especially recognized to alter insulin sensitivity in skeletal muscle. The present study was designed to analyze, in mice, whether muscle ceramides contribute to physical-inactivity-induced insulin resistance. For this purpose, we used the wheel lock model to induce a sudden reduction of physical activity, in combination with myriocin treatment, an inhibitor of de novo ceramide synthesis. Mice were assigned to 3 experimental groups: voluntary wheel access group (Active), a wheel lock group (Inactive), and wheel lock group treated with myriocin (Inactive-Myr). We observed that 10 days of physical inactivity induces hyperinsulinemia and increases basal insulin resistance (HOMA-IR). The muscle ceramide content was not modified by physical inactivity and myriocin. Thus, muscle ceramides do not play a role in physical-inactivity-induced insulin resistance. In skeletal muscle, insulin-stimulated protein kinase B phosphorylation and inflammatory pathway were not affected by physical inactivity, whereas a reduction of glucose transporter type 4 content was observed. Based on these results, physical-inactivity-induced insulin resistance seems related to a reduction in glucose transporter type 4 content rather than defects in insulin signaling. We observed in inactive mice that myriocin treatment improves glucose tolerance, insulin-stimulated protein kinase B, adenosine-monophosphate-activated protein kinase activation, and glucose transporter type 4 content in skeletal muscle. Such effects occur regardless of changes in muscle ceramide content. These findings open promising research perspectives to identify new mechanisms of action for myriocin on insulin sensitivity and glucose metabolism.
Collapse
Affiliation(s)
- Zéphyra Appriou
- Laboratory "Movement Sport and Health Sciences", EA7470 - University of Rennes - ENS Rennes, Bruz, France
| | - Kévin Nay
- Laboratory "Movement Sport and Health Sciences", EA7470 - University of Rennes - ENS Rennes, Bruz, France
| | - Nicolas Pierre
- GIGA-R - Translational Gastroenterology, Liège University, Belgium
| | - Dany Saligaut
- Laboratory "Movement Sport and Health Sciences", EA7470 - University of Rennes - ENS Rennes, Bruz, France
| | - Luz Lefeuvre-Orfila
- Laboratory "Movement Sport and Health Sciences", EA7470 - University of Rennes - ENS Rennes, Bruz, France
| | - Brice Martin
- Laboratory "Movement Sport and Health Sciences", EA7470 - University of Rennes - ENS Rennes, Bruz, France
| | - Thibault Cavey
- INSERM NuMeCan UMR 1274, CIMIAD, France, Faculty of Medicine, University of Rennes, Rennes, France.,Laboratory of Biochemistry, University Hospital Pontchaillou, Rennes, France
| | - Martine Ropert
- INSERM NuMeCan UMR 1274, CIMIAD, France, Faculty of Medicine, University of Rennes, Rennes, France.,Laboratory of Biochemistry, University Hospital Pontchaillou, Rennes, France
| | - Olivier Loréal
- INSERM NuMeCan UMR 1274, CIMIAD, France, Faculty of Medicine, University of Rennes, Rennes, France
| | - Françoise Rannou-Bekono
- Laboratory "Movement Sport and Health Sciences", EA7470 - University of Rennes - ENS Rennes, Bruz, France
| | - Frédéric Derbré
- Laboratory "Movement Sport and Health Sciences", EA7470 - University of Rennes - ENS Rennes, Bruz, France
| |
Collapse
|
13
|
Cartier E, Garcia-Olivares J, Janezic E, Viana J, Moore M, Lin ML, Caplan JL, Torres G, Kim YH. The SUMO-Conjugase Ubc9 Prevents the Degradation of the Dopamine Transporter, Enhancing Its Cell Surface Level and Dopamine Uptake. Front Cell Neurosci 2019; 13:35. [PMID: 30828290 PMCID: PMC6386010 DOI: 10.3389/fncel.2019.00035] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Accepted: 01/23/2019] [Indexed: 12/12/2022] Open
Abstract
The dopamine transporter (DAT) is a plasma membrane protein responsible for the uptake of released dopamine back to the presynaptic terminal and ending dopamine neurotransmission. The DAT is the molecular target for cocaine and amphetamine as well as a number of pathological conditions including autism spectrum disorders, attention-deficit hyperactivity disorder (ADHD), dopamine transporter deficiency syndrome (DTDS), and Parkinson’s disease. The DAT uptake capacity is dependent on its level in the plasma membrane. In vitro studies show that DAT functional expression is regulated by a balance of endocytosis, recycling, and lysosomal degradation. However, recent reports suggest that DAT regulation by endocytosis in neurons is less significant than previously reported. Therefore, additional mechanisms appear to determine DAT steady-state level and functional expression in the neuronal plasma membrane. Here, we hypothesize that the ubiquitin-like protein small ubiquitin-like modifier 1 (SUMO1) increases the DAT steady-state level in the plasma membrane. In confocal microscopy, fluorescent resonance energy transfer (FRET), and Western blot analyses, we demonstrate that DAT is associated with SUMO1 in the rat dopaminergic N27 and DAT overexpressing Human Embryonic Kidney cells (HEK)-293 cells. The overexpression of SUMO1 and the Ubc9 SUMO-conjugase induces DAT SUMOylation, reduces DAT ubiquitination and degradation, enhancing DAT steady-state level. In addition, the Ubc9 knock-down by interference RNA (RNAi) increases DAT degradation and reduces DAT steady-state level. Remarkably, the Ubc9-mediated SUMOylation increases the expression of DAT in the plasma membrane and dopamine uptake capacity. Our results strongly suggest that SUMOylation is a novel mechanism that plays a central role in regulating DAT proteostasis, dopamine uptake, and dopamine signaling in neurons. For that reason, the SUMO pathway including SUMO1, SUMO2, Ubc9, and DAT SUMOylation, can be critical therapeutic targets in regulating DAT stability and dopamine clearance in health and pathological states.
Collapse
Affiliation(s)
- Etienne Cartier
- Department of Biological Sciences, Delaware State University, Dover, DE, United States
| | | | - Eric Janezic
- Department of Biological Sciences, Delaware State University, Dover, DE, United States
| | - Juan Viana
- Department of Biological Sciences, Delaware State University, Dover, DE, United States
| | - Michael Moore
- Imaging Core, Delaware State University, Dover, DE, United States
| | - Min Landon Lin
- Department of Neuroscience and Department of Pharmacology, University of Florida, Gainesville, FL, United States
| | - Jeffrey L Caplan
- BioImaging Center, University of Delaware, Newark, DE, United States
| | - Gonzalo Torres
- Department of Neuroscience and Department of Pharmacology, University of Florida, Gainesville, FL, United States
| | - Yong-Hwan Kim
- Department of Biological Sciences, Delaware State University, Dover, DE, United States
| |
Collapse
|
14
|
Habtemichael EN, Li DT, Alcázar-Román A, Westergaard XO, Li M, Petersen MC, Li H, DeVries SG, Li E, Julca-Zevallos O, Wolenski JS, Bogan JS. Usp25m protease regulates ubiquitin-like processing of TUG proteins to control GLUT4 glucose transporter translocation in adipocytes. J Biol Chem 2018; 293:10466-10486. [PMID: 29773651 DOI: 10.1074/jbc.ra118.003021] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Revised: 05/09/2018] [Indexed: 12/14/2022] Open
Abstract
Insulin stimulates the exocytic translocation of specialized vesicles in adipocytes, which inserts GLUT4 glucose transporters into the plasma membrane to enhance glucose uptake. Previous results support a model in which TUG (Tether containing a UBX domain for GLUT4) proteins trap these GLUT4 storage vesicles at the Golgi matrix and in which insulin triggers endoproteolytic cleavage of TUG to translocate GLUT4. Here, we identify the muscle splice form of Usp25 (Usp25m) as a protease required for insulin-stimulated TUG cleavage and GLUT4 translocation in adipocytes. Usp25m is expressed in adipocytes, binds TUG and GLUT4, dissociates from TUG-bound vesicles after insulin addition, and colocalizes with TUG and insulin-responsive cargoes in unstimulated cells. Previous results show that TUG proteolysis generates the ubiquitin-like protein, TUGUL (for TUGubiquitin-like). We now show that TUGUL modifies the kinesin motor protein, KIF5B, and that TUG proteolysis is required to load GLUT4 onto these motors. Insulin stimulates TUG proteolytic processing independently of phosphatidylinositol 3-kinase. In nonadipocytes, TUG cleavage can be reconstituted by transfection of Usp25m, but not the related Usp25a isoform, together with other proteins present on GLUT4 vesicles. In rodents with diet-induced insulin resistance, TUG proteolysis and Usp25m protein abundance are reduced in adipose tissue. These effects occur soon after dietary manipulation, prior to the attenuation of insulin signaling to Akt. Together with previous data, these results support a model whereby insulin acts through Usp25m to mediate TUG cleavage, which liberates GLUT4 storage vesicles from the Golgi matrix and activates their microtubule-based movement to the plasma membrane. This TUG proteolytic pathway for insulin action is independent of Akt and is impaired by nutritional excess.
