1
|
Ma H, Peng G, Hu Y, Lu B, Zheng Y, Wu Y, Feng W, Shi Y, Pan X, Song L, Stützer I, Liu Y, Fei J. Revealing the biological features of the axolotl pancreas as a new research model. Front Cell Dev Biol 2025; 13:1531903. [PMID: 39958891 PMCID: PMC11825805 DOI: 10.3389/fcell.2025.1531903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Accepted: 01/07/2025] [Indexed: 02/18/2025] Open
Abstract
Introduction The pancreas plays a crucial role in digestion and blood glucose regulation. Current animal models, primarily mice and zebrafish, have limited the exploration of pancreatic biology from an evolutionary-developmental perspective. Tetrapod vertebrate axolotl (Ambystoma mexicanum) serves as a valuable model in developmental, regenerative, and evolutionary biology. However, the fundamental biology of the axolotl pancreas remains underexplored. This study aims to characterize the unique developmental, functional, and evolutionary features of the axolotl pancreas to expand the understanding of pancreatic biology. Methods We conducted morphological, histological, and transcriptomic analyses to investigate the axolotl pancreas. Pancreatic development was observed using in situ hybridization and immunostaining for key pancreatic markers. RNA sequencing was performed to profile global gene expression during larva and adult stages. And differential gene expression analysis was used to characterize the conserved and unique gene patterns in the axolotl pancreas. Functional assays, including glucose tolerance tests and insulin tolerance tests, were optimized for individual axolotls. To assess pancreatic gene function, Pdx1 mutants were generated using CRISPR/Cas9-mediated gene editing, and their effects on pancreatic morphology, endocrine cell populations, and glucose homeostasis were analyzed. Results The axolotl pancreas contains all known pancreatic cell types and develops from dorsal and ventral buds. Both of buds contribute to exocrine and endocrine glands. The dorsal bud produces the major endocrine cell types, while the ventral bud generates α and δ cells, but not β cells. Differential gene expression analysis indicated a transition in global gene expression from pancreatic cell fate commitment and the cell cycle to glucose response, hormone synthesis, and secretion, following the development progression. Notably, the adult axolotl pancreas exhibits slower metabolic activity compared to mammals, as evidenced by the results of GTT and ITT. The mutation of Pdx1 resulted in hyperglycemia and a significant reduction in pancreatic cell mass, including a complete loss of endocrine cells, although it did not lead to a lethal phenotype. Discussion This study examines the axolotl pancreas, highlighting the conservation of pancreatic development. Our study highlights the unique features of the axolotl pancreas and broadens the scope of animal models available for pancreatic evolution and disease research.
Collapse
Affiliation(s)
- Hui Ma
- Department of Pathology, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China
- BGI Research, Qingdao, China
- School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Guangcong Peng
- Key Laboratory of Brain, Cognition and Education Sciences, Guangdong Key Laboratory of Mental Health and Cognitive Science, Ministry of Education, Institute for Brain Research and Rehabilitation, South China Normal University, Guangzhou, China
| | - Yan Hu
- Department of Pathology, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China
| | - Binbin Lu
- Department of Pathology, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China
- The Innovation Centre of Ministry of Education for Development and Diseases, School of Medicine, South China University of Technology, Guangzhou, China
| | - Yiying Zheng
- Key Laboratory of Brain, Cognition and Education Sciences, Guangdong Key Laboratory of Mental Health and Cognitive Science, Ministry of Education, Institute for Brain Research and Rehabilitation, South China Normal University, Guangzhou, China
| | - Yingxian Wu
- Key Laboratory of Brain, Cognition and Education Sciences, Guangdong Key Laboratory of Mental Health and Cognitive Science, Ministry of Education, Institute for Brain Research and Rehabilitation, South China Normal University, Guangzhou, China
| | - Weimin Feng
- Guangdong Provincial Key Laboratory of Medical Immunology and Molecular Diagnostics, Guangdong Medical University, Dongguan, China
| | - Yu Shi
- Key Laboratory of Brain, Cognition and Education Sciences, Guangdong Key Laboratory of Mental Health and Cognitive Science, Ministry of Education, Institute for Brain Research and Rehabilitation, South China Normal University, Guangzhou, China
| | - Xiangyu Pan
- Department of Pathology, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China
| | - Li Song
- Department of Pathology, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China
| | - Ina Stützer
- Deutsche Forschungsgemeinschaft (DFG)-Center for Regenerative Therapies Dresden, Technische Universität Dresden, Dresden, Germany
| | - Yanmei Liu
- Key Laboratory of Brain, Cognition and Education Sciences, Guangdong Key Laboratory of Mental Health and Cognitive Science, Ministry of Education, Institute for Brain Research and Rehabilitation, South China Normal University, Guangzhou, China
| | - Jifeng Fei
- Department of Pathology, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China
- School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
- The Innovation Centre of Ministry of Education for Development and Diseases, School of Medicine, South China University of Technology, Guangzhou, China
| |
Collapse
|
2
|
Powell CJ, Singer HD, Juarez AR, Kim RT, Payzin-Dogru D, Savage AM, Lopez NJ, Blair SJ, Abouelela A, Dittrich A, Akeson SG, Jain M, Whited JL. Pancreatic injury induces β-cell regeneration in axolotl. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.23.634564. [PMID: 39896453 PMCID: PMC11785190 DOI: 10.1101/2025.01.23.634564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/04/2025]
Abstract
Background Diabetes is a condition characterized by a loss of pancreatic β-cell function which results in the dysregulation of insulin homeostasis. Using a partial pancreatectomy model in axolotl, we aimed to observe the pancreatic response to injury. Results Here we show a comprehensive histological assessment of pancreatic islets in axolotl. Following pancreatic injury, no apparent blastemal structure was observed. We found a significant, organ-wide increase in cellular proliferation post-resection in the pancreas compared to sham-operated controls. This proliferative response was most robust at the site of injury. We found that β-cells actively contributed to the increased rates of proliferation upon injury. β-cell proliferation manifested in increased β-cell mass in injured tissue at two weeks post injury. At four weeks post injury, we found organ-wide proliferation to be extinguished while proliferation at the injury site persisted, corresponding to pancreatic tissue recovery. Similarly, total β-cell mass was comparable to sham after four weeks. Conclusions Our findings suggest a non-blastema-mediated regeneration process takes place in the pancreas, by which pancreatic resection induces whole-organ β-cell proliferation without the formation of a blastemal structure. This process is analogous to other models of compensatory growth in axolotl, including liver regeneration.
Collapse
Affiliation(s)
- Connor J. Powell
- Department of Stem Cell and Regenerative Biology, Harvard University, 7 Divinity 10 Ave., Cambridge, MA, USA, 02138
- Department of Bioengineering, Northeastern University, 805 Columbus Ave., Boston, MA 02120
| | - Hani D. Singer
- Department of Stem Cell and Regenerative Biology, Harvard University, 7 Divinity 10 Ave., Cambridge, MA, USA, 02138
| | - Ashley R. Juarez
- Department of Stem Cell and Regenerative Biology, Harvard University, 7 Divinity 10 Ave., Cambridge, MA, USA, 02138
| | - Ryan T. Kim
- Department of Stem Cell and Regenerative Biology, Harvard University, 7 Divinity 10 Ave., Cambridge, MA, USA, 02138
| | - Duygu Payzin-Dogru
- Department of Stem Cell and Regenerative Biology, Harvard University, 7 Divinity 10 Ave., Cambridge, MA, USA, 02138
| | - Aaron M. Savage
- Department of Stem Cell and Regenerative Biology, Harvard University, 7 Divinity 10 Ave., Cambridge, MA, USA, 02138
| | - Noah J. Lopez
- Department of Stem Cell and Regenerative Biology, Harvard University, 7 Divinity 10 Ave., Cambridge, MA, USA, 02138
| | - Steven J. Blair
- Department of Stem Cell and Regenerative Biology, Harvard University, 7 Divinity 10 Ave., Cambridge, MA, USA, 02138
| | - Adnan Abouelela
- Department of Stem Cell and Regenerative Biology, Harvard University, 7 Divinity 10 Ave., Cambridge, MA, USA, 02138
| | - Anita Dittrich
- Department of Stem Cell and Regenerative Biology, Harvard University, 7 Divinity 10 Ave., Cambridge, MA, USA, 02138
- Comparative Medicine Lab, Department of Clinical Medicine, Aarhus University, Denmark, 8200
| | - Stuart G. Akeson
- Department of Bioengineering, Northeastern University, 805 Columbus Ave., Boston, MA 02120
| | - Miten Jain
- Department of Bioengineering, Northeastern University, 805 Columbus Ave., Boston, MA 02120
- Department of Physics, Northeastern University, 100 Forsyth St., Boston, MA 02125
| | - Jessica L. Whited
- Department of Stem Cell and Regenerative Biology, Harvard University, 7 Divinity 10 Ave., Cambridge, MA, USA, 02138
- The Broad Institute of Harvard and MIT, Cambridge, MA, USA, 02138
- Harvard Stem Cell Institute, Harvard University, Cambridge, MA, USA, 02138
| |
Collapse
|
3
|
Almeida LM, Lima LP, Oliveira NAS, Silva RFO, Sousa B, Bessa J, Pinho BR, Oliveira JMA. Zebrafish as a model to study PERK function in developmental diseases: implications for Wolcott-Rallison syndrome. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.16.589737. [PMID: 38659860 PMCID: PMC11042256 DOI: 10.1101/2024.04.16.589737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
Developmental diseases are challenging to investigate due to their clinical heterogeneity and relatively low prevalence. The Wolcott-Rallison Syndrome (WRS) is a rare developmental disease characterized by skeletal dysplasia and permanent neonatal diabetes due to loss-of-function mutations in the endoplasmic reticulum stress kinase PERK (EIF2AK3). The lack of efficient and less invasive therapies for WRS highlights the need for new animal models that replicate the complex pathological phenotypes, while preserving scalability for drug screening. Zebrafish exhibits high fecundity and rapid development that facilitate efficient and scalable in vivo drug testing. Here, we aimed to assess the potential of zebrafish to study PERK function and its pharmacological modulation, and as model organism of developmental diseases such as the WRS. Using bioinformatic analyses, we showed high similarity between human and zebrafish PERK. We used the pharmacological PERK inhibitor GSK2606414, which was bioactive in zebrafish, to modulate PERK function. Using transgenic zebrafish expressing fluorescent pancreatic markers and a fluorescent glucose probe, we observed that PERK inhibition decreased β cell mass and disrupted glucose homeostasis. By combining behavioural and functional assays, we show that PERK-inhibited zebrafish present marked skeletal defects and defective growth, as well as neuromuscular and cardiac deficiencies, which are clinically relevant in WRS patients, while sparing parameters like otolith area and eye/body ratio which are not associated with WRS. These results show that zebrafish holds potential to study PERK function and its pharmacological modulation in developmental disorders like WRS, assisting research on their pathophysiology and experimental treatments.
Collapse
|
4
|
Massoz L, Bergemann D, Lavergne A, Reynders C, Désiront C, Goossens C, Flasse L, Peers B, Voz MM, Manfroid I. Negative cell cycle regulation by calcineurin is necessary for proper beta cell regeneration in zebrafish. eLife 2024; 12:RP88813. [PMID: 39383064 PMCID: PMC11464004 DOI: 10.7554/elife.88813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/11/2024] Open
Abstract
Stimulation of pancreatic beta cell regeneration could be a therapeutic lead to treat diabetes. Unlike humans, the zebrafish can efficiently regenerate beta cells, notably from ductal pancreatic progenitors. To gain insight into the molecular pathways involved in this process, we established the transcriptomic profile of the ductal cells after beta cell ablation in the adult zebrafish. These data highlighted the protein phosphatase calcineurin (CaN) as a new potential modulator of beta cell regeneration. We showed that CaN overexpression abolished the regenerative response, leading to glycemia dysregulation. On the opposite, CaN inhibition increased ductal cell proliferation and subsequent beta cell regeneration. Interestingly, the enhanced proliferation of the progenitors was paradoxically coupled with their exhaustion. This suggests that the proliferating progenitors are next entering in differentiation. CaN appears as a guardian which prevents an excessive progenitor proliferation to preserve the pool of progenitors. Altogether, our findings reveal CaN as a key player in the balance between proliferation and differentiation to enable a proper beta cell regeneration.
Collapse
Affiliation(s)
- Laura Massoz
- Zebrafish Development and Disease Models Laboratory, GIGA-Stem Cells, University of LiègeLiègeBelgium
| | - David Bergemann
- Zebrafish Development and Disease Models Laboratory, GIGA-Stem Cells, University of LiègeLiègeBelgium
| | - Arnaud Lavergne
- Zebrafish Development and Disease Models Laboratory, GIGA-Stem Cells, University of LiègeLiègeBelgium
- GIGA-Genomics Core Facility, GIGA, University of LiègLiègeBelgium
| | - Célia Reynders
- Zebrafish Development and Disease Models Laboratory, GIGA-Stem Cells, University of LiègeLiègeBelgium
| | - Caroline Désiront
- Zebrafish Development and Disease Models Laboratory, GIGA-Stem Cells, University of LiègeLiègeBelgium
| | - Chiara Goossens
- Zebrafish Development and Disease Models Laboratory, GIGA-Stem Cells, University of LiègeLiègeBelgium
| | - Lydie Flasse
- Zebrafish Development and Disease Models Laboratory, GIGA-Stem Cells, University of LiègeLiègeBelgium
| | - Bernard Peers
- Zebrafish Development and Disease Models Laboratory, GIGA-Stem Cells, University of LiègeLiègeBelgium
| | - Marianne M Voz
- Zebrafish Development and Disease Models Laboratory, GIGA-Stem Cells, University of LiègeLiègeBelgium
| | - Isabelle Manfroid
- Zebrafish Development and Disease Models Laboratory, GIGA-Stem Cells, University of LiègeLiègeBelgium
| |
Collapse
|
5
|
Mi J, Ren L, Andersson O. Leveraging zebrafish to investigate pancreatic development, regeneration, and diabetes. Trends Mol Med 2024; 30:932-949. [PMID: 38825440 DOI: 10.1016/j.molmed.2024.05.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 04/30/2024] [Accepted: 05/01/2024] [Indexed: 06/04/2024]
Abstract
The zebrafish has become an outstanding model for studying organ development and tissue regeneration, which is prominently leveraged for studies of pancreatic development, insulin-producing β-cells, and diabetes. Although studied for more than two decades, many aspects remain elusive and it has only recently been possible to investigate these due to technical advances in transcriptomics, chemical-genetics, genome editing, drug screening, and in vivo imaging. Here, we review recent findings on zebrafish pancreas development, β-cell regeneration, and how zebrafish can be used to provide novel insights into gene functions, disease mechanisms, and therapeutic targets in diabetes, inspiring further use of zebrafish for the development of novel therapies for diabetes.
Collapse
Affiliation(s)
- Jiarui Mi
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden; Department of Gastroenterology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, China.
| | - Lipeng Ren
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden; Department of Medical Cell Biology, Uppsala University, Biomedical Centre, Uppsala, Sweden
| | - Olov Andersson
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden; Department of Medical Cell Biology, Uppsala University, Biomedical Centre, Uppsala, Sweden.
| |
Collapse
|
6
|
Greenspan LJ, Cisneros I, Weinstein BM. Dermal Dive: An Overview of Cutaneous Wounding Techniques in Zebrafish. J Invest Dermatol 2024; 144:1430-1439. [PMID: 38752940 PMCID: PMC11218931 DOI: 10.1016/j.jid.2024.04.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 03/21/2024] [Accepted: 04/15/2024] [Indexed: 06/24/2024]
Abstract
Cutaneous wounds are common injuries that affect millions of people around the world. In vulnerable populations such as the elderly and those with diabetes, defects in wound healing can lead to the development of chronic open wounds. Although mammalian models are commonly used to study cutaneous wound healing, the challenges of in vivo imaging in mammals have hampered detailed observation of cell coordination and cell signaling during wound healing. The zebrafish is becoming increasingly popular for studying cutaneous wound healing owing to its genetic accessibility, suitability for experimental manipulation, and the ability to perform live, in vivo imaging with cellular or even subcellular resolution. In this paper, we review some of the techniques that have been developed for eliciting cutaneous wounds in the zebrafish, including an economical method we recently developed using a rotary tool that generates consistent and reproducible full-thickness wounds. Combined with the thousands of transgenic lines and experimental assays available in zebrafish, the ability to generate reproducible cutaneous wounds makes it possible to study key cellular and molecular events during wound healing using this powerful experimental model organism.
