1
|
Masuda K, Iketani S, Liu L, Huang J, Qiao Y, Shah J, McNairy ML, Groso C, Ricupero C, Loffredo LF, Wang Q, Purpura L, Coelho-dos-Reis JGA, Sheng Z, Yin MT, Tsuji M. Distinct CD8 + T-cell types Associated with COVID-19 Severity in Unvaccinated HLA-A2 + Patients. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.12.632164. [PMID: 39868279 PMCID: PMC11761488 DOI: 10.1101/2025.01.12.632164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/28/2025]
Abstract
Although emerging data have revealed the critical role of memory CD8+ T cells in preventing and controlling SARS-CoV-2 infection, virus-specific CD8+ T-cell responses against SARS-CoV-2 and its memory and innate-like subsets in unvaccinated COVID-19 patients with various disease manifestations in an HLA-restricted fashion remain to be understood. Here, we show the strong association of protective cellular immunity with mild COVID-19 and unique cell types against SARS-CoV-2 virus in an HLA-A2 restricted manner. ELISpot assays reveal that SARS-CoV-2-specific CD8+ T-cell responses in mild COVID-19 patients are significantly higher than in severe patients, whereas neutralizing antibody responses against SARS-CoV-2 virus significantly correlate with disease severity. Single-cell analyses of HLA-A2-restricted CD8+ T cells, which recognize highly conserved immunodominant SARS-CoV-2-specific epitopes, demonstrate divergent profiles in unvaccinated patients with mild versus severe disease. CD8+ T-cell types including cytotoxic KLRB1 + CD8αα cells with innate-like T-cell signatures, IFNG hi ID3 hi memory cells and IL7R + proliferative stem cell-like memory cells are preferentially observed in mild COVID-19, whereas distinct terminally-differentiated T-cell subsets are predominantly detected in severe COVID-19: highly activated FASL hi T-cell subsets and early-terminated or dysfunctional IL4R + GATA3 + stem cell-like memory T-cell subset. In conclusion, our findings suggest that unique and contrasting SARS-CoV-2-specific CD8+ T-cell profiles may dictate COVID-19 severity.
Collapse
Affiliation(s)
- Kazuya Masuda
- Aaron Diamond AIDS Research Center, Department of Medicine, Columbia University Vagelos College of Physicians and Surgeons, New York, NY 10032, USA
- Division of Infectious Diseases, Department of Medicine, Columbia University Vagelos College of Physicians and Surgeons, New York, NY 10032, USA
| | - Sho Iketani
- Aaron Diamond AIDS Research Center, Department of Medicine, Columbia University Vagelos College of Physicians and Surgeons, New York, NY 10032, USA
- Division of Infectious Diseases, Department of Medicine, Columbia University Vagelos College of Physicians and Surgeons, New York, NY 10032, USA
- Department of Microbiology and Immunology, Columbia University Vagelos College of Physicians and Surgeons, New York, NY 10032, USA
| | - Lihong Liu
- Aaron Diamond AIDS Research Center, Department of Medicine, Columbia University Vagelos College of Physicians and Surgeons, New York, NY 10032, USA
- Division of Infectious Diseases, Department of Medicine, Columbia University Vagelos College of Physicians and Surgeons, New York, NY 10032, USA
| | - Jing Huang
- Aaron Diamond AIDS Research Center, Department of Medicine, Columbia University Vagelos College of Physicians and Surgeons, New York, NY 10032, USA
- Division of Infectious Diseases, Department of Medicine, Columbia University Vagelos College of Physicians and Surgeons, New York, NY 10032, USA
| | - Yujie Qiao
- Aaron Diamond AIDS Research Center, Department of Medicine, Columbia University Vagelos College of Physicians and Surgeons, New York, NY 10032, USA
- Division of Infectious Diseases, Department of Medicine, Columbia University Vagelos College of Physicians and Surgeons, New York, NY 10032, USA
| | - Jayesh Shah
- Division of Infectious Diseases, Department of Medicine, Columbia University Vagelos College of Physicians and Surgeons, New York, NY 10032, USA
| | - Meredith L. McNairy
- Division of Infectious Diseases, Department of Medicine, Columbia University Vagelos College of Physicians and Surgeons, New York, NY 10032, USA
| | - Christine Groso
- Aaron Diamond AIDS Research Center, Department of Medicine, Columbia University Vagelos College of Physicians and Surgeons, New York, NY 10032, USA
- Division of Infectious Diseases, Department of Medicine, Columbia University Vagelos College of Physicians and Surgeons, New York, NY 10032, USA
| | - Christopher Ricupero
- Center for Dental & Craniofacial Regeneration, Columbia University Vagelos College of Physicians and Surgeons, New York, NY 10032, USA
| | - Lucas F. Loffredo
- Department of Microbiology and Immunology, Columbia University Vagelos College of Physicians and Surgeons, New York, NY 10032, USA
| | - Qian Wang
- Aaron Diamond AIDS Research Center, Department of Medicine, Columbia University Vagelos College of Physicians and Surgeons, New York, NY 10032, USA
- Division of Infectious Diseases, Department of Medicine, Columbia University Vagelos College of Physicians and Surgeons, New York, NY 10032, USA
| | - Lawrence Purpura
- Division of Infectious Diseases, Department of Medicine, Columbia University Vagelos College of Physicians and Surgeons, New York, NY 10032, USA
| | | | - Zizhang Sheng
- Aaron Diamond AIDS Research Center, Department of Medicine, Columbia University Vagelos College of Physicians and Surgeons, New York, NY 10032, USA
- Division of Infectious Diseases, Department of Medicine, Columbia University Vagelos College of Physicians and Surgeons, New York, NY 10032, USA
| | - Michael T Yin
- Aaron Diamond AIDS Research Center, Department of Medicine, Columbia University Vagelos College of Physicians and Surgeons, New York, NY 10032, USA
- Division of Infectious Diseases, Department of Medicine, Columbia University Vagelos College of Physicians and Surgeons, New York, NY 10032, USA
| | - Moriya Tsuji
- Aaron Diamond AIDS Research Center, Department of Medicine, Columbia University Vagelos College of Physicians and Surgeons, New York, NY 10032, USA
- Division of Infectious Diseases, Department of Medicine, Columbia University Vagelos College of Physicians and Surgeons, New York, NY 10032, USA
- Lead contact
| |
Collapse
|
2
|
Salminen A. Inhibitory immune checkpoints suppress the surveillance of senescent cells promoting their accumulation with aging and in age-related diseases. Biogerontology 2024; 25:749-773. [PMID: 38954358 PMCID: PMC11374851 DOI: 10.1007/s10522-024-10114-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 06/18/2024] [Indexed: 07/04/2024]
Abstract
The accumulation of pro-inflammatory senescent cells within tissues is a common hallmark of the aging process and many age-related diseases. This modification has been called the senescence-associated secretory phenotype (SASP) and observed in cultured cells and in cells isolated from aged tissues. Currently, there is a debate whether the accumulation of senescent cells within tissues should be attributed to increased generation of senescent cells or to a defect in their elimination from aging tissues. Emerging studies have revealed that senescent cells display an increased expression of several inhibitory immune checkpoint ligands, especially those of the programmed cell death protein-1 (PD-1) ligand-1 (PD-L1) proteins. It is known that the PD-L1 ligands, especially those of cancer cells, target the PD-1 receptor of cytotoxic CD8+ T and natural killer (NK) cells disturbing their functions, e.g., evoking a decline in their cytotoxic activity and promoting their exhaustion and even apoptosis. An increase in the level of the PD-L1 protein in senescent cells was able to suppress their immune surveillance and inhibit their elimination by cytotoxic CD8+ T and NK cells. Senescent cells are known to express ligands for several inhibitory immune checkpoint receptors, i.e., PD-1, LILRB4, NKG2A, TIM-3, and SIRPα receptors. Here, I will briefly describe those pathways and examine whether these inhibitory checkpoints could be involved in the immune evasion of senescent cells with aging and age-related diseases. It seems plausible that an enhanced inhibitory checkpoint signaling can prevent the elimination of senescent cells from tissues and thus promote the aging process.
Collapse
Affiliation(s)
- Antero Salminen
- Department of Neurology, Institute of Clinical Medicine, University of Eastern Finland, P.O. Box 1627, 70211, Kuopio, Finland.
| |
Collapse
|
3
|
Ngai D, Sukka SR, Tabas I. Crosstalk between efferocytic myeloid cells and T-cells and its relevance to atherosclerosis. Front Immunol 2024; 15:1403150. [PMID: 38873597 PMCID: PMC11169609 DOI: 10.3389/fimmu.2024.1403150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 05/17/2024] [Indexed: 06/15/2024] Open
Abstract
The interplay between myeloid cells and T-lymphocytes is critical to the regulation of host defense and inflammation resolution. Dysregulation of this interaction can contribute to the development of chronic inflammatory diseases. Important among these diseases is atherosclerosis, which refers to focal lesions in the arterial intima driven by elevated apolipoprotein B-containing lipoproteins, notably low-density lipoprotein (LDL), and characterized by the formation of a plaque composed of inflammatory immune cells, a collection of dead cells and lipids called the necrotic core, and a fibrous cap. As the disease progresses, the necrotic core expands, and the fibrous cap becomes thin, which increases the risk of plaque rupture or erosion. Plaque rupture leads to a rapid thrombotic response that can give rise to heart attack, stroke, or sudden death. With marked lowering of circulating LDL, however, plaques become more stable and cardiac risk is lowered-a process known as atherosclerosis regression. A critical aspect of both atherosclerosis progression and regression is the crosstalk between innate (myeloid cells) and adaptive (T-lymphocytes) immune cells. Myeloid cells are specialized at clearing apoptotic cells by a process called efferocytosis, which is necessary for inflammation resolution. In advanced disease, efferocytosis is impaired, leading to secondary necrosis of apoptotic cells, inflammation, and, most importantly, defective tissue resolution. In regression, efferocytosis is reawakened aiding in inflammation resolution and plaque stabilization. Here, we will explore how efferocytosing myeloid cells could affect T-cell function and vice versa through antigen presentation, secreted factors, and cell-cell contacts and how this cellular crosstalk may contribute to the progression or regression of atherosclerosis.
Collapse
Affiliation(s)
- David Ngai
- Department of Medicine, Columbia University Irving Medical Center, New York, NY, United States
| | - Santosh R. Sukka
- Department of Medicine, Columbia University Irving Medical Center, New York, NY, United States
| | - Ira Tabas
- Department of Medicine, Columbia University Irving Medical Center, New York, NY, United States
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY, United States
- Department of Physiology, Columbia University Irving Medical Center, New York, NY, United States
| |
Collapse
|
4
|
Nair R, Lannagan TRM, Jackstadt R, Andrusaite A, Cole J, Boyne C, Nibbs RJB, Sansom OJ, Milling S. Co-inhibition of TGF-β and PD-L1 pathways in a metastatic colorectal cancer mouse model triggers interferon responses, innate cells and T cells, alongside metabolic changes and tumor resistance. Oncoimmunology 2024; 13:2330194. [PMID: 38516270 PMCID: PMC10956632 DOI: 10.1080/2162402x.2024.2330194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Accepted: 03/11/2024] [Indexed: 03/23/2024] Open
Abstract
Colorectal cancer (CRC) is the third most prevalent cancer worldwide with a high mortality rate (20-30%), especially due to metastasis to adjacent organs. Clinical responses to chemotherapy, radiation, targeted and immunotherapies are limited to a subset of patients making metastatic CRC (mCRC) difficult to treat. To understand the therapeutic modulation of immune response in mCRC, we have used a genetically engineered mouse model (GEMM), "KPN", which resembles the human 'CMS4'-like subtype. We show here that transforming growth factor (TGF-β1), secreted by KPN organoids, increases cancer cell proliferation, and inhibits splenocyte activation in vitro. TGF-β1 also inhibits activation of naive but not pre-activated T cells, suggesting differential effects on specific immune cells. In vivo, the inhibition of TGF-β inflames the KPN tumors, causing infiltration of T cells, monocytes and monocytic intermediates, while reducing neutrophils and epithelial cells. Co-inhibition of TGF-β and PD-L1 signaling further enhances cytotoxic CD8+T cells and upregulates innate immune response and interferon gene signatures. However, simultaneous upregulation of cancer-related metabolic genes correlated with limited control of tumor burden and/or progression despite combination treatment. Our study illustrates the importance of using GEMMs to predict better immunotherapies for mCRC.
Collapse
Affiliation(s)
- Reshmi Nair
- School of infection and immunity, University of Glasgow, Glasgow, UK
| | | | | | - Anna Andrusaite
- School of infection and immunity, University of Glasgow, Glasgow, UK
| | - John Cole
- School of infection and immunity, University of Glasgow, Glasgow, UK
| | - Caitlin Boyne
- School of infection and immunity, University of Glasgow, Glasgow, UK
| | | | - Owen J. Sansom
- Cancer Research UK Scotland Institute, Glasgow, UK
- School of Cancer Sciences, University of Glasgow, Glasgow, UK
| | - Simon Milling
- School of infection and immunity, University of Glasgow, Glasgow, UK
| |
Collapse
|
5
|
Chandiran K, Cauley LS. The diverse effects of transforming growth factor-β and SMAD signaling pathways during the CTL response. Front Immunol 2023; 14:1199671. [PMID: 37426662 PMCID: PMC10327426 DOI: 10.3389/fimmu.2023.1199671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 06/12/2023] [Indexed: 07/11/2023] Open
Abstract
Cytotoxic T lymphocytes (CTLs) play an important role in defense against infections with intracellular pathogens and anti-tumor immunity. Efficient migration is required to locate and destroy infected cells in different regions of the body. CTLs accomplish this task by differentiating into specialized subsets of effector and memory CD8 T cells that traffic to different tissues. Transforming growth factor-beta (TGFβ) belongs to a large family of growth factors that elicit diverse cellular responses via canonical and non-canonical signaling pathways. Canonical SMAD-dependent signaling pathways are required to coordinate changes in homing receptor expression as CTLs traffic between different tissues. In this review, we discuss the various ways that TGFβ and SMAD-dependent signaling pathways shape the cellular immune response and transcriptional programming of newly activated CTLs. As protective immunity requires access to the circulation, emphasis is placed on cellular processes that are required for cell-migration through the vasculature.