Collapse
Affiliation(s)
| | - Don T Li
- From the Section of Endocrinology and Metabolism, Department of Internal Medicine and.,the Departments of Cell Biology and
| | - Abel Alcázar-Román
- From the Section of Endocrinology and Metabolism, Department of Internal Medicine and
| | - Xavier O Westergaard
- From the Section of Endocrinology and Metabolism, Department of Internal Medicine and
| | - Muyi Li
- From the Section of Endocrinology and Metabolism, Department of Internal Medicine and
| | - Max C Petersen
- From the Section of Endocrinology and Metabolism, Department of Internal Medicine and.,Cellular and Molecular Physiology, Yale University School of Medicine
| | - Hanbing Li
- From the Section of Endocrinology and Metabolism, Department of Internal Medicine and.,the Institute of Pharmacology, Department of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, China
| | - Stephen G DeVries
- From the Section of Endocrinology and Metabolism, Department of Internal Medicine and
| | - Eric Li
- From the Section of Endocrinology and Metabolism, Department of Internal Medicine and
| | - Omar Julca-Zevallos
- From the Section of Endocrinology and Metabolism, Department of Internal Medicine and.,the Departments of Cell Biology and
| | - Joseph S Wolenski
- the Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, Connecticut 06520, and
| | - Jonathan S Bogan
- From the Section of Endocrinology and Metabolism, Department of Internal Medicine and .,the Departments of Cell Biology and
| |
Collapse
|
15
|
Wang C, Zeng N, Liu S, Miao Q, Zhou L, Ge X, Han J, Guo X, Yang H. Interaction of porcine reproductive and respiratory syndrome virus proteins with SUMO-conjugating enzyme reveals the SUMOylation of nucleocapsid protein. PLoS One 2017; 12:e0189191. [PMID: 29236778 PMCID: PMC5728522 DOI: 10.1371/journal.pone.0189191] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Accepted: 11/21/2017] [Indexed: 12/30/2022] Open
Abstract
SUMOylation is a reversible post-translational modification that regulates the function of target protein. In this study, we first predicted by software that the multiple proteins of porcine reproductive and respiratory syndrome virus (PRRSV) could be sumoylated. Next, we confirmed that Nsp1β, Nsp4, Nsp9, Nsp10 and nucleocapsid (N) protein of PRRSV could interact with the sole SUMO E2 conjugating enzyme Ubc9, and Ubc9 could be co-localized with Nsp1β, Nsp4, Nsp9 and Nsp10 in the cytoplasm, while with N protein in both the cytoplasm and nucleus. Finally, we demonstrated that N protein could be sumoylated by either SUMO1 or SUMO2/3. In addition, the overexpression of Ubc9 could inhibit viral genomic replication at early period of PRRSV infection and the knockdown of Ubc9 by siRNA could promote the virus replication. These findings reveal the SUMOylation property of PRRSV N protein and the involvement of Ubc9 in PRRSV replication through interaction with multiple proteins of PRRSV. To our knowledge, this is the first study indicating the interplay between SUMO modification system and PRRSV.
Collapse
Affiliation(s)
- Cong Wang
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine and State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing, People’s Republic of China
| | - Nanfang Zeng
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine and State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing, People’s Republic of China
| | - Siyu Liu
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine and State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing, People’s Republic of China
| | - Qi Miao
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine and State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing, People’s Republic of China
| | - Lei Zhou
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine and State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing, People’s Republic of China
| | - Xinna Ge
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine and State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing, People’s Republic of China
| | - Jun Han
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine and State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing, People’s Republic of China
| | - Xin Guo
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine and State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing, People’s Republic of China
- * E-mail: (XG); (HY)
| | - Hanchun Yang
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine and State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing, People’s Republic of China
- * E-mail: (XG); (HY)
| |
Collapse
|
16
|
Xiong Y, Ye C, Yang N, Li M, Liu H. Ubc9 Binds to ADAP and Is Required for Rap1 Membrane Recruitment, Rac1 Activation, and Integrin-Mediated T Cell Adhesion. THE JOURNAL OF IMMUNOLOGY 2017; 199:4142-4154. [PMID: 29127148 DOI: 10.4049/jimmunol.1700572] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Accepted: 10/16/2017] [Indexed: 11/19/2022]
Abstract
Although the immune adaptor adhesion and degranulation-promoting adaptor protein (ADAP) acts as a key mediator of integrin inside-out signaling leading to T cell adhesion, the regulation of this adaptor during integrin activation and clustering remains unclear. We now identify Ubc9, the sole small ubiquitin-related modifier E2 conjugase, as an essential regulator of ADAP where it is required for TCR-induced membrane recruitment of the small GTPase Rap1 and its effector protein RapL and for activation of the small GTPase Rac1 in T cell adhesion. We show that Ubc9 interacted directly with ADAP in vitro and in vivo, and the association was increased in response to anti-CD3 stimulation. The Ubc9-binding domain on ADAP was mapped to a nuclear localization sequence (aa 674-700) within ADAP. Knockdown of Ubc9 by short hairpin RNA or expression of the Ubc9-binding-deficient ADAP mutant significantly decreased TCR-induced integrin adhesion to ICAM-1 and fibronectin, as well as LFA-1 clustering, although it had little effect on the TCR proximal signaling responses and TCR-induced IL-2 transcription. Furthermore, downregulation of Ubc9 impaired TCR-mediated Rac1 activation and attenuated the membrane targeting of Rap1 and RapL, but not Rap1-interacting adaptor molecule. Taken together, our data demonstrate for the first time, to our knowledge, that Ubc9 acts as a functional binding partner of ADAP and plays a selective role in integrin-mediated T cell adhesion via modulation of Rap1-RapL membrane recruitment and Rac1 activation.
Collapse
Affiliation(s)
- Yiwei Xiong
- Department of Biological Sciences, Xi'an Jiaotong-Liverpool University, Suzhou, Jiangsu 215123, China; and
| | - Chengjin Ye
- Department of Veterinary Medicine, Zhejiang A & F University, Lin'an, Hangzhou, Zhejiang 311300, China
| | - Naiqi Yang
- Department of Biological Sciences, Xi'an Jiaotong-Liverpool University, Suzhou, Jiangsu 215123, China; and
| | - Madanqi Li
- Department of Biological Sciences, Xi'an Jiaotong-Liverpool University, Suzhou, Jiangsu 215123, China; and
| | - Hebin Liu
- Department of Biological Sciences, Xi'an Jiaotong-Liverpool University, Suzhou, Jiangsu 215123, China; and .,Department of Veterinary Medicine, Zhejiang A & F University, Lin'an, Hangzhou, Zhejiang 311300, China
| |
Collapse
|
17
|
Degradation of nuclear Ubc9 induced by listeriolysin O is dependent on K + efflux. Biochem Biophys Res Commun 2017; 493:1115-1121. [PMID: 28911869 DOI: 10.1016/j.bbrc.2017.09.051] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Accepted: 09/10/2017] [Indexed: 01/11/2023]
Abstract
Listeriolysin O (LLO) is a pore-forming toxin produced by L. monocytogenes, and is belonged to a protein family of cholesterol-dependent cytolysins (CDCs). Previous studies have demonstrated that LLO triggers Ubc9 degradation and disrupts host SUMOylation to facilitate bacterial infection. However, the underlying mechanism of Ubc9 degradation is unclear. Here we show that LLO-induced down-regulation of Ubc9 is independent of Ubc9-SUMO interaction, however, it may involve phosphorylation signaling. Additionally, LLO exerts its effects primarily on nuclear Ubc9 and this process is mediated by K+ efflux. Interestingly, for intracellular CDCs such as pneumolysin and suilysin, blockage of K+ efflux enhances degradation of nuclear Ubc9, suggesting that extracellular and intracellular pathogens may exploit different mechanisms to modulate host SUMOylation system. Furthermore, up-regulation of SUMOylation by stable expression of SUMO-1 or SUMO-2 shows a delay in membrane perforation by LLO, indicating that SUMO modification of host proteins may act at the frontline for the defense response against LLO. Taken together, our study provides insights to the understanding of host-pathogen interactions.