Collapse
Affiliation(s)
- Leah J Greenspan
- Division of Developmental Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, USA
| | - Isabella Cisneros
- Division of Developmental Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, USA
| | - Brant M Weinstein
- Division of Developmental Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, USA.
| |
Collapse
|
7
|
Roohi TF, Faizan S, Shaikh MF, Krishna KL, Mehdi S, Kinattingal N, Arulsamy A. Beyond drug discovery: Exploring the physiological and methodological dimensions of zebrafish in diabetes research. Exp Physiol 2024; 109:847-872. [PMID: 38279951 PMCID: PMC11140176 DOI: 10.1113/ep091587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 01/02/2024] [Indexed: 01/29/2024]
Abstract
Diabetes mellitus is a chronic disease that is now considered a global epidemic. Chronic diabetes conditions include type 1 and type 2 diabetes, both of which are normally irreversible. As a result of long-term uncontrolled high levels of glucose, diabetes can progress to hyperglycaemic pathologies, such as cardiovascular diseases, retinopathy, nephropathy and neuropathy, among many other complications. The complete mechanism underlying diabetes remains unclear due to its complexity. In this scenario, zebrafish (Danio rerio) have arisen as a versatile and promising animal model due to their good reproducibility, simplicity, and time- and cost-effectiveness. The Zebrafish model allows us to make progress in the investigation and comprehension of the root cause of diabetes, which in turn would aid in the development of pharmacological and surgical approaches for its management. The current review provides valuable reference information on zebrafish models, from the first zebrafish diabetes models using genetic, disease induction and chemical approaches, to the newest ones that further allow for drug screening and testing. This review aims to update our knowledge related to diabetes mellitus by gathering the most authoritative studies on zebrafish as a chemical, dietary and insulin induction, and genetic model for diabetes research.
Collapse
Affiliation(s)
- Tamsheel Fatima Roohi
- Department of PharmacologyJSS College of PharmacyJSS Academy of Higher Education and ResearchMysuruKarnatakaIndia
| | - Syed Faizan
- Department of Pharmaceutical ChemistryJSS College of PharmacyJSS Academy of Higher Education and ResearchMysuruKarnatakaIndia
| | - Mohd. Farooq Shaikh
- School of Dentistry and Medical SciencesCharles Sturt UniversityOrangeNew South WalesAustralia
| | - Kamsagara Linganna Krishna
- Department of PharmacologyJSS College of PharmacyJSS Academy of Higher Education and ResearchMysuruKarnatakaIndia
| | - Seema Mehdi
- Department of PharmacologyJSS College of PharmacyJSS Academy of Higher Education and ResearchMysuruKarnatakaIndia
| | - Nabeel Kinattingal
- Department of PharmacologyJSS College of PharmacyJSS Academy of Higher Education and ResearchMysuruKarnatakaIndia
| | - Alina Arulsamy
- Neuropharmacology Research LaboratoryJeffrey Cheah School of Medicine and Health SciencesMonash University MalaysiaBandar SunwaySelangorMalaysia
| |
Collapse
|
8
|
Matsuda H, Kubota Y. Zebrafish pancreatic β cell clusters undergo stepwise regeneration using Neurod1-expressing cells from different cell lineages. Cell Tissue Res 2023; 394:131-144. [PMID: 37474621 DOI: 10.1007/s00441-023-03805-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 06/30/2023] [Indexed: 07/22/2023]
Abstract
Pancreatic β cell clusters produce insulin and play a central role in glucose homeostasis. The regenerative capacity of mammalian β cells is limited and the loss of β cells causes diabetes. In contrast, zebrafish β cell clusters have a high regenerative capacity, making them an attractive model to study β cell cluster regeneration. How zebrafish β cell clusters regenerate, when the regeneration process is complete, and the identification of the cellular source of regeneration are fundamental questions that require investigation. Here, using larval and adult zebrafish, we demonstrate that pancreatic β cell clusters undergo a two-step regeneration process, regenerating functionality and then β cell numbers. Additionally, we found that all regenerating pancreatic β cells arose from Neurod1-expressing cells and that cells from different lineages contribute to both functional and β cell number recovery throughout their life. Furthermore, we found that during development and neogenesis, as well as regeneration, all β cells undergo Neurod1expression in zebrafish. Together, these results shed light on the fundamental cellular mechanisms underlying β cell cluster development, neogenesis, and regeneration.
Collapse
Affiliation(s)
- Hiroki Matsuda
- Department of Biomedical Sciences, College of Life Sciences, Ritsumeikan University, Kusatsu, 525-8577, Japan.
- R&D division, Repli-tech Co., Ltd., Shibuya-ku, 150-0012, Japan.
| | - Yukihiko Kubota
- Department of Bioinformatics, College of Life Sciences, Ritsumeikan University, Kusatsu, 525-8577, Japan
| |
Collapse
|
9
|
Mi J, Liu KC, Andersson O. Decoding pancreatic endocrine cell differentiation and β cell regeneration in zebrafish. SCIENCE ADVANCES 2023; 9:eadf5142. [PMID: 37595046 PMCID: PMC10438462 DOI: 10.1126/sciadv.adf5142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 07/20/2023] [Indexed: 08/20/2023]
Abstract
In contrast to mice, zebrafish have an exceptional yet elusive ability to replenish lost β cells in adulthood. Understanding this framework would provide mechanistic insights for β cell regeneration, which may be extrapolated to humans. Here, we characterize a krt4-expressing ductal cell type, which is distinct from the putative Notch-responsive cells, showing neogenic competence and giving rise to the majority of endocrine cells during postembryonic development. Furthermore, we demonstrate a marked ductal remodeling process featuring a Notch-responsive to krt4+ luminal duct transformation during late development, indicating several origins of krt4+ ductal cells displaying similar transcriptional patterns. Single-cell transcriptomics upon a series of time points during β cell regeneration unveil a previously unrecognized dlb+ transitional endocrine precursor cell, distinct regulons, and a differentiation trajectory involving cellular shuffling through differentiation and dedifferentiation dynamics. These results establish a model of zebrafish pancreatic endocrinogenesis and highlight key values of zebrafish for translational studies of β cell regeneration.
Collapse
Affiliation(s)
| | - Ka-Cheuk Liu
- Department of Cell and Molecular Biology, Karolinska Institutet, 17177 Stockholm, Sweden
| | | |
Collapse
|
10
|
Tucker TR, Knitter CA, Khoury DM, Eshghi S, Tran S, Sharrock AV, Wiles TJ, Ackerley DF, Mumm JS, Parsons MJ. An inducible model of chronic hyperglycemia. Dis Model Mech 2023; 16:dmm050215. [PMID: 37401381 PMCID: PMC10417516 DOI: 10.1242/dmm.050215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 06/28/2023] [Indexed: 07/05/2023] Open
Abstract
Transgene driven expression of Escherichia coli nitroreductase (NTR1.0) renders animal cells susceptible to the antibiotic metronidazole (MTZ). Many NTR1.0/MTZ ablation tools have been reported in zebrafish, which have significantly impacted regeneration studies. However, NTR1.0-based tools are not appropriate for modeling chronic cell loss as prolonged application of the required MTZ dose (10 mM) is deleterious to zebrafish health. We established that this dose corresponds to the median lethal dose (LD50) of MTZ in larval and adult zebrafish and that it induced intestinal pathology. NTR2.0 is a more active nitroreductase engineered from Vibrio vulnificus NfsB that requires substantially less MTZ to induce cell ablation. Here, we report on the generation of two new NTR2.0-based zebrafish lines in which acute β-cell ablation can be achieved without MTZ-associated intestinal pathology. For the first time, we were able to sustain β-cell loss and maintain elevated glucose levels (chronic hyperglycemia) in larvae and adults. Adult fish showed significant weight loss, consistent with the induction of a diabetic state, indicating that this paradigm will allow the modeling of diabetes and associated pathologies.
Collapse
Affiliation(s)
- Tori R. Tucker
- Department of Developmental and Cell Biology, University of California, Irvine, Natural Sciences II, Irvine, CA 92697, USA
| | - Courtney A. Knitter
- Department of Molecular Biology and Biochemistry, University of California, Irvine, Natural Sciences II, Irvine, CA 92697, USA
| | - Deena M. Khoury
- Department of Developmental and Cell Biology, University of California, Irvine, Natural Sciences II, Irvine, CA 92697, USA
| | - Sheida Eshghi
- Department of Developmental and Cell Biology, University of California, Irvine, Natural Sciences II, Irvine, CA 92697, USA
| | - Sophia Tran
- Department of Developmental and Cell Biology, University of California, Irvine, Natural Sciences II, Irvine, CA 92697, USA
| | - Abigail V. Sharrock
- School of Biological Sciences, Victoria University of Wellington, Wellington 6012, New Zealand
| | - Travis J. Wiles
- Department of Molecular Biology and Biochemistry, University of California, Irvine, Natural Sciences II, Irvine, CA 92697, USA
| | - David F. Ackerley
- School of Biological Sciences, Victoria University of Wellington, Wellington 6012, New Zealand
| | - Jeff S. Mumm
- Department of Ophthalmology, The Wilmer Eye Institute, Johns Hopkins University, Baltimore, MD, USA
| | - Michael J. Parsons
- Department of Developmental and Cell Biology, University of California, Irvine, Natural Sciences II, Irvine, CA 92697, USA
| |
Collapse
|
11
|
Rezaei M, Fooladi P, Norani M, Crawford A, Eisa-Beygi S, Tahamtani Y, Ayyari M. Investigation of Kelussia Odoratissima and Angelica Sinensis Similarities in Zebrafish-based In-vivo Bioactivity Assays and Their Chemical Composition. Galen Med J 2023; 12:e2793. [PMID: 38774850 PMCID: PMC11108663 DOI: 10.31661/gmj.v12i.2793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 01/04/2023] [Accepted: 04/17/2023] [Indexed: 05/24/2024] Open
Abstract
BACKGROUND Kelussia odoratissima and Angelica sinensis are two medicinal plants commonly used in Iran and China, respectively. They have been used in their indigenous traditional medicine, for various diseases including, blood refining, inflammation, cold, flu, stress, cardiovascular diseases, and nervous disorders. This study was conducted to evaluate the volatile oil composition of K. odoratissima leaves (KVL) and A. sinensis root (AVR); we also examined the biological activity of essential oils (EOs) and hydroalcoholic extracts of both plants using two different transgenic zebrafish (Danio rerio) models: angiogenesis and pancreatic beta cell (pBC) regeneration models. MATERIALS AND METHODS Both EOs were isolated by hydrodistillation and analysed by GC and GC/MS. For viability tests, larvae were treated with different concentrations of extracts to determine an appropriate starting concentration. Hydroalcoholic extracts and EOs have been tested in a dose-dependent manner for their biological activity using tissue-specific transgenic zebrafish Tg(fli-1: EGFP) and Tg (ins: GFP-NTR) embryos and larvae. One-way ANOVA was used to compare the mean of pBC area and intersegmental vessels (ISVs) outgrowth between the treatment groups. RESULTS Eleven compounds were in common to both oils, comprising 51.3% of KVL and 61.7% of AVR, of which 39.3% in KVL and 37.6% in AVR were phthalide structures. Results revealed that both EOs blocked ISVs formation in the Tg (fli-1: EGFP) embryos increased to 10% of the control value, while both hydroalcoholic extracts did not show any anti-angiogenesis effects in these embryos. In addition, AVR has been shown to significantly induce PBC regeneration following ablation in the Tg (ins: GFP-NTR), but its regenerative activity was lower than that of 5'-N-ethylcarboxamidoadenosine (NECA) as a positive control. Taken together, the anti-angiogenesis activity of both EOs could be attributed to the phthalide structures while for the PBC regenerative activity, other compounds including β-Thujaplicinol, exclusively existing in AVR, might be effective. CONCLUSION Although the genera, organs, and origin of these plants are different, their similar chemical composition and biological activities make them valuable resources for further investigation in basic medical and pharmaceutical science.
Collapse
Affiliation(s)
- Mohammad Rezaei
- Department of Stem Cells and Developmental Biology, Cell Science Research Centre,
Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Parisa Fooladi
- Department of Stem Cells and Developmental Biology, Cell Science Research Centre,
Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
- Department of Developmental Biology, University of Science and Culture, Tehran, Iran
| | - Mohamad Norani
- Department of Horticultural Science, Tarbiat Modares University, Tehran, Iran
| | - Alexander Crawford
- Department of Horticultural Science, Tarbiat Modares University, Tehran, Iran
- Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Oslo, Norway
| | - Shahram Eisa-Beygi
- Department of Radiology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Yaser Tahamtani
- Department of Stem Cells and Developmental Biology, Cell Science Research Centre,
Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
- Reproductive Epidemiology Research Center, Royan Institute for Reproductive
Biomedicine, ACECR, Tehran, Iran
| | - Mahdi Ayyari
- Department of Horticultural Science, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
12
|
Kim J, Kim S, Choi WJ. Non-Invasive Monitoring of Cutaneous Wound Healing in Non-Diabetic and Diabetic Model of Adult Zebrafish Using OCT Angiography. Bioengineering (Basel) 2023; 10:bioengineering10050538. [PMID: 37237607 DOI: 10.3390/bioengineering10050538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 04/25/2023] [Accepted: 04/26/2023] [Indexed: 05/28/2023] Open
Abstract
A diabetic wound presents a severe risk of infections and other complications because of its slow healing. Evaluating the pathophysiology during wound healing is imperative for wound care, necessitating a proper diabetic wound model and assay for monitoring. The adult zebrafish is a rapid and robust model for studying human cutaneous wound healing because of its fecundity and high similarities to human wound repair. OCTA as an assay can provide three-dimensional (3D) imaging of the tissue structure and vasculature in the epidermis, enabling monitoring of the pathophysiologic alterations in the zebrafish skin wound. We present a longitudinal study for assessing the cutaneous wound healing of the diabetic adult zebrafish model using OCTA, which is of importance for the diabetes research using the alternative animal models. We used non-diabetic (n = 9) and type 1 diabetes mellitus (DM) adult zebrafish models (n = 9). The full-thickness wound was generated on the fish skin, and the wound healing was monitored with OCTA for 15 days. The OCTA results demonstrated significant differences between diabetic and non-diabetic wound healing, involving delayed tissue remodeling and impaired angiogenesis for the diabetic wound, leading to slow wound recovery. The adult zebrafish model and OCTA technique may benefit long-term metabolic disease studies using zebrafish for drug development.
Collapse
Affiliation(s)
- Jaeyoung Kim
- Research Institute for Skin Image, Korea University College of Medicine, Seoul 08308, Republic of Korea
- Department of Dermatology and Skin Science, University of British Columbia, Vancouver, BC V6T 1Z1, Canada
- Departments of Cancer Control Research and Integrative Oncology, British Columbia Cancer Agency, Vancouver, BC V5Z 1L3, Canada
| | - Suhyun Kim
- Department of Biomedical Sciences, Korea University College of Medicine, Seoul 02841, Republic of Korea
- Zebrafish Translational Medical Research Center, Korea University Ansan Hospital, Ansan 15355, Republic of Korea
| | - Woo June Choi
- School of Electrical and Electronics Engineering, Chung-Ang University, Seoul 06974, Republic of Korea
| |
Collapse
|
13
|
Diogo P, Martins G, Simão M, Marreiros A, Eufrásio AC, Cabrita E, Gavaia PJ. Type I Diabetes in Zebrafish Reduces Sperm Quality and Increases Insulin and Glucose Transporter Transcripts. Int J Mol Sci 2023; 24:ijms24087035. [PMID: 37108202 PMCID: PMC10138585 DOI: 10.3390/ijms24087035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 04/03/2023] [Accepted: 04/07/2023] [Indexed: 04/29/2023] Open
Abstract
Type I diabetes is a prominent human pathology with increasing incidence in the population; however, its cause is still unknown. This disease promotes detrimental effects on reproduction, such as lower sperm motility and DNA integrity. Hence, the investigation of the underlying mechanisms of this metabolic disturbance in reproduction and its transgenerational consequences is of the utmost importance. The zebrafish is a useful model for this research considering its high homology with human genes as well as its fast generation and regeneration abilities. Therefore, we aimed to investigate sperm quality and genes relevant to diabetes in the spermatozoa of Tg(ins:nfsb-mCherry) zebrafish, a model for type I diabetes. Diabetic Tg(ins:nfsb-mCherry) males showed significantly higher expression of transcripts for insulin a (insa) and glucose transporter (slc2a2) compared to controls. Sperm obtained from the same treatment group showed significantly lower sperm motility, plasma membrane viability, and DNA integrity compared to that from the control group. Upon sperm cryopreservation, sperm freezability was reduced, which could be a consequence of poor initial sperm quality. Altogether, the data showed similar detrimental effects related to type I diabetes in zebrafish spermatozoa at the cellular and molecular levels. Therefore, our study validates the zebrafish model for type I diabetes research in germ cells.