Collapse
Affiliation(s)
- Karthik Chandiran
- School of Biology, Indian Institute of Science Education and Research, Thiruvananthapuram, Kerala, India
| | - Linda S. Cauley
- Department of Immunology, UCONN Health, Farmington, CT, United States
| |
Collapse
|
6
|
Deng H, Zhu S, Yang H, Cui H, Guo H, Deng J, Ren Z, Geng Y, Ouyang P, Xu Z, Deng Y, Zhu Y. The Dysregulation of Inflammatory Pathways Triggered by Copper Exposure. Biol Trace Elem Res 2023; 201:539-548. [PMID: 35312958 DOI: 10.1007/s12011-022-03171-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 02/18/2022] [Indexed: 01/21/2023]
Abstract
Copper (Cu) is an essential micronutrient for both human and animals. However, excessive intake of copper will cause damage to organs and cells. Inflammation is a biological response that can be induced by various factors such as pathogens, damaged cells, and toxic compounds. Dysregulation of inflammatory responses are closely related to many chronic diseases. Recently, Cu toxicological and inflammatory effects have been investigated in various animal models and cells. In this review, we summarized the known effect of Cu on inflammatory responses and sum up the molecular mechanism of Cu-regulated inflammation. Excessive Cu exposure can modulate a huge number of cytokines in both directions, increase and/or decrease through a variety of molecular and cellular signaling pathways including nuclear factor kappa-B (NF-κB) pathway, mitogen-activated protein kinase (MAPKs) pathway, JAK-STAT (Janus Kinase- signal transducer and activator of transcription) pathway, and NOD-like receptor protein 3 (NLRP3) inflammasome. Underlying the molecular mechanism of Cu-regulated inflammation could help further understanding copper toxicology and copper-associated diseases.
Collapse
Affiliation(s)
- Huidan Deng
- College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, China
- Key Laboratory of Animal Diseases and Environmental Hazards of Sichuan Province, Sichuan Agriculture University, Wenjiang, Chengdu, 611130, China
| | - Song Zhu
- College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, China
- Key Laboratory of Animal Diseases and Environmental Hazards of Sichuan Province, Sichuan Agriculture University, Wenjiang, Chengdu, 611130, China
| | - Huiru Yang
- College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, China
| | - Hengmin Cui
- College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, China.
- Key Laboratory of Animal Diseases and Environmental Hazards of Sichuan Province, Sichuan Agriculture University, Wenjiang, Chengdu, 611130, China.
- Key Laboratory of Agricultural Information Engineering of Sichuan Province, Sichuan Agriculture University, Yaan, 625014, Sichuan, China.
| | - Hongrui Guo
- College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, China.
- Key Laboratory of Animal Diseases and Environmental Hazards of Sichuan Province, Sichuan Agriculture University, Wenjiang, Chengdu, 611130, China.
| | - Junliang Deng
- College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, China
- Key Laboratory of Animal Diseases and Environmental Hazards of Sichuan Province, Sichuan Agriculture University, Wenjiang, Chengdu, 611130, China
| | - Zhihua Ren
- College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, China
| | - Yi Geng
- College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, China
| | - Ping Ouyang
- College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, China
| | - Zhiwen Xu
- College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, China
| | - Youtian Deng
- College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, China
| | - Yanqiu Zhu
- College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, China
| |
Collapse
|
7
|
Kardalas E, Sakkas E, Ruchala M, Macut D, Mastorakos G. The role of transforming growth factor beta in thyroid autoimmunity: current knowledge and future perspectives. Rev Endocr Metab Disord 2022; 23:431-447. [PMID: 34529221 DOI: 10.1007/s11154-021-09685-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/30/2021] [Indexed: 12/17/2022]
Abstract
The complex mechanisms, which are related to the pathophysiology and the development of autoimmune thyroid diseases, involve transforming growth factor beta (TGF-β) and its interplay with the immune system. The aim of this review is to examine the role of TGF-β regarding thyroid autoimmunity and explore the potent role of this molecule either as a diagnostic or prognostic marker or a therapeutic target regarding autoimmune thyroid diseases. TGF-β is clearly a master regulator of the immune response, exerting either inhibitory or facilitatory effects on cells of the immune system. Thus, this molecule is involved in the pathogenesis and development of autoimmune thyroid diseases. Recent research has revealed the involvement of TGF-β in the pathophysiology of autoimmune thyroid diseases. The role of TGF-β in the development of autoimmune thyroid diseases varies, depending on its concentrations, the type of the activated TGF-β signalling pathway, the genetic predisposition of the patient and the pathophysiologic stage of the disease. TGF-β could emerge as a useful diagnostic or prognostic marker for the evolution of thyroid autoimmunity. Promising perspectives for the effective therapeutic use of TGF-β regarding thyroid autoimmunity exist. The main treatment approaches incorporate either enhancement of the immunosuppressive role of TGF-β or inhibition of its facilitatory role in the autoimmune thyroid diseases. Further research towards deeper understanding of TGF-β physiology and clinical application of its possible therapeutic role regarding thyroid autoimmunity is needed.
Collapse
Affiliation(s)
- Efstratios Kardalas
- Unit of Endocrinology, Diabetes Mellitus and Metabolism, 'Aretaieion' Hospital, Medical School, National and Kapodistrian University of Athens, Vassilissis Sofias Str. 76, Athens, 11528, Greece
| | - Evangelos Sakkas
- Unit of Endocrinology, Diabetes Mellitus and Metabolism, 'Aretaieion' Hospital, Medical School, National and Kapodistrian University of Athens, Vassilissis Sofias Str. 76, Athens, 11528, Greece
- Obstetrics and Gynecology Private Practice, Michalakopoulou Str. 169, Athens, 11527, Greece
| | - Marek Ruchala
- Department of Endocrinology, Metabolism and Internal Medicine, Poznan University of Medical Sciences, Przybyszewskiego 49, Poznan, 60-355, Poland
| | - Djuro Macut
- Clinic for Endocrinology, Diabetes and Diseases of Metabolism, Univercity Clinical Center of Serbia, Faculty of Medicine, University of Belgrade, Dr Subotića Street 8, Belgrade, 11000, Serbia
| | - George Mastorakos
- Unit of Endocrinology, Diabetes Mellitus and Metabolism, 'Aretaieion' Hospital, Medical School, National and Kapodistrian University of Athens, Vassilissis Sofias Str. 76, Athens, 11528, Greece.
| |
Collapse
|
8
|
Czaja AJ. Immune Inhibitory Properties and Therapeutic Prospects of Transforming Growth Factor-Beta and Interleukin 10 in Autoimmune Hepatitis. Dig Dis Sci 2022; 67:1163-1186. [PMID: 33835375 DOI: 10.1007/s10620-021-06968-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 03/22/2021] [Indexed: 12/14/2022]
Abstract
Transforming growth factor-beta and interleukin 10 have diverse immune inhibitory properties that have restored homeostatic defense mechanisms in experimental models of autoimmune disease. The goals of this review are to describe the actions of each cytokine, review their investigational use in animal models and patients, and indicate their prospects as interventions in autoimmune hepatitis. English abstracts were identified in PubMed by multiple search terms. Full-length articles were selected for review, and secondary and tertiary bibliographies were developed. Transforming growth factor-beta expands the natural and inducible populations of regulatory T cells, limits the proliferation of natural killer cells, suppresses the activation of naïve CD8+ T cells, decreases the production of interferon-gamma, and stimulates fibrotic repair. Interleukin 10 selectively inhibits the CD28 co-stimulatory signal for antigen recognition and impairs antigen-specific activation of uncommitted CD4+ and CD8+ T cells. It also inhibits maturation of dendritic cells, suppresses Th17 cells, supports regulatory T cells, and limits production of diverse pro-inflammatory cytokines. Contradictory immune stimulatory effects have been associated with each cytokine and may relate to the dose and accompanying cytokine milieu. Experimental findings have not translated into successful early clinical trials. The recombinant preparation of each agent in low dosage has been safe in human studies. In conclusion, transforming growth factor-beta and interleukin 10 have powerful immune inhibitory actions of potential therapeutic value in autoimmune hepatitis. The keys to their therapeutic application will be to match their predominant non-redundant function with the pivotal pathogenic mechanism or cytokine deficiency and to avoid contradictory immune stimulatory actions.
Collapse
Affiliation(s)
- Albert J Czaja
- Professor Emeritus of Medicine, Division of Gastroenterology and Hepatology, Mayo Clinic College of Medicine and Science, 200 First Street S.W., Rochester, MN, 55905, USA.
| |
Collapse
|
9
|
Abstract
The cytokine, transforming growth factor beta (TGF-β), has a history of more than 40 years. TGF-β is secreted by many tumor cells and is associated with tumor growth and cancer immunity. The canonical TGF-β signaling pathway, SMAD, controls both tumor metastasis and immune regulation, thereby regulating cancer immunity. TGF-β regulates multiple types of immune cells in tumor microenvironment, including T cells, natural killer (NK) cells, and macrophages. One of the main roles of TGF-β in the tumor microenvironment is the generation of regulatory T cells, which contribute to the suppression of anti-tumor immunity. Because cancer is one of the highest causes of death globally, the discovery of immune checkpoint inhibitors by Honjo and Allison in cancer immunotherapy earned a Nobel Prize in 2018. TGF-β also regulates the levels of immune checkpoints inhibitory receptors on immune cells. Immune checkpoints inhibitors are now being developed along with anti-TGF-β antibody and/or TGF-β inhibitors. More recently, chimeric antigen receptors (CARs) were applied to cancer immunity and tried to combine with TGF-β blockers.
Collapse
Affiliation(s)
| | - WanJun Chen
- Mucosal Immunology Section, NIDCR, National Institute of Health
| | - Hiroyuki Shibata
- Department of Clinical Oncology, Akita University Graduate School of Medicine
| |
Collapse
|
10
|
Nikonorova VG, Chrishtop VV, Rumyantseva TA. Transforming growth factor beta-1 and vascular endothelial growth factor in the recovery and formation of skin scars. RUDN JOURNAL OF MEDICINE 2021. [DOI: 10.22363/2313-0245-2021-25-3-235-242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
Relevance. Scars are multi-tissue structures that significantly reduce the quality of life of the young, able-bodied population. The most socially significant variants are represented by hypertrophic and keloid postoperative scars and scars after burns, atrophic scars after acne vulgaris and striae. Growth factors, which are also used for their treatment, play a significant role in their formation and progression. The aim of this work is to summarize data on the participation of growth factors (transforming growth factor beta-1 and vascular endothelial growth factor) in the formation of a hypertrophic or atrophic scar. Materials and Methods. The study of literary sources of scientometric scientific bases was carried out. Results and Discussion . The study showed that the duration of the scarring phases preceding it is of great importance in scar formation, their prolongation leads to chronic inflammation and the attachment of an autoimmune component, an increase in the number of myofibroblasts due to inhibition of apoptosis and an increase in the synthesis of intercellular substance and immature forms of collagen, as well as thinning of the epidermis over scar. Growth factors such as growth factor beta-1 and vascular endothelial growth factor are capable of shifting the balance of these two main pathways or towards proliferative processes, contributing to an increase in the number of blood vessels in the hemomicrocirculatory bed, the number of mast cells and total cellularity, as well as, in some cases, the synthesis of keloid - that is, the formation of a hypertrophic or keloid scar. On the contrary, the prevalence of inflammatory processes leads to a decrease in cellularity, a decrease in blood vessels and intercellular substance, as well as damage to elastin and collagen fibers, forming the phenotype of an atrophic scar or striae. Conclusion. Growth factors play a key role in scar formation, contributing to an increase in the number of blood vessels in the hemomicrocirculatory bed, the number of mast cells and total cellularity, as well as, in some cases, the synthesis of keloid - that is, the formation of a hypertrophic or keloid scar.
Collapse
|
11
|
Gupta A, Budhu S, Fitzgerald K, Giese R, Michel AO, Holland A, Campesato LF, van Snick J, Uyttenhove C, Ritter G, Wolchok JD, Merghoub T. Isoform specific anti-TGFβ therapy enhances antitumor efficacy in mouse models of cancer. Commun Biol 2021; 4:1296. [PMID: 34789823 PMCID: PMC8599839 DOI: 10.1038/s42003-021-02773-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Accepted: 10/04/2021] [Indexed: 11/17/2022] Open
Abstract
TGFβ is a potential target in cancer treatment due to its dual role in tumorigenesis and homeostasis. However, the expression of TGFβ and its inhibition within the tumor microenvironment has mainly been investigated in stroma-heavy tumors. Using B16 mouse melanoma and CT26 colon carcinoma as models of stroma-poor tumors, we demonstrate that myeloid/dendritic cells are the main sources of TGFβ1 and TGFβ3. Depending on local expression of TGFβ isoforms, isoform specific inhibition of either TGFβ1 or TGFβ3 may be effective. The TGFβ signature of CT26 colon carcinoma is defined by TGFβ1 and TGFβ1 inhibition results in tumor delay; B16 melanoma has equal expression of both isoforms and inhibition of either TGFβ1 or TGFβ3 controls tumor growth. Using T cell functional assays, we show that the mechanism of tumor delay is through and dependent on enhanced CD8+ T cell function. To overcome the local immunosuppressive environment, we found that combining TGFβ inhibition with immune checkpoint blockade results in improved tumor control. Our data suggest that TGFβ inhibition in stroma poor tumors shifts the local immune environment to favor tumor suppression.
Collapse
Affiliation(s)
- Aditi Gupta
- Swim Across America and Ludwig Collaborative Laboratory, Immunology Program, Parker Institute for Cancer Immunotherapy, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
- Human Oncology & Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Sadna Budhu
- Swim Across America and Ludwig Collaborative Laboratory, Immunology Program, Parker Institute for Cancer Immunotherapy, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
- Human Oncology & Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Kelly Fitzgerald
- Swim Across America and Ludwig Collaborative Laboratory, Immunology Program, Parker Institute for Cancer Immunotherapy, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
- Human Oncology & Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Rachel Giese
- Swim Across America and Ludwig Collaborative Laboratory, Immunology Program, Parker Institute for Cancer Immunotherapy, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
- Human Oncology & Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Adam O Michel
- Laboratory of Comparative Pathology, Center of Comparative Medicine and Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Aliya Holland
- Swim Across America and Ludwig Collaborative Laboratory, Immunology Program, Parker Institute for Cancer Immunotherapy, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
- Human Oncology & Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Luis Felipe Campesato
- Swim Across America and Ludwig Collaborative Laboratory, Immunology Program, Parker Institute for Cancer Immunotherapy, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
- Human Oncology & Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | | | | | - Gerd Ritter
- Ludwig Institute for Cancer Research Ltd, New York, NY, USA
| | - Jedd D Wolchok
- Swim Across America and Ludwig Collaborative Laboratory, Immunology Program, Parker Institute for Cancer Immunotherapy, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA.