Collapse
|
18
|
Abstract
Protein modification with the small ubiquitin-related modifier (SUMO) can affect protein function, enzyme activity, protein-protein interactions, protein stability, protein targeting and cellular localization. SUMO influences the function and regulation of metabolic enzymes within pathways, and in some cases targets entire metabolic pathways by affecting the activity of transcription factors or by facilitating the translocation of entire metabolic pathways to subcellular compartments. SUMO modification is also a key component of nutrient- and metabolic-sensing mechanisms that regulate cellular metabolism. In addition to its established roles in maintaining metabolic homeostasis, there is increasing evidence that SUMO is a key factor in facilitating cellular stress responses through the regulation and/or adaptation of the most fundamental metabolic processes, including energy and nucleotide metabolism. This review focuses on the role of SUMO in cellular metabolism and metabolic disease.
Collapse
|
19
|
Peters M, Wielsch B, Boltze J. The role of SUMOylation in cerebral hypoxia and ischemia. Neurochem Int 2017; 107:66-77. [DOI: 10.1016/j.neuint.2017.03.011] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Revised: 03/09/2017] [Accepted: 03/15/2017] [Indexed: 10/19/2022]
|
20
|
T1R3 homomeric sweet taste receptor regulates adipogenesis through Gαs-mediated microtubules disassembly and Rho activation in 3T3-L1 cells. PLoS One 2017; 12:e0176841. [PMID: 28472098 PMCID: PMC5417608 DOI: 10.1371/journal.pone.0176841] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Accepted: 04/18/2017] [Indexed: 11/19/2022] Open
Abstract
We previously reported that 3T3-L1 cells express a functional sweet taste receptor possibly as a T1R3 homomer that is coupled to Gs and negatively regulates adipogenesis by a Gαs-mediated but cAMP-independent mechanism. Here, we show that stimulation of this receptor with sucralose or saccharin induced disassembly of the microtubules in 3T3-L1 preadipocytes, which was attenuated by overexpression of the dominant-negative mutant of Gαs (Gαs-G226A). In contrast, overexpression of the constitutively active mutant of Gαs (Gαs-Q227L) as well as treatment with cholera toxin or isoproterenol but not with forskolin caused disassembly of the microtubules. Sweetener-induced microtubule disassembly was accompanied by activation of RhoA and Rho-associated kinase (ROCK). This was attenuated with by knockdown of GEF-H1, a microtubule-localized guanine nucleotide exchange factor for Rho GTPase. Furthermore, overexpression of the dominant-negative mutant of RhoA (RhoA-T19N) blocked sweetener-induced dephosphorylation of Akt and repression of PPARγ and C/EBPα in the early phase of adipogenic differentiation. These results suggest that the T1R3 homomeric sweet taste receptor negatively regulates adipogenesis through Gαs-mediated microtubule disassembly and consequent activation of the Rho/ROCK pathway.
Collapse
|
21
|
Pan X, Zaarur N, Singh M, Morin P, Kandror KV. Sortilin and retromer mediate retrograde transport of Glut4 in 3T3-L1 adipocytes. Mol Biol Cell 2017; 28:1667-1675. [PMID: 28450454 PMCID: PMC5469609 DOI: 10.1091/mbc.e16-11-0777] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Revised: 04/10/2017] [Accepted: 04/18/2017] [Indexed: 11/11/2022] Open
Abstract
Sortilin is a multiligand sorting receptor responsible for the anterograde transport of lysosomal enzymes and substrates. Here we demonstrate that sortilin is also involved in retrograde protein traffic. In cultured 3T3-L1 adipocytes, sortilin together with retromer rescues Glut4 from degradation in lysosomes and retrieves it to the TGN, where insulin--responsive vesicles are formed. Mechanistically, the luminal Vps10p domain of sortilin interacts with the first luminal loop of Glut4, and the cytoplasmic tail of sortilin binds to retromer. Ablation of the retromer does not affect insulin signaling but decreases the stability of sortilin and Glut4 and blocks their entry into the small vesicular carriers. As a result, Glut4 cannot reach the insulin-responsive compartment, and insulin-stimulated glucose uptake in adipocytes is suppressed. We suggest that sortilin- and retromer-mediated Glut4 retrieval from endosomes may represent a step in the Glut4 pathway vulnerable to the development of insulin resistance and diabetes.
Collapse
Affiliation(s)
- Xiang Pan
- Department of Biochemistry, Boston University School of Medicine, Boston, MA 02118
| | - Nava Zaarur
- Department of Biochemistry, Boston University School of Medicine, Boston, MA 02118
| | - Maneet Singh
- Department of Biochemistry, Boston University School of Medicine, Boston, MA 02118
| | - Peter Morin
- Edith Nourse Rogers Memorial Veterans Hospital, Bedford, MA 01730
| | - Konstantin V Kandror
- Department of Biochemistry, Boston University School of Medicine, Boston, MA 02118
| |
Collapse
|
22
|
Zhang J, Chen Z, Zhou Z, Yang P, Wang CY. Sumoylation Modulates the Susceptibility to Type 1 Diabetes. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 963:299-322. [DOI: 10.1007/978-3-319-50044-7_18] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
23
|
Sumoylation as an Integral Mechanism in Bacterial Infection and Disease Progression. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 963:389-408. [DOI: 10.1007/978-3-319-50044-7_22] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
24
|
Long-Term Memory in Drosophila Is Influenced by Histone Deacetylase HDAC4 Interacting with SUMO-Conjugating Enzyme Ubc9. Genetics 2016; 203:1249-64. [PMID: 27182943 DOI: 10.1534/genetics.115.183194] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Accepted: 04/29/2016] [Indexed: 12/28/2022] Open
Abstract
HDAC4 is a potent memory repressor with overexpression of wild type or a nuclear-restricted mutant resulting in memory deficits. Interestingly, reduction of HDAC4 also impairs memory via an as yet unknown mechanism. Although histone deacetylase family members are important mediators of epigenetic mechanisms in neurons, HDAC4 is predominantly cytoplasmic in the brain and there is increasing evidence for interactions with nonhistone proteins, suggesting HDAC4 has roles beyond transcriptional regulation. To that end, we performed a genetic interaction screen in Drosophila and identified 26 genes that interacted with HDAC4, including Ubc9, the sole SUMO E2-conjugating enzyme. RNA interference-induced reduction of Ubc9 in the adult brain impaired long-term memory in the courtship suppression assay, a Drosophila model of associative memory. We also demonstrate that HDAC4 and Ubc9 interact genetically during memory formation, opening new avenues for investigating the mechanisms through which HDAC4 regulates memory formation and other neurological processes.
Collapse
|
25
|
Salmonella Engages Host MicroRNAs To Modulate SUMOylation: a New Arsenal for Intracellular Survival. Mol Cell Biol 2015; 35:2932-46. [PMID: 26100020 DOI: 10.1128/mcb.00397-15] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Accepted: 06/17/2015] [Indexed: 12/13/2022] Open
Abstract
Posttranslational modifications (PTMs) can alter many fundamental properties of a protein. One or combinations of them have been known to regulate the dynamics of many cellular pathways and consequently regulate all vital processes. Understandably, pathogens have evolved sophisticated strategies to subvert these mechanisms to achieve instantaneous control over host functions. Here, we present the first report of modulation by intestinal pathogen Salmonella enterica serovar Typhimurium (S. Typhimurium) of host SUMOylation, a PTM pathway central to all fundamental cellular processes. Both in cell culture and in a mouse model, we observed that S. Typhimurium infection led to a dynamic SUMO-conjugated proteome alteration. The intracellular survival of S. Typhimurium was dependent on SUMO status as revealed by reduced infection and Salmonella-induced filaments (SIFs) in SUMO-upregulated cells. S. Typhimurium-dependent SUMO modulation was seen as a result of depletion of crucial SUMO pathway enzymes Ubc-9 and PIAS1, at both the protein and the transcript levels. Mechanistically, depletion of Ubc-9 relied on upregulation of small noncoding RNAs miR30c and miR30e during S. Typhimurium infection. This was necessary and sufficient for both down-modulation of Ubc-9 and a successful infection. Thus, we demonstrate a novel strategy of pathogen-mediated perturbation of host SUMOylation, an integral mechanism underlying S. Typhimurium infection and intracellular survival.