Collapse
Affiliation(s)
- Patrícia Diogo
- Faculty of Sciences and Technology (FCT), University of Algarve, 8005-139 Faro, Portugal
- Centre of Marine Sciences (CCMAR), University of Algarve, 8005-139 Faro, Portugal
- Necton-Companhia Portuguesa de Culturas Marinhas S.A, Belamandil s/n, 8700-152 Olhão, Portugal
| | - Gil Martins
- Faculty of Sciences and Technology (FCT), University of Algarve, 8005-139 Faro, Portugal
- Centre of Marine Sciences (CCMAR), University of Algarve, 8005-139 Faro, Portugal
- Faculty of Medicine and Biomedical Sciences (FMCB), University of Algarve, 8005-139 Faro, Portugal
| | - Márcio Simão
- Centre of Marine Sciences (CCMAR), University of Algarve, 8005-139 Faro, Portugal
- Faculty of Medicine and Biomedical Sciences (FMCB), University of Algarve, 8005-139 Faro, Portugal
| | - Ana Marreiros
- Faculty of Medicine and Biomedical Sciences (FMCB), University of Algarve, 8005-139 Faro, Portugal
- Algarve Biomedical Center (ABC), University of Algarve, 8005-139 Faro, Portugal
| | - Ana Catarina Eufrásio
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, 4200-135 Porto, Portugal
- Instituto de Biologia Molecular e Celular (IBMC), 4200-135 Porto, Portugal
| | - Elsa Cabrita
- Faculty of Sciences and Technology (FCT), University of Algarve, 8005-139 Faro, Portugal
- Centre of Marine Sciences (CCMAR), University of Algarve, 8005-139 Faro, Portugal
| | - Paulo Jorge Gavaia
- Centre of Marine Sciences (CCMAR), University of Algarve, 8005-139 Faro, Portugal
- Faculty of Medicine and Biomedical Sciences (FMCB), University of Algarve, 8005-139 Faro, Portugal
| |
Collapse
|
14
|
Research Progress on the Construction and Application of a Diabetic Zebrafish Model. Int J Mol Sci 2023; 24:ijms24065195. [PMID: 36982274 PMCID: PMC10048833 DOI: 10.3390/ijms24065195] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 03/03/2023] [Accepted: 03/07/2023] [Indexed: 03/11/2023] Open
Abstract
Diabetes is a metabolic disease characterized by high blood glucose levels. With economic development and lifestyle changes, the prevalence of diabetes is increasing yearly. Thus, it has become an increasingly serious public health problem in countries around the world. The etiology of diabetes is complex, and its pathogenic mechanisms are not completely clear. The use of diabetic animal models is helpful in the study of the pathogenesis of diabetes and the development of drugs. The emerging vertebrate model of zebrafish has many advantages, such as its small size, large number of eggs, short growth cycle, simple cultivation of adult fish, and effective improvement of experimental efficiency. Thus, this model is highly suitable for research as an animal model of diabetes. This review not only summarizes the advantages of zebrafish as a diabetes model, but also summarizes the construction methods and challenges of zebrafish models of type 1 diabetes, type 2 diabetes, and diabetes complications. This study provides valuable reference information for further study of the pathological mechanisms of diabetes and the research and development of new related therapeutic drugs.
Collapse
|
15
|
Tang R, Chen Y, He N, Li Y, Jin Z, Chen KM, Yan F. Effect of gadopentetate dimeglumine on bone growth in zebrafish caudal fins. Toxicol Lett 2023; 374:11-18. [PMID: 36496117 DOI: 10.1016/j.toxlet.2022.12.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 10/17/2022] [Accepted: 12/05/2022] [Indexed: 12/13/2022]
Abstract
Compared with MR plain scanning, gadolinium (Gd)-enhanced MR scanning can provide more diagnostic information. Gadopentetate dimeglumine is generally used as an MR enhancement contrast agent in some countries. It is a member of linear Gd-based contrast agents (GBCAs) which are considered more likely to release free Gd ions (Gd3+) than macrocyclic GBCAs. Gd3+ is one of the most effective known calcium antagonists, and can compete with calcium ions (Ca2+) in Ca2+-related biological reactions. In this study, animal models of tissue regeneration were established by cutting the caudal fins of zebrafish, and the models were exposed with gadopentetate dimeglumine solution for different immersion times of 1, 3, and 5 min. Three GBCA exposures per week were performed in the first 3 weeks of the follow-up time. Morphological parameters such as regenerative area (RA), bone density, bone thickness and regenerative bone volume (RBV) were quantified using a camera and synchrotron radiation micro CT. RA decreased as total Gd intake increased in both the female group (ρ = -0.784, P < 0.0001) and the male group (ρ = -0.471, P = 0.011). The bone density of the regenerated bone increased after Gd exposure in the treated groups. The morphology of the regenerated bone from the treated groups became shorter and thicker. Our results showed that gadopentetate dimeglumine had osteogenic toxicity in zebrafish.
Collapse
Affiliation(s)
- Rongbiao Tang
- Department of Radiology, RuiJin Hospital, Shanghai Jiao Tong University, and School of Medicine, Shanghai, China.
| | - Yi Chen
- Shanghai Institute of Hematology, RuiJin Hospital, Shanghai Jiao Tong University, and School of Medicine, Shanghai, China
| | - Naying He
- Department of Radiology, RuiJin Hospital, Shanghai Jiao Tong University, and School of Medicine, Shanghai, China
| | - Yan Li
- Department of Radiology, RuiJin Hospital, Shanghai Jiao Tong University, and School of Medicine, Shanghai, China
| | - Zhijia Jin
- Department of Radiology, RuiJin Hospital, Shanghai Jiao Tong University, and School of Medicine, Shanghai, China
| | - Ke-Min Chen
- Department of Radiology, RuiJin Hospital, Shanghai Jiao Tong University, and School of Medicine, Shanghai, China
| | - Fuhua Yan
- Department of Radiology, RuiJin Hospital, Shanghai Jiao Tong University, and School of Medicine, Shanghai, China.
| |
Collapse
|
16
|
Kijima Y, Wantong W, Igarashi Y, Yoshitake K, Asakawa S, Suzuki Y, Watabe S, Kinoshita S. Age-Associated Different Transcriptome Profiling in Zebrafish and Rats: an Insight into the Diversity of Vertebrate Aging. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2022; 24:895-910. [PMID: 36063238 DOI: 10.1007/s10126-022-10153-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 07/31/2022] [Indexed: 06/15/2023]
Abstract
Most mammals, including humans, show obvious aging phenotypes, for example, loss of tissue plasticity and sarcopenia. In this regard, fish can be attractive models to study senescence because of their unique aging characteristics. The lifespan of fish varies widely, and several species can live for over 200 years. Moreover, some fish show anti-aging features and indeterminate growth throughout their life. Therefore, exploring the aging mechanism in fish could provide new insights into vertebrate aging. To this end, we conducted RNA sequencing (RNA-seq) assays for various organs and growth stages of zebrafish and compared the data with previously published RNA-seq data of rats. Age-associated differentially expressed genes (DEGs) for all zebrafish tissue samples reveal the upregulation of circadian genes and downregulation of hmgb3a. On one hand, a comparative analysis of DEG profiles associated with aging between zebrafish and rats identifies upregulation of circadian genes and downregulation of collagen genes as conserved transcriptome changes. On the other hand, in zebrafish, upregulation of autophagy-related genes in muscles and AP-1 transcription factor genes in various tissues is observed, which may imply fish-specific anti-aging characteristics. Consistent with our knowledge of mammalian aging, DEG profiles related to tissue senescence are observed in rats. We also detect age-associated downregulation of muscle homeostasis and differentiation-related genes in zebrafish gills, indicating a fish-specific senescence phenotype. Our results indicate both common and different aging profiles between fish and mammals, which could be used for future translational research.
Collapse
Affiliation(s)
- Yusuke Kijima
- Department of Aquatic Bioscience, Graduate School of Agriculture and Life Sciences, The University of Tokyo, Bunkyo, Tokyo, 113-8657, Japan
- School of Biomedical Engineering, Faculty of Applied Science and Faculty of Medicine, The University of British Columbia, Vancouver, BC, V6T 1Z3, Canada
| | - Wang Wantong
- Department of Aquatic Bioscience, Graduate School of Agriculture and Life Sciences, The University of Tokyo, Bunkyo, Tokyo, 113-8657, Japan
| | - Yoji Igarashi
- Department of Aquatic Bioscience, Graduate School of Agriculture and Life Sciences, The University of Tokyo, Bunkyo, Tokyo, 113-8657, Japan
- Graduate School of Bioresources, Mie University, Mie, 514-8507, Japan
| | - Kazutoshi Yoshitake
- Department of Aquatic Bioscience, Graduate School of Agriculture and Life Sciences, The University of Tokyo, Bunkyo, Tokyo, 113-8657, Japan
| | - Shuichi Asakawa
- Department of Aquatic Bioscience, Graduate School of Agriculture and Life Sciences, The University of Tokyo, Bunkyo, Tokyo, 113-8657, Japan
| | - Yutaka Suzuki
- Laboratory of Systems Genomics, Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, University of Tokyo, Chiba, 272-8562, Japan
| | - Shugo Watabe
- Kitasato University School of Marine Biosciences, Minami-ku, Sagamihara, Kanagawa, 252-0373, Japan
| | - Shigeharu Kinoshita
- Department of Aquatic Bioscience, Graduate School of Agriculture and Life Sciences, The University of Tokyo, Bunkyo, Tokyo, 113-8657, Japan.
| |
Collapse
|
17
|
McCarthy E, Dunn J, Augustine K, Connaughton VP. Prolonged Hyperglycemia Causes Visual and Cognitive Deficits in Danio rerio. Int J Mol Sci 2022; 23:10167. [PMID: 36077569 PMCID: PMC9456228 DOI: 10.3390/ijms231710167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 08/30/2022] [Accepted: 09/01/2022] [Indexed: 11/18/2022] Open
Abstract
The present study induced prolonged hyperglycemia (a hallmark symptom of Type 2 diabetes [T2DM]) in Danio rerio (zebrafish) for eight or twelve weeks. The goal of this research was to study cognitive decline as well as vision loss in hyperglycemic zebrafish. Fish were submerged in glucose for eight or twelve weeks, after which they were assessed with both a cognitive assay (three-chamber choice) and a visual assay (optomotor response (OMR)). Zebrafish were also studied during recovery from hyperglycemia. Here, fish were removed from the hyperglycemic environment for 4 weeks after either 4 or 8 weeks in glucose, and cognition and vision was again assessed. The 8- and 12-week cognitive results revealed that water-treated fish showed evidence of learning while glucose- and mannitol-treated fish did not within the three-day testing period. OMR results identified an osmotic effect with glucose-treated fish having significantly fewer positive rotations than water-treated fish but comparable rotations to mannitol-treated fish. The 8- and 12-week recovery results showed that 4 weeks was not enough time to fully recovery from the hyperglycemic insult sustained.
Collapse
|
18
|
The Effects of Persimmon (Diospyros kaki L.f.) Oligosaccharides on Features of the Metabolic Syndrome in Zebrafish. Nutrients 2022; 14:nu14163249. [PMID: 36014755 PMCID: PMC9416355 DOI: 10.3390/nu14163249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 07/27/2022] [Accepted: 08/03/2022] [Indexed: 11/17/2022] Open
Abstract
Metabolic syndrome has become a global health care problem since it is rapidly increasing worldwide. The search for alternative natural supplements may have potential benefits for obesity and diabetes patients. Diospyros kaki fruit extract and its oligosaccharides, including gentiobiose, melibiose, and raffinose, were examined for their anti-insulin resistance and obesity-preventing effect in zebrafish larvae. The results show that D. kaki oligosaccharides improved insulin resistance and high-fat-diet-induced obesity in zebrafish larvae, evidenced by enhanced β-cell recovery, decreased abdominal size, and reduced the lipid accumulation. The mechanism of the oligosaccharides, molecular docking, and enzyme activities of PTP1B were investigated. Three of the oligosaccharides had a binding interaction with the catalytic active sites of PTP1B, but did not show inhibitory effects in an enzyme assay. The catalytic residues of PTP1B were typically conserved and the cellular penetration of the cell membrane was necessary for the inhibitors. The results of the mechanism of action study indicate that D. kaki fruit extract and its oligosaccharides affected gene expression changes in inflammation- (TNF-α, IL-6, and IL-1β), lipogenesis- (SREBF1 and FASN), and lipid-lowering (CPT1A)-related genes. Therefore, D. kaki fruit extract and its oligosaccharides may have a great potential for applications in metabolic syndrome drug development and dietary supplements.
Collapse
|
19
|
Kim HH, Vaidya B, Cho SY, Kwon J, Kim D. Anti-hyperglycemic potential of alginate oligosaccharide in a high glucose-induced zebrafish model. J Funct Foods 2022. [DOI: 10.1016/j.jff.2022.105098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
|
20
|
Faraj N, Duinkerken BHP, Carroll EC, Giepmans BNG. Microscopic modulation and analysis of islets of Langerhans in living zebrafish larvae. FEBS Lett 2022; 596:2497-2512. [DOI: 10.1002/1873-3468.14411] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 04/22/2022] [Accepted: 05/20/2022] [Indexed: 11/08/2022]
Affiliation(s)
- Noura Faraj
- Department of Biomedical Sciences of Cells and Systems, University of Groningen University Medical Center Groningen Groningen 9713AV The Netherlands
| | - B. H. Peter Duinkerken
- Department of Biomedical Sciences of Cells and Systems, University of Groningen University Medical Center Groningen Groningen 9713AV The Netherlands
| | - Elizabeth C. Carroll
- Department of Imaging Physics Delft University of Technology Delft, 2628 CJ The Netherlands
| | - Ben N. G. Giepmans
- Department of Biomedical Sciences of Cells and Systems, University of Groningen University Medical Center Groningen Groningen 9713AV The Netherlands
| |
Collapse
|
21
|
Ghaddar B, Diotel N. Zebrafish: A New Promise to Study the Impact of Metabolic Disorders on the Brain. Int J Mol Sci 2022; 23:ijms23105372. [PMID: 35628176 PMCID: PMC9141892 DOI: 10.3390/ijms23105372] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 05/04/2022] [Accepted: 05/06/2022] [Indexed: 02/01/2023] Open
Abstract
Zebrafish has become a popular model to study many physiological and pathophysiological processes in humans. In recent years, it has rapidly emerged in the study of metabolic disorders, namely, obesity and diabetes, as the regulatory mechanisms and metabolic pathways of glucose and lipid homeostasis are highly conserved between fish and mammals. Zebrafish is also widely used in the field of neurosciences to study brain plasticity and regenerative mechanisms due to the high maintenance and activity of neural stem cells during adulthood. Recently, a large body of evidence has established that metabolic disorders can alter brain homeostasis, leading to neuro-inflammation and oxidative stress and causing decreased neurogenesis. To date, these pathological metabolic conditions are also risk factors for the development of cognitive dysfunctions and neurodegenerative diseases. In this review, we first aim to describe the main metabolic models established in zebrafish to demonstrate their similarities with their respective mammalian/human counterparts. Then, in the second part, we report the impact of metabolic disorders (obesity and diabetes) on brain homeostasis with a particular focus on the blood-brain barrier, neuro-inflammation, oxidative stress, cognitive functions and brain plasticity. Finally, we propose interesting signaling pathways and regulatory mechanisms to be explored in order to better understand how metabolic disorders can negatively impact neural stem cell activity.