- Human Oncology & Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA.
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
- Weill Cornell Medical College, New York, NY, 10065, USA.
| | - Taha Merghoub
- Swim Across America and Ludwig Collaborative Laboratory, Immunology Program, Parker Institute for Cancer Immunotherapy, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA.
- Human Oncology & Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA.
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
- Weill Cornell Medical College, New York, NY, 10065, USA.
| |
Collapse
|
12
|
Ghosh R, Mitra P, Kumar PVSNK, Goyal T, Sharma P. T helper cells in depression: central role of Th17 cells. Crit Rev Clin Lab Sci 2021; 59:19-39. [PMID: 34592888 DOI: 10.1080/10408363.2021.1965535] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Depression is one of the most common neuropsychiatric disorders in the world. While conventional pharmaceutical therapy targets monoaminergic pathway dysfunction, it has not been totally successful in terms of positive outcomes, remission, and preventing relapses. There is an increasing amount of evidence that neuroinflammation may play a significant part in the pathophysiology of depression. Among the key components of the neuroinflammatory pathways already known to be active are the T helper (Th) cells, especially Th17 cells. While various preclinical and clinical studies have reported increased levels of Th17 cells in both serum and brain tissue of laboratory model animals, contradictory results have argued against a pertinent role of Th17 cells in depression. Recent studies have also revealed a role for more pathogenic and inflammatory subsets of Th17 in depression, as well as IL-17A and Th17 cells in non-responsiveness to conventional antidepressant therapy. Despite recent advances, there is still a significant knowledge gap concerning the exact mechanism by which Th17 cells influence neuroinflammation in depression. This review first provides a short introduction to the major findings that led to the discovery of the role of Th cells in depression. The major subsets of Th cells known to be involved in neuroimmunology of depression, such as Th1, Th17, and T regulatory cells, are subsequently described, with an in-depth discussion on current knowledge about Th17 cells in depression.
Collapse
Affiliation(s)
- Raghumoy Ghosh
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
| | - Prasenjit Mitra
- Department of Biochemistry, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - P V S N Kiran Kumar
- Department of Biochemistry, All India Institute of Medical Sciences, Jodhpur, India
| | - Taru Goyal
- Department of Biochemistry, All India Institute of Medical Sciences, Jodhpur, India
| | - Praveen Sharma
- Department of Biochemistry, All India Institute of Medical Sciences, Jodhpur, India
| |
Collapse
|
13
|
Krupa A, Kowalska I. The Kynurenine Pathway-New Linkage between Innate and Adaptive Immunity in Autoimmune Endocrinopathies. Int J Mol Sci 2021; 22:9879. [PMID: 34576041 PMCID: PMC8469440 DOI: 10.3390/ijms22189879] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 09/09/2021] [Accepted: 09/10/2021] [Indexed: 12/18/2022] Open
Abstract
The kynurenine pathway (KP) is highly regulated in the immune system, where it promotes immunosuppression in response to infection or inflammation. Indoleamine 2,3-dioxygenase 1 (IDO1), the main enzyme of KP, has a broad spectrum of activity on immune cells regulation, controlling the balance between stimulation and suppression of the immune system at sites of local inflammation, relevant to a wide range of autoimmune and inflammatory diseases. Various autoimmune diseases, among them endocrinopathies, have been identified to date, but despite significant progress in their diagnosis and treatment, they are still associated with significant complications, morbidity, and mortality. The precise cellular and molecular mechanisms leading to the onset and development of autoimmune disease remain poorly clarified so far. In breaking of tolerance, the cells of the innate immunity provide a decisive microenvironment that regulates immune cells' differentiation, leading to activation of adaptive immunity. The current review provided a comprehensive presentation of the known role of IDO1 and KP activation in the regulation of the innate and adaptive arms of the immune system. Significant attention has been paid to the immunoregulatory role of IDO1 in the most prevalent, organ-specific autoimmune endocrinopathies-type 1 diabetes mellitus (T1DM) and autoimmune thyroiditis.
Collapse
Affiliation(s)
- Anna Krupa
- Department of Internal Medicine and Metabolic Diseases, Medical University of Bialystok, M. Sklodowskiej-Curie 24A, 15-276 Bialystok, Poland
| | - Irina Kowalska
- Department of Internal Medicine and Metabolic Diseases, Medical University of Bialystok, M. Sklodowskiej-Curie 24A, 15-276 Bialystok, Poland
| |
Collapse
|
14
|
Shah NM, Imami N, Kelleher P, Barclay WS, Johnson MR. Pregnancy-related immune suppression leads to altered influenza vaccine recall responses. Clin Immunol 2019; 208:108254. [PMID: 31470087 DOI: 10.1016/j.clim.2019.108254] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2019] [Revised: 08/17/2019] [Accepted: 08/26/2019] [Indexed: 01/12/2023]
Abstract
Pregnancy is a risk factor for severe influenza infection. Despite achieving seroprotective antibody titres post immunisation fewer pregnant women experience a reduction in influenza-like illness compared to non-pregnant cohorts. This may be due to the effects that immune-modulation in pregnancy has on vaccine efficacy leading to a less favourable immunologic response. To understand this, we investigated the antigen-specific cellular responses and leukocyte phenotype in pregnant and non-pregnant women who achieved seroprotection post immunisation. We show that pregnancy is associated with better antigen-specific inflammatory (IFN-γ) responses and an expansion of central memory T cells (Tcm) post immunisation, but low-level pregnancy-related immune regulation (HLA-G, PIBF) and associated reduced B-cell antibody maintenance (TGF-β) suggest poor immunologic responses compared to the non-pregnant. Thus far, studies of influenza vaccine immunogenicity have focused on the induction of antibodies but understanding additional vaccine-related cellular responses is needed to fully appreciate how pregnancy impacts on vaccine effectiveness.
Collapse
Affiliation(s)
- Nishel M Shah
- Department of Surgery and Cancer, Imperial College London, Chelsea and Westminster Hospital, London SW10 9NH, United Kingdom.
| | - Nesrina Imami
- Department of Medicine, Imperial College London, Chelsea and Westminster Hospital, London SW10 9NH, United Kingdom
| | - Peter Kelleher
- Department of Medicine, Imperial College London, Chelsea and Westminster Hospital, London SW10 9NH, United Kingdom
| | - Wendy S Barclay
- Department of Medicine, Imperial College London, Chelsea and Westminster Hospital, London SW10 9NH, United Kingdom
| | - Mark R Johnson
- Department of Surgery and Cancer, Imperial College London, Chelsea and Westminster Hospital, London SW10 9NH, United Kingdom
| |
Collapse
|
15
|
Dahmani A, Janelle V, Carli C, Richaud M, Lamarche C, Khalili M, Goupil M, Bezverbnaya K, Bramson JL, Delisle JS. TGFβ Programs Central Memory Differentiation in Ex Vivo-Stimulated Human T Cells. Cancer Immunol Res 2019; 7:1426-1439. [PMID: 31308016 DOI: 10.1158/2326-6066.cir-18-0691] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2018] [Revised: 03/27/2019] [Accepted: 07/09/2019] [Indexed: 11/16/2022]
Abstract
The adoptive transfer of ex vivo-expanded T cells is a promising approach to treat several malignancies. Several lines of evidence support that the infusion of T cells with early memory features, capable of expanding and persisting after transfer, are associated with better outcomes. We report herein that exposure to exogenous TGFβ during human T-cell stimulation ex vivo leads to the accumulation of early/central memory (Tcm) cells. Exposure to TGFβ suppressed the expression of BLIMP-1, a key orchestrator of effector T-cell differentiation, and led to the upregulation of the memory-associated transcription factor ID3. Accordingly, this was associated with an early memory transcriptional signature in both CD4+ and CD8+ T-cell subsets. The T cells stimulated in the presence of TGFβ expanded normally, and displayed polyfunctional features and no suppressive activity. The adoptive transfer of ex vivo-stimulated T cells into immunodeficient mice confirmed that TGFβ-conditioned cells had an enhanced capacity to persist and mediate xenogeneic graft-versus-host disease, as predicted by their early T-cell memory phenotype. Chimeric antigen receptor-expressing T cells generated in the presence of exogenous TGFβ were cytotoxic and more effective at controlling tumor growth in immunodeficient animals. This work unveils a new role for TGFβ in memory T-cell differentiation and indicates that TGFβ signaling may be harnessed to program Tcm differentiation in the context of ex vivo T-cell stimulation for adoptive immunotherapy in humans.
Collapse
Affiliation(s)
- Amina Dahmani
- Centre de Recherche de l'Hôpital Maisonneuve-Rosemont (CRHMR), Montreal, Quebec, Canada
| | - Valérie Janelle
- Centre de Recherche de l'Hôpital Maisonneuve-Rosemont (CRHMR), Montreal, Quebec, Canada
| | - Cédric Carli
- Centre de Recherche de l'Hôpital Maisonneuve-Rosemont (CRHMR), Montreal, Quebec, Canada
| | - Manon Richaud
- Centre de Recherche de l'Hôpital Maisonneuve-Rosemont (CRHMR), Montreal, Quebec, Canada
| | - Caroline Lamarche
- Centre de Recherche de l'Hôpital Maisonneuve-Rosemont (CRHMR), Montreal, Quebec, Canada
- Department of Surgery, University of British Columbia, Vancouver, British Columbia, Canada
- BC Children's Hospital Research Institute, Vancouver, British Columbia, Canada
| | - Myriam Khalili
- Centre de Recherche de l'Hôpital Maisonneuve-Rosemont (CRHMR), Montreal, Quebec, Canada
| | - Mathieu Goupil
- Centre de Recherche de l'Hôpital Maisonneuve-Rosemont (CRHMR), Montreal, Quebec, Canada
| | - Ksenia Bezverbnaya
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Jonathan L Bramson
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Jean-Sébastien Delisle
- Centre de Recherche de l'Hôpital Maisonneuve-Rosemont (CRHMR), Montreal, Quebec, Canada.
- Département de Médecine, Université de Montréal, Montreal, Quebec, Canada
- Hematology-Oncology Division, Hôpital Maisonneuve-Rosemont, Montreal, Quebec, Canada
| |
Collapse
|
16
|
Moon J, Yoon JY, Yang JH, Kwon HH, Min S, Suh DH. Atrophic acne scar: a process from altered metabolism of elastic fibres and collagen fibres based on transforming growth factor-β1 signalling. Br J Dermatol 2019; 181:1226-1237. [PMID: 30822364 DOI: 10.1111/bjd.17851] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/28/2019] [Indexed: 12/20/2022]
Abstract
BACKGROUND Atrophic acne scar, a persistent sequela from acne, is undesirably troubling to many patients due to its cosmetic and psychosocial aspects. Although there have been some reports emphasizing the role of early inflammatory responses in atrophic acne scarring, evolving perspectives on the detailed pathogenic processes are promptly needed. OBJECTIVES Examining the histological, immunological and molecular changes in early acne lesions susceptible to atrophic scarring can provide new insights to understand the pathophysiology of atrophic acne scar. METHODS We experimentally validated several early fundamental hallmarks accounting for the transition of early acne lesions to atrophic scars by comparing molecular profiles of skin and acne lesions between patients who were prone to scar (APS) or not (ANS). RESULTS In APS, compared with ANS, devastating degradation of elastic fibres and collagen fibres occurred in the dermis, followed by their incomplete recovery. Abnormally excessive inflammation mediated by innate immunity with T helper 17 and T helper 1 cells was observed. Epidermal proliferation was significantly diminished. Transforming growth factor (TGF)-β1 was drastically elevated in APS, suggesting that aberrant TGF-β1 signalling is an underlying modulator of all of these pathological processes. CONCLUSIONS These results may provide a basis for understanding the pathogenesis of atrophic acne scarring. Reduction of excessive inflammation and TGF-β1 signalling in early acne lesions is expected to facilitate the protection of normal extracellular matrix metabolism and ultimately the prevention of atrophic scar formation. What's already known about this topic? The dermis of atrophic acne scars shows alteration of extracellular matrix components such as collagen fibres. Inflammation in acne lesions is associated with the development of acne scars. What does this study add? Abnormalities in the metabolism of collagen fibres and elastic fibres were observed in the early developmental stages of acne lesions that were progressing into atrophic scars. Exacerbated inflammation and aberrant epidermal proliferation by increased transforming growth factor (TGF)-β1 signalling may affect the abnormal extracellular matrix metabolism. What is the translational message? Abnormal changes in elastic fibres and collagen fibres are found in the early developmental process of acne in patients who are prone to atrophic scarring. An early treatment regimen strongly inhibiting inflammation and TGF-β1 signalling to help the normal recovery of the extracellular matrix components is required to prevent atrophic scarring.
Collapse
Affiliation(s)
- J Moon
- Department of Dermatology, Seoul National University College of Medicine, Seoul, Republic of Korea.,Acne, Rosacea, Seborrheic Dermatitis and Hidradenitis Suppurativa Research Laboratory, Seoul National University Hospital, Seoul, Republic of Korea
| | - J Y Yoon
- Acne, Rosacea, Seborrheic Dermatitis and Hidradenitis Suppurativa Research Laboratory, Seoul National University Hospital, Seoul, Republic of Korea
| | - J H Yang
- Department of Dermatology, Seoul National University College of Medicine, Seoul, Republic of Korea.,Acne, Rosacea, Seborrheic Dermatitis and Hidradenitis Suppurativa Research Laboratory, Seoul National University Hospital, Seoul, Republic of Korea
| | - H H Kwon
- Oaro Dermatology Clinic, Seoul, Republic of Korea
| | - S Min
- SnU Dermatology Clinic, Seoul, Republic of Korea
| | - D H Suh
- Department of Dermatology, Seoul National University College of Medicine, Seoul, Republic of Korea.,Acne, Rosacea, Seborrheic Dermatitis and Hidradenitis Suppurativa Research Laboratory, Seoul National University Hospital, Seoul, Republic of Korea
| |
Collapse
|
17
|
Ungefroren H. Blockade of TGF-β signaling: a potential target for cancer immunotherapy? Expert Opin Ther Targets 2019; 23:679-693. [PMID: 31232607 DOI: 10.1080/14728222.2019.1636034] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Introduction: Malignant tumors often escape surveillance and eventual destruction by the host immune system through a variety of strategies including production of transforming growth factor (TGF)-β. Because of its generally immunosuppressive role, TGF-β has emerged as a promising therapeutic target in cancer immunotherapy. Areas covered: This article looks at specific mechanisms of how TGF-β controls the function of various immune cell subsets in the tumor microenvironment and focusses on T-cells. Various inhibition tools of TGF-β signaling and potential targets of therapeutic intervention are assessed along with the recent progress in combining TGF-β blockade and immune-mediated therapies. To round off the article, a summary of results from clinical trials is provided in which TGF-β blockade has shown therapeutic benefit for patients. Expert opinion: Data from preclinical models have shown that blocking TGF-β signaling can overcome resistance mechanisms and in combination with immune-checkpoint therapies, can yield additive or synergistic anti-tumor responses. The future of immunooncology will therefore be based on combination trials. Since response rates may critically depend on both cancer type and stage, selection of only those patients who can benefit from combinatorial immunotherapy regimens is of utmost importance.