Collapse
|
26
|
Varadaraj A, Mattoscio D, Chiocca S. SUMO Ubc9 enzyme as a viral target. IUBMB Life 2014; 66:27-33. [PMID: 24395713 DOI: 10.1002/iub.1240] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2013] [Accepted: 12/22/2013] [Indexed: 01/20/2023]
Abstract
Viruses alter specific host cell targets to counteract possible defense mechanisms aimed at eliminating infectivity and viral propagation. The SUMO conjugating enzyme Ubc9 functions as a hub for protein sumoylation, whilst also providing an interactive surface for sumoylated proteins through noncovalent interactions. The targeting of Ubc9 by viruses and viral proteins is thus highly beneficial for the disruption of both protein modification and protein-protein interaction mechanisms with which proteins increase their functional repertoire in cells. This review explores some of the clever mechanisms adopted by viruses to deregulate Ubc9, influence effector pathways and positively impact viral persistence consequently.
Collapse
Affiliation(s)
- Archana Varadaraj
- Department of Experimental Oncology, European Institute of Oncology, Milan, Italy
| | | | | |
Collapse
|
27
|
Abstract
GLUT4 is regulated by its intracellular localization. In the absence of insulin, GLUT4 is efficiently retained intracellularly within storage compartments in muscle and fat cells. Upon insulin stimulation (and contraction in muscle), GLUT4 translocates from these compartments to the cell surface where it transports glucose from the extracellular milieu into the cell. Its implication in insulin-regulated glucose uptake makes GLUT4 not only a key player in normal glucose homeostasis but also an important element in insulin resistance and type 2 diabetes. Nevertheless, how GLUT4 is retained intracellularly and how insulin acts on this retention mechanism is largely unclear. In this review, the current knowledge regarding the various molecular processes that govern GLUT4 physiology is discussed as well as the questions that remain.
Collapse
|
28
|
Ma J, Nakagawa Y, Kojima I, Shibata H. Prolonged insulin stimulation down-regulates GLUT4 through oxidative stress-mediated retromer inhibition by a protein kinase CK2-dependent mechanism in 3T3-L1 adipocytes. J Biol Chem 2013; 289:133-42. [PMID: 24240093 DOI: 10.1074/jbc.m113.533240] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Although insulin acutely stimulates glucose uptake by promotion of GLUT4 translocation from intracellular compartments to the plasma membrane in adipocytes and muscles, long term insulin stimulation causes GLUT4 depletion that is particularly prominent in the insulin-responsive GLUT4 storage compartment. This effect is caused mainly by accelerated lysosomal degradation of GLUT4, although the mechanism is not fully defined. Here we show that insulin acutely induced dissociation of retromer components from the low density microsomal membranes of 3T3-L1 adipocytes that was accompanied by disruption of the interaction of Vps35 with sortilin. This insulin effect was dependent on the activity of protein kinase CK2 but not phosphatidylinositol 3-kinase or extracellular signal-regulated kinase 1/2. Knockdown of Vps26 decreased GLUT4 to a level comparable with that with insulin stimulation for 4 h. Vps35 with a mutation in the CK2 phosphorylation motif (Vps35-S7A) was resistant to insulin-induced dissociation from the low density microsomal membrane, and its overexpression attenuated GLUT4 down-regulation with insulin. Furthermore, insulin-generated hydrogen peroxide was an upstream mediator of the insulin action on retromer and GLUT4. These results suggested that insulin-generated oxidative stress switches the GLUT4 sorting direction to lysosomes through inhibition of the retromer function in a CK2-dependent manner.
Collapse
Affiliation(s)
- Jinhui Ma
- From the Department of Cell Biology, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi 371-8512, Japan
| | | | | | | |
Collapse
|
29
|
Dokas J, Chadt A, Nolden T, Himmelbauer H, Zierath JR, Joost HG, Al-Hasani H. Conventional knockout of Tbc1d1 in mice impairs insulin- and AICAR-stimulated glucose uptake in skeletal muscle. Endocrinology 2013; 154:3502-14. [PMID: 23892475 DOI: 10.1210/en.2012-2147] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
In the obesity-resistant SJL mouse strain, we previously identified a naturally occurring loss-of-function mutation in the gene for Tbc1d1. Characterization of recombinant inbred mice that carried the Tbc1d1(SJL) allele on a C57BL/6J background indicated that loss of TBC1D1 protects from obesity, presumably by increasing the use of fat as energy source. To provide direct functional evidence for an involvement of TBC1D1 in energy substrate metabolism, we generated and characterized conventional Tbc1d1 knockout mice. TBC1D1-deficient mice showed moderately reduced body weight, decreased respiratory quotient, and an elevated resting metabolic rate. Ex vivo analysis of intact isolated skeletal muscle revealed a severe impairment in insulin- and AICAR-stimulated glucose uptake in glycolytic extensor digitorum longus muscle and a substantially increased rate of fatty acid oxidation in oxidative soleus muscle. Our results provide direct evidence that TBC1D1 plays a major role in glucose and lipid utilization, and energy substrate preference in skeletal muscle.
Collapse
Affiliation(s)
- Janine Dokas
- Institute for Clinical Biochemistry and Pathobiochemistry, German Diabetes Center, Leibniz Center for Diabetes Research at the Heinrich-Heine-University Düsseldorf, Auf'm Hennekamp 65, 40225 Düsseldorf, Germany.
| | | | | | | | | | | | | |
Collapse
|
30
|
Huang G, Buckler-Pena D, Nauta T, Singh M, Asmar A, Shi J, Kim JY, Kandror KV. Insulin responsiveness of glucose transporter 4 in 3T3-L1 cells depends on the presence of sortilin. Mol Biol Cell 2013; 24:3115-22. [PMID: 23966466 PMCID: PMC3784384 DOI: 10.1091/mbc.e12-10-0765] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Insulin-dependent translocation of Glut4 to the plasma membrane of fat and skeletal muscle cells plays the key role in postprandial clearance of blood glucose. In undifferentiated cells, insulin responsiveness of Glut4 depends on the presence of sortilin, whereas sortilin responds to insulin regardless of Glut4 expression. Insulin-dependent translocation of glucose transporter 4 (Glut4) to the plasma membrane of fat and skeletal muscle cells plays the key role in postprandial clearance of blood glucose. Glut4 represents the major cell-specific component of the insulin-responsive vesicles (IRVs). It is not clear, however, whether the presence of Glut4 in the IRVs is essential for their ability to respond to insulin stimulation. We prepared two lines of 3T3-L1 cells with low and high expression of myc7-Glut4 and studied its translocation to the plasma membrane upon insulin stimulation, using fluorescence-assisted cell sorting and cell surface biotinylation. In undifferentiated 3T3-L1 preadipocytes, translocation of myc7-Glut4 was low regardless of its expression levels. Coexpression of sortilin increased targeting of myc7-Glut4 to the IRVs, and its insulin responsiveness rose to the maximal levels observed in fully differentiated adipocytes. Sortilin ectopically expressed in undifferentiated cells was translocated to the plasma membrane regardless of the presence or absence of myc7-Glut4. AS160/TBC1D4 is expressed at low levels in preadipocytes but is induced in differentiation and provides an additional mechanism for the intracellular retention and insulin-stimulated release of Glut4.
Collapse
Affiliation(s)
- Guanrong Huang
- Department of Biochemistry, Boston University School of Medicine, Boston, MA 02118
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Wozniak K, Krupa R, Synowiec E, Morawiec Z. Polymorphism of UBC9 gene encoding the SUMO-E2-conjugating enzyme and breast cancer risk. Pathol Oncol Res 2013; 20:67-72. [PMID: 23873416 PMCID: PMC3889919 DOI: 10.1007/s12253-013-9659-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2013] [Accepted: 06/03/2013] [Indexed: 12/13/2022]
Abstract
UBC9 protein (E2-conjugating enzyme) plays a key role in post-translation modification named sumoylation. Proteins, which are sumoylated take part in many cellular processes including cell growth, maintaining the genome integrity and stability and cancer development. The aim of this study was to investigate an association between three polymorphisms of the UBC9 gene: c.73G>A (rs11553473), c.430T>G (rs75020906) and g.1289209T>C (rs7187167) and a risk of ductal breast cancer occurrence. We performed a case-control study in 181 breast cancer cases and 277 controls using PCR-RLFP and ASO-PCR. In the case of the 430T>G polymorphism of the UBC9 gene lack of variability suggests that there is not a polymorphic site in polish population. We observed that a risk of breast cancer occurrence is elevated in patients with the G/A genotype (OR 5.03; 95 % Cl 3.05–8.28), the A/A genotype (OR 11.3; 95 % Cl 4.24–30.3) and the A allele (OR 6.86; 95 % Cl 4.43–10.6) of the c.73G>A polymorphism. In the case of the g.1289209T>C polymorphism we found a correlation between estrogen receptor (ER) expression and the T/T genotype (OR 0.22; 95 % Cl 0.07–0.64) and the T allele (OR 0.53; 95 % Cl 0.32–0.88). We also found a correlation between the T/T genotype (OR 4.13; 95 % Cl 1.21–14.1) and the T allele (OR 2.09; 95 % Cl 1.07–4.08) of the g.1289209T>C polymorphism with triple negative breast cancer. Our results suggest that the variability of the UBC9 gene can play a role in breast cancer occurrence.