Collapse
|
22
|
Chowdhury K, Lin S, Lai SL. Comparative Study in Zebrafish and Medaka Unravels the Mechanisms of Tissue Regeneration. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.783818] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Tissue regeneration has been in the spotlight of research for its fascinating nature and potential applications in human diseases. The trait of regenerative capacity occurs diversely across species and tissue contexts, while it seems to decline over evolution. Organisms with variable regenerative capacity are usually distinct in phylogeny, anatomy, and physiology. This phenomenon hinders the feasibility of studying tissue regeneration by directly comparing regenerative with non-regenerative animals, such as zebrafish (Danio rerio) and mice (Mus musculus). Medaka (Oryzias latipes) is a fish model with a complete reference genome and shares a common ancestor with zebrafish approximately 110–200 million years ago (compared to 650 million years with mice). Medaka shares similar features with zebrafish, including size, diet, organ system, gross anatomy, and living environment. However, while zebrafish regenerate almost every organ upon experimental injury, medaka shows uneven regenerative capacity. Their common and distinct biological features make them a unique platform for reciprocal analyses to understand the mechanisms of tissue regeneration. Here we summarize current knowledge about tissue regeneration in these fish models in terms of injured tissues, repairing mechanisms, available materials, and established technologies. We further highlight the concept of inter-species and inter-organ comparisons, which may reveal mechanistic insights and hint at therapeutic strategies for human diseases.
Collapse
|
23
|
Carril Pardo CA, Massoz L, Dupont MA, Bergemann D, Bourdouxhe J, Lavergne A, Tarifeño-Saldivia E, Helker CSM, Stainier DYR, Peers B, Voz MM, Manfroid I. A δ-cell subpopulation with a pro-β-cell identity contributes to efficient age-independent recovery in a zebrafish model of diabetes. eLife 2022; 11:e67576. [PMID: 35060900 PMCID: PMC8820734 DOI: 10.7554/elife.67576] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 01/20/2022] [Indexed: 11/13/2022] Open
Abstract
Restoring damaged β-cells in diabetic patients by harnessing the plasticity of other pancreatic cells raises the questions of the efficiency of the process and of the functionality of the new Insulin-expressing cells. To overcome the weak regenerative capacity of mammals, we used regeneration-prone zebrafish to study β-cells arising following destruction. We show that most new insulin cells differ from the original β-cells as they coexpress Somatostatin and Insulin. These bihormonal cells are abundant, functional and able to normalize glycemia. Their formation in response to β-cell destruction is fast, efficient, and age-independent. Bihormonal cells are transcriptionally close to a subset of δ-cells that we identified in control islets and that are characterized by the expression of somatostatin 1.1 (sst1.1) and by genes essential for glucose-induced Insulin secretion in β-cells such as pdx1, slc2a2 and gck. We observed in vivo the conversion of monohormonal sst1.1-expressing cells to sst1.1+ ins + bihormonal cells following β-cell destruction. Our findings support the conclusion that sst1.1 δ-cells possess a pro-β identity enabling them to contribute to the neogenesis of Insulin-producing cells during regeneration. This work unveils that abundant and functional bihormonal cells benefit to diabetes recovery in zebrafish.
Collapse
Affiliation(s)
| | - Laura Massoz
- Zebrafish Development and Disease Models laboratory, GIGA-Stem Cells, University of LiègeLiègeBelgium
| | - Marie A Dupont
- Zebrafish Development and Disease Models laboratory, GIGA-Stem Cells, University of LiègeLiègeBelgium
| | - David Bergemann
- Zebrafish Development and Disease Models laboratory, GIGA-Stem Cells, University of LiègeLiègeBelgium
| | - Jordane Bourdouxhe
- Zebrafish Development and Disease Models laboratory, GIGA-Stem Cells, University of LiègeLiègeBelgium
| | - Arnaud Lavergne
- Zebrafish Development and Disease Models laboratory, GIGA-Stem Cells, University of LiègeLiègeBelgium
- GIGA-Genomics core facility, University of LiègeLiègeBelgium
| | - Estefania Tarifeño-Saldivia
- Zebrafish Development and Disease Models laboratory, GIGA-Stem Cells, University of LiègeLiègeBelgium
- Gene Expression and Regulation Laboratory, Department of Biochemistry and Molecular Biology, University of ConcepciónConcepciónChile
| | - Christian SM Helker
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung ResearchBad NauheimGermany
| | - Didier YR Stainier
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung ResearchBad NauheimGermany
| | - Bernard Peers
- Zebrafish Development and Disease Models laboratory, GIGA-Stem Cells, University of LiègeLiègeBelgium
| | - Marianne M Voz
- Zebrafish Development and Disease Models laboratory, GIGA-Stem Cells, University of LiègeLiègeBelgium
| | - Isabelle Manfroid
- Zebrafish Development and Disease Models laboratory, GIGA-Stem Cells, University of LiègeLiègeBelgium
| |
Collapse
|
24
|
Singh SP, Chawla P, Hnatiuk A, Kamel M, Silva LD, Spanjaard B, Eski SE, Janjuha S, Olivares-Chauvet P, Kayisoglu O, Rost F, Bläsche J, Kränkel A, Petzold A, Kurth T, Reinhardt S, Junker JP, Ninov N. A single-cell atlas of de novo β-cell regeneration reveals the contribution of hybrid β/δ-cells to diabetes recovery in zebrafish. Development 2022; 149:274140. [PMID: 35088828 DOI: 10.1242/dev.199853] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 12/06/2021] [Indexed: 12/16/2022]
Abstract
Regeneration-competent species possess the ability to reverse the progression of severe diseases by restoring the function of the damaged tissue. However, the cellular dynamics underlying this capability remain unexplored. Here, we have used single-cell transcriptomics to map de novo β-cell regeneration during induction and recovery from diabetes in zebrafish. We show that the zebrafish has evolved two distinct types of somatostatin-producing δ-cells, which we term δ1- and δ2-cells. Moreover, we characterize a small population of glucose-responsive islet cells, which share the hormones and fate-determinants of both β- and δ1-cells. The transcriptomic analysis of β-cell regeneration reveals that β/δ hybrid cells provide a prominent source of insulin expression during diabetes recovery. Using in vivo calcium imaging and cell tracking, we further show that the hybrid cells form de novo and acquire glucose-responsiveness in the course of regeneration. The overexpression of dkk3, a gene enriched in hybrid cells, increases their formation in the absence of β-cell injury. Finally, interspecies comparison shows that plastic δ1-cells are partially related to PP cells in the human pancreas. Our work provides an atlas of β-cell regeneration and indicates that the rapid formation of glucose-responsive hybrid cells contributes to the resolution of diabetes in zebrafish.
Collapse
Affiliation(s)
- Sumeet Pal Singh
- IRIBHM, Université Libre de Bruxelles (ULB), 1070 Brussels, Belgium
| | - Prateek Chawla
- Center for Regenerative Therapies Dresden, Technische Universität Dresden, 01307 Dresden, Germany
| | - Alisa Hnatiuk
- Center for Regenerative Therapies Dresden, Technische Universität Dresden, 01307 Dresden, Germany
| | - Margrit Kamel
- Center for Regenerative Therapies Dresden, Technische Universität Dresden, 01307 Dresden, Germany
| | - Luis Delgadillo Silva
- Center for Regenerative Therapies Dresden, Technische Universität Dresden, 01307 Dresden, Germany
| | - Bastiaan Spanjaard
- Berlin Institute for Medical Systems Biology, Max Delbrück Center for Molecular Medicine, 10115 Berlin, Germany
| | - Sema Elif Eski
- IRIBHM, Université Libre de Bruxelles (ULB), 1070 Brussels, Belgium
| | - Sharan Janjuha
- Institute of Pharmacology and Toxicology, University of Zurich, CH-8057 Zurich, Switzerland
| | - Pedro Olivares-Chauvet
- Berlin Institute for Medical Systems Biology, Max Delbrück Center for Molecular Medicine, 10115 Berlin, Germany
| | - Oezge Kayisoglu
- The Julius Maximilian University of Wurzburg, 97070 Wurzburg, Germany
| | - Fabian Rost
- Center for Regenerative Therapies Dresden, Technische Universität Dresden, 01307 Dresden, Germany.,DRESDEN-concept Genome Center, DFG NGS Competence Center, c/o Center for Molecular and Cellular Bioengineering (CMCB), Technische Universität Dresden, 01307 Dresden, Germany
| | - Juliane Bläsche
- DRESDEN-concept Genome Center, DFG NGS Competence Center, c/o Center for Molecular and Cellular Bioengineering (CMCB), Technische Universität Dresden, 01307 Dresden, Germany
| | - Annekathrin Kränkel
- DRESDEN-concept Genome Center, DFG NGS Competence Center, c/o Center for Molecular and Cellular Bioengineering (CMCB), Technische Universität Dresden, 01307 Dresden, Germany
| | - Andreas Petzold
- DRESDEN-concept Genome Center, DFG NGS Competence Center, c/o Center for Molecular and Cellular Bioengineering (CMCB), Technische Universität Dresden, 01307 Dresden, Germany
| | - Thomas Kurth
- TUD, Center for Molecular and Cellular Bioengineering (CMCB), Technology Platform, EM-Facility, Technische Universitaät Dresden, 01307 Dresden, Germany
| | - Susanne Reinhardt
- DRESDEN-concept Genome Center, DFG NGS Competence Center, c/o Center for Molecular and Cellular Bioengineering (CMCB), Technische Universität Dresden, 01307 Dresden, Germany
| | - Jan Philipp Junker
- Berlin Institute for Medical Systems Biology, Max Delbrück Center for Molecular Medicine, 10115 Berlin, Germany
| | - Nikolay Ninov
- Center for Regenerative Therapies Dresden, Technische Universität Dresden, 01307 Dresden, Germany.,Paul Langerhans Institute Dresden of the Helmholtz Zentrum München at the University Hospital and Faculty of Medicine Carl Gustav Carus of Technische Universität Dresden, 01307 Dresden, Germany
| |
Collapse
|
25
|
Schmitner N, Recheis C, Thönig J, Kimmel RA. Differential Responses of Neural Retina Progenitor Populations to Chronic Hyperglycemia. Cells 2021; 10:cells10113265. [PMID: 34831487 PMCID: PMC8622914 DOI: 10.3390/cells10113265] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 11/08/2021] [Accepted: 11/18/2021] [Indexed: 12/30/2022] Open
Abstract
Diabetic retinopathy is a frequent complication of longstanding diabetes, which comprises a complex interplay of microvascular abnormalities and neurodegeneration. Zebrafish harboring a homozygous mutation in the pancreatic transcription factor pdx1 display a diabetic phenotype with survival into adulthood, and are therefore uniquely suitable among zebrafish models for studying pathologies associated with persistent diabetic conditions. We have previously shown that, starting at three months of age, pdx1 mutants exhibit not only vascular but also neuro-retinal pathologies manifesting as photoreceptor dysfunction and loss, similar to human diabetic retinopathy. Here, we further characterize injury and regenerative responses and examine the effects on progenitor cell populations. Consistent with a negative impact of hyperglycemia on neurogenesis, stem cells of the ciliary marginal zone show an exacerbation of aging-related proliferative decline. In contrast to the robust Müller glial cell proliferation seen following acute retinal injury, the pdx1 mutant shows replenishment of both rod and cone photoreceptors from slow-cycling, neurod-expressing progenitors which first accumulate in the inner nuclear layer. Overall, we demonstrate a diabetic retinopathy model which shows pathological features of the human disease evolving alongside an ongoing restorative process that replaces lost photoreceptors, at the same time suggesting an unappreciated phenotypic continuum between multipotent and photoreceptor-committed progenitors.
Collapse
|
26
|
Kaliya-Perumal AK, Ingham PW. Musculoskeletal regeneration: A zebrafish perspective. Biochimie 2021; 196:171-181. [PMID: 34715269 DOI: 10.1016/j.biochi.2021.10.014] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 10/17/2021] [Accepted: 10/22/2021] [Indexed: 12/18/2022]
Abstract
Musculoskeletal injuries are common in humans. The cascade of cellular and molecular events following such injuries results either in healing with functional recovery or scar formation. While fibrotic scar tissue serves to bridge between injured planes, it undermines functional integrity. Hence, faithful regeneration is the most desired outcome; however, the potential to regenerate is limited in humans. In contrast, various non-mammalian vertebrates have fascinating capabilities of regenerating even an entire appendage following amputation. Among them, zebrafish is an important and accessible laboratory model organism, sharing striking similarities with mammalian embryonic musculoskeletal development. Moreover, clinically relevant muscle and skeletal injury zebrafish models recapitulate mammalian regeneration. Upon muscle injury, quiescent stem cells - known as satellite cells - become activated, proliferate, differentiate and fuse to form new myofibres, while bone fracture results in a phased response involving hematoma formation, inflammation, fibrocartilaginous callus formation, bony callus formation and remodelling. These models are well suited to testing gene- or pharmaco-therapy for the benefit of conditions like muscle tears and fractures. Insights from further studies on whole body part regeneration, a hallmark of the zebrafish model, have the potential to complement regenerative strategies to achieve faster and desired healing following injuries without any scar formation and, in the longer run, drive progress towards the realisation of large-scale regeneration in mammals. Here, we provide an overview of the basic mechanisms of musculoskeletal regeneration, highlight the key features of zebrafish as a regenerative model and outline the relevant studies that have contributed to the advancement of this field.
Collapse
Affiliation(s)
- Arun-Kumar Kaliya-Perumal
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, 59 Nanyang Drive, Singapore 636921, Singapore.
| | - Philip W Ingham
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, 59 Nanyang Drive, Singapore 636921, Singapore.
| |
Collapse
|
27
|
Shimizu Y, Kawasaki T. Differential Regenerative Capacity of the Optic Tectum of Adult Medaka and Zebrafish. Front Cell Dev Biol 2021; 9:686755. [PMID: 34268310 PMCID: PMC8276636 DOI: 10.3389/fcell.2021.686755] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Accepted: 06/01/2021] [Indexed: 12/03/2022] Open
Abstract
Zebrafish have superior regenerative capacity in the central nervous system (CNS) compared to mammals. In contrast, medaka were shown to have low regenerative capacity in the adult heart and larval retina, despite the well-documented high tissue regenerative ability of teleosts. Nevertheless, medaka and zebrafish share similar brain structures and biological features to those of mammals. Hence, this study aimed to compare the neural stem cell (NSC) responses and regenerative capacity in the optic tectum of adult medaka and zebrafish after stab wound injury. Limited neuronal differentiation was observed in the injured medaka, though the proliferation of radial glia (RG) was induced in response to tectum injury. Moreover, the expression of the pro-regenerative transcriptional factors ascl1a and oct4 was not enhanced in the injured medaka, unlike in zebrafish, whereas expression of sox2 and stat3 was upregulated in both fish models. Of note, glial scar-like structures composed of GFAP+ radial fibers were observed in the injured area of medaka at 14 days post injury (dpi). Altogether, these findings suggest that the adult medaka brain has low regenerative capacity with limited neuronal generation and scar formation. Hence, medaka represent an attractive model for investigating and evaluating critical factors for brain regeneration.