Collapse
Affiliation(s)
- Hendrik Ungefroren
- a First Department of Medicine , University Hospital Schleswig-Holstein, Campus Lübeck, and University of Lübeck , Lübeck , Germany.,b Clinic for General Surgery, Visceral, Thoracic, Transplantation and Pediatric Surgery , University Hospital Schleswig-Holstein , Campus Kiel, Kiel , Germany
| |
Collapse
|
18
|
Suarez-Ramirez JE, Chandiran K, Brocke S, Cauley LS. Immunity to Respiratory Infection Is Reinforced Through Early Proliferation of Lymphoid T RM Cells and Prompt Arrival of Effector CD8 T Cells in the Lungs. Front Immunol 2019; 10:1370. [PMID: 31258537 PMCID: PMC6587114 DOI: 10.3389/fimmu.2019.01370] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Accepted: 05/30/2019] [Indexed: 12/20/2022] Open
Abstract
Cross-protection between serologically distinct strains of influenza A virus (IAV) is mediated by memory CD8 T cells that recognize epitopes from conserved viral proteins. Early viral control begins with activation of tissue-resident memory CD8 T cells (TRM) cells at the site of viral replication. These CD8 T cells do not act in isolation, as protection against disseminated infection is reinforced by multiple waves of effector cells (TEFF) that enter the lungs with different kinetics. To define how a protective CTL response evolves, we compared the functional properties of antiviral CD8 T cells in the respiratory tract and local lymphoid tissues. When analyzed 30 dpi, large numbers of antiviral CD8 T cells in the lungs and mediastinal lymph nodes (MLNs) expressed canonical markers of TRM cells (CD69 and/or CD103). The check point inhibitor PD-1 was also highly expressed on NP-specific CD8 T cells in the lungs, while the ratios of CD8 T cells expressing CD69 and CD103 varied according to antigen specificity. We next used in vitro experiments to identify conditions that induce a canonical TRM phenotype and found that that naïve and newly activated CD8 T cells maintain CD103 expression during culture with transforming growth factor-beta (TGFβ), while central memory CD8 T cells (TCM) do not express CD103 under similar conditions. In vivo experiments showed that the distribution of antiviral CTLs in the MLN changed when immune mice were treated with reagents that block interactions with PD-L1. Importantly, the lymphoid TRM cells were poised for early proliferation upon reinfection with a different strain of IAV and defenses in the lungs were augmented by a transient increase in numbers of TEFF cells at the site of infection. As the interval between infections increased, lymphoid TRM cells were replaced with TCM cells which proliferated with delayed kinetics and contributed to an exaggerated inflammatory response in the lungs.
Collapse
Affiliation(s)
- Jenny E Suarez-Ramirez
- Department of Immunology, University of Connecticut Health Center, Farmington, CT, United States
| | - Karthik Chandiran
- Department of Immunology, University of Connecticut Health Center, Farmington, CT, United States
| | - Stefan Brocke
- Department of Immunology, University of Connecticut Health Center, Farmington, CT, United States
| | - Linda S Cauley
- Department of Immunology, University of Connecticut Health Center, Farmington, CT, United States
| |
Collapse
|
19
|
Abstract
Transforming Growth Factor beta (TGF-β) is a pleiotropic cytokine produced in large amounts within cancer microenvironments that will ultimately promote neoplastic progression, notably by suppressing the host’s T-cell immunosurveillance. This effect is mostly due to the well-known inhibitory effect of TGF-β on T cell proliferation, activation, and effector functions. Moreover, TGF-β subverts T cell immunity by favoring regulatory T-cell differentiation, further reinforcing immunosuppression within tumor microenvironments. These findings stimulated the development of many strategies to block TGF-β or its signaling pathways, either as monotherapy or in combination with other therapies, to restore anti-cancer immunity. Paradoxically, recent studies provided evidence that TGF-β can also promote differentiation of certain inflammatory populations of T cells, such as Th17, Th9, and resident-memory T cells (Trm), which have been associated with improved tumor control in several models. Here, we review current advances in our understanding of the many roles of TGF-β in T cell biology in the context of tumor immunity and discuss the possibility to manipulate TGF-β signaling to improve cancer immunotherapy.
Collapse
Affiliation(s)
- Amina Dahmani
- Centre de Recherche de L'hôpital Maisonneuve-Rosemont, 5415 Boul. de L'Assomption, Montréal, QC H1T 2M4, Canada.
| | - Jean-Sébastien Delisle
- Centre de Recherche de L'hôpital Maisonneuve-Rosemont, 5415 Boul. de L'Assomption, Montréal, QC H1T 2M4, Canada.
- Hematology-Oncology service, Hôpital Maisonneuve-Rosemont, Department of Medicine, Université de Montréal, Montréal, QC H1T 2M4, Canada.
| |
Collapse
|
20
|
TGF-β in T Cell Biology: Implications for Cancer Immunotherapy. Cancers (Basel) 2018; 10:cancers10060194. [PMID: 29891791 PMCID: PMC6025055 DOI: 10.3390/cancers10060194] [Citation(s) in RCA: 149] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Revised: 06/07/2018] [Accepted: 06/07/2018] [Indexed: 12/25/2022] Open
Abstract
Transforming Growth Factor beta (TGF-β) is a pleiotropic cytokine produced in large amounts within cancer microenvironments that will ultimately promote neoplastic progression, notably by suppressing the host’s T-cell immunosurveillance. This effect is mostly due to the well-known inhibitory effect of TGF-β on T cell proliferation, activation, and effector functions. Moreover, TGF-β subverts T cell immunity by favoring regulatory T-cell differentiation, further reinforcing immunosuppression within tumor microenvironments. These findings stimulated the development of many strategies to block TGF-β or its signaling pathways, either as monotherapy or in combination with other therapies, to restore anti-cancer immunity. Paradoxically, recent studies provided evidence that TGF-β can also promote differentiation of certain inflammatory populations of T cells, such as Th17, Th9, and resident-memory T cells (Trm), which have been associated with improved tumor control in several models. Here, we review current advances in our understanding of the many roles of TGF-β in T cell biology in the context of tumor immunity and discuss the possibility to manipulate TGF-β signaling to improve cancer immunotherapy.
Collapse
|
21
|
Hamacher J, Hadizamani Y, Borgmann M, Mohaupt M, Männel DN, Moehrlen U, Lucas R, Stammberger U. Cytokine-Ion Channel Interactions in Pulmonary Inflammation. Front Immunol 2018; 8:1644. [PMID: 29354115 PMCID: PMC5758508 DOI: 10.3389/fimmu.2017.01644] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Accepted: 11/10/2017] [Indexed: 12/12/2022] Open
Abstract
The lungs conceptually represent a sponge that is interposed in series in the bodies’ systemic circulation to take up oxygen and eliminate carbon dioxide. As such, it matches the huge surface areas of the alveolar epithelium to the pulmonary blood capillaries. The lung’s constant exposure to the exterior necessitates a competent immune system, as evidenced by the association of clinical immunodeficiencies with pulmonary infections. From the in utero to the postnatal and adult situation, there is an inherent vital need to manage alveolar fluid reabsorption, be it postnatally, or in case of hydrostatic or permeability edema. Whereas a wealth of literature exists on the physiological basis of fluid and solute reabsorption by ion channels and water pores, only sparse knowledge is available so far on pathological situations, such as in microbial infection, acute lung injury or acute respiratory distress syndrome, and in the pulmonary reimplantation response in transplanted lungs. The aim of this review is to discuss alveolar liquid clearance in a selection of lung injury models, thereby especially focusing on cytokines and mediators that modulate ion channels. Inflammation is characterized by complex and probably time-dependent co-signaling, interactions between the involved cell types, as well as by cell demise and barrier dysfunction, which may not uniquely determine a clinical picture. This review, therefore, aims to give integrative thoughts and wants to foster the unraveling of unmet needs in future research.
Collapse
Affiliation(s)
- Jürg Hamacher
- Internal Medicine and Pneumology, Lindenhofspital, Bern, Switzerland.,Internal Medicine V - Pneumology, Allergology, Respiratory and Environmental Medicine, Faculty of Medicine, Saarland University, Saarbrücken, Germany.,Lungen- und Atmungsstiftung Bern, Bern, Switzerland
| | - Yalda Hadizamani
- Internal Medicine and Pneumology, Lindenhofspital, Bern, Switzerland.,Lungen- und Atmungsstiftung Bern, Bern, Switzerland
| | - Michèle Borgmann
- Internal Medicine and Pneumology, Lindenhofspital, Bern, Switzerland.,Lungen- und Atmungsstiftung Bern, Bern, Switzerland
| | - Markus Mohaupt
- Internal Medicine, Sonnenhofspital Bern, Bern, Switzerland
| | | | - Ueli Moehrlen
- Paediatric Visceral Surgery, Universitäts-Kinderspital Zürich, Zürich, Switzerland
| | - Rudolf Lucas
- Department of Pharmacology and Toxicology, Vascular Biology Center, Medical College of Georgia, Augusta, GA, United States
| | - Uz Stammberger
- Lungen- und Atmungsstiftung Bern, Bern, Switzerland.,Novartis Institutes for Biomedical Research, Translational Clinical Oncology, Novartis Pharma AG, Basel, Switzerland
| |
Collapse
|
22
|
Elsegood CL, Tirnitz-Parker JE, Olynyk JK, Yeoh GC. Immune checkpoint inhibition: prospects for prevention and therapy of hepatocellular carcinoma. Clin Transl Immunology 2017; 6:e161. [PMID: 29326816 PMCID: PMC5704099 DOI: 10.1038/cti.2017.47] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Revised: 08/10/2017] [Accepted: 09/10/2017] [Indexed: 02/06/2023] Open
Abstract
The global prevalence of liver cancer is rapidly rising, mostly as a result of the amplified incidence rates of viral hepatitis, alcohol abuse and obesity in recent decades. Treatment options for liver cancer are remarkably limited with sorafenib being the gold standard for advanced, unresectable hepatocellular carcinoma but offering extremely limited improvement of survival time. The immune system is now recognised as a key regulator of cancer development through its ability to protect against infection and chronic inflammation, which promote cancer development, and eliminate tumour cells when present. However, the tolerogenic nature of the liver means that the immune response to infection, chronic inflammation and tumour cells within the hepatic environment is usually ineffective. Here we review the roles that immune cells and cytokines have in the development of the most common primary liver cancer, hepatocellular carcinoma (HCC). We then examine how the immune system may be subverted throughout the stages of HCC development, particularly with respect to immune inhibitory molecules, also known as immune checkpoints, such as programmed cell death protein-1, programmed cell death 1 ligand 1 and cytotoxic T lymphocyte antigen 4, which have become therapeutic targets. Finally, we assess preclinical and clinical studies where immune checkpoint inhibitors have been used to modify disease during the carcinogenic process. In conclusion, inhibitory molecule-based immunotherapy for HCC is in its infancy and further detailed research in relevant in vivo models is required before its full potential can be realised.
Collapse
Affiliation(s)
- Caryn L Elsegood
- School of Biomedical Science, Curtin Health Innovation Research Institute, Curtin University, Perth, Western Australia, Australia
| | - Janina Ee Tirnitz-Parker
- School of Biomedical Science, Curtin Health Innovation Research Institute, Curtin University, Perth, Western Australia, Australia
| | - John K Olynyk
- School of Biomedical Science, Curtin Health Innovation Research Institute, Curtin University, Perth, Western Australia, Australia.,Department of Gastroenterology and Hepatology, Fiona Stanley and Fremantle Hospitals, South Metropolitan Health Service, Murdoch, Western Australia, Australia.,School of Health and Medical Sciences, Edith Cowan University, Joondalup, Western Australia, Australia
| | - George Ct Yeoh
- School of Chemistry and Biochemistry, The University of Western Australia, Crawley, Western Australia, Australia.,Harry Perkins Institute of Medical Research, QEII Medical Centre, Nedlands and Centre for Medical Research, The University of Western Australia, Crawley, Western Australia, Australia
| |
Collapse
|
23
|
Warszawski J, Avettand-Fenoel V, Rouzioux C, Scott-Algara D, Montange T, Didier C, Le Chenadec J, Viard JP, Dollfus C, Blanche S, Buseyne F. Gag-Specific CD8 T-Cell Proliferation Is Associated With Higher Peripheral Blood Levels of Transforming Growth Factor-β and Gut-Homing T Cells in Youths Perinatally Infected With Human Immunodeficiency Virus-1: The ANRS-EP38-IMMIP Study. Open Forum Infect Dis 2017; 4:ofw239. [PMID: 28480237 PMCID: PMC5414023 DOI: 10.1093/ofid/ofw239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Revised: 09/30/2016] [Accepted: 11/14/2016] [Indexed: 11/13/2022] Open
Abstract
Background Gag-specific T lymphocytes play a key role in the control of human immunodeficiency virus (HIV) replication. Their restoration will be important for future reservoir targeting strategies. In this study, we aimed to identify immune correlates of Gag-specific CD8 T-cell proliferation in youths with perinatally acquired HIV-1 infection. Methods The ANRS-EP38-IMMIP study included youths of 15 to 24 years of age. Fifty-three were taking combination anti-retroviral therapy and aviremic at the time of the study and had undergone valid 5-6-carboxyfluorescein diacetate succimidyl ester-based flow cytometry T-cell proliferation assays. Plasma analytes were quantified by enzyme-linked immunosorbent assay or multiplex assays. Peripheral blood cells were phenotyped by flow cytometry. Logistic regression was used to study the association between Gag-specific T-cell proliferation and immune markers. Results Patients with Gag-specific CD8 T-cell proliferation had higher levels of plasma transforming growth factor (TGF)-β1, a lower proportion of naive cells among regulatory T cells (Tregs), and higher percentages of CD4 and CD8 T cells expressing the α4β7 integrin or CD161 molecule than those without a Gag-specific response. These associations were significant based on analyses including potential confounders. Conclusions Preserved Gag-specific CD8 T-cell proliferation was associated with higher TGF-β1 levels and increased percentages of T cells with a gut-homing phenotype at least 15 years after HIV infection during the perinatal period.