Collapse
Affiliation(s)
- Katarzyna Wozniak
- Department of Molecular Genetics, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland,
| | | | | | | |
Collapse
|
32
|
Silveirinha V, Stephens GJ, Cimarosti H. Molecular targets underlying SUMO-mediated neuroprotection in brain ischemia. J Neurochem 2013; 127:580-91. [PMID: 23786482 DOI: 10.1111/jnc.12347] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2013] [Revised: 06/14/2013] [Accepted: 06/17/2013] [Indexed: 01/11/2023]
Abstract
SUMOylation (small ubiquitin-like modifier conjugation) is an important post-translational modification which is becoming increasingly implicated in the altered protein dynamics associated with brain ischemia. The function of SUMOylation in cells undergoing ischemic stress and the identity of small ubiquitin-like modifier (SUMO) targets remain in most cases unknown. However, the emerging consensus is that SUMOylation of certain proteins might be part of an endogenous neuroprotective response. This review brings together the current understanding of the underlying mechanisms and downstream effects of SUMOylation in brain ischemia, including processes such as autophagy, mitophagy and oxidative stress. We focus on recent advances and controversies regarding key central nervous system proteins, including those associated with the nucleus, cytoplasm and plasma membrane, such as glucose transporters (GLUT1, GLUT4), excitatory amino acid transporter 2 glutamate transporters, K+ channels (K2P1, Kv1.5, Kv2.1), GluK2 kainate receptors, mGluR8 glutamate receptors and CB1 cannabinoid receptors, which are reported to be SUMO-modified. A discussion of the roles of these molecular targets for SUMOylation could play following an ischemic event, particularly with respect to their potential neuroprotective impact in brain ischemia, is proposed.
Collapse
Affiliation(s)
- Vasco Silveirinha
- School of Pharmacy, Hopkins Building, University of Reading, Whiteknights, Reading, UK
| | | | | |
Collapse
|
33
|
Bohl CR, Abrahamyan LG, Wood C. Human Ubc9 is involved in intracellular HIV-1 Env stability after trafficking out of the trans-Golgi network in a Gag dependent manner. PLoS One 2013; 8:e69359. [PMID: 23861967 PMCID: PMC3704627 DOI: 10.1371/journal.pone.0069359] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2013] [Accepted: 06/07/2013] [Indexed: 01/03/2023] Open
Abstract
The cellular E2 Sumo conjugase, Ubc9 interacts with HIV-1 Gag, and is important for the assembly of infectious HIV-1 virions. In the previous study we demonstrated that in the absence of Ubc9, a defect in virion assembly was associated with decreased levels of mature intracellular Envelope (Env) that affected Env incorporation into virions and virion infectivity. We have further characterized the effect of Ubc9 knockdown on HIV Env processing and assembly. We found that gp160 stability in the endoplasmic reticulum (ER) and its trafficking to the trans-Golgi network (TGN) were unaffected, indicating that the decreased intracellular mature Env levels in Ubc9-depleted cells were due to a selective degradation of mature Env gp120 after cleavage from gp160 and trafficked out of the TGN. Decreased levels of Gag and mature Env were found to be associated with the plasma membrane and lipid rafts, which suggest that these viral proteins were not trafficked correctly to the assembly site. Intracellular gp120 were partially rescued when treated with a combination of lysosome inhibitors. Taken together our results suggest that in the absence of Ubc9, gp120 is preferentially degraded in the lysosomes likely before trafficking to assembly sites leading to the production of defective virions. This study provides further insight in the processing and packaging of the HIV-1 gp120 into mature HIV-1 virions.
Collapse
Affiliation(s)
- Christopher R. Bohl
- Nebraska Center for Virology and the School of Biological Sciences, University of Nebraska, Lincoln, Lincoln, Nebraska, United States of America
| | - Levon G. Abrahamyan
- Nebraska Center for Virology and the School of Biological Sciences, University of Nebraska, Lincoln, Lincoln, Nebraska, United States of America
| | - Charles Wood
- Nebraska Center for Virology and the School of Biological Sciences, University of Nebraska, Lincoln, Lincoln, Nebraska, United States of America
| |
Collapse
|
34
|
Sadler JBA, Bryant NJ, Gould GW, Welburn CR. Posttranslational modifications of GLUT4 affect its subcellular localization and translocation. Int J Mol Sci 2013; 14:9963-78. [PMID: 23665900 PMCID: PMC3676823 DOI: 10.3390/ijms14059963] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2013] [Revised: 05/02/2013] [Accepted: 05/02/2013] [Indexed: 01/05/2023] Open
Abstract
The facilitative glucose transporter type 4 (GLUT4) is expressed in adipose and muscle and plays a vital role in whole body glucose homeostasis. In the absence of insulin, only ~1% of cellular GLUT4 is present at the plasma membrane, with the vast majority localizing to intracellular organelles. GLUT4 is retained intracellularly by continuous trafficking through two inter-related cycles. GLUT4 passes through recycling endosomes, the trans Golgi network and an insulin-sensitive intracellular compartment, termed GLUT4-storage vesicles or GSVs. It is from GSVs that GLUT4 is mobilized to the cell surface in response to insulin, where it increases the rate of glucose uptake into the cell. As with many physiological responses to external stimuli, this regulated trafficking event involves multiple posttranslational modifications. This review outlines the roles of posttranslational modifications of GLUT4 on its function and insulin-regulated trafficking.
Collapse
Affiliation(s)
| | - Nia J. Bryant
- Institute of Molecular, Cell and Systems Biology, Davidson Building, College of Medical Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK; E-Mails: (J.B.A.S.); (N.J.B.); (G.W.G.)
| | - Gwyn W. Gould
- Institute of Molecular, Cell and Systems Biology, Davidson Building, College of Medical Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK; E-Mails: (J.B.A.S.); (N.J.B.); (G.W.G.)
| | - Cassie R. Welburn
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +44-141-330-6454; Fax: +44-141-330-5481
| |
Collapse
|
35
|
A novel regulatory function of sweet taste-sensing receptor in adipogenic differentiation of 3T3-L1 cells. PLoS One 2013; 8:e54500. [PMID: 23336004 PMCID: PMC3545961 DOI: 10.1371/journal.pone.0054500] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2012] [Accepted: 12/12/2012] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Sweet taste receptor is expressed not only in taste buds but also in nongustatory organs such as enteroendocrine cells and pancreatic beta-cells, and may play more extensive physiological roles in energy metabolism. Here we examined the expression and function of the sweet taste receptor in 3T3-L1 cells. METHODOLOGY/PRINCIPAL FINDINGS In undifferentiated preadipocytes, both T1R2 and T1R3 were expressed very weakly, whereas the expression of T1R3 but not T1R2 was markedly up-regulated upon induction of differentiation (by 83.0 and 3.8-fold, respectively at Day 6). The α subunits of Gs (Gαs) and G14 (Gα14) but not gustducin were expressed throughout the differentiation process. The addition of sucralose or saccharin during the first 48 hours of differentiation considerably reduced the expression of peroxisome proliferator activated receptor γ (PPARγ and CCAAT/enhancer-binding protein α (C/EBPα at Day 2, the expression of aP2 at Day 4 and triglyceride accumulation at Day 6. These anti-adipogenic effects were attenuated by short hairpin RNA-mediated gene-silencing of T1R3. In addition, overexpression of the dominant-negative mutant of Gαs but not YM-254890, an inhibitor of Gα14, impeded the effects of sweeteners, suggesting a possible coupling of Gs with the putative sweet taste-sensing receptor. In agreement, sucralose and saccharin increased the cyclic AMP concentration in differentiating 3T3-L1 cells and also in HEK293 cells heterologously expressing T1R3. Furthermore, the anti-adipogenic effects of sweeteners were mimicked by Gs activation with cholera toxin but not by adenylate cyclase activation with forskolin, whereas small interfering RNA-mediated knockdown of Gαs had the opposite effects. CONCLUSIONS 3T3-L1 cells express a functional sweet taste-sensing receptor presumably as a T1R3 homomer, which mediates the anti-adipogenic signal by a Gs-dependent but cAMP-independent mechanism.