Collapse
Affiliation(s)
- Yuki Shimizu
- Functional Biomolecular Research Group, Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology, Osaka, Japan
- DBT-AIST International Laboratory for Advanced Biomedicine, National Institute of Advanced Industrial Science and Technology, Osaka, Japan
| | - Takashi Kawasaki
- Functional Biomolecular Research Group, Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology, Osaka, Japan
| |
Collapse
|
28
|
Kato Y, Tonomura Y, Hanafusa H, Nishimura K, Fukushima T, Ueno M. Adult Zebrafish Model for Screening Drug-Induced Kidney Injury. Toxicol Sci 2021; 174:241-253. [PMID: 32040193 DOI: 10.1093/toxsci/kfaa009] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Drug-induced kidney injury is a serious safety issue in drug development. In this study, we evaluated the usefulness of adult zebrafish as a small in vivo system for detecting drug-induced kidney injury. We first investigated the effects of typical nephrotoxicants, gentamicin and doxorubicin, on adult zebrafish. We found that gentamicin induced renal tubular necrosis with increased lysosome and myeloid bodies, and doxorubicin caused foot process fusion of glomerular podocytes. These findings were similar to those seen in mammals, suggesting a common pathogenesis. Second, to further evaluate the performance of the model in detecting drug-induced kidney injury, adult zebrafish were treated with 28 nephrotoxicants or 14 nonnephrotoxicants for up to 4 days, euthanized 24 h after the final treatment, and examined histopathologically. Sixteen of the 28 nephrotoxicants and none of the 14 nonnephrotoxicants caused drug-induced kidney injury in zebrafish (sensitivity, 57%; specificity, 100%; positive predictive value, 100%; negative predictive value, 54%). Finally, we explored genomic biomarker candidates using kidneys isolated from gentamicin- and cisplatin-treated zebrafish using microarray analysis and identified 3 candidate genes, egr1, atf3, and fos based on increased expression levels and biological implications. The expression of these genes was upregulated dose dependently in cisplatin-treated groups and was > 25-fold higher in gentamicin-treated than in the control group. In conclusion, these results suggest that the adult zebrafish has (1) similar nephrotoxic response to those of mammals, (2) considerable feasibility as an experimental model for toxicity studies, and (3) applicability to pathological examination and genomic biomarker evaluation in drug-induced kidney injury.
Collapse
Affiliation(s)
- Yuki Kato
- Drug Safety Evaluation, Research Laboratory for Development, Shionogi and Co., Ltd., Toyonaka, Osaka 561-0825, Japan
| | - Yutaka Tonomura
- Drug Safety Evaluation, Research Laboratory for Development, Shionogi and Co., Ltd., Toyonaka, Osaka 561-0825, Japan
| | - Hiroyuki Hanafusa
- Drug Safety Evaluation, Research Laboratory for Development, Shionogi and Co., Ltd., Toyonaka, Osaka 561-0825, Japan
| | - Kyohei Nishimura
- Drug Safety Evaluation, Research Laboratory for Development, Shionogi and Co., Ltd., Toyonaka, Osaka 561-0825, Japan
| | - Tamio Fukushima
- Drug Safety Evaluation, Research Laboratory for Development, Shionogi and Co., Ltd., Toyonaka, Osaka 561-0825, Japan
| | - Motonobu Ueno
- Drug Safety Evaluation, Research Laboratory for Development, Shionogi and Co., Ltd., Toyonaka, Osaka 561-0825, Japan
| |
Collapse
|
29
|
Sant KE, Annunziato K, Conlin S, Teicher G, Chen P, Venezia O, Downes GB, Park Y, Timme-Laragy AR. Developmental exposures to perfluorooctanesulfonic acid (PFOS) impact embryonic nutrition, pancreatic morphology, and adiposity in the zebrafish, Danio rerio. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 275:116644. [PMID: 33581636 PMCID: PMC8101273 DOI: 10.1016/j.envpol.2021.116644] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 01/13/2021] [Accepted: 01/30/2021] [Indexed: 05/17/2023]
Abstract
Perfluorooctanesulfonic acid (PFOS) is a persistent environmental contaminant previously found in consumer surfactants and industrial fire-fighting foams. PFOS has been widely implicated in metabolic dysfunction across the lifespan, including diabetes and obesity. However, the contributions of the embryonic environment to metabolic disease remain uncharacterized. This study seeks to identify perturbations in embryonic metabolism, pancreas development, and adiposity due to developmental and subchronic PFOS exposures and their persistence into later larval and juvenile periods. Zebrafish embryos were exposed to 16 or 32 μM PFOS developmentally (1-5 days post fertilization; dpf) or subchronically (1-15 dpf). Embryonic fatty acid and macronutrient concentrations and expression of peroxisome proliferator-activated receptor (PPAR) isoforms were quantified in embryos. Pancreatic islet morphometry was assessed at 15 and 30 dpf, and adiposity and fish behavior were assessed at 15 dpf. Concentrations of lauric (C12:0) and myristic (C14:0) saturated fatty acids were increased by PFOS at 4 dpf, and PPAR gene expression was reduced. Incidence of aberrant islet morphologies, principal islet areas, and adiposity were increased in 15 dpf larvae and 30 dpf juvenile fish. Together, these data suggest that the embryonic period is a susceptible window of metabolic programming in response to PFOS exposures, and that these early exposures alone can have persisting effects later in the lifecourse.
Collapse
Affiliation(s)
- Karilyn E Sant
- Division of Environmental Health, San Diego State University School of Public Health, San Diego, CA, 92182, USA; Department of Environmental Health Sciences, University of Massachusetts School of Public Health and Health Sciences, Amherst, MA, 01003, USA.
| | - Kate Annunziato
- Department of Environmental Health Sciences, University of Massachusetts School of Public Health and Health Sciences, Amherst, MA, 01003, USA
| | - Sarah Conlin
- Department of Environmental Health Sciences, University of Massachusetts School of Public Health and Health Sciences, Amherst, MA, 01003, USA
| | - Gregory Teicher
- Biology Department, University of Massachusetts, Amherst, MA, 01003, USA
| | - Phoebe Chen
- Department of Food Science, University of Massachusetts, Amherst, MA, 01003, USA
| | - Olivia Venezia
- Department of Environmental Health Sciences, University of Massachusetts School of Public Health and Health Sciences, Amherst, MA, 01003, USA
| | - Gerald B Downes
- Biology Department, University of Massachusetts, Amherst, MA, 01003, USA
| | - Yeonhwa Park
- Department of Food Science, University of Massachusetts, Amherst, MA, 01003, USA
| | - Alicia R Timme-Laragy
- Department of Environmental Health Sciences, University of Massachusetts School of Public Health and Health Sciences, Amherst, MA, 01003, USA
| |
Collapse
|
30
|
Schell M, Wardelmann K, Kleinridders A. Untangling the effect of insulin action on brain mitochondria and metabolism. J Neuroendocrinol 2021; 33:e12932. [PMID: 33506556 DOI: 10.1111/jne.12932] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 12/02/2020] [Accepted: 12/11/2020] [Indexed: 12/25/2022]
Abstract
The regulation of energy homeostasis is controlled by the brain and, besides requiring high amounts of energy, it relies on functional insulin/insulin-like growth factor (IGF)-1 signalling in the central nervous system. This energy is mainly provided by mitochondria in form of ATP. Thus, there is an intricate interplay between mitochondrial function and insulin/IGF-1 action to enable functional brain signalling and, accordingly, propagate a healthy metabolism. To adapt to different nutritional conditions, the brain is able to sense the current energy status via mitochondrial and insulin signalling-dependent pathways and exerts an appropriate metabolic response. However, regional, cell type and receptor-specific consequences of this interaction occur and are linked to diverse outcomes such as altered nutrient sensing, body weight regulation or even cognitive function. Impairments of this cross-talk can lead to obesity and glucose intolerance and are linked to neurodegenerative diseases, yet they also induce a self-sustainable, dysfunctional 'metabolic triangle' characterised by insulin resistance, mitochondrial dysfunction and inflammation in the brain. The identification of causal factors deteriorating insulin action, mitochondrial function and concomitantly a signature of metabolic stress in the brain is of utter importance to offer novel mechanistic insights into development of the continuously rising prevalence of non-communicable diseases such as type 2 diabetes and neurodegeneration. This review aims to determine the effect of insulin action on brain mitochondrial function and energy metabolism. It precisely outlines the interaction and differences between insulin action, insulin-like growth factor (IGF)-1 signalling and mitochondrial function; distinguishes between causality and association; and reveals its consequences for metabolism and cognition. We hypothesise that an improvement of at least one signalling pathway can overcome the vicious cycle of a self-perpetuating metabolic dysfunction in the brain present in metabolic and neurodegenerative diseases.
Collapse
Affiliation(s)
- Mareike Schell
- Department of Experimental Diabetology, German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Kristina Wardelmann
- Department of Experimental Diabetology, German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
- Department of Molecular and Experimental Nutritional Medicine, Institute of Nutritional Science, University of Potsdam, Nuthetal, Germany
| | - André Kleinridders
- Department of Molecular and Experimental Nutritional Medicine, Institute of Nutritional Science, University of Potsdam, Nuthetal, Germany
| |
Collapse
|
31
|
Klatt Shaw D, Mokalled MH. Efficient CRISPR/Cas9 mutagenesis for neurobehavioral screening in adult zebrafish. G3-GENES GENOMES GENETICS 2021; 11:6179145. [PMID: 33742663 PMCID: PMC8496216 DOI: 10.1093/g3journal/jkab089] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Accepted: 03/07/2021] [Indexed: 12/22/2022]
Abstract
Adult zebrafish are widely used to interrogate mechanisms of disease development and tissue regeneration. Yet, the prospect of large-scale genetics in adult zebrafish has traditionally faced a host of biological and technical challenges, including inaccessibility of adult tissues to high-throughput phenotyping and the spatial and technical demands of adult husbandry. Here, we describe an experimental pipeline that combines high-efficiency CRISPR/Cas9 mutagenesis with functional phenotypic screening to identify genes required for spinal cord repair in adult zebrafish. Using CRISPR/Cas9 dual-guide ribonucleic proteins, we show selective and combinatorial mutagenesis of 17 genes at 28 target sites with efficiencies exceeding 85% in adult F0 “crispants”. We find that capillary electrophoresis is a reliable method to measure indel frequencies. Using a quantifiable behavioral assay, we identify seven single- or duplicate-gene crispants with reduced functional recovery after spinal cord injury. To rule out off-target effects, we generate germline mutations that recapitulate the crispant regeneration phenotypes. This study provides a platform that combines high-efficiency somatic mutagenesis with a functional phenotypic readout to perform medium- to large-scale genetic studies in adult zebrafish.
Collapse
Affiliation(s)
- Dana Klatt Shaw
- Department of Developmental Biology, Washington University School of Medicine, Saint Louis, MO 63110, USA.,Center of Regenerative Medicine, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Mayssa H Mokalled
- Department of Developmental Biology, Washington University School of Medicine, Saint Louis, MO 63110, USA.,Center of Regenerative Medicine, Washington University School of Medicine, Saint Louis, MO 63110, USA
| |
Collapse
|
32
|
Salehpour A, Rezaei M, Khoradmehr A, Tahamtani Y, Tamadon A. Which Hyperglycemic Model of Zebrafish ( Danio rerio) Suites My Type 2 Diabetes Mellitus Research? A Scoring System for Available Methods. Front Cell Dev Biol 2021; 9:652061. [PMID: 33791308 PMCID: PMC8005598 DOI: 10.3389/fcell.2021.652061] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 02/12/2021] [Indexed: 12/17/2022] Open
Abstract
Despite extensive studies on type 2 diabetes mellitus (T2DM), there is no definitive cure, drug, or prevention. Therefore, for developing new therapeutics, proper study models of T2DM is necessary to conduct further preclinical researches. Diabetes has been induced in animals using chemical, genetic, hormonal, antibody, viral, and surgical methods or a combination of them. Beside different approaches of diabetes induction, different animal species have been suggested. Although more than 85% of articles have proposed rat (genus Rattus) as the proper model for diabetes induction, zebrafish (Danio rerio) models of diabetes are being used more frequently in diabetes related studies. In this systematic review, we compare different aspects of available methods of inducing hyperglycemia referred as T2DM in zebrafish by utilizing a scoring system. Evaluating 26 approved models of T2DM in zebrafish, this scoring system may help researchers to compare different T2DM zebrafish models and select the best one regarding their own research theme. Eventually, glyoxalase1 (glo1-/-) knockout model of hyperglycemia achieved the highest score. In addition to assessment of hyperglycemic induction methods in zebrafish, eight most commonly proposed diabetic induction approval methods are suggested to help researchers confirm their subsequent proposed models.
Collapse
Affiliation(s)
- Aria Salehpour
- The Persian Gulf Marine Biotechnology Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bandar Bushehr, Iran
| | - Mohammad Rezaei
- Department of Diabetes, Obesity and Metabolism, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, Academic Center for Education, Culture and Research, Tehran, Iran
| | - Arezoo Khoradmehr
- The Persian Gulf Marine Biotechnology Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bandar Bushehr, Iran
| | - Yaser Tahamtani
- Department of Diabetes, Obesity and Metabolism, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, Academic Center for Education, Culture and Research, Tehran, Iran
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, Academic Center for Education, Culture and Research, Tehran, Iran
- Reproductive Epidemiology Research Center, Royan Institute for Reproductive Biomedicine, Academic Center for Education, Culture and Research, Tehran, Iran
| | - Amin Tamadon
- The Persian Gulf Marine Biotechnology Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bandar Bushehr, Iran
- Center of Marine Experimental and Comparative Medicine, The Persian Gulf Marine Biotechnology Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bandar Bushehr, Iran
| |
Collapse
|
33
|
Dos Santos MM, de Macedo GT, Prestes AS, Ecker A, Müller TE, Leitemperger J, Fontana BD, Ardisson-Araújo DMP, Rosemberg DB, Barbosa NV. Modulation of redox and insulin signaling underlie the anti-hyperglycemic and antioxidant effects of diphenyl diselenide in zebrafish. Free Radic Biol Med 2020; 158:20-31. [PMID: 32544425 DOI: 10.1016/j.freeradbiomed.2020.06.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 05/01/2020] [Accepted: 06/01/2020] [Indexed: 12/12/2022]
Abstract
The organic selenium compound diphenyl diselenide (DD) has been recognized as an antioxidant and neuroprotective agent, exerting an anti-hyperglycemic effect in experimental models of diabetes. However, the precise mechanisms involved in the protection are unclear. Using the zebrafish (Danio rerio) as a model organism, here we investigated biomarkers underlying the protective effects of DD against hyperglycemia, targeting in a transcriptional approach the redox and insulin-signaling pathway. Fish were fed on a diet containing DD (3 mg/kg) for 74 days. In the last 14 days, they were exposed to a 111 mM glucose solution to induce a hyperglycemic state. DD reduced blood glucose levels as well as normalized the brain mRNA transcription of four insulin receptors-coding genes (Insra1, Insra2, Insrb1, Insrb2), which were down-regulated by glucose. DD alone caused an up-regulation of relative mRNA transcription in both Insra receptors and glucose transporter 3 genes. DD counteracted hyperglycemia-induced lipid peroxidation, protein and thiol depletion. Along with the decreased activity of antioxidant enzymes SOD and GPx, the brain of hyperglycemic fish presented a reduction in mRNA transcription of FoxO3A, FoxO3B, Nrf2, GPx3A, SOD1, and SOD2 genes. Besides normalizing the transcriptional levels, DD caused an up-regulation of relative mRNAs that encode Nrf2, FoxO1A, FOXO3A, GPx4A, PTP1B, AKT and SelP. Collectively, our findings suggest that the antioxidant and anti-hyperglycemic actions of DD in a zebrafish diabetes model are likely associated with the regulation of the oxidative stress resistance and the insulin-signaling pathway and that could be related to the modulation at mRNA level of two important transcription factors, Nrf2 and FoxO.