Collapse
Affiliation(s)
- Josiane Warszawski
- Centre de recherche en Epidemiologie er Santé des Populations (CESP) Institut National de la Santé et de la Recherche Médicale (INSERM) U1018, Le Kremlin-Bicêtre, France.,Université Paris-Sud, Le Kremlin-Bicêtre, France
| | - Véronique Avettand-Fenoel
- Equipe d'accueil (EA)7327, Université Paris Descartes, Sorbonne Paris Cité, Faculté de Médecine, France.,Assistance Publique-Hôpitaux de Paris (AP-HP), Laboratoire de Virologie, Hôpital Necker-Enfants Malades, France
| | - Christine Rouzioux
- Equipe d'accueil (EA)7327, Université Paris Descartes, Sorbonne Paris Cité, Faculté de Médecine, France.,Assistance Publique-Hôpitaux de Paris (AP-HP), Laboratoire de Virologie, Hôpital Necker-Enfants Malades, France
| | | | - Thomas Montange
- Institut Pasteur, Unité d'Epidémiologie et Physiopathologie des Virus Oncogènes, Paris, France.,Centre National de la Recherche Scientifique, Unité Mixte de Recherche 3569, Paris, France
| | - Céline Didier
- Institut Pasteur, Groupe Mécanismes de l'Hérédité Epigénétique, Paris, France
| | - Jérôme Le Chenadec
- Centre de recherche en Epidemiologie er Santé des Populations (CESP) Institut National de la Santé et de la Recherche Médicale (INSERM) U1018, Le Kremlin-Bicêtre, France
| | - Jean-Paul Viard
- Equipe d'accueil (EA)7327, Université Paris Descartes, Sorbonne Paris Cité, Faculté de Médecine, France.,AP-HP, Centre de Diagnostic et de Thérapeutique, Hôpital de l'Hôtel-Dieu, Paris, France
| | - Catherine Dollfus
- AP-HP, Service d'Hématologie et d'Oncologie Pédiatrique, Hôpital Trousseau, Paris, France
| | - Stéphane Blanche
- AP-HP, Unité Immunologie et Hématologie Pédiatrique, Hôpital Necker-Enfants Malades, Paris, France
| | - Florence Buseyne
- Institut Pasteur, Unité d'Epidémiologie et Physiopathologie des Virus Oncogènes, Paris, France.,Centre National de la Recherche Scientifique, Unité Mixte de Recherche 3569, Paris, France
| |
Collapse
|
24
|
Pickup MW, Owens P, Moses HL. TGF-β, Bone Morphogenetic Protein, and Activin Signaling and the Tumor Microenvironment. Cold Spring Harb Perspect Biol 2017; 9:cshperspect.a022285. [PMID: 28062564 DOI: 10.1101/cshperspect.a022285] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The cellular and noncellular components surrounding the tumor cells influence many aspects of tumor progression. Transforming growth factor β (TGF-β), bone morphogenetic proteins (BMPs), and activins have been shown to regulate the phenotype and functions of the microenvironment and are attractive targets to attenuate protumorigenic microenvironmental changes. Given the pleiotropic nature of the cytokines involved, a full understanding of their effects on numerous cell types in many contexts is necessary for proper clinical intervention. In this review, we will explore the various effects of TGF-β, BMP, and activin signaling on stromal phenotypes known to associate with cancer progression. We will summarize these findings in the context of their tumor suppressive or promoting effects, as well as the molecular changes that these cytokines induce to influence stromal phenotypes.
Collapse
Affiliation(s)
- Michael W Pickup
- Department of Cancer Biology and Vanderbilt-Ingram Comprehensive Cancer Center, Nashville, Tennessee 37232
| | - Philip Owens
- Department of Cancer Biology and Vanderbilt-Ingram Comprehensive Cancer Center, Nashville, Tennessee 37232
| | - Harold L Moses
- Department of Cancer Biology and Vanderbilt-Ingram Comprehensive Cancer Center, Nashville, Tennessee 37232
| |
Collapse
|
25
|
Boshtam M, Asgary S, Kouhpayeh S, Shariati L, Khanahmad H. Aptamers Against Pro- and Anti-Inflammatory Cytokines: A Review. Inflammation 2017; 40:340-349. [PMID: 27878687 DOI: 10.1007/s10753-016-0477-1] [Citation(s) in RCA: 125] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Inflammatory disorders result from continuous inflammation in injured sites. Many molecules are involved in this process; the inhibition of which could prevent the inflammation. Chemokines are a group of these biological mediators which are categorized into pro-, anti-, and pro-/anti-inflammatory. Thus, targeting these essential molecules can be an effective way for prevention and control of inflammatory diseases. Various therapeutic agents have been developed for primary and secondary prevention of these disorders, but each of them has its own limitations. Aptamers, as novel therapeutic agents, are a new generation of drugs which could replace other medications even antibodies. Aptamer can bind to its target molecule to trap it and prohibit its function. Among large group of inflammatory cytokines, only 11 aptamers have been selected either against cytokines or their related receptors. These cytokines include interleukin (IL)-2, IL-6, IL-10, IL-11, IL-17, IL-32, TGF-β, TNF-α, IFN-γ, CCL2, and IP-10. Most of the isolated aptamers are against pro-inflammatory or dual function cytokines, and it seems that they could be used for diagnosis, prevention, and treatment of the related inflammatory diseases. Most of the aptamers have been tested in vitro, but so far, none of them has been approved for in vivo use. Given a vast number of inflammatory cytokines, more aptamers against this group of biological molecules will be selected in the near future. The available aptamers will also be tested in clinical trials. Therefore, a significant improvement is expected for the prevention and control of inflammatory disorders.
Collapse
Affiliation(s)
- Maryam Boshtam
- Isfahan Cardiovascular Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Seddigheh Asgary
- Isfahan Cardiovascular Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Shirin Kouhpayeh
- Department of Immunology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Laleh Shariati
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Hossein Khanahmad
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran.
| |
Collapse
|
26
|
Chellappa S, Hugenschmidt H, Hagness M, Subramani S, Melum E, Line PD, Labori KJ, Wiedswang G, Taskén K, Aandahl EM. CD8+ T Cells That Coexpress RORγt and T-bet Are Functionally Impaired and Expand in Patients with Distal Bile Duct Cancer. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2017; 198:1729-1739. [PMID: 28053236 DOI: 10.4049/jimmunol.1600061] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Accepted: 12/03/2016] [Indexed: 01/15/2023]
Abstract
CD8+ T cells that express retinoic acid-related orphan receptor (ROR)γt (TC17 cells) have been shown to promote procarcinogenic inflammation and contribute to a tolerogenic microenvironment in tumors. We investigated their phenotype and functional properties in relationship to the pathogenesis of human distal bile duct cancer (DBDC). DBDC patients had an elevated level of type 17 immune responses and the frequency of CD8+RORγt+ T cells (TC17 cells) was increased in peripheral blood. The CD8+RORγt+ T cells represented a highly activated subset and produced IL-17A in equal amount as CD4+RORγt+ T cells (TH17 cells). Most CD8+RORγt+ T cells coexpressed T-bet, a lineage transcription factor for TH1 and TC1 development, suggesting that CD8+RORγt+ T cells undergo plasticity toward a TC17/1-like phenotype with coproduction of IL-17A and INF-γ. In comparison with CD8+RORγt- T cells, the CD8+RORγt+ T cells had a higher level of TCR signaling and were terminally differentiated and exhausted. These cells also had impaired ability to re-express perforin after degranulation and reduced cytotoxic immune function. A subset of CD8+RORγt+ T cells expressing a low level of programmed cell death protein 1 and a high level of OX40 were associated with reduced patient survival. In conclusion, CD8+RORγt+ T cells are proinflammatory and functionally impaired and may contribute to the pathogenesis of DBDC.
Collapse
Affiliation(s)
- Stalin Chellappa
- Center for Molecular Medicine Norway, Nordic European Molecular Biology Laboratory Partnership, University of Oslo and Oslo University Hospital, 0318 Oslo, Norway
- Biotechnology Center, University of Oslo, 0316 Oslo, Norway
- K.G. Jebsen Inflammation Research Center, University of Oslo, 0424 Oslo, Norway
- K.G. Jebsen Center for Cancer Immunotherapy, University of Oslo, 0379 Oslo, Norway
| | - Harald Hugenschmidt
- Section for Transplantation Surgery, Oslo University Hospital, 0424 Oslo, Norway
- Department of Hepato-Pancreato-Biliary Surgery, Oslo University Hospital, 0424 Oslo, Norway
| | - Morten Hagness
- Center for Molecular Medicine Norway, Nordic European Molecular Biology Laboratory Partnership, University of Oslo and Oslo University Hospital, 0318 Oslo, Norway
- Biotechnology Center, University of Oslo, 0316 Oslo, Norway
- K.G. Jebsen Inflammation Research Center, University of Oslo, 0424 Oslo, Norway
- Section for Transplantation Surgery, Oslo University Hospital, 0424 Oslo, Norway
| | - Saranya Subramani
- Center for Molecular Medicine Norway, Nordic European Molecular Biology Laboratory Partnership, University of Oslo and Oslo University Hospital, 0318 Oslo, Norway
| | - Espen Melum
- K.G. Jebsen Inflammation Research Center, University of Oslo, 0424 Oslo, Norway
- Norwegian Primary Sclerosing Cholangitis Research Center, Research Institute of Internal Medicine, Section of Gastroenterology, Division of Surgery, Inflammatory Medicine and Transplantation, Oslo University Hospital, 0424 Oslo, Norway
| | - Pål Dag Line
- Section for Transplantation Surgery, Oslo University Hospital, 0424 Oslo, Norway
| | - Knut-Jørgen Labori
- Department of Hepato-Pancreato-Biliary Surgery, Oslo University Hospital, 0424 Oslo, Norway
| | - Gro Wiedswang
- Department of Gastrointestinal Surgery, Oslo University Hospital, 0317 Oslo, Norway; and
| | - Kjetil Taskén
- Center for Molecular Medicine Norway, Nordic European Molecular Biology Laboratory Partnership, University of Oslo and Oslo University Hospital, 0318 Oslo, Norway
- Biotechnology Center, University of Oslo, 0316 Oslo, Norway
- K.G. Jebsen Inflammation Research Center, University of Oslo, 0424 Oslo, Norway
- K.G. Jebsen Center for Cancer Immunotherapy, University of Oslo, 0379 Oslo, Norway
- Department of Infectious Diseases, Oslo University Hospital, 0424 Oslo, Norway
| | - Einar Martin Aandahl
- Center for Molecular Medicine Norway, Nordic European Molecular Biology Laboratory Partnership, University of Oslo and Oslo University Hospital, 0318 Oslo, Norway;
- Biotechnology Center, University of Oslo, 0316 Oslo, Norway
- K.G. Jebsen Inflammation Research Center, University of Oslo, 0424 Oslo, Norway
- Section for Transplantation Surgery, Oslo University Hospital, 0424 Oslo, Norway
| |
Collapse
|
27
|
Rodriguez RM, Suarez-Alvarez B, Lavín JL, Mosén-Ansorena D, Baragaño Raneros A, Márquez-Kisinousky L, Aransay AM, Lopez-Larrea C. Epigenetic Networks Regulate the Transcriptional Program in Memory and Terminally Differentiated CD8+ T Cells. THE JOURNAL OF IMMUNOLOGY 2016; 198:937-949. [PMID: 27974453 DOI: 10.4049/jimmunol.1601102] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Accepted: 11/13/2016] [Indexed: 12/12/2022]
Abstract
Epigenetic mechanisms play a critical role during differentiation of T cells by contributing to the formation of stable and heritable transcriptional patterns. To better understand the mechanisms of memory maintenance in CD8+ T cells, we performed genome-wide analysis of DNA methylation, histone marking (acetylated lysine 9 in histone H3 and trimethylated lysine 9 in histone), and gene-expression profiles in naive, effector memory (EM), and terminally differentiated EM (TEMRA) cells. Our results indicate that DNA demethylation and histone acetylation are coordinated to generate the transcriptional program associated with memory cells. Conversely, EM and TEMRA cells share a very similar epigenetic landscape. Nonetheless, the TEMRA transcriptional program predicts an innate immunity phenotype associated with genes never reported in these cells, including several mediators of NK cell activation (VAV3 and LYN) and a large array of NK receptors (e.g., KIR2DL3, KIR2DL4, KIR2DL1, KIR3DL1, KIR2DS5). In addition, we identified up to 161 genes that encode transcriptional regulators, some of unknown function in CD8+ T cells, and that were differentially expressed in the course of differentiation. Overall, these results provide new insights into the regulatory networks involved in memory CD8+ T cell maintenance and T cell terminal differentiation.
Collapse
Affiliation(s)
- Ramon M Rodriguez
- Department of Immunology, Central University Hospital of Asturias, 33011 Oviedo, Spain
| | | | - José L Lavín
- Genome Analysis Platform, CIC bioGUNE and CIBERehd, Technological Park of Bizkaia, 48160 Derio, Spain
| | - David Mosén-Ansorena
- Biostatistics and Computational Biology, Dana-Farber Cancer Institute and Harvard School of Public Health, Boston, MA 02215; and
| | - Aroa Baragaño Raneros
- Department of Immunology, Central University Hospital of Asturias, 33011 Oviedo, Spain
| | | | - Ana M Aransay
- Genome Analysis Platform, CIC bioGUNE and CIBERehd, Technological Park of Bizkaia, 48160 Derio, Spain
| | - Carlos Lopez-Larrea
- Department of Immunology, Central University Hospital of Asturias, 33011 Oviedo, Spain; .,Fundación Renal Íñigo Álvarez de Toledo, 28003 Madrid, Spain
| |
Collapse
|
28
|
|
29
|
Hamel Y, Mauvais FX, Pham HP, Kratzer R, Marchi C, Barilleau É, Waeckel-Enée E, Arnoux JB, Hartemann A, Cordier C, Mégret J, Rocha B, de Lonlay P, Beltrand J, Six A, Robert JJ, van Endert P. A unique CD8(+) T lymphocyte signature in pediatric type 1 diabetes. J Autoimmun 2016; 73:54-63. [PMID: 27318739 DOI: 10.1016/j.jaut.2016.06.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Revised: 06/01/2016] [Accepted: 06/08/2016] [Indexed: 12/16/2022]
Abstract
Human type 1 diabetes results from a destructive auto-reactive immune response in which CD8(+) T lymphocytes play a critical role. Given the intense ongoing efforts to develop immune intervention to prevent and/or cure the disease, biomarkers suitable for prediction of disease risk and progress, as well as for monitoring of immunotherapy are required. We undertook separate multi-parameter analyses of single naïve and activated/memory CD8(+) T lymphocytes from pediatric and adult patients, with the objective of identifying cellular profiles associated with onset of type 1 diabetes. We observe global perturbations in gene and protein expression and in the abundance of T cell populations characterizing pediatric but not adult patients, relative to age-matched healthy individuals. Pediatric diabetes is associated with a unique population of CD8(+) T lymphocytes co-expressing effector (perforin, granzyme B) and regulatory (transforming growth factor β, interleukin-10 receptor) molecules. This population persists after metabolic normalization and is especially abundant in children with high titers of auto-antibodies to glutamic acid decarboxylase and with elevated HbA1c values. These findings highlight striking differences between pediatric and adult type 1 diabetes, indicate prolonged large-scale perturbations in the CD8(+) T cell compartment in the former, and suggest that CD8(+)CD45RA(-) T cells co-expressing effector and regulatory factors are of interest as biomarkers in pediatric type 1 diabetes.