Collapse
|
36
|
Deciphering the role of GLUT4 N-glycosylation in adipocyte and muscle cell models. Biochem J 2012; 445:265-73. [DOI: 10.1042/bj20120232] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
GLUT4 (glucose transporter 4) is responsible for the insulin-induced uptake of glucose by muscle and fat cells. In non-stimulated (basal) cells, GLUT4 is retained intracellularly, whereas insulin stimulation leads to its translocation from storage compartments towards the cell surface. How GLUT4 is retained intracellularly is largely unknown. Previously, aberrant GLUT4 N-glycosylation has been linked to increased basal cell-surface levels, while N-glycosylation-deficient GLUT4 was found to be quickly degraded. As recycling and degradation of GLUT4 are positively correlated, we hypothesized that incorrect N-glycosylation of GLUT4 might reduce its intracellular retention, resulting in an increased cell-surface recycling, in increased basal cell-surface levels, and in enhanced GLUT4 degradation. In the present study, we have investigated N-glycosylation-deficient GLUT4 in detail in 3T3-L1 preadipocytes, 3T3-L1 adipocytes and L6 myoblasts. We have found no alterations in retention, insulin response, internalization or glucose transport activity. Degradation of the mutant molecule was increased, although once present at the cell surface, its degradation was identical with that of wild-type GLUT4. Our findings indicate that N-glycosylation is important for efficient trafficking of GLUT4 to its proper compartments, but once the transporter has arrived there, N-glycosylation plays no further major role in its intracellular trafficking, nor in its functional activity.
Collapse
|
37
|
Wu Y, Guo Z, Wu H, Wang X, Yang L, Shi X, Du J, Tang B, Li W, Yang L, Zhang Y. SUMOylation represses Nanog expression via modulating transcription factors Oct4 and Sox2. PLoS One 2012; 7:e39606. [PMID: 22745796 PMCID: PMC3382131 DOI: 10.1371/journal.pone.0039606] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2012] [Accepted: 05/23/2012] [Indexed: 01/01/2023] Open
Abstract
Nanog is a pivotal transcription factor in embryonic stem (ES) cells and is essential for maintaining the pluripotency and self-renewal of ES cells. SUMOylation has been proved to regulate several stem cell markers' function, such as Oct4 and Sox2. Nanog is strictly regulated by Oct4/Sox2 heterodimer. However, the direct effects of SUMOylation on Nanog expression remain unclear. In this study, we reported that SUMOylation repressed Nanog expression. Depletion of Sumo1 or its conjugating enzyme Ubc9 increased the expression of Nanog, while high SUMOylation reduced its expression. Interestingly, we found that SUMOylation of Oct4 and Sox2 regulated Nanog in an opposing manner. SUMOylation of Oct4 enhanced Nanog expression, while SUMOylated Sox2 inhibited its expression. Moreover, SUMOylation of Oct4 by Pias2 or Sox2 by Pias3 impaired the interaction between Oct4 and Sox2. Taken together, these results indicate that SUMOylation has a negative effect on Nanog expression and provides new insights into the mechanism of SUMO modification involved in ES cells regulation.
Collapse
Affiliation(s)
- Yongyan Wu
- College of life Sciences, Northwest A&F University, Yangling, Shaanxi, China
- College of Veterinary Medicine, Northwest A&F University, Key Laboratory of Animal Biotechnology, Ministry of Agriculture, Yangling, Shaanxi, China
| | - Zekun Guo
- College of life Sciences, Northwest A&F University, Yangling, Shaanxi, China
| | - Haibo Wu
- College of life Sciences, Northwest A&F University, Yangling, Shaanxi, China
| | - Xiaohai Wang
- College of life Sciences, Northwest A&F University, Yangling, Shaanxi, China
| | - Lixia Yang
- College of life Sciences, Northwest A&F University, Yangling, Shaanxi, China
| | - Xiaoyan Shi
- College of life Sciences, Northwest A&F University, Yangling, Shaanxi, China
| | - Juan Du
- College of life Sciences, Northwest A&F University, Yangling, Shaanxi, China
| | - Bo Tang
- College of life Sciences, Northwest A&F University, Yangling, Shaanxi, China
| | - Wenzhong Li
- College of life Sciences, Northwest A&F University, Yangling, Shaanxi, China
| | - Liping Yang
- College of life Sciences, Northwest A&F University, Yangling, Shaanxi, China
| | - Yong Zhang
- College of Veterinary Medicine, Northwest A&F University, Key Laboratory of Animal Biotechnology, Ministry of Agriculture, Yangling, Shaanxi, China
| |
Collapse
|
38
|
Abstract
Despite daily fasting and feeding, plasma glucose levels are normally maintained within a narrow range owing to the hormones insulin and glucagon. Insulin increases glucose uptake into fat and muscle cells through the regulated trafficking of vesicles that contain glucose transporter type 4 (GLUT4). New insights into insulin signalling reveal that phosphorylation events initiated by the insulin receptor regulate key GLUT4 trafficking proteins, including small GTPases, tethering complexes and the vesicle fusion machinery. These proteins, in turn, control GLUT4 movement through the endosomal system, formation and retention of specialized GLUT4 storage vesicles and targeted exocytosis of these vesicles. Understanding these processes may help to explain the development of insulin resistance in type 2 diabetes and provide new potential therapeutic targets.
Collapse
|
39
|
Bogan JS, Rubin BR, Yu C, Löffler MG, Orme CM, Belman JP, McNally LJ, Hao M, Cresswell JA. Endoproteolytic cleavage of TUG protein regulates GLUT4 glucose transporter translocation. J Biol Chem 2012; 287:23932-47. [PMID: 22610098 DOI: 10.1074/jbc.m112.339457] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
To promote glucose uptake into fat and muscle cells, insulin causes the translocation of GLUT4 glucose transporters from intracellular vesicles to the cell surface. Previous data support a model in which TUG traps GLUT4-containing vesicles and tethers them intracellularly in unstimulated cells and in which insulin mobilizes this pool of vesicles by releasing this tether. Here we show that TUG undergoes site-specific endoproteolytic cleavage, which separates a GLUT4-binding, N-terminal region of TUG from a C-terminal region previously suggested to bind an intracellular anchor. Cleavage is accelerated by insulin stimulation in 3T3-L1 adipocytes and is highly dependent upon adipocyte differentiation. The N-terminal TUG cleavage product has properties of a novel 18-kDa ubiquitin-like modifier, which we call TUGUL. The C-terminal product is observed at the expected size of 42 kDa and also as a 54-kDa form that is released from membranes into the cytosol. In transfected cells, intact TUG links GLUT4 to PIST and also binds Golgin-160 through its C-terminal region. PIST is an effector of TC10α, a GTPase previously shown to transmit an insulin signal required for GLUT4 translocation, and we show using RNAi that TC10α is required for TUG proteolytic processing. Finally, we demonstrate that a cleavage-resistant form of TUG does not support highly insulin-responsive GLUT4 translocation or glucose uptake in 3T3-L1 adipocytes. Together with previous results, these data support a model whereby insulin stimulates TUG cleavage to liberate GLUT4 storage vesicles from the Golgi matrix, which promotes GLUT4 translocation to the cell surface and enhances glucose uptake.
Collapse
Affiliation(s)
- Jonathan S Bogan
- Section of Endocrinology and Metabolism, Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut 06520-8020, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Abstract
To enhance glucose uptake into muscle and fat cells, insulin stimulates the translocation of GLUT4 glucose transporters from intracellular membranes to the cell surface. This response requires the intersection of insulin signaling and vesicle trafficking pathways, and it is compromised in the setting of overnutrition to cause insulin resistance. Insulin signals through AS160/Tbc1D4 and Tbc1D1 to modulate Rab GTPases and through the Rho GTPase TC10α to act on other targets. In unstimulated cells, GLUT4 is incorporated into specialized storage vesicles containing IRAP, LRP1, sortilin, and VAMP2, which are sequestered by TUG, Ubc9, and other proteins. Insulin mobilizes these vesicles directly to the plasma membrane, and it modulates the trafficking itinerary so that cargo recycles from endosomes during ongoing insulin exposure. Knowledge of how signaling and trafficking pathways are coordinated will be essential to understanding the pathogenesis of diabetes and the metabolic syndrome and may also inform a wide range of other physiologies.