Collapse
Affiliation(s)
- Matheus M Dos Santos
- Programa de Pós-graduação em Bioquímica Toxicológica, Universidade Federal de Santa Maria, Avenida Roraima, 1000, 97105-900, Santa Maria, RS, Brazil
| | - Gabriel T de Macedo
- Programa de Pós-graduação em Bioquímica Toxicológica, Universidade Federal de Santa Maria, Avenida Roraima, 1000, 97105-900, Santa Maria, RS, Brazil
| | - Alessandro S Prestes
- Programa de Pós-graduação em Bioquímica Toxicológica, Universidade Federal de Santa Maria, Avenida Roraima, 1000, 97105-900, Santa Maria, RS, Brazil
| | - Assis Ecker
- Programa de Pós-graduação em Bioquímica Toxicológica, Universidade Federal de Santa Maria, Avenida Roraima, 1000, 97105-900, Santa Maria, RS, Brazil
| | - Talise E Müller
- Programa de Pós-graduação em Bioquímica Toxicológica, Universidade Federal de Santa Maria, Avenida Roraima, 1000, 97105-900, Santa Maria, RS, Brazil
| | - Jossiele Leitemperger
- Programa de Pós-graduação em Bioquímica Toxicológica, Universidade Federal de Santa Maria, Avenida Roraima, 1000, 97105-900, Santa Maria, RS, Brazil
| | - Bárbara D Fontana
- Brain and Behaviour Laboratory, School of Pharmacy and Biomedical Sciences, University of Portsmouth, England, UK
| | - Daniel M P Ardisson-Araújo
- Programa de Pós-graduação em Bioquímica Toxicológica, Universidade Federal de Santa Maria, Avenida Roraima, 1000, 97105-900, Santa Maria, RS, Brazil
| | - Denis B Rosemberg
- Programa de Pós-graduação em Bioquímica Toxicológica, Universidade Federal de Santa Maria, Avenida Roraima, 1000, 97105-900, Santa Maria, RS, Brazil; Zebrafish Neuroscience Research Consortium (ZNRC), 309 Palmer Court, Slidell, LA, 70458, USA
| | - Nilda V Barbosa
- Programa de Pós-graduação em Bioquímica Toxicológica, Universidade Federal de Santa Maria, Avenida Roraima, 1000, 97105-900, Santa Maria, RS, Brazil.
| |
Collapse
|
34
|
Yang B, Covington BA, Chen W. In vivo generation and regeneration of β cells in zebrafish. CELL REGENERATION (LONDON, ENGLAND) 2020; 9:9. [PMID: 32613468 PMCID: PMC7329966 DOI: 10.1186/s13619-020-00052-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Accepted: 05/22/2020] [Indexed: 02/07/2023]
Abstract
The pathological feature of diabetes, hyperglycemia, is a result of an inadequate number and/or function of insulin producing β cells. Replenishing functional β cells is a strategy to cure the disease. Although β-cell regeneration occurs in animal models under certain conditions, human β cells are refractory to proliferation. A better understanding of both the positive and the negative regulatory mechanisms of β-cell regeneration in animal models is essential to develop novel strategies capable of inducing functional β cells in patients. Zebrafish are an attractive model system for studying β-cell regeneration due to the ease to which genetic and chemical-genetic approaches can be used as well as their high regenerative capacity. Here, we highlight the current state of β-cell regeneration studies in zebrafish with an emphasis on cell signaling mechanisms.
Collapse
Affiliation(s)
- Bingyuan Yang
- Department of Molecular Physiology & Biophysics, Vanderbilt University School of Medicine, 2215 Garland Avenue, Nashville, TN, 37232, USA
| | - Brittney A Covington
- Department of Molecular Physiology & Biophysics, Vanderbilt University School of Medicine, 2215 Garland Avenue, Nashville, TN, 37232, USA
| | - Wenbiao Chen
- Department of Molecular Physiology & Biophysics, Vanderbilt University School of Medicine, 2215 Garland Avenue, Nashville, TN, 37232, USA.
| |
Collapse
|
35
|
Wang X, Yang XL, Liu KC, Sheng WL, Xia Q, Wang RC, Chen XQ, Zhang Y. Effects of streptozotocin on pancreatic islet β-cell apoptosis and glucose metabolism in zebrafish larvae. FISH PHYSIOLOGY AND BIOCHEMISTRY 2020; 46:1025-1038. [PMID: 31993854 DOI: 10.1007/s10695-020-00769-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Accepted: 01/21/2020] [Indexed: 06/10/2023]
Abstract
Type 1 diabetes is characterized by an increase in blood glucose levels resulting from damage to β cells in pancreatic islets and the consequent absolute insufficiency of insulin. Animal models of type 1 diabetes were usually established using drugs toxic to β cells, such as streptozotocin (STZ). To assess the application of zebrafish larvae in diabetes research, we explore the effects of STZ on pancreatic islets and glucose metabolism in zebrafish larvae. STZ was microinjected into the pericardial cavity of zebrafish larvae on alternate days for three times. At 2 days after the whole series of STZ injection (12 dpf), free-glucose level in larvae tissue shows a significant increase, and the fluorescence signal in immunohistochemistry, which indicates the insulin expression, was significantly weaker compared with the solution-injected control. Obvious apoptosis signals were also observed in the location of pancreatic islet, and insulin content decreased to be undetectable in STZ-injected larvae. Gene expression level of ins decreased to half of the solution injection control and that of casp3a was upregulated by 2.20-fold. Expression level of glut2 and gck decreased to 0.312-fold and 0.093-fold, respectively. pck1 was upregulated by 2.533-fold in STZ-injected larvae. By tracking detection, we found the free-glucose level in STZ-injected larvae gradually approached the level of the solution injection control and the insulin content recovered at 6 days post-STZ injection (16 dpf). Consistent with the change of the glucose level, the regeneration rate of the caudal fin in the STZ-injected group decreased initially, but recovered and accelerated gradually finally at 8 days post-amputation (20 dpf). These results indicate the generation of a transient hyperglycemia model due to β-cell apoptosis caused by STZ, which is abated by the vigorous regeneration ability of β cells in zebrafish larvae.
Collapse
Affiliation(s)
- Xue Wang
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), 28789 Jingshidong Road, Licheng District, Jinan, 250103, Shandong Province, People's Republic of China
- Key Laboratory for Drug Screening Technology of Shandong Academy of Sciences, Jinan, 250103, Shandong Province, China
| | - Xue-Liang Yang
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), 28789 Jingshidong Road, Licheng District, Jinan, 250103, Shandong Province, People's Republic of China
- Key Laboratory for Drug Screening Technology of Shandong Academy of Sciences, Jinan, 250103, Shandong Province, China
| | - Ke-Chun Liu
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), 28789 Jingshidong Road, Licheng District, Jinan, 250103, Shandong Province, People's Republic of China
- Key Laboratory for Drug Screening Technology of Shandong Academy of Sciences, Jinan, 250103, Shandong Province, China
| | - Wen-Long Sheng
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), 28789 Jingshidong Road, Licheng District, Jinan, 250103, Shandong Province, People's Republic of China
- Key Laboratory for Drug Screening Technology of Shandong Academy of Sciences, Jinan, 250103, Shandong Province, China
| | - Qing Xia
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), 28789 Jingshidong Road, Licheng District, Jinan, 250103, Shandong Province, People's Republic of China
- Key Laboratory for Drug Screening Technology of Shandong Academy of Sciences, Jinan, 250103, Shandong Province, China
| | - Rong-Chun Wang
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), 28789 Jingshidong Road, Licheng District, Jinan, 250103, Shandong Province, People's Republic of China
- Key Laboratory for Drug Screening Technology of Shandong Academy of Sciences, Jinan, 250103, Shandong Province, China
| | - Xi-Qiang Chen
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), 28789 Jingshidong Road, Licheng District, Jinan, 250103, Shandong Province, People's Republic of China
- Key Laboratory for Drug Screening Technology of Shandong Academy of Sciences, Jinan, 250103, Shandong Province, China
| | - Yun Zhang
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), 28789 Jingshidong Road, Licheng District, Jinan, 250103, Shandong Province, People's Republic of China.
- Key Laboratory for Drug Screening Technology of Shandong Academy of Sciences, Jinan, 250103, Shandong Province, China.
| |
Collapse
|
36
|
Wiggenhauser LM, Kroll J. Vascular Damage in Obesity and Diabetes: Highlighting Links Between Endothelial Dysfunction and Metabolic Disease in Zebrafish and Man. Curr Vasc Pharmacol 2020; 17:476-490. [PMID: 30378499 DOI: 10.2174/1570161116666181031101413] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Revised: 09/11/2018] [Accepted: 09/25/2018] [Indexed: 02/08/2023]
Abstract
Endothelial dysfunction is an initial pathophysiological mechanism of vascular damage and is further recognized as an independent predictor of negative prognosis in diabetes-induced micro- and macrovascular complications. Insight into the capability of zebrafish to model metabolic disease like obesity and type II diabetes has increased and new evidence on the induction of vascular pathologies in zebrafish through metabolic disease is available. Here, we raise the question, if zebrafish can be utilized to study the initial impairments of vascular complications in metabolic disorders. In this review, we focus on the advances made to develop models of obesity and type II diabetes in zebrafish, discuss the key points and characteristics of these models, while highlighting the available information linked to the development of endothelial dysfunction in zebrafish and man. We show that larval and adult zebrafish develop metabolic dysregulation in the settings of obesity and diabetes, exhibiting pathophysiological mechanisms, which mimic the human condition. The most important genes related to endothelial dysfunction are present in zebrafish and further display similar functions as in mammals. Several suggested contributors to endothelial dysfunction found in these models, namely hyperinsulinaemia, hyperglycaemia, hyperlipidaemia and hyperleptinaemia are highlighted and the available data from zebrafish are summarised. Many underlying processes of endothelial dysfunction in obesity and diabetes are fundamentally present in zebrafish and provide ground for the assumption, that zebrafish can develop endothelial dysfunction. Conservation of basic biological mechanisms is established for zebrafish, but focused investigation on the subject is now needed as validation and particularly more research is necessary to understand the differences between zebrafish and man. The available data demonstrate the relevance of zebrafish as a model for metabolic disease and their ability to become a proponent for the investigation of vascular damage in the settings of obesity and diabetes.
Collapse
Affiliation(s)
- Lucas Moritz Wiggenhauser
- Department of Vascular Biology and Tumor Angiogenesis, European Center for Angioscience, Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany
| | - Jens Kroll
- Department of Vascular Biology and Tumor Angiogenesis, European Center for Angioscience, Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany
| |
Collapse
|
37
|
Suthamwong P, Minami M, Okada T, Shiwaku N, Uesugi M, Yokode M, Kamei K. Administration of mulberry leaves maintains pancreatic β-cell mass in obese/type 2 diabetes mellitus mouse model. BMC Complement Med Ther 2020; 20:136. [PMID: 32375753 PMCID: PMC7201661 DOI: 10.1186/s12906-020-02933-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Accepted: 04/22/2020] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Type 2 diabetes mellitus is characterized by insulin resistance and pancreatic β-cell dysfunction. A decrease in β-cell mass, which occurs during the progression of Type 2 diabetes mellitus, contributes to impaired insulin secretion. Mulberry leaves contain various nutritional components that exert anti-diabetic and anti-atherogenic effects. The present study analyzed the effects of mulberry leaf intake on pancreatic β-cells to clarify the mechanisms underlying its anti-diabetic function. METHODS Mulberry leaves (Morus alba L.) were dried at 180 °C for 8 s in a hot-air mill and fed to obesity/Type 2 diabetes mellitus db/db mouse models at 5% (w/w) as part of a normal diet from 7 to 10, 15, or 20 weeks of age. An intraperitoneal glucose tolerance test was then performed on the mice. To evaluate the β-cell mass, the pancreas was subjected to immunohistological analysis with an anti-insulin antibody. A TUNEL assay and immunohistological analysis with a proliferation marker was also performed. Expression levels of endoplasmic reticulum stress-responsible genes and proliferation markers were assessed by quantitative RT-PCR. RESULTS Intake of mulberry leaves maintained the β-cell function of db/db mice. Moreover, oral administration of mulberry leaves significantly decreased cell death by reducing endoplasmic reticulum stress in the pancreas. Mulberry leaves significantly increased proliferation of β-cells and the expression of pancreatic duodenal homeobox1 mRNA in the pancreas. CONCLUSION Considered together, these results indicate that dietary mulberry leaf administration can maintain insulin levels and pancreatic β-cell mass, at least in part, by suppressing endoplasmic reticulum stress in Type 2 diabetes mellitus mouse models.
Collapse
Affiliation(s)
- Patlada Suthamwong
- Department of Functional Chemistry, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto, 606-8585, Japan.,Department of Clinical Innovative Medicine, Kyoto University Graduate School of Medicine, 54 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Manabu Minami
- Department of Clinical Innovative Medicine, Kyoto University Graduate School of Medicine, 54 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Toshiaki Okada
- Department of Functional Chemistry, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto, 606-8585, Japan
| | - Nonomi Shiwaku
- Department of Functional Chemistry, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto, 606-8585, Japan
| | - Mai Uesugi
- Department of Functional Chemistry, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto, 606-8585, Japan
| | - Masayuki Yokode
- Department of Clinical Innovative Medicine, Kyoto University Graduate School of Medicine, 54 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Kaeko Kamei
- Department of Functional Chemistry, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto, 606-8585, Japan.
| |
Collapse
|
38
|
Wiggenhauser LM, Qi H, Stoll SJ, Metzger L, Bennewitz K, Poschet G, Krenning G, Hillebrands JL, Hammes HP, Kroll J. Activation of Retinal Angiogenesis in Hyperglycemic pdx1 -/- Zebrafish Mutants. Diabetes 2020; 69:1020-1031. [PMID: 32139597 DOI: 10.2337/db19-0873] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2019] [Accepted: 02/26/2020] [Indexed: 11/13/2022]
Abstract
Progression from the initial vascular response upon hyperglycemia to a proliferative stage with neovacularizations is the hallmark of proliferative diabetic retinopathy. Here, we report on the novel diabetic pdx1 -/- zebrafish mutant as a model for diabetic retinopathy that lacks the transcription factor pdx1 through CRISPR-Cas9-mediated gene knockout leading to disturbed pancreatic development and hyperglycemia. Larval pdx1 -/- mutants prominently show vasodilation of blood vessels through increased vascular thickness in the hyaloid network as direct developmental precursor of the adult retinal vasculature in zebrafish. In adult pdx1 -/- mutants, impaired glucose homeostasis induces increased hyperbranching and hypersprouting with new vessel formation in the retina and aggravation of the vascular alterations from the larval to the adult stage. Both vascular aspects respond to antiangiogenic and antihyperglycemic pharmacological interventions in the larval stage and are accompanied by alterations in the nitric oxide metabolism. Thus, the pdx1 -/- mutant represents a novel model to study mechanisms of hyperglycemia-induced retinopathy wherein extensive proangiogenic alterations in blood vessel morphology and metabolic alterations underlie the vascular phenotype.
Collapse
Affiliation(s)
- Lucas M Wiggenhauser
- Department of Vascular Biology and Tumor Angiogenesis, European Center for Angioscience, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Haozhe Qi
- Department of Vascular Biology and Tumor Angiogenesis, European Center for Angioscience, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Sandra J Stoll
- Department of Vascular Biology and Tumor Angiogenesis, European Center for Angioscience, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Lena Metzger
- Department of Vascular Biology and Tumor Angiogenesis, European Center for Angioscience, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Katrin Bennewitz
- Department of Vascular Biology and Tumor Angiogenesis, European Center for Angioscience, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Gernot Poschet
- Metabolomics Core Technology Platform, Centre for Organismal Studies, Heidelberg University, Heidelberg, Germany
| | - Guido Krenning
- Laboratory for Cardiovascular Regenerative Medicine, Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Jan-Luuk Hillebrands
- Pathology Section, Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Hans-Peter Hammes
- Fifth Medical Department and European Center for Angioscience, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Jens Kroll
- Department of Vascular Biology and Tumor Angiogenesis, European Center for Angioscience, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| |
Collapse
|
39
|
Chawla P, Delgadillo Silva LF, Ninov N. Insights on β-cell regeneration from the zebrafish shoal: from generation of cells to functional integration. CURRENT OPINION IN PHYSIOLOGY 2020. [DOI: 10.1016/j.cophys.2019.11.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
40
|
Chhabria K, Plant K, Bandmann O, Wilkinson RN, Martin C, Kugler E, Armitage PA, Santoscoy PL, Cunliffe VT, Huisken J, McGown A, Ramesh T, Chico TJ, Howarth C. The effect of hyperglycemia on neurovascular coupling and cerebrovascular patterning in zebrafish. J Cereb Blood Flow Metab 2020; 40:298-313. [PMID: 30398083 PMCID: PMC6985997 DOI: 10.1177/0271678x18810615] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Neurovascular coupling (through which local cerebral blood flow changes in response to neural activation are mediated) is impaired in many diseases including diabetes. Current preclinical rodent models of neurovascular coupling rely on invasive surgery and instrumentation, but transgenic zebrafish coupled with advances in imaging techniques allow non-invasive quantification of cerebrovascular anatomy, neural activation, and cerebral vessel haemodynamics. We therefore established a novel non-invasive, non-anaesthetised zebrafish larval model of neurovascular coupling, in which visual stimulus evokes neuronal activation in the optic tectum that is associated with a specific increase in red blood cell speed in tectal blood vessels. We applied this model to the examination of the effect of glucose exposure on cerebrovascular patterning and neurovascular coupling. We found that chronic exposure of zebrafish to glucose impaired tectal blood vessel patterning and neurovascular coupling. The nitric oxide donor sodium nitroprusside rescued all these adverse effects of glucose exposure on cerebrovascular patterning and function. Our results establish the first non-mammalian model of neurovascular coupling, offering the potential to perform more rapid genetic modifications and high-throughput screening than is currently possible using rodents. Furthermore, using this zebrafish model, we reveal a potential strategy to ameliorate the effects of hyperglycemia on cerebrovascular function.