Collapse
Affiliation(s)
- Yamina Hamel
- Institut National de la Sante et de la Recherche Médicale, Unité 1151, 75015 Paris, France; Université Paris Descartes, Sorbonne Paris Cité, Faculté de médecine, 75015 Paris, France; Centre National de la Recherche Scientifique, UMR8253, 75015 Paris, France
| | - François-Xavier Mauvais
- Institut National de la Sante et de la Recherche Médicale, Unité 1151, 75015 Paris, France; Université Paris Descartes, Sorbonne Paris Cité, Faculté de médecine, 75015 Paris, France; Centre National de la Recherche Scientifique, UMR8253, 75015 Paris, France
| | - Hang-Phuong Pham
- Sorbonne Universités, UPMC Université Paris 6, 75015 Paris, France; Institut National de la Sante et de la Recherche Médicale, UMRS 959, Immunology-Immunopathology-Immunotherapy (i3), 75013 Paris, France
| | - Roland Kratzer
- Institut National de la Sante et de la Recherche Médicale, Unité 1151, 75015 Paris, France; Université Paris Descartes, Sorbonne Paris Cité, Faculté de médecine, 75015 Paris, France; Centre National de la Recherche Scientifique, UMR8253, 75015 Paris, France
| | - Christophe Marchi
- Institut National de la Sante et de la Recherche Médicale, Unité 1151, 75015 Paris, France; Université Paris Descartes, Sorbonne Paris Cité, Faculté de médecine, 75015 Paris, France; Centre National de la Recherche Scientifique, UMR8253, 75015 Paris, France
| | - Émilie Barilleau
- Institut National de la Sante et de la Recherche Médicale, Unité 1151, 75015 Paris, France; Université Paris Descartes, Sorbonne Paris Cité, Faculté de médecine, 75015 Paris, France; Centre National de la Recherche Scientifique, UMR8253, 75015 Paris, France
| | - Emmanuelle Waeckel-Enée
- Institut National de la Sante et de la Recherche Médicale, Unité 1151, 75015 Paris, France; Université Paris Descartes, Sorbonne Paris Cité, Faculté de médecine, 75015 Paris, France; Centre National de la Recherche Scientifique, UMR8253, 75015 Paris, France
| | - Jean-Baptiste Arnoux
- Université Paris Descartes, Sorbonne Paris Cité, Faculté de médecine, 75015 Paris, France; Centre de référence des Maladies Héréditaires du Métabolisme, Hôpital Necker, Assistance Publique-Hôpitaux de Paris, 75015 Paris, France
| | - Agnès Hartemann
- Université Pierre & Marie Curie, IHU ICAN, 75013 Paris, France; Service de Diabétologie, Hôpital de la Pitié-Salpétrière, Assistance Publique-Hôpitaux de Paris, 75013 Paris, France
| | - Corinne Cordier
- Institut National de la Sante et de la Recherche Médicale, US24, 75015 Paris, France; Centre National de la Recherche Scientifique, UMS3633, 75015 Paris, France
| | - Jerome Mégret
- Institut National de la Sante et de la Recherche Médicale, US24, 75015 Paris, France; Centre National de la Recherche Scientifique, UMS3633, 75015 Paris, France
| | - Benedita Rocha
- Institut National de la Sante et de la Recherche Médicale, Unité 1151, 75015 Paris, France; Université Paris Descartes, Sorbonne Paris Cité, Faculté de médecine, 75015 Paris, France; Centre National de la Recherche Scientifique, UMR8253, 75015 Paris, France
| | - Pascale de Lonlay
- Université Paris Descartes, Sorbonne Paris Cité, Faculté de médecine, 75015 Paris, France; Centre de référence des Maladies Héréditaires du Métabolisme, Hôpital Necker, Assistance Publique-Hôpitaux de Paris, 75015 Paris, France; Institut Imagine, Institut National de la Sante et de la Recherche Médicale, Unité 1163, 75015 Paris, France
| | - Jacques Beltrand
- Université Paris Descartes, Sorbonne Paris Cité, Faculté de médecine, 75015 Paris, France; Endocrinologie, Gynécologie et Diabétologie Pédiatrique, Hôpital Necker, Assistance Publique-Hôpitaux de Paris, 75015 Paris, France
| | - Adrien Six
- Sorbonne Universités, UPMC Université Paris 6, 75015 Paris, France; Institut National de la Sante et de la Recherche Médicale, UMRS 959, Immunology-Immunopathology-Immunotherapy (i3), 75013 Paris, France
| | - Jean-Jacques Robert
- Université Paris Descartes, Sorbonne Paris Cité, Faculté de médecine, 75015 Paris, France; Endocrinologie, Gynécologie et Diabétologie Pédiatrique, Hôpital Necker, Assistance Publique-Hôpitaux de Paris, 75015 Paris, France
| | - Peter van Endert
- Institut National de la Sante et de la Recherche Médicale, Unité 1151, 75015 Paris, France; Université Paris Descartes, Sorbonne Paris Cité, Faculté de médecine, 75015 Paris, France; Centre National de la Recherche Scientifique, UMR8253, 75015 Paris, France.
| |
Collapse
|
30
|
Newman DK, Fu G, Adams T, Cui W, Arumugam V, Bluemn T, Riese MJ. The adhesion molecule PECAM-1 enhances the TGF-β-mediated inhibition of T cell function. Sci Signal 2016; 9:ra27. [PMID: 26956486 DOI: 10.1126/scisignal.aad1242] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Transforming growth factor-β (TGF-β) is an immunosuppressive cytokine that inhibits the proinflammatory functions of T cells, and it is a major factor in abrogating T cell activity against tumors. Canonical TGF-β signaling results in the activation of Smad proteins, which are transcription factors that regulate target gene expression. We found that the cell surface molecule platelet endothelial cell adhesion molecule-1 (PECAM-1) facilitated noncanonical (Smad-independent) TGF-β signaling in T cells. Subcutaneously injected tumor cells that are dependent on TGF-β-mediated suppression of immunity for growth grew more slowly in PECAM-1(-/-) mice than in their wild-type counterparts. T cells isolated from PECAM-1(-/-) mice demonstrated relative insensitivity to the TGF-β-dependent inhibition of interferon-γ (IFN-γ) production, granzyme B synthesis, and cellular proliferation. Similarly, human T cells lacking PECAM-1 demonstrated decreased sensitivity to TGF-β in a manner that was partially restored by reexpression of PECAM-1. Co-incubation of T cells with TGF-β and a T cell-activating antibody resulted in PECAM-1 phosphorylation on an immunoreceptor tyrosine-based inhibitory motif (ITIM) and the recruitment of the inhibitory Src homology 2 (SH2) domain-containing tyrosine phosphatase-2 (SHP-2). Such conditions also induced the colocalization of PECAM-1 with the TGF-β receptor complex as identified by coimmunoprecipitation, confocal microscopy, and proximity ligation assays. These studies indicate a role for PECAM-1 in enhancing the inhibitory functions of TGF-β in T cells and suggest that therapeutic targeting of the PECAM-1-TGF-β inhibitory axis represents a means to overcome TGF-β-dependent immunosuppression within the tumor microenvironment.
Collapse
Affiliation(s)
- Debra K Newman
- Blood Research Institute, BloodCenter of Wisconsin, 8727 Watertown Plank Road, Milwaukee, WI 53226, USA. Department of Pharmacology and Toxicology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, USA. Department of Microbiology and Molecular Genetics, Medical College of Wisconsin, Milwaukee, WI 53226, USA.
| | - Guoping Fu
- Blood Research Institute, BloodCenter of Wisconsin, 8727 Watertown Plank Road, Milwaukee, WI 53226, USA
| | - Tamara Adams
- Blood Research Institute, BloodCenter of Wisconsin, 8727 Watertown Plank Road, Milwaukee, WI 53226, USA
| | - Weiguo Cui
- Blood Research Institute, BloodCenter of Wisconsin, 8727 Watertown Plank Road, Milwaukee, WI 53226, USA. Department of Microbiology and Molecular Genetics, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Vidhyalakshmi Arumugam
- Blood Research Institute, BloodCenter of Wisconsin, 8727 Watertown Plank Road, Milwaukee, WI 53226, USA
| | - Theresa Bluemn
- Blood Research Institute, BloodCenter of Wisconsin, 8727 Watertown Plank Road, Milwaukee, WI 53226, USA
| | - Matthew J Riese
- Blood Research Institute, BloodCenter of Wisconsin, 8727 Watertown Plank Road, Milwaukee, WI 53226, USA. Department of Microbiology and Molecular Genetics, Medical College of Wisconsin, Milwaukee, WI 53226, USA. Division of Hematology and Oncology, Department of Medicine, Medical College of Wisconsin, Milwaukee, WI 53226, USA.
| |
Collapse
|
31
|
Dysregulation of serum gamma interferon levels in vascular chronic Q Fever patients provides insights into disease pathogenesis. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2015; 22:664-71. [PMID: 25924761 DOI: 10.1128/cvi.00078-15] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2015] [Accepted: 04/20/2015] [Indexed: 01/06/2023]
Abstract
A large community outbreak of Q fever occurred in the Netherlands in the period 2007 to 2010. Some of the infected patients developed chronic Q fever, which typically includes pathogen dissemination to predisposed cardiovascular sites, with potentially fatal consequences. To identify the immune mechanisms responsible for ineffective clearance of Coxiella burnetii in patients who developed chronic Q fever, we compared serum concentrations of 47 inflammation-associated markers among patients with acute Q fever, vascular chronic Q fever, and past resolved Q fever. Serum levels of gamma interferon were strongly increased in acute but not in vascular chronic Q fever patients, compared to past resolved Q fever patients. Interleukin-18 levels showed a comparable increase in acute as well as vascular chronic Q fever patients. Additionally, vascular chronic Q fever patients had lower serum levels of gamma interferon-inducible protein 10 (IP-10) and transforming growth factor β (TGF-β) than did acute Q fever patients. Serum responses for these and other markers indicate that type I immune responses to C. burnetii are affected in chronic Q fever patients. This may be attributed to an affected immune system in cardiovascular patients, which enables local C. burnetii replication at affected cardiovascular sites.
Collapse
|
32
|
Raphael I, Nalawade S, Eagar TN, Forsthuber TG. T cell subsets and their signature cytokines in autoimmune and inflammatory diseases. Cytokine 2014; 74:5-17. [PMID: 25458968 DOI: 10.1016/j.cyto.2014.09.011] [Citation(s) in RCA: 780] [Impact Index Per Article: 70.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2014] [Revised: 09/26/2014] [Accepted: 09/29/2014] [Indexed: 12/17/2022]
Abstract
CD4(+) T helper (Th) cells are critical for proper immune cell homeostasis and host defense, but are also major contributors to pathology of autoimmune and inflammatory diseases. Since the discovery of the Th1/Th2 dichotomy, many additional Th subsets were discovered, each with a unique cytokine profile, functional properties, and presumed role in autoimmune tissue pathology. This includes Th1, Th2, Th17, Th22, Th9, and Treg cells which are characterized by specific cytokine profiles. Cytokines produced by these Th subsets play a critical role in immune cell differentiation, effector subset commitment, and in directing the effector response. Cytokines are often categorized into proinflammatory and anti-inflammatory cytokines and linked to Th subsets expressing them. This article reviews the different Th subsets in terms of cytokine profiles, how these cytokines influence and shape the immune response, and their relative roles in promoting pathology in autoimmune and inflammatory diseases. Furthermore, we will discuss whether Th cell pathogenicity can be defined solely based on their cytokine profiles and whether rigid definition of a Th cell subset by its cytokine profile is helpful.
Collapse
Affiliation(s)
- Itay Raphael
- Department of Biology, University of Texas at San Antonio, TX 78249, United States
| | - Saisha Nalawade
- Department of Biology, University of Texas at San Antonio, TX 78249, United States
| | - Todd N Eagar
- Department of Pathology and Genomic Medicine, Houston Methodist Hospital, TX 77030, United States
| | - Thomas G Forsthuber
- Department of Biology, University of Texas at San Antonio, TX 78249, United States.
| |
Collapse
|
33
|
Siepert B, Reinhardt N, Kreuzer S, Bondzio A, Twardziok S, Brockmann G, Nöckler K, Szabó I, Janczyk P, Pieper R, Tedin K. Enterococcus faecium NCIMB 10415 supplementation affects intestinal immune-associated gene expression in post-weaning piglets. Vet Immunol Immunopathol 2014; 157:65-77. [DOI: 10.1016/j.vetimm.2013.10.013] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2013] [Revised: 10/11/2013] [Accepted: 10/21/2013] [Indexed: 12/26/2022]
|
34
|
MicroRNA-29b inhibits diabetic nephropathy in db/db mice. Mol Ther 2013; 22:842-53. [PMID: 24445937 DOI: 10.1038/mt.2013.235] [Citation(s) in RCA: 156] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2013] [Accepted: 09/26/2013] [Indexed: 01/04/2023] Open
Abstract
Inflammation and its consequent fibrosis are two main features of diabetic nephropathy (DN), but target therapy on these processes for DN remains yet ineffective. We report here that miR-29b is a novel therapeutic agent capable of inhibiting progressive renal inflammation and fibrosis in type 2 diabetes in db/db mice. Under diabetic conditions, miR-29b was largely downregulated in response to advanced glycation end (AGE) product, which was associated with upregulation of collagen matrix in mesangial cells via the transforming growth factor-β (TGF-β)/Smad3-dependent mechanism. These pathological changes were reversed by overexpressing miR-29b, but enhanced by knocking-down miR-29b. Similarly, loss of renal miR-29b was associated with progressive diabetic kidney injury, including microalbuminuria, renal fibrosis, and inflammation. Restored renal miR-29b by the ultrasound-based gene therapy was capable of attenuating diabetic kidney disease. Further studies revealed that inhibition of Sp1 expression, TGF-β/Smad3-dependent renal fibrosis, NF-κB-driven renal inflammation, and T-bet/Th1-mediated immune response may be mechanisms associated with miR-29b treatment in db/db mice. In conclusion, miR-29b may play a protective role in diabetic kidney disease and may have therapeutic potential for diabetic kidney complication.