Collapse
Affiliation(s)
- Jonathan S Bogan
- Section of Endocrinology and Metabolism, Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut 06520-8020, USA.
| |
Collapse
|
41
|
Kampmann U, Christensen B, Nielsen TS, Pedersen SB, Ørskov L, Lund S, Møller N, Jessen N. GLUT4 and UBC9 protein expression is reduced in muscle from type 2 diabetic patients with severe insulin resistance. PLoS One 2011; 6:e27854. [PMID: 22114711 PMCID: PMC3218059 DOI: 10.1371/journal.pone.0027854] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2011] [Accepted: 10/26/2011] [Indexed: 11/23/2022] Open
Abstract
Aims Subgroups of patients with type 2 diabetes mellitus demand large insulin doses to maintain euglycemia. These patients are characterized by severe skeletal muscle insulin resistance and the underlying pathology remains unclear. The purpose of this study was to examine protein expression of the principal glucose transporter, GLUT4, and associated proteins in skeletal muscle from type 2 diabetic patients characterized by severe insulin resistance. Methods Seven type 2 diabetic patients with severe insulin resistance (mean insulin dose 195 IU/day) were compared with seven age matched type 2 diabetic patients who did not require insulin treatment, and with an age matched healthy control group. Protein expression of GLUT4 and associated proteins was assessed in muscle and fat biopsies using standard western blotting techniques. Results GLUT4 protein expression was significantly reduced by ∼30 pct in skeletal muscle tissue from severely insulin resistant type 2 diabetic subjects, compared with both healthy controls and type 2 diabetic subjects that did not require insulin treatment. In fat tissue, GLUT4 protein expression was reduced in both diabetic groups. In skeletal muscle, the reduced GLUT4 expression in severe insulin resistance was associated with decreased ubiquitin-conjugating enzyme 9 (UBC9) expression while expression of GLUT1, TBC1D1 and AS160 was not significantly different among type 2 diabetic patients and matched controls. Conclusions Type 2 diabetic patients with severe insulin resistance have reduced expression of GLUT4 in skeletal muscle compared to patients treated with oral antidiabetic drugs alone. GLUT4 protein levels may therefore play a role in the pathology behind type 2 diabetes mellitus among subgroups of patients, and this may explain the heterogeneous response to insulin treatment. This new finding contributes to the understanding of the underlying mechanisms for the development of extreme insulin resistance.
Collapse
Affiliation(s)
- Ulla Kampmann
- Department of Endocrinology and Internal Medicine, Aarhus University Hospital, Aarhus, Denmark
| | - Britt Christensen
- Department of Endocrinology and Internal Medicine, Aarhus University Hospital, Aarhus, Denmark
| | - Thomas Svava Nielsen
- Department of Endocrinology and Internal Medicine, Aarhus University Hospital, Aarhus, Denmark
| | - Steen Bønløkke Pedersen
- Department of Endocrinology and Internal Medicine, Aarhus University Hospital, Aarhus, Denmark
| | - Lotte Ørskov
- Department of Internal Medicine, Silkeborg Regional Hospital, Silkeborg, Denmark
| | - Sten Lund
- Department of Endocrinology and Internal Medicine, Aarhus University Hospital, Aarhus, Denmark
| | - Niels Møller
- Department of Endocrinology and Internal Medicine, Aarhus University Hospital, Aarhus, Denmark
| | - Niels Jessen
- Department of Clinical Pharmacology, Aarhus University Hospital, Aarhus, Denmark
- * E-mail:
| |
Collapse
|
42
|
Hatakeyama H, Kanzaki M. Molecular basis of insulin-responsive GLUT4 trafficking systems revealed by single molecule imaging. Traffic 2011; 12:1805-20. [PMID: 21910807 DOI: 10.1111/j.1600-0854.2011.01279.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Development of a 'static retention' property of GLUT4, the insulin-responsive glucose transporter, has emerged as being essential for achieving its maximal insulin-induced surface exposure. Herein, employing quantum-dot-based nanometrology of intracellular GLUT4 behavior, we reveal the molecular basis of its systematization endowed upon adipogenic differentiation of 3T3L1 cells. Specifically, (i) the endosomes-to-trans-Golgi network (TGN) retrieval system specialized for GLUT4 develops in response to sortilin expression, which requires an intricately balanced interplay among retromers, golgin-97 and syntaxin-6, the housekeeping vesicle trafficking machinery. (ii) The Golgin-97-localizing subdomain of the differentiated TGN apparently serves as an intermediate transit route by which GLUT4 can further proceed to the stationary GLUT4 storage compartment. (iii) AS160/Tbc1d4 then renders the 'static retention' property insulin responsive, i.e. insulin liberates GLUT4 from the static state only in the presence of functional AS160/Tbc1d4. (iv) Moreover, sortilin malfunction and the resulting GLUT4 sorting defects along with retarded TGN function might be etiologically related to insulin resistance. Together, these observations provide a conceptual framework for understanding maturation/retardation of the insulin-responsive GLUT4 trafficking system that relies on the specialized subdomain of differentiated TGN.
Collapse
Affiliation(s)
- Hiroyasu Hatakeyama
- Graduate School of Biomedical Engineering, Tohoku University, Sendai, Miyagi 980-8575, Japan
| | | |
Collapse
|
43
|
Piper RC, Lehner PJ. Endosomal transport via ubiquitination. Trends Cell Biol 2011; 21:647-55. [PMID: 21955996 DOI: 10.1016/j.tcb.2011.08.007] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2011] [Revised: 08/23/2011] [Accepted: 08/31/2011] [Indexed: 12/21/2022]
Abstract
Cell survival, growth, differentiation and homeostasis rely on exquisite control of the abundance of particular cell-surface membrane proteins. Cell-surface proteins must respond appropriately to environmental and intracellular cues, often undergoing regulated internalization and lysosomal degradation. These proteins also can sustain damage and must be recognized and removed. A unifying mechanism has emerged for the trafficking of damaged and downregulated proteins to the lysosome by their attachment to ubiquitin (Ub), which serves as a sorting signal for clathrin-mediated internalization and sorting into late endosomes. Major questions remain as to how this system is governed, how it is adapted for different proteins, and whether Ub serves as more than a one-way ticket to the lysosome for degradation. Here, we highlight recent insights and the challenges that remain.
Collapse
Affiliation(s)
- Robert C Piper
- Molecular Physiology and Biophysics, University of Iowa, Iowa City, IA 52242, USA.
| | | |
Collapse
|
44
|
Foley K, Boguslavsky S, Klip A. Endocytosis, recycling, and regulated exocytosis of glucose transporter 4. Biochemistry 2011; 50:3048-61. [PMID: 21405107 DOI: 10.1021/bi2000356] [Citation(s) in RCA: 122] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Glucose transporter 4 (GLUT4) is responsible for the uptake of glucose into muscle and adipose tissues. Under resting conditions, GLUT4 is dynamically retained through idle cycling among selective intracellular compartments, from whence it undergoes slow recycling to the plasma membrane (PM). This dynamic retention can be released by command from intracellular signals elicited by insulin and other stimuli, which result in 2-10-fold increases in the surface level of GLUT4. Insulin-derived signals promote translocation of GLUT4 to the PM from a specialized compartment termed GLUT4 storage vesicles (GSV). Much effort has been devoted to the characterization of the intracellular compartments and dynamics of GLUT4 cycling and to the signals by which GLUT4 is sorted into, and recruited from, GSV. This review summarizes our understanding of intracellular GLUT4 traffic during its internalization from the membrane, its slow, constitutive recycling, and its regulated exocytosis in response to insulin. In spite of specific differences in GLUT4 dynamic behavior in adipose and muscle cells, the generalities of its endocytic and exocytic itineraries are consistent and an array of regulatory proteins that regulate each vesicular traffic event emerges from these cell systems.
Collapse
Affiliation(s)
- Kevin Foley
- Cell Biology Program, The Hospital for Sick Children, Toronto, Ontario M4G 1X8, Canada
| | | | | |
Collapse
|
45
|
Cignarelli A, Melchiorre M, Peschechera A, Conserva A, Renna LA, Miccoli S, Natalicchio A, Perrini S, Laviola L, Giorgino F. Role of UBC9 in the regulation of the adipogenic program in 3T3-L1 adipocytes. Endocrinology 2010; 151:5255-66. [PMID: 20881252 DOI: 10.1210/en.2010-0417] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The small ubiquitin-like modifier-conjugating enzyme UBC9, involved in protein modification through covalent attachment of small ubiquitin-like modifier and other less defined mechanisms, has emerged as a key regulator of cell proliferation and differentiation. To explore the role of UBC9 in adipocyte differentiation, the UBC9 protein levels were examined in differentiating 3T3-L1 cells. UBC9 mRNA and protein levels were increased 2.5-fold at d 2 and then gradually declined to basal levels at d 8 of differentiation. In addition, UBC9 was expressed predominantly in the nucleus of preadipocytes but shifted to cytoplasmic compartments after d 4, after induction of differentiation. UBC9 knockdown was then achieved in differentiating 3T3-L1 preadipocytes using a specific small interfering RNA. Oil-Red-O staining demonstrated accumulation of large triglyceride droplets in approximately 90% of control cells, whereas lipid droplets were smaller and evident in only 30% of cells treated with the UBC9-specific small interfering RNA. CCAAT/enhancer-binding protein (C/EBP)-δ, peroxisome proliferator-activated receptor-γ, and C/EBPα mRNA levels were increased severalfold 2-6 d after induction of differentiation in control cells, whereas the expression of these transcription factors was significantly lower in the presence of UBC9 gene silencing. Adenovirus-mediated overexpression of a catalytically inactive mutant UBC9 protein in 3T3-L1 cells resulted in no changes in expression of adipogenic transcription factors and conversion to mature adipocytes as compared with control. In conclusion, UBC9 appears to play an important role in adipogenesis. The temporal profile of UBC9 induction and its ability to affect C/EBPδ mRNA induction support a role for this protein during early adipogenesis.