Collapse
Affiliation(s)
- Karishma Chhabria
- Neuroimaging in Cardiovascular Disease (NICAD) Network, University of Sheffield, Sheffield, UK.,Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield Medical School, Sheffield, UK.,The Bateson Centre, University of Sheffield, Sheffield, UK
| | - Karen Plant
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield Medical School, Sheffield, UK.,The Bateson Centre, University of Sheffield, Sheffield, UK
| | - Oliver Bandmann
- The Bateson Centre, University of Sheffield, Sheffield, UK.,Department of Neuroscience, University of Sheffield Medical School, Sheffield, UK
| | - Robert N Wilkinson
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield Medical School, Sheffield, UK.,The Bateson Centre, University of Sheffield, Sheffield, UK
| | - Chris Martin
- Neuroimaging in Cardiovascular Disease (NICAD) Network, University of Sheffield, Sheffield, UK.,Department of Psychology, University of Sheffield, Sheffield, UK
| | - Elisabeth Kugler
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield Medical School, Sheffield, UK.,The Bateson Centre, University of Sheffield, Sheffield, UK
| | - Paul A Armitage
- Neuroimaging in Cardiovascular Disease (NICAD) Network, University of Sheffield, Sheffield, UK.,Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield Medical School, Sheffield, UK
| | - Paola Lm Santoscoy
- The Bateson Centre, University of Sheffield, Sheffield, UK.,Department of Biomedical Science, University of Sheffield, Sheffield, UK
| | - Vincent T Cunliffe
- The Bateson Centre, University of Sheffield, Sheffield, UK.,Department of Biomedical Science, University of Sheffield, Sheffield, UK
| | - Jan Huisken
- Morgridge Institute for Research, Madison, WI, USA
| | - Alexander McGown
- The Bateson Centre, University of Sheffield, Sheffield, UK.,Department of Neuroscience, University of Sheffield Medical School, Sheffield, UK
| | - Tennore Ramesh
- The Bateson Centre, University of Sheffield, Sheffield, UK.,Department of Neuroscience, University of Sheffield Medical School, Sheffield, UK
| | - Tim Ja Chico
- Neuroimaging in Cardiovascular Disease (NICAD) Network, University of Sheffield, Sheffield, UK.,Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield Medical School, Sheffield, UK.,The Bateson Centre, University of Sheffield, Sheffield, UK
| | - Clare Howarth
- Neuroimaging in Cardiovascular Disease (NICAD) Network, University of Sheffield, Sheffield, UK.,Department of Psychology, University of Sheffield, Sheffield, UK
| |
Collapse
|
41
|
Arjmand B, Tayanloo-Beik A, Foroughi Heravani N, Alaei S, Payab M, Alavi-Moghadam S, Goodarzi P, Gholami M, Larijani B. Zebrafish for Personalized Regenerative Medicine; A More Predictive Humanized Model of Endocrine Disease. Front Endocrinol (Lausanne) 2020; 11:396. [PMID: 32765420 PMCID: PMC7379230 DOI: 10.3389/fendo.2020.00396] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Accepted: 05/18/2020] [Indexed: 12/18/2022] Open
Abstract
Regenerative medicine is a multidisciplinary field that aims to determine different factors and develop various methods to regenerate impaired tissues, organs, and cells in the disease and impairment conditions. When treatment procedures are specified according to the individual's information, the leading role of personalized regenerative medicine will be revealed in developing more effective therapies. In this concept, endocrine disorders can be considered as potential candidates for regenerative medicine application. Diabetes mellitus as a worldwide prevalent endocrine disease causes different damages such as blood vessel damages, pancreatic damages, and impaired wound healing. Therefore, a global effort has been devoted to diabetes mellitus investigations. Hereupon, the preclinical study is a fundamental step. Up to now, several species of animals have been modeled to identify the mechanism of multiple diseases. However, more recent researches have been demonstrated that animal models with the ability of tissue regeneration are more suitable choices for regenerative medicine studies in endocrine disorders, typically diabetes mellitus. Accordingly, zebrafish has been introduced as a model that possesses the capacity to regenerate different organs and tissues. Especially, fine regeneration in zebrafish has been broadly investigated in the regenerative medicine field. In addition, zebrafish is a suitable model for studying a variety of different situations. For instance, it has been used for developmental studies because of the special characteristics of its larva. In this review, we discuss the features of zebrafish that make it a desirable animal model, the advantages of zebrafish and recent research that shows zebrafish is a promising animal model for personalized regenerative diseases. Ultimately, we conclude that as a newly introduced model, zebrafish can have a leading role in regeneration studies of endocrine diseases and provide a good perception of underlying mechanisms.
Collapse
Affiliation(s)
- Babak Arjmand
- Cell Therapy and Regenerative Medicine Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
- Metabolomics and Genomics Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Akram Tayanloo-Beik
- Cell Therapy and Regenerative Medicine Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Najmeh Foroughi Heravani
- Cell Therapy and Regenerative Medicine Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Setareh Alaei
- Metabolomics and Genomics Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Moloud Payab
- Obesity and Eating Habits Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Sepideh Alavi-Moghadam
- Cell Therapy and Regenerative Medicine Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Parisa Goodarzi
- Brain and Spinal Cord Injury Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahdi Gholami
- Department of Toxicology and Pharmacology, Toxicology and Poisoning Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Bagher Larijani
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
- *Correspondence: Bagher Larijani
| |
Collapse
|
42
|
Sant KE, Venezia OL, Sinno PP, Timme-Laragy AR. Perfluorobutanesulfonic Acid Disrupts Pancreatic Organogenesis and Regulation of Lipid Metabolism in the Zebrafish, Danio rerio. Toxicol Sci 2019; 167:258-268. [PMID: 30239974 DOI: 10.1093/toxsci/kfy237] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Following the phase-out of highly persistent perfluorosulfonates in the United States from non-stick and stain-resistant products in the early 2000s, perfluorobutanesulfonic acid (PFBS) has replaced these compounds as a primary surfactant. Measurements of PFBS in environmental and human samples have been rising in recent years, raising concerns about potential negative health effects. We previously found that embryonic exposures to a related compound, perfluorooctanesulfonic acid (PFOS), decreased pancreas length and insulin-producing islet area in zebrafish embryos (Danio rerio). The objective of this study was to compare the effects of PFBS exposures on pancreatic organogenesis with our previous PFOS findings. Dechorionated zebrafish embryos from two different transgenic fish lines (Tg[insulin:GFP], Tg[ptf1a:GFP]) were exposed to 0 (0.01% DMSO), 16, or 32 µM PFBS daily beginning at 1 day post fertilization (dpf) until 4 and 7 dpf when they were examined using fluorescent microscopy for islet area and morphology, and exocrine pancreas length. PFBS-exposed embryos had significantly increased caudal fin deformities, delayed swim bladder inflation, and impaired yolk utilization. Incidence of fish with significantly stunted growth and truncated exocrine pancreas length was significantly increased, although these two effects occurred independently. Islet morphology revealed an increased incidence of severely hypomorphic islets (areas lower than the 1st percentile of controls) and an elevated occurrence of fragmented islets. RNA-Seq data (4 dpf) also identify disruptions in regulation of lipid homeostasis. Overall, this work demonstrates that PFBS exposure can perturb embryonic development, energy homeostasis, and pancreatic organogenesis.
Collapse
Affiliation(s)
- Karilyn E Sant
- Department of Environmental Health Sciences, School of Public Health and Health Sciences, University of Massachusetts, Amherst, Massachusetts 01003.,Division of Environmental Health, School of Public Health, San Diego State University, San Diego, California 92182
| | - Olivia L Venezia
- Department of Environmental Health Sciences, School of Public Health and Health Sciences, University of Massachusetts, Amherst, Massachusetts 01003
| | - Paul P Sinno
- Department of Environmental Health Sciences, School of Public Health and Health Sciences, University of Massachusetts, Amherst, Massachusetts 01003
| | - Alicia R Timme-Laragy
- Department of Environmental Health Sciences, School of Public Health and Health Sciences, University of Massachusetts, Amherst, Massachusetts 01003
| |
Collapse
|
43
|
Houbrechts AM, Beckers A, Vancamp P, Sergeys J, Gysemans C, Mathieu C, Darras VM. Age-Dependent Changes in Glucose Homeostasis in Male Deiodinase Type 2 Knockout Zebrafish. Endocrinology 2019; 160:2759-2772. [PMID: 31504428 DOI: 10.1210/en.2019-00445] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2019] [Accepted: 08/28/2019] [Indexed: 12/13/2022]
Abstract
Thyroid hormones (THs) are crucial regulators of glucose metabolism and insulin sensitivity. Moreover, inactivating mutations in type 2 deiodinase (DIO2), the major TH-activating enzyme, have been associated with type 2 diabetes mellitus in both humans and mice. We studied the link between Dio2 deficiency and glucose homeostasis in fasted males of two different Dio2 knockout (KO) zebrafish lines. Young adult Dio2KO zebrafish (6 to 9 months) were hyperglycemic. Both insulin and glucagon expression were increased, whereas β and α cell numbers in the main pancreatic islet were similar to those in wild-types. Insulin receptor expression in skeletal muscle was decreased at 6 months, accompanied by a strong downregulation of hexokinase and pyruvate kinase expression. Blood glucose levels in Dio2KO zebrafish, however, normalized around 1 year of age. Older mutants (18 to 24 months) were normoglycemic, and increased insulin and glucagon expression was accompanied by a prominent increase in pancreatic islet size and β and α cell numbers. Older Dio2KO zebrafish also showed strongly decreased expression of glucagon receptors in the gastrointestinal system as well as decreased expression of glucose transporters GLUT2 and GLUT12, glucose-6-phosphatase, and glycogen synthase 2. This study shows that Dio2KO zebrafish suffer from transient hyperglycemia, which is counteracted with increasing age by a prominent hyperplasia of the endocrine pancreas together with decreases in hepatic glucagon sensitivity and intestinal glucose uptake. Further research on the mechanisms allowing compensation in older Dio2KO zebrafish may help to identify new therapeutic targets for (TH deficiency-related) hyperglycemia.
Collapse
Affiliation(s)
- Anne M Houbrechts
- Laboratory of Comparative Endocrinology, Division of Animal Physiology and Neurobiology, Department of Biology, KU Leuven, Leuven, Belgium
| | - An Beckers
- Laboratory of Neural Circuit Development and Regeneration, Division of Animal Physiology and Neurobiology, Department of Biology, KU Leuven, Leuven, Belgium
| | - Pieter Vancamp
- Laboratory of Comparative Endocrinology, Division of Animal Physiology and Neurobiology, Department of Biology, KU Leuven, Leuven, Belgium
| | - Jurgen Sergeys
- Laboratory of Neural Circuit Development and Regeneration, Division of Animal Physiology and Neurobiology, Department of Biology, KU Leuven, Leuven, Belgium
| | - Conny Gysemans
- Clinical and Experimental Endocrinology, Department of Chronic Diseases, Metabolism, and Aging, KU Leuven, Leuven, Belgium
| | - Chantal Mathieu
- Clinical and Experimental Endocrinology, Department of Chronic Diseases, Metabolism, and Aging, KU Leuven, Leuven, Belgium
| | - Veerle M Darras
- Laboratory of Comparative Endocrinology, Division of Animal Physiology and Neurobiology, Department of Biology, KU Leuven, Leuven, Belgium
| |
Collapse
|
44
|
Emfinger CH, Lőrincz R, Wang Y, York NW, Singareddy SS, Ikle JM, Tryon RC, McClenaghan C, Shyr ZA, Huang Y, Reissaus CA, Meyer D, Piston DW, Hyrc K, Remedi MS, Nichols CG. Beta-cell excitability and excitability-driven diabetes in adult Zebrafish islets. Physiol Rep 2019; 7:e14101. [PMID: 31161721 PMCID: PMC6546968 DOI: 10.14814/phy2.14101] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 04/30/2019] [Accepted: 04/30/2019] [Indexed: 12/15/2022] Open
Abstract
Islet β-cell membrane excitability is a well-established regulator of mammalian insulin secretion, and defects in β-cell excitability are linked to multiple forms of diabetes. Evolutionary conservation of islet excitability in lower organisms is largely unexplored. Here we show that adult zebrafish islet calcium levels rise in response to elevated extracellular [glucose], with similar concentration-response relationship to mammalian β-cells. However, zebrafish islet calcium transients are nor well coupled, with a shallower glucose-dependence of cytoplasmic calcium concentration. We have also generated transgenic zebrafish that conditionally express gain-of-function mutations in ATP-sensitive K+ channels (KATP -GOF) in β-cells. Following induction, these fish become profoundly diabetic, paralleling features of mammalian diabetes resulting from equivalent mutations. KATP -GOF fish become severely hyperglycemic, with slowed growth, and their islets lose glucose-induced calcium responses. These results indicate that, although lacking tight cell-cell coupling of intracellular Ca2+ , adult zebrafish islets recapitulate similar excitability-driven β-cell glucose responsiveness to those in mammals, and exhibit profound susceptibility to diabetes as a result of inexcitability. While illustrating evolutionary conservation of islet excitability in lower vertebrates, these results also provide important validation of zebrafish as a suitable animal model in which to identify modulators of islet excitability and diabetes.