Collapse
|
35
|
Abbasi F, Amiri P, Sayahpour FA, Pirmoradi S, Abolhalaj M, Larijani B, Bazzaz JT, Amoli MM. TGF-β and IL-23 gene expression in unstimulated PBMCs of patients with diabetes. Endocrine 2012; 41:430-4. [PMID: 22180056 DOI: 10.1007/s12020-011-9578-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2011] [Accepted: 11/29/2011] [Indexed: 12/17/2022]
Abstract
The protective effects of TGF-β have been documented in various autoimmune diseases, mostly in organ-specific autoimmunity including type 1 diabetes mellitus (T1DM). However, TGF-β also plays a role as a pro-inflammatory mediator by induction of Th17 cytokine production. IL-23 also plays a key role in differentiation of Th17 cells, which are implicated in pathogenesis of autoimmune conditions including T1DM. The aim of this study was to investigate and compare the difference in the level of TGF-β1 and IL-23 gene expression in unstimulated peripheral blood mononuclear cells (PBMCs) of patients with different forms of diabetes compared with normal healthy controls subjects. Patients with T1DM were grouped as early-onset T1DM (N = 20) with age at diagnosis <18 years and late-onset T1DM (N = 20) with the age at onset >18 years. Patients with T2DM (N = 20) and normal healthy controls (N = 20) were recruited from the same area. TGF-β1 and IL-23 gene expression in fresh unstimulated PBMCs was determined in each group using quantitative real-time PCR. The results confirmed that a significant difference in TGF-β1 and IL-23 gene expression was observed in both forms of juvenile-onset T1DM and adult-onset T1DM compared to the controls and T2DM patients. There was no significant difference for TGF-β gene expression in patients with T2DM and controls. We therefore conclude that our results support the previous data on TGF-β gene down-regulation in T1DM. Also up-regulation of IL-23 has been observed in T1DM whilst it was down-regulated in T2DM. We also found no significant difference between juvenile-onset and adult-onset T1DM indicating same mechanism might be involved in the pathogenesis of both types. More studies on different cytokines in Th17 pathways are required to further confirm our finding.
Collapse
Affiliation(s)
- Farzaneh Abbasi
- Endocrinology and Metabolism Research Center (EMRC), Dr Shariati Hospital, Tehran University of Medical Sciences, 14114, Tehran, Iran
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Genetic engineering with T cell receptors. Adv Drug Deliv Rev 2012; 64:756-62. [PMID: 22178904 DOI: 10.1016/j.addr.2011.11.009] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2011] [Accepted: 11/21/2011] [Indexed: 01/08/2023]
Abstract
In the past two decades, human gene transfer research has been translated from a laboratory technology to clinical evaluation. The success of adoptive transfer of tumor-reactive lymphocytes to treat the patients with metastatic melanoma has led to new strategies to redirect normal T cells to recognize tumor antigens by genetic engineering with tumor antigen-specific T cell receptor (TCR) genes. This new strategy can generate large numbers of defined antigen-specific cells for therapeutic application. Much progress has been made to TCR gene transfer systems by optimizing gene expression and gene transfer protocols. Vector and protein modifications have enabled excellent expression of introduced TCR chains in human lymphocytes with reduced mis-pairing between the introduced and endogenous TCR chains. Initial clinical studies have demonstrated that TCR gene-engineered T cells could mediate tumor regression in vivo. In this review, we discuss the progress and prospects of TCR gene-engineered T cells as a therapeutic strategy for treating patients with melanoma and other cancers.
Collapse
|
37
|
Coventry BJ, Ashdown ML. Complete clinical responses to cancer therapy caused by multiple divergent approaches: a repeating theme lost in translation. Cancer Manag Res 2012; 4:137-49. [PMID: 22740774 PMCID: PMC3379856 DOI: 10.2147/cmar.s31887] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Over 50 years of cancer therapy history reveals complete clinical responses (CRs) from remarkably divergent forms of therapies (eg, chemotherapy, radiotherapy, surgery, vaccines, autologous cell transfers, cytokines, monoclonal antibodies) for advanced solid malignancies occur with an approximately similar frequency of 5%–10%. This has remained frustratingly almost static. However, CRs usually underpin strong durable 5-year patient survival. How can this apparent paradox be explained? Over some 20 years, realization that (1) chronic inflammation is intricately associated with cancer, and (2) the immune system is delicately balanced between responsiveness and tolerance of cancer, provides a greatly significant insight into ways cancer might be more effectively treated. In this review, divergent aspects from the largely segmented literature and recent conferences are drawn together to provide observations revealing some emerging reasoning, in terms of “final common pathways” of cancer cell damage, immune stimulation, and auto-vaccination events, ultimately leading to cancer cell destruction. Created from this is a unifying overarching concept to explain why multiple approaches to cancer therapy can provide complete responses at almost equivalent rates. This “missing” aspect provides a reasoned explanation for what has, and is being, increasingly reported in the mainstream literature – that inflammatory and immune responses appear intricately associated with, if not causative of, complete responses induced by divergent forms of cancer therapy. Curiously, whether by chemotherapy, radiation, surgery, or other means, therapy-induced cell injury results, leaving inflammation and immune system stimulation as a final common denominator across all of these mechanisms of cancer therapy. This aspect has been somewhat obscured and has been “lost in translation” to date.
Collapse
Affiliation(s)
- Brendon J Coventry
- Discipline of Surgery, University of Adelaide, Royal Adelaide Hospital and Faculty of Medicine, University of Melbourne, Australia
| | | |
Collapse
|
38
|
Abstract
UNLABELLED Antigen cross-presentation is a principal function of specialized antigen-presenting cells of bone marrow origin such as dendritic cells. Although these cells are sometimes known as "professional" antigen-presenting cells, nonbone marrow-derived cells may also act as antigen-presenting cells. Here, using four-way liver cell isolation and parallel comparison of candidate antigen-presenting cells, we show that, depending on the abundance of antigen-donor cells, different subsets of liver cells could cross-present a hepatocyte-associated antigen. This function was observed in both liver sinusoidal endothelial cells and Kupffer cells even at very low antigen concentration, as well as when using soluble protein. Antigen cross-presentation by liver cells induced efficient CD8+ T-cell proliferation in a similar manner to classical dendritic cells from spleen. However, proliferated cells expressed a lower level of T-cell activation markers and intracellular interferon-gamma levels. In contrast to classical spleen dendritic cells, cross-presentation by liver antigen-presenting cells was predominantly dependent on intercellular adhesion molecule-1. CONCLUSION Hepatic sinusoids are an environment rich in antigen cross-presenting activity. However, the liver's resident antigen-presenting cells cause partial T-cell activation. These results clarify how the liver can act as a primary site of CD8+ T-cell activation, and why immunity against hepatocyte pathogens is sometimes ineffective.
Collapse
Affiliation(s)
- Mohammad R Ebrahimkhani
- Malaria Program, Seattle Biomedical Research Institute, 307 Westlake Avenue N., Seattle, WA 98109, USA
- MIT Center for Environmental Health Sciences, Department of Biological Engineering, Department of Biology, Massachusetts Institute of Technology (MIT), 77 Massachusetts Avenue, 56-255, Cambridge, MA 02139, USA
| | - Isaac Mohar
- Malaria Program, Seattle Biomedical Research Institute, 307 Westlake Avenue N., Seattle, WA 98109, USA
| | - Ian N Crispe
- Malaria Program, Seattle Biomedical Research Institute, 307 Westlake Avenue N., Seattle, WA 98109, USA
- Department of Immunology, University of Washington, Seattle, WA, USA
| |
Collapse
|
39
|
Passero LFD, Marques C, Vale-Gato I, Corbett CEP, Laurenti MD, Santos-Gomes G. Analysis of the protective potential of antigens released by Leishmania (Viannia) shawi promastigotes. Arch Dermatol Res 2011; 304:47-55. [PMID: 21882046 DOI: 10.1007/s00403-011-1171-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2011] [Revised: 08/12/2011] [Accepted: 08/17/2011] [Indexed: 01/27/2023]
Abstract
Leishmania (Viannia) shawi causes cutaneous lesions in humans. Parasite antigens conferring significant protection against American tegumentar leishmaniosis (ATL) might be important for the development of effective vaccine. Therefore, this work evaluates the protective effect of antigenic fractions released by L. shawi. Antigens released by promastigotes to culture medium were concentrated and isolated by SDS-PAGE. The three main fractions LsPass1 (>75 kDa), LsPass2 (75-50 kDa) and LsPass3 (<50 kDa) were electro-eluted according with their molecular mass. Immunized BALB/c mice were challenged with L. shawi promastigotes and the course of infection monitored during 5 weeks. LsPass1-challenged mice showed no protection, however, a strong degree of protection associated to smaller lesions and high expression of IFN-γ and TNF-α by CD4(+) T, CD8(+) T and double negative CD4CD8 cells was achieved in LsPass3-challenged mice. Furthermore, LsPass2-challenged mice showed an intermediated degree of protection associated to high levels of IFN-γ, IL-4 and IL-10 mRNA. In spite of increased expression of IFN-γ and TNF-α, high amounts of IL-4 and IL-10 mRNA were also detected in LsPass3-challenged mice indicating a possible contribution of these cytokines for the persistence of a residual number of parasites that may be important in inducing long-lasting immunity. Therefore, LsPass3 seems to be an interesting alternative that should be considered in the development of an effective vaccine against ATL.
Collapse
|
40
|
Mohamad HE, Askar ME, Hafez MM. Management of cardiac fibrosis in diabetic rats; the role of peroxisome proliferator activated receptor gamma (PPAR-gamma) and calcium channel blockers (CCBs). Diabetol Metab Syndr 2011; 3:4. [PMID: 21450068 PMCID: PMC3074550 DOI: 10.1186/1758-5996-3-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2010] [Accepted: 03/30/2011] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Diabetes mellitus (DM) and hypertension (HTN) are accused of being responsible for the development of the cardiac fibrosis due to severe cardiomyopathy. METHODS Blood glucose (BG) test was carried out, lipid concentrations, tumor necrosis factor alpha (TNF-α), transforming growth factor beta (TGF-β), matrix metalloproteinase (MMP-2), collagen-I and collagen-III were measured in male Albino rats weighing 179-219 g. The rats were divided into five groups, kept on either control diet or high fat diet (HFD), and simultaneously treated with rosiglitazone (PPAR-gamma) only for one group with 3 mg/kg/day via oral route for 30 days, and with rosiglitazone and felodipine combination for another group with 3 mg/kg/day and 5 mg/kg/day, respectively via oral route for 30 days. RESULTS Diabetic hypertensive (DH) rats which fed on a HFD, injected with streptozotocin (STZ) (i.p.) and obstruction for its right kidney was occurred develop hyperglycemia, hypertension, cardiac fibrosis, hypertriglyceridemia, hypercholesterolemia, increased TNF-α, increased TGF-β, decreased MMP-2, increased collagen-I and increased collagen-III, when compared to rats fed on control diet. Treating the DH rats with rosiglitazone only causes a significant decrease for BG levels by 52.79%, triglycerides (TGs) by 24.05%, total cholesterol (T-Chol) by 30.23%, low density lipoprotein cholesterol (LDL-C) by 40.53%, TNF-α by 20.81%, TGF-β by 46.54%, collagen-I by 48.11% and collagen-III by 53.85% but causes a significant increase for MMP-2 by 272.73%. Moreover, Treating the DH rats with rosiglitazone and felodipine combination causes a significant decrease for BG levels by 61.08%, blood pressure (BP) by 16.78%, TGs by 23.80%, T-Chol by 33.27%, LDL-C by 45.18%, TNF-α by 22.82%, TGF-β by 49.31%, collagen-I by 64.15% and collagen-III by 53.85% but causes a significant increase for MMP-2 by 290.91%. Rosiglitazone alone failed to decrease the BP in DH rats in the current dosage and duration. CONCLUSION Our results indicate that the co-existence of diabetes and hypertension could induce cardiomyopathy which could further result in cardiac fibrosis, and that combination treatment with rosiglitazone and felodipine has a great protective role against the metabolic abnormalities, meanwhile, the treatment with rosiglitazone alone has a protective role with a minimal effect against these abnormalities and has no effect on decreasing BP in these cases which may lead to coronary artery diseases (CADs) in future.
Collapse
Affiliation(s)
- Hoda E Mohamad
- Department of Biochemistry, Faculty of Pharmacy, Zagazig University, Zagazig, Egypt
| | - Mervat E Askar
- Department of Biochemistry, Faculty of Pharmacy, Zagazig University, Zagazig, Egypt
| | - Mohamed M Hafez
- Department of Biochemistry, Faculty of Pharmacy, October for Modern Science and Arts University (MSA), Egypt
| |
Collapse
|
41
|
Pugliese A, Reijonen HK, Nepom J, Burke GW. Recurrence of autoimmunity in pancreas transplant patients: research update. ACTA ACUST UNITED AC 2011; 1:229-238. [PMID: 21927622 DOI: 10.2217/dmt.10.21] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Type 1 diabetes is an autoimmune disorder leading to loss of pancreatic β-cells and insulin secretion, followed by insulin dependence. Islet and whole pancreas transplantation restore insulin secretion. Pancreas transplantation is often performed together with a kidney transplant in patients with end-stage renal disease. With improved immunosuppression, immunological failures of whole pancreas grafts have become less frequent and are usually categorized as chronic rejection. However, growing evidence indicates that chronic islet autoimmunity may eventually lead to recurrent diabetes, despite immunosuppression to prevent rejection. Thus, islet autoimmunity should be included in the diagnostic work-up of graft failure and ideally should be routinely assessed pretransplant and on follow-up in Type 1 diabetes recipients of pancreas and islet cell transplants. There is a need to develop new treatment regimens that can control autoimmunity, as this may not be effectively suppressed by conventional immunosuppression.