Collapse
Affiliation(s)
- Angelo Cignarelli
- Department of Emergency and Organ Transplantation, Section of Internal Medicine, Endocrinology, Andrology, and Metabolic Diseases, Università degli Studi di Bari Aldo Moro, I-70124 Bari, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Wilkinson KA, Nakamura Y, Henley JM. Targets and consequences of protein SUMOylation in neurons. BRAIN RESEARCH REVIEWS 2010; 64:195-212. [PMID: 20382182 PMCID: PMC3310160 DOI: 10.1016/j.brainresrev.2010.04.002] [Citation(s) in RCA: 111] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2010] [Revised: 03/24/2010] [Accepted: 04/01/2010] [Indexed: 11/26/2022]
Abstract
The post-translational modification of proteins is critical for the spatial and temporal regulation of signalling cascades. This is especially important in the CNS where the processes affecting differentiation, growth, targeting and communication between neurones are highly complex and very tightly regulated. In recent years it has emerged that modification of proteins by members of the SUMO (small ubiquitin-related modifier) family of proteins play key roles in neuronal function. SUMOylation involves the covalent conjugation of a member of the SUMO family to lysine residues in target proteins. Multiple nuclear and perinuclear SUMOylation targets have been reported to be involved in nuclear organisation and transcriptional regulation. In addition, a growing number of extranuclear SUMO substrates have been identified that can have important acute effects on neuronal function. The SUMOylation of both intra- and extranuclear proteins have been implicated in a diverse array of processes that have far-reaching implications for neuronal function and pathophysiology. Here we review the current understanding of the targets and consequences of protein SUMOylation in the brain and examine its established and potential involvement in a wide range of neurological and neurodegenerative diseases.
Collapse
Affiliation(s)
- Kevin A. Wilkinson
- Medical Research Council Centre for Synaptic Plasticity, Department of Anatomy, School of Medical Sciences, University of Bristol, University Walk, Bristol, BS8 1TD, UK
| | - Yasuko Nakamura
- Medical Research Council Centre for Synaptic Plasticity, Department of Anatomy, School of Medical Sciences, University of Bristol, University Walk, Bristol, BS8 1TD, UK
| | - Jeremy M. Henley
- Medical Research Council Centre for Synaptic Plasticity, Department of Anatomy, School of Medical Sciences, University of Bristol, University Walk, Bristol, BS8 1TD, UK
| |
Collapse
|
47
|
Biogenesis and regulation of insulin-responsive vesicles containing GLUT4. Curr Opin Cell Biol 2010; 22:506-12. [PMID: 20417083 DOI: 10.1016/j.ceb.2010.03.012] [Citation(s) in RCA: 93] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2010] [Revised: 03/29/2010] [Accepted: 03/31/2010] [Indexed: 12/16/2022]
Abstract
Insulin regulates the trafficking of GLUT4 glucose transporters in fat and muscle cells. In unstimulated cells, GLUT4 is sequestered intracellularly in small, insulin-responsive vesicles. Insulin stimulates the translocation of these vesicles to the cell surface, inserting the transporters into the plasma membrane to enhance glucose uptake. Formation of the insulin-responsive vesicles requires multiple interactions among GLUT4, IRAP, LRP1, and sortilin, as well as recruitment of GGA and ACAP1 adaptors and clathrin. Once formed, the vesicles are retained within unstimulated cells by the action of TUG, Ubc9, and other proteins. In addition to acting at other steps in vesicle recycling, insulin releases this retention mechanism to promote the translocation and fusion of the vesicles at the cell surface.
Collapse
|
48
|
Zhu S, Sachdeva M, Wu F, Lu Z, Mo YY. Ubc9 promotes breast cell invasion and metastasis in a sumoylation-independent manner. Oncogene 2010; 29:1763-72. [PMID: 20023705 PMCID: PMC2845735 DOI: 10.1038/onc.2009.459] [Citation(s) in RCA: 93] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2009] [Revised: 11/06/2009] [Accepted: 11/12/2009] [Indexed: 12/18/2022]
Abstract
Ubc9 is an E2-conjugating enzyme that transfers the activated small ubiquitin-like modifier (SUMO) to protein substrates, and thus it has an important function in sumoylation-mediated cellular pathways. We have earlier reported that Ubc9 promotes tumor growth in the xenograft mouse model using breast cancer cell line MCF-7 in part through regulation of Bcl-2 expression. In this study, we show that ectopic expression of wild-type Ubc9 (Ubc9-WT) promotes cell invasion and metastasis. Surprisingly, the dominant negative mutant Ubc9 (Ubc9-DN) also causes the same phenotype, indicating that the ability of Ubc9 to promote invasion and metastasis is distinct from its ability to conjugate SUMO to protein substrates. Of considerable interest, several microRNAs such as miR-224 are regulated by Ubc9. Although ectopic expression of Ubc9 causes downregulation of miR-224, suppression of Ubc9 by Ubc9-siRNAs leads to its upregulation. We further show that miR-224 can inhibit cell invasion and directly targets CDC42 and CXCR4, and that suppression of CDC42 and CXCR4 by RNAi causes inhibition of Ubc9-mediated invasion. Together, these results show a molecular link between Ubc9 and the metastasis genes such as CDC42 and CXCR4, and thus provide new insight into the mechanism by which Ubc9 promotes tumor invasion and metastasis.
Collapse
Affiliation(s)
- Shuomin Zhu
- Department of Medical Microbiology, Immunology and Cell Biology, Southern Illinois University School of Medicine, Springfield, IL
| | - Mohit Sachdeva
- Department of Medical Microbiology, Immunology and Cell Biology, Southern Illinois University School of Medicine, Springfield, IL
| | - Fangting Wu
- Department of Medical Microbiology, Immunology and Cell Biology, Southern Illinois University School of Medicine, Springfield, IL
| | - Zhaohui Lu
- Department of Medical Microbiology, Immunology and Cell Biology, Southern Illinois University School of Medicine, Springfield, IL
| | - Yin-Yuan Mo
- Department of Medical Microbiology, Immunology and Cell Biology, Southern Illinois University School of Medicine, Springfield, IL
| |
Collapse
|
49
|
Abstract
Here, we demonstrate that SENP2, a desumoylating enzyme, plays a critical role in the control of adipogenesis. SENP2 expression was markedly increased upon the induction of adipocyte differentiation, and this increase was dependent on protein kinase A activation. Remarkably, knockdown of SENP2 led to a dramatic attenuation of adipogenesis with a marked decrease in PPARgamma and C/EBPalpha mRNA levels. Knockdown of SENP2 also caused a marked reduction in the level of C/EBPbeta protein but not in that of C/EBPbeta mRNA. Interestingly, sumoylation of C/EBPbeta dramatically increased its ubiquitination and destabilization, and this increase could be reversed by SENP2. In addition, overexpression of C/EBPbeta could overcome the inhibitory effect of SENP2 knockdown on adipogenesis. Furthermore, SENP2 was absolutely required for adipogenesis of preadipocytes implanted into mice. These results establish a critical role for SENP2 in the regulation of adipogenesis by desumoylation and stabilization of C/EBPbeta and in turn by promoting the expression of its downstream effectors, such as PPARgamma and C/EBPalpha.
Collapse
|
50
|
GLUT4 molecules are recruited at random for insertion within the plasma membrane upon insulin stimulation. FEBS Lett 2009; 584:537-42. [DOI: 10.1016/j.febslet.2009.11.093] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2009] [Revised: 11/30/2009] [Accepted: 11/30/2009] [Indexed: 01/14/2023]
|