Collapse
Affiliation(s)
- Christopher H. Emfinger
- Department of Cell Biology and PhysiologyWashington University in St. LouisSt. LouisMissouri
- Department of MedicineDivision of Endocrinology, Metabolism, and Lipid ResearchWashington University in St. Louis School of MedicineSt. LouisMissouri
- Center for the Investigation of Membrane Excitability DiseasesWashington University in St. Louis School of MedicineSt. LouisMissouri
| | - Réka Lőrincz
- Department of Cell Biology and PhysiologyWashington University in St. LouisSt. LouisMissouri
- Center for the Investigation of Membrane Excitability DiseasesWashington University in St. Louis School of MedicineSt. LouisMissouri
- Institute of Molecular Biology/CMBILeopold‐Franzens‐University InnsbruckInnsbruckAustria
| | - Yixi Wang
- Department of Cell Biology and PhysiologyWashington University in St. LouisSt. LouisMissouri
- Center for the Investigation of Membrane Excitability DiseasesWashington University in St. Louis School of MedicineSt. LouisMissouri
| | - Nathaniel W. York
- Department of Cell Biology and PhysiologyWashington University in St. LouisSt. LouisMissouri
- Center for the Investigation of Membrane Excitability DiseasesWashington University in St. Louis School of MedicineSt. LouisMissouri
| | - Soma S. Singareddy
- Department of Cell Biology and PhysiologyWashington University in St. LouisSt. LouisMissouri
- Center for the Investigation of Membrane Excitability DiseasesWashington University in St. Louis School of MedicineSt. LouisMissouri
| | - Jennifer M. Ikle
- Department of Cell Biology and PhysiologyWashington University in St. LouisSt. LouisMissouri
- Center for the Investigation of Membrane Excitability DiseasesWashington University in St. Louis School of MedicineSt. LouisMissouri
- Department of PediatricsWashington University in St. Louis School of MedicineSt. LouisMissouri
- Present address:
Department of CardiologyRenmin Hospital of Wuhan UniversityWuhanChina
| | - Robert C. Tryon
- Department of Cell Biology and PhysiologyWashington University in St. LouisSt. LouisMissouri
- Center for the Investigation of Membrane Excitability DiseasesWashington University in St. Louis School of MedicineSt. LouisMissouri
| | - Conor McClenaghan
- Department of Cell Biology and PhysiologyWashington University in St. LouisSt. LouisMissouri
- Center for the Investigation of Membrane Excitability DiseasesWashington University in St. Louis School of MedicineSt. LouisMissouri
| | - Zeenat A. Shyr
- Department of MedicineDivision of Endocrinology, Metabolism, and Lipid ResearchWashington University in St. Louis School of MedicineSt. LouisMissouri
- Center for the Investigation of Membrane Excitability DiseasesWashington University in St. Louis School of MedicineSt. LouisMissouri
| | - Yan Huang
- Department of Cell Biology and PhysiologyWashington University in St. LouisSt. LouisMissouri
- Center for the Investigation of Membrane Excitability DiseasesWashington University in St. Louis School of MedicineSt. LouisMissouri
- Department of PediatricsWashington University in St. Louis School of MedicineSt. LouisMissouri
- Present address:
Department of CardiologyRenmin Hospital of Wuhan UniversityWuhanChina
| | - Christopher A. Reissaus
- Department of Cell Biology and PhysiologyWashington University in St. LouisSt. LouisMissouri
| | - Dirk Meyer
- Institute of Molecular Biology/CMBILeopold‐Franzens‐University InnsbruckInnsbruckAustria
| | - David W. Piston
- Department of Cell Biology and PhysiologyWashington University in St. LouisSt. LouisMissouri
- Center for the Investigation of Membrane Excitability DiseasesWashington University in St. Louis School of MedicineSt. LouisMissouri
| | - Krzysztof Hyrc
- Center for the Investigation of Membrane Excitability DiseasesWashington University in St. Louis School of MedicineSt. LouisMissouri
| | - Maria S. Remedi
- Department of Cell Biology and PhysiologyWashington University in St. LouisSt. LouisMissouri
- Department of MedicineDivision of Endocrinology, Metabolism, and Lipid ResearchWashington University in St. Louis School of MedicineSt. LouisMissouri
- Center for the Investigation of Membrane Excitability DiseasesWashington University in St. Louis School of MedicineSt. LouisMissouri
| | - Colin G. Nichols
- Department of Cell Biology and PhysiologyWashington University in St. LouisSt. LouisMissouri
- Center for the Investigation of Membrane Excitability DiseasesWashington University in St. Louis School of MedicineSt. LouisMissouri
| |
Collapse
|
45
|
Benchoula K, Khatib A, Jaffar A, Ahmed QU, Sulaiman WMAW, Wahab RA, El-Seedi HR. The promise of zebrafish as a model of metabolic syndrome. Exp Anim 2019; 68:407-416. [PMID: 31118344 PMCID: PMC6842808 DOI: 10.1538/expanim.18-0168] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Metabolic syndrome is a cluster including hyperglycaemia, obesity, hypertension, and
hypertriglyceridaemia as a result of biochemical and physiological alterations and can
increase the risk of cardiovascular disease and diabetes. Fundamental research on this
disease requires validated animal models. One potential animal model that is rapidly
gaining in popularity is zebrafish (Danio rerio). The use of zebrafish as
an animal model conveys several advantages, including high human genetic homology,
transparent embryos and larvae that allow easier visualization. This review discusses how
zebrafish models contribute to the development of metabolic syndrome studies. Different
diseases in the cluster of metabolic syndrome, such as hyperglycaemia, obesity, diabetes,
and hypertriglyceridaemia, have been successfully studied using zebrafish; and the model
is promising for hypertension and cardiovascular metabolic-related diseases due to its
genetic similarity to mammals. Genetic mutation, chemical induction, and dietary
alteration are among the tools used to improve zebrafish models. This field is expanding,
and thus, more effective and efficient techniques are currently developed to fulfil the
increasing demand for thorough investigations.
Collapse
Affiliation(s)
- Khaled Benchoula
- Department of Basic Medical Sciences, Kulliyyah of Pharmacy, International Islamic University Malaysia, Sultan Ahmad Shah Street, Kuantan 25200, Pahang, Malaysia
| | - Alfi Khatib
- Pharmacognosy Research Group, Department of Pharmaceutical Chemistry, Kulliyyah of Pharmacy, International Islamic University Malaysia, Sultan Ahmad Shah Street, Kuantan 25200, Pahang, Malaysia.,Central Research and Animal Facility (CREAM), Kulliyyah of Science, International Islamic University Malaysia, Sultan Ahamad Shah Street, Kuantan 25200, Pahang, Malaysia
| | - Ashika Jaffar
- School of Biosciences & Technology, VIT University, Vellore 632014, India
| | - Qamar Udin Ahmed
- Pharmacognosy Research Group, Department of Pharmaceutical Chemistry, Kulliyyah of Pharmacy, International Islamic University Malaysia, Sultan Ahmad Shah Street, Kuantan 25200, Pahang, Malaysia
| | - Wan Mohd Azizi Wan Sulaiman
- Department of Basic Medical Sciences, Kulliyyah of Pharmacy, International Islamic University Malaysia, Sultan Ahmad Shah Street, Kuantan 25200, Pahang, Malaysia
| | - Ridhwan Abd Wahab
- Kulliyah of Allied Health Science, International Islamic University Malaysia, Sultan Ahmad Shah Street, Kuantan 25200, Pahang, Malaysia
| | - Hesham R El-Seedi
- Pharmacognosy Group, Department of Medicinal Chemistry, Biomedical Centre, Uppsala University, Box 574, SE-751 23 Uppsala, Sweden.,Alrayan Medical colleges, Medina 42541, Kingdom of Saudi Arabia
| |
Collapse
|
46
|
Abstract
The pancreas plays important roles in the regulation of blood glucose, and is a well-studied organ in mammals because its dysfunction causes serious disorders, such as diabetes mellitus. However, mammals have the limited capacity for tissue regeneration in their organs, including pancreas. Fish may be an attractive model for regeneration studies, as fish exhibit a greater capacity for regeneration than do mammals. To elucidate the regenerative capacity of pancreatic β cells in medaka, we generated transgenic lines, in which β cells can be specifically ablated using the nitroreductase (NTR)/metronidazole (Mtz) system. We examined β-cell regeneration at embryonic-larval stages after specific ablation of β cells, and found that medaka rapidly regenerate β cells. Furthermore, we found that teleost-specific secondary islet have a unique feature in that their size increases in response to β-cell ablation in principal islets.
Collapse
Affiliation(s)
- Takayoshi Otsuka
- 1 Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Hiroyuki Takeda
- 1 Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.,2 CREST, Japan Science and Technology Agency
| |
Collapse
|
47
|
Benchoula K, Khatib A, Quzwain FMC, Che Mohamad CA, Wan Sulaiman WMA, Abdul Wahab R, Ahmed QU, Abdul Ghaffar M, Saiman MZ, Alajmi MF, El-Seedi H. Optimization of Hyperglycemic Induction in Zebrafish and Evaluation of Its Blood Glucose Level and Metabolite Fingerprint Treated with Psychotria malayana Jack Leaf Extract. Molecules 2019; 24:molecules24081506. [PMID: 30999617 PMCID: PMC6515116 DOI: 10.3390/molecules24081506] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 03/24/2019] [Accepted: 03/28/2019] [Indexed: 11/26/2022] Open
Abstract
A standard protocol to develop type 1 diabetes in zebrafish is still uncertain due to unpredictable factors. In this study, an optimized protocol was developed and used to evaluate the anti-diabetic activity of Psychotria malayana leaf. The aims of this study were to develop a type 1 diabetic adult zebrafish model and to evaluate the anti-diabetic activity of the plant extract on the developed model. The ability of streptozotocin and alloxan at a different dose to elevate the blood glucose levels in zebrafish was evaluated. While the anti-diabetic activity of P. malayana aqueous extract was evaluated through analysis of blood glucose and LC-MS analysis fingerprinting. The results indicated that a single intraperitoneal injection of 300 mg/kg alloxan was the optimal dose to elevate the fasting blood glucose in zebrafish. Furthermore, the plant extract at 1, 2, and 3 g/kg significantly reduced blood glucose levels in the diabetic zebrafish. In addition, LC-MS-based fingerprinting indicated that 3 g/kg plant extract more effective than other doses. Phytosterols, sugar alcohols, sugar acid, free fatty acids, cyclitols, phenolics, and alkaloid were detected in the extract using GC-MS. In conclusion, P. malayana leaf aqueous extract showed anti-diabetic activity on the developed type 1 diabetic zebrafish model.
Collapse
Affiliation(s)
- Khaled Benchoula
- Department of Basic Medical Sciences, Kulliyyah of Pharmacy, International Islamic University Malaysia, Kuantan 25200, Pahang, Malaysia.
| | - Alfi Khatib
- Department of Pharmaceutical Chemistry, Kulliyyah of Pharmacy, International Islamic University Malaysia, Kuantan 25200, Pahang, Malaysia.
| | | | - Che Anuar Che Mohamad
- Department of Basic Medical Sciences, Kulliyyah of Pharmacy, International Islamic University Malaysia, Kuantan 25200, Pahang, Malaysia.
| | - Wan Mohd Azizi Wan Sulaiman
- Department of Basic Medical Sciences, Kulliyyah of Pharmacy, International Islamic University Malaysia, Kuantan 25200, Pahang, Malaysia.
| | - Ridhwan Abdul Wahab
- Department of Biomedical Science, Kulliyyah of Allied Health Science, International Islamic University Malaysia, Kuantan 25200, Pahang, Malaysia.
| | - Qamar Uddin Ahmed
- Department of Pharmaceutical Chemistry, Kulliyyah of Pharmacy, International Islamic University Malaysia, Kuantan 25200, Pahang, Malaysia.
| | - Majid Abdul Ghaffar
- Department of Pharmaceutical Chemistry, Kulliyyah of Pharmacy, International Islamic University Malaysia, Kuantan 25200, Pahang, Malaysia.
| | - Mohd Zuwairi Saiman
- Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur 50603, Malaysia.
| | - Mohamed F Alajmi
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia.
| | - Hesham El-Seedi
- Division of Pharmacognosy, Department of Medicinal Chemistry, Biomedical Centre, Uppsala University, Box 574, SE-751 23 Uppsala, Sweden.
| |
Collapse
|
48
|
Mullapudi ST, Helker CS, Boezio GL, Maischein HM, Sokol AM, Guenther S, Matsuda H, Kubicek S, Graumann J, Yang YHC, Stainier DY. Screening for insulin-independent pathways that modulate glucose homeostasis identifies androgen receptor antagonists. eLife 2018; 7:42209. [PMID: 30520733 PMCID: PMC6300353 DOI: 10.7554/elife.42209] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Accepted: 12/03/2018] [Indexed: 12/13/2022] Open
Abstract
Pathways modulating glucose homeostasis independently of insulin would open new avenues to combat insulin resistance and diabetes. Here, we report the establishment, characterization, and use of a vertebrate ‘insulin-free’ model to identify insulin-independent modulators of glucose metabolism. insulin knockout zebrafish recapitulate core characteristics of diabetes and survive only up to larval stages. Utilizing a highly efficient endoderm transplant technique, we generated viable chimeric adults that provide the large numbers of insulin mutant larvae required for our screening platform. Using glucose as a disease-relevant readout, we screened 2233 molecules and identified three that consistently reduced glucose levels in insulin mutants. Most significantly, we uncovered an insulin-independent beneficial role for androgen receptor antagonism in hyperglycemia, mostly by reducing fasting glucose levels. Our study proposes therapeutic roles for androgen signaling in diabetes and, more broadly, offers a novel in vivo model for rapid screening and decoupling of insulin-dependent and -independent mechanisms. Diabetes is a disease that affects the ability of the body to control the level of sugar in the blood. Individuals with diabetes are unable to make a hormone called insulin – which normally stimulates certain cells to absorb sugar from the blood – or their cells are less able to respond to this hormone. Most treatments for diabetes involve replacing the lost insulin or boosting the hormone’s activity in the body. However, these treatments can also cause individuals to gain weight or become more resistant to insulin, making it harder to control blood sugar levels. In addition to insulin, several other factors regulate the levels of sugar in the blood and some of them may operate independently of insulin. However, little is known about such factors because it is impractical to carry out large-scale screens to identify drugs that target them in humans or mice, which are often used as experimental models for human biology. To overcome this challenge, Mullapudi et al. turned to another animal known as the zebrafish and generated mutant fish that lack insulin. The mutant zebrafish had similar problems with regulating sugar levels as those observed in humans and mice with diabetes. This observation suggests that insulin is just as important in zebrafish as it is in humans and other mammals. The mutant zebrafish did not survive into adulthood, and so Mullapudi et al. transplanted healthy tissue into the zebrafish to allow them to produce enough insulin to survive. These adult zebrafish produced many offspring that still carried the insulin mutation. Mullapudi et al. used these mutant offspring to screen over 2,000 drugs for their ability to decrease blood sugar levels in the absence of insulin. The screen identified three promising candidate drugs, including a molecule that interferes with a receptor for a signal known as androgen. These findings will help researchers investigate new ways to treat diabetes. In the future, the screening approach developed by Mullapudi et al. could be adapted to search for new drugs to treat other human metabolic conditions.
Collapse
Affiliation(s)
- Sri Teja Mullapudi
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Christian Sm Helker
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Giulia Lm Boezio
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Hans-Martin Maischein
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Anna M Sokol
- Biomolecular Mass Spectrometry, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Stefan Guenther
- ECCPS Bioinformatics and Deep Sequencing Platform, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Hiroki Matsuda
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Stefan Kubicek
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Johannes Graumann
- Biomolecular Mass Spectrometry, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany.,German Centre for Cardiovascular Research, Berlin, Germany
| | - Yu Hsuan Carol Yang
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Didier Yr Stainier
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| |
Collapse
|
49
|
Zang L, Maddison LA, Chen W. Zebrafish as a Model for Obesity and Diabetes. Front Cell Dev Biol 2018; 6:91. [PMID: 30177968 PMCID: PMC6110173 DOI: 10.3389/fcell.2018.00091] [Citation(s) in RCA: 181] [Impact Index Per Article: 25.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Accepted: 07/25/2018] [Indexed: 12/13/2022] Open
Abstract
Obesity and diabetes now considered global epidemics. The prevalence rates of diabetes are increasing in parallel with the rates of obesity and the strong connection between these two diseases has been coined as “diabesity.” The health risks of overweight or obesity include Type 2 diabetes mellitus (T2DM), coronary heart disease and cancer of numerous organs. Both obesity and diabetes are complex diseases that involve the interaction of genetics and environmental factors. The underlying pathogenesis of obesity and diabetes are not well understood and further research is needed for pharmacological and surgical management. Consequently, the use of animal models of obesity and/or diabetes is important for both improving the understanding of these diseases and to identify and develop effective treatments. Zebrafish is an attractive model system for studying metabolic diseases because of the functional conservation in lipid metabolism, adipose biology, pancreas structure, and glucose homeostasis. It is also suited for identification of novel targets associated with the risk and treatment of obesity and diabetes in humans. In this review, we highlight studies using zebrafish to model metabolic diseases, and discuss the advantages and disadvantages of studying pathologies associated with obesity and diabetes in zebrafish.
Collapse
Affiliation(s)
- Liqing Zang
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN, United States.,Graduate School of Regional Innovation Studies, Mie University, Tsu, Japan
| | - Lisette A Maddison
- Center for Reproductive Biology, Washington State University, Pullman, WA, United States
| | - Wenbiao Chen
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN, United States
| |
Collapse
|
50
|
Matsuda H. Zebrafish as a model for studying functional pancreatic β cells development and regeneration. Dev Growth Differ 2018; 60:393-399. [DOI: 10.1111/dgd.12565] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Revised: 07/06/2018] [Accepted: 07/06/2018] [Indexed: 02/06/2023]
Affiliation(s)
- Hiroki Matsuda
- Department of Developmental Biology and Neurosciences; Graduate School of Life Sciences; Tohoku University; Sendai Japan
- Department of Biomedical Sciences; College of Life Sciences; Ritsumeikan University; Kusatsu Japan
| |
Collapse
|