Collapse
Affiliation(s)
- Alberto Pugliese
- Diabetes Research Institute, University of Miami Miller School of Medicine, 1450 NW 10th Avenue, Miami, FL 33136, USA
| | | | | | | |
Collapse
|
42
|
Environmental and antigen receptor-derived signals support sustained surveillance of the lungs by pathogen-specific cytotoxic T lymphocytes. J Virol 2011; 85:4085-94. [PMID: 21345961 DOI: 10.1128/jvi.02493-10] [Citation(s) in RCA: 143] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Viral infections often gain access to the body of their host by exploiting areas of natural vulnerability, such as the semipermeable surfaces of mucosal tissues which are adapted for adsorption of nutrients and other diffusible molecules. Once the microbes have crossed the epithelial barrier, they can disperse to other tissues where eradication may not be possible. The best opportunity for successful immune intervention is immediately after infection while the pathogen is confined to a localized area of the body. Cytotoxic T lymphocytes (CTL) which reside at the site where the infection begins can make an important contribution to immunity by reducing early dissemination of the infection. Because the lungs provide easy access points for many pathogens to enter the body, they require protection from many complementary mechanisms, including pathogen-specific cytotoxic T cells. In this study we show that an enduring response to pathogen-derived peptide antigens facilitates sustained surveillance of the lungs by pathogen-specific CTL during the recovery from influenza virus infection. Our studies show that these processed peptide antigens reinforce expression of two homing receptors (CD69 and CD103) which help recently activated virus-specific CTL colonize the lungs during a mild inflammatory response. We suggest that this requirement for prolonged antigen presentation to reinforce local CTL responses in the lungs explains why protective cellular immunity quickly declines following influenza virus infection and other viral infections that enter the body via mucosal tissues.
Collapse
|
43
|
Wållberg M, Wong FS, Green EA. An islet-specific pulse of TGF-β abrogates CTL function and promotes β cell survival independent of Foxp3+ T cells. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2011; 186:2543-51. [PMID: 21217013 DOI: 10.4049/jimmunol.1002098] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Effective therapies that prevent chronic inflammation from developing into type 1 diabetes remain elusive. In this study, we show that expression of TGF-β for just 1 wk in inflamed islets of NOD mice significantly delays diabetes development. Time course studies demonstrated that the brief TGF-β pulse protects only if administered when extensive β cell destruction has occurred. Surprisingly, TGF-β-mediated protection is not linked to enhanced Foxp3(+) regulatory T cell activity or to decreased intrapancreatic presentation of islet Ags. Instead, TGF-β disables the transition of primed autoreactive CD8(+) T cells to cytotoxic effectors and decreases generation, or maintenance, of CD8(+) memory T cells within the pancreas, significantly impairing their diabetogenic capacity.
Collapse
MESH Headings
- Animals
- Cell Survival/genetics
- Cell Survival/immunology
- Cytotoxicity Tests, Immunologic/methods
- Diabetes Mellitus, Type 1/immunology
- Diabetes Mellitus, Type 1/pathology
- Diabetes Mellitus, Type 1/prevention & control
- Disease Models, Animal
- Disease Progression
- Epitopes, T-Lymphocyte/immunology
- Forkhead Transcription Factors/biosynthesis
- Forkhead Transcription Factors/physiology
- Immunologic Memory/genetics
- Inflammation Mediators/administration & dosage
- Inflammation Mediators/physiology
- Islets of Langerhans/immunology
- Islets of Langerhans/metabolism
- Islets of Langerhans/pathology
- Mice
- Mice, Inbred NOD
- Mice, SCID
- Mice, Transgenic
- T-Lymphocyte Subsets/immunology
- T-Lymphocyte Subsets/metabolism
- T-Lymphocyte Subsets/pathology
- T-Lymphocytes, Cytotoxic/immunology
- T-Lymphocytes, Cytotoxic/metabolism
- T-Lymphocytes, Cytotoxic/pathology
- Transforming Growth Factor beta/administration & dosage
- Transforming Growth Factor beta/physiology
Collapse
Affiliation(s)
- Maja Wållberg
- Department of Pathology, Cambridge Institute for Medical Research, Addenbrooke's Hospital, Cambridge, United Kingdom
| | | | | |
Collapse
|
44
|
Chen HY, Huang XR, Wang W, Li JH, Heuchel RL, Chung AC, Lan HY. The protective role of Smad7 in diabetic kidney disease: mechanism and therapeutic potential. Diabetes 2011; 60:590-601. [PMID: 20980457 PMCID: PMC3028360 DOI: 10.2337/db10-0403] [Citation(s) in RCA: 189] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
OBJECTIVE Although Smad3 has been considered as a downstream mediator of transforming growth factor-β (TGF-β) signaling in diabetes complications, the role of Smad7 in diabetes remains largely unclear. The current study tests the hypothesis that Smad7 may play a protective role and has therapeutic potential for diabetic kidney disease. RESEARCH DESIGN AND METHODS Protective role of Smad7 in diabetic kidney disease was examined in streptozotocin-induced diabetic mice that have Smad7 gene knockout (KO) and in diabetic rats given Smad7 gene transfer using an ultrasound-microbubble-mediated technique. RESULTS We found that mice deficient for Smad7 developed more severe diabetic kidney injury than wild-type mice as evidenced by a significant increase in microalbuminuria, renal fibrosis (collagen I, IV, and fibronectin), and renal inflammation (interleukin-1β [IL-1β], tumor necrosis factor-α [TNF-α], monocyte chemoattractant protein-1 [MCP-1], intracellular adhesion molecule-1 [ICAM-1], and macrophages). Further studies revealed that enhanced renal fibrosis and inflammation in Smad7 KO mice with diabetes were associated with increased activation of both TGF-β/Smad2/3 and nuclear factor-κB (NF-κB) signaling pathways. To develop a therapeutic potential for diabetic kidney disease, Smad7 gene was transferred into the kidney in diabetic rats by an ultrasound-microbubble-mediated technique. Although overexpression of renal Smad7 had no effect on levels of blood glucose, it significantly attenuated the development of microalbuminuria, TGF-β/Smad3-mediated renal fibrosis such as collagen I and IV and fibronectin accumulation and NF-κB/p65-driven renal inflammation including IL-1β, TNF-α, MCP-1, and ICAM-1 expression and macrophage infiltration in diabetic rats. CONCLUSIONS Smad7 plays a protective role in diabetic renal injury. Overexpression of Smad7 may represent a novel therapy for the diabetic kidney complication.
Collapse
Affiliation(s)
- Hai Yong Chen
- Department of Medicine and Therapeutics, and Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Xiao R. Huang
- Department of Medicine and Therapeutics, and Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Wansheng Wang
- Department of Pediatrics, Texas Tech University, Health Science Center at El Paso, El Paso, Texas
| | - Jin Hua Li
- Department of Anatomy and Developmental Biology, Monash University, Clayton, Victoria, Australia
| | | | - Arthur C.K. Chung
- Department of Medicine and Therapeutics, and Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Hui Yao Lan
- Department of Medicine and Therapeutics, and Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, China
- Corresponding author: Hui Y. Lan,
| |
Collapse
|
45
|
Abstract
For a virus to establish persistence in the host, it has to exploit the host immune system such that the active T-cell responses against the virus are curbed. On the other hand, the goal of the immune system is to clear the virus, following which the immune responses need to be downregulated, by a process known as immunoregulation. There are multiple known immunoregulatory mechanisms that appear to play a role in persistent viral infections. In the recent past, IL-10 and PD-1 have been identified to be playing a significant role in the regulation of antiviral immune responses. The evidence that viruses can escape immunologic attack by taking advantage of the host's immune system is found in LCMV infection of mice and in humans persistently infected with HIV and HCV. The recent observation that the functionally inactive T-cells during chronic viral infections can be made to regain their cytokine secretion and cytolytic abilities is very encouraging. Thus, it would be likely that neutralization negative immune regulation during persistent viral infection would result in the preservation of effector T-cell responses against the virus, thereby resulting in the elimination of the persistent infection.
Collapse
Affiliation(s)
| | - Ignacio Anegon
- CHU Hotel Dieu, INSERM UMR 643, Bd. Jean Monnet 30, Nantes, 44093 France
| |
Collapse
|
46
|
|
47
|
Huss DJ, Winger RC, Peng H, Yang Y, Racke MK, Lovett-Racke AE. TGF-beta enhances effector Th1 cell activation but promotes self-regulation via IL-10. THE JOURNAL OF IMMUNOLOGY 2010; 184:5628-36. [PMID: 20393141 DOI: 10.4049/jimmunol.1000288] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Myelin-specific effector Th1 cells are able to perpetuate CNS inflammation in experimental autoimmune encephalomyelitis, an animal model representative of multiple sclerosis. Although the effects of cytokines in the CNS microenvironment on naive CD4(+) T cells have been well described, much less is known about their ability to influence Ag-experienced effector cells. TGF-beta is a multifunctioning cytokine present in the healthy and inflamed CNS with well-characterized suppressive effects on naive T cell functions. However, the effects of TGF-beta on effector Th1 cells are not well defined. Using myelin-specific TCR transgenic mice, we demonstrate that TGF-beta elicits differential effects on naive versus effector Th1 cells. TGF-beta enhances cellular activation, proliferation, and cytokine production of effector Th1 cells; however, adoptive transfer of these cells into naive mice showed a reduction in encephalitogenicity. We subsequently demonstrate that the reduced encephalitogenic capacity is due to the ability of TGF-beta to promote the self-regulation of Th1 effector cells via IL-10 production. These data demonstrate a mechanism by which TGF-beta is able to suppress the encephalitogenicity of myelin-specific Th1 effector cells that is unique from its suppression of naive T cells.
Collapse
Affiliation(s)
- David J Huss
- Department of Molecular Virology, Immunology, and Medical Genetics, Ohio State University Medical Center, Columbus, OH 43210, USA
| | | | | | | | | | | |
Collapse
|
48
|
Sanjabi S, Zenewicz LA, Kamanaka M, Flavell RA. Anti-inflammatory and pro-inflammatory roles of TGF-beta, IL-10, and IL-22 in immunity and autoimmunity. Curr Opin Pharmacol 2009; 9:447-53. [PMID: 19481975 PMCID: PMC2755239 DOI: 10.1016/j.coph.2009.04.008] [Citation(s) in RCA: 488] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2009] [Accepted: 04/22/2009] [Indexed: 12/15/2022]
Abstract
Cytokines play a major role in maintaining lymphocyte homeostasis under both steady-state and inflammatory conditions. Unregulated lymphocytes in steady-state conditions can lead to autoimmunity, whereas during inflammation they can cause excessive tissue damage. Regulatory cytokines function in combination with other environmental signals to properly modulate the function and the extent of lymphocyte activation. Many recent studies have highlighted the importance of regulatory cytokines in controlling the differentiation and function of lymphocytes under steady-state and inflammatory conditions, as well as minimizing tissue damage.
Collapse
Affiliation(s)
- Shomyseh Sanjabi
- Yale University School of Medicine, New Haven, CT 06520 (U.S.A.)
| | | | | | - Richard A. Flavell
- Yale University School of Medicine, New Haven, CT 06520 (U.S.A.)
- Howard Hughes Medical Institute
| |
Collapse
|
49
|
Tonkin DR, Haskins K. Regulatory T cells enter the pancreas during suppression of type 1 diabetes and inhibit effector T cells and macrophages in a TGF-beta-dependent manner. Eur J Immunol 2009; 39:1313-22. [PMID: 19404982 DOI: 10.1002/eji.200838916] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Treg can suppress autoimmune diseases such as type 1 diabetes, but their in vivo activity during suppression remains poorly characterized. In type 1 diabetes, Treg activity has been demonstrated in the pancreatic lymph node, but little has been studied in the pancreas, the site of autoimmune islet destruction. In this study we induced islet-specific Treg from the BDC-6.9 TCR transgenic mouse by activation of T cells in the presence of TGF-beta. These Treg can suppress spontaneous diabetes as well as transfer of diabetes into NOD.scid mice by diabetic NOD spleen cells or activated BDC-2.5 TCR transgenic Th1 effector T cells. In the latter transfer model, we observed infiltration of the pancreas by both effector T cells and Treg, suggesting that Treg are active in the inflammatory site and are not just restricted to the draining lymph node. Within the pancreas, we demonstrate that Treg transfer causes a reduction in the number of effector Th1 T cells and macrophages, and also inhibits effector T-cell cytokine and chemokine production. Although we found no role for TGF-beta in vitro, transfection of effector T cells with a dominant-negative TGF-beta receptor demonstrated that in vivo suppression of diabetes by TGF-beta-induced Treg is TGF-beta-dependent.
Collapse
Affiliation(s)
- Daniel R Tonkin
- Department of Immunology, University of Colorado Denver and National Jewish Health, Denver, CO 80206, USA
| | | |
Collapse
|
50
|
Filippi CM, Estes EA, Oldham JE, von Herrath MG. Immunoregulatory mechanisms triggered by viral infections protect from type 1 diabetes in mice. J Clin Invest 2009; 119:1515-23. [PMID: 19478458 DOI: 10.1172/jci38503] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2009] [Accepted: 03/11/2009] [Indexed: 01/07/2023] Open
Abstract
Type 1 diabetes (T1D) is an autoimmune disease that is caused by the destruction of insulin-producing beta cells. Viral infections induce immune responses that can damage beta cells and promote T1D or on the other hand prevent the development of the disease. However, the opposing roles of viral infections in T1D are not understood mechanistically. We report here that viruses that do not inflict damage on beta cells provided protection from T1D by triggering immunoregulatory mechanisms. Infection of prediabetic NOD mice with Coxsackie virus B3 or lymphocytic choriomeningitis virus (LCMV) delayed diabetes onset and reduced disease incidence. Delayed T1D onset was due to transient upregulation of programmed cell death-1 ligand 1 (PD-L1) on lymphoid cells, which prevented the expansion of diabetogenic CD8+ T cells expressing programmed cell death-1 (PD-1). Reduced T1D incidence was caused by increased numbers of invigorated CD4+CD25+ Tregs, which produced TGF-beta and maintained long-term tolerance. Full protection from T1D resulted from synergy between PD-L1 and CD4+CD25+ Tregs. Our results provide what we believe to be novel mechanistic insight into the role of viruses in T1D and should be valuable for prospective studies in humans.
Collapse
|