1
|
Dewan N, Shukla V, Rehni AK, Koronowski KB, Klingbeil KD, Stradecki‐Cohan H, Garrett TJ, Rundek T, Perez‐Pinzon MA, Dave KR. Exposure to recurrent hypoglycemia alters hippocampal metabolism in treated streptozotocin-induced diabetic rats. CNS Neurosci Ther 2020; 26:126-135. [PMID: 31282100 PMCID: PMC6930817 DOI: 10.1111/cns.13186] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2019] [Revised: 05/31/2019] [Accepted: 06/04/2019] [Indexed: 12/13/2022] Open
Abstract
AIMS Exposure to recurrent hypoglycemia (RH) is common in diabetic patients receiving glucose-lowering therapies and is implicated in causing cognitive impairments. Despite the significant effect of RH on hippocampal function, the underlying mechanisms are currently unknown. Our goal was to determine the effect of RH exposure on hippocampal metabolism in treated streptozotocin-diabetic rats. METHODS Hyperglycemia was corrected by insulin pellet implantation. Insulin-treated diabetic (ITD) rats were exposed to mild/moderate RH once a day for 5 consecutive days. RESULTS The effect of RH on hippocampal metabolism revealed 65 significantly altered metabolites in the RH group compared with controls. Several significant differences in metabolite levels belonging to major pathways (eg, Krebs cycle, gluconeogenesis, and amino acid metabolism) were discovered in RH-exposed ITD rats when compared to a control group. Key glycolytic enzymes including hexokinase, phosphofructokinase, and pyruvate kinase were affected by RH exposure. CONCLUSION Our results demonstrate that the exposure to RH leads to metabolomics alterations in the hippocampus of insulin-treated streptozotocin-diabetic rats. Understanding how RH affects hippocampal metabolism may help attenuate the adverse effects of RH on hippocampal functions.
Collapse
Affiliation(s)
- Neelesh Dewan
- Peritz Scheinberg Cerebral Vascular Disease Research LaboratoriesUniversity of Miami School of MedicineMiamiFloridaUSA
- Department of NeurologyUniversity of Miami School of MedicineMiamiFloridaUSA
| | - Vibha Shukla
- Peritz Scheinberg Cerebral Vascular Disease Research LaboratoriesUniversity of Miami School of MedicineMiamiFloridaUSA
- Department of NeurologyUniversity of Miami School of MedicineMiamiFloridaUSA
| | - Ashish K. Rehni
- Peritz Scheinberg Cerebral Vascular Disease Research LaboratoriesUniversity of Miami School of MedicineMiamiFloridaUSA
- Department of NeurologyUniversity of Miami School of MedicineMiamiFloridaUSA
| | - Kevin B. Koronowski
- Peritz Scheinberg Cerebral Vascular Disease Research LaboratoriesUniversity of Miami School of MedicineMiamiFloridaUSA
- Department of NeurologyUniversity of Miami School of MedicineMiamiFloridaUSA
- Neuroscience ProgramUniversity of Miami School of MedicineMiamiFloridaUSA
| | - Kyle D. Klingbeil
- Peritz Scheinberg Cerebral Vascular Disease Research LaboratoriesUniversity of Miami School of MedicineMiamiFloridaUSA
- Department of NeurologyUniversity of Miami School of MedicineMiamiFloridaUSA
| | - Holly Stradecki‐Cohan
- Peritz Scheinberg Cerebral Vascular Disease Research LaboratoriesUniversity of Miami School of MedicineMiamiFloridaUSA
- Department of NeurologyUniversity of Miami School of MedicineMiamiFloridaUSA
- Neuroscience ProgramUniversity of Miami School of MedicineMiamiFloridaUSA
| | - Timothy J. Garrett
- Southeast Center for Integrated Metabolomics, Clinical and Translational Science InstituteUniversity of FloridaGainesvilleFloridaUSA
| | - Tatjana Rundek
- Department of NeurologyUniversity of Miami School of MedicineMiamiFloridaUSA
- Evelyn F. McKnight Brain InstituteUniversity of Miami School of MedicineMiamiFloridaUSA
| | - Miguel A. Perez‐Pinzon
- Peritz Scheinberg Cerebral Vascular Disease Research LaboratoriesUniversity of Miami School of MedicineMiamiFloridaUSA
- Department of NeurologyUniversity of Miami School of MedicineMiamiFloridaUSA
- Neuroscience ProgramUniversity of Miami School of MedicineMiamiFloridaUSA
- Evelyn F. McKnight Brain InstituteUniversity of Miami School of MedicineMiamiFloridaUSA
| | - Kunjan R. Dave
- Peritz Scheinberg Cerebral Vascular Disease Research LaboratoriesUniversity of Miami School of MedicineMiamiFloridaUSA
- Department of NeurologyUniversity of Miami School of MedicineMiamiFloridaUSA
- Neuroscience ProgramUniversity of Miami School of MedicineMiamiFloridaUSA
- Evelyn F. McKnight Brain InstituteUniversity of Miami School of MedicineMiamiFloridaUSA
| |
Collapse
|
2
|
Rothman DL, de Graaf RA, Hyder F, Mason GF, Behar KL, De Feyter HM. In vivo 13 C and 1 H-[ 13 C] MRS studies of neuroenergetics and neurotransmitter cycling, applications to neurological and psychiatric disease and brain cancer. NMR IN BIOMEDICINE 2019; 32:e4172. [PMID: 31478594 DOI: 10.1002/nbm.4172] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 04/30/2019] [Accepted: 05/07/2019] [Indexed: 06/10/2023]
Abstract
In the last 25 years 13 C MRS has been established as the only noninvasive method for measuring glutamate neurotransmission and cell specific neuroenergetics. Although technically and experimentally challenging 13 C MRS has already provided important new information on the relationship between neuroenergetics and neuronal function, the high energy cost of brain function in the resting state and the role of altered neuroenergetics and neurotransmitter cycling in disease. In this paper we review the metabolic and neurotransmitter pathways that can be measured by 13 C MRS and key findings on the linkage between neuroenergetics, neurotransmitter cycling, and brain function. Applications of 13 C MRS to neurological and psychiatric disease as well as brain cancer are reviewed. Recent technological developments that may help to overcome spatial resolution and brain coverage limitations of 13 C MRS are discussed.
Collapse
Affiliation(s)
- Douglas L Rothman
- Departments of Radiology and Biomedical Imaging, Magnetic Resonance Research Center, Yale University School of Medicine, New Haven, Connecticut, USA
- Department of Biomedical Engineering, Magnetic Resonance Research Center, Yale University School of Medicine, New Haven, Connecticut, USA
- Departments of Radiology and Biomedical Imaging, and Biomedical Engineering, Magnetic Resonance Research Center, Yale University School of Medicine, 300 Cedar Street, P.O. Box 208043, New Haven, CT, USA
| | - Robin A de Graaf
- Departments of Radiology and Biomedical Imaging, Magnetic Resonance Research Center, Yale University School of Medicine, New Haven, Connecticut, USA
- Department of Biomedical Engineering, Magnetic Resonance Research Center, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Fahmeed Hyder
- Departments of Radiology and Biomedical Imaging, Magnetic Resonance Research Center, Yale University School of Medicine, New Haven, Connecticut, USA
- Department of Biomedical Engineering, Magnetic Resonance Research Center, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Graeme F Mason
- Departments of Radiology and Biomedical Imaging, Magnetic Resonance Research Center, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Kevin L Behar
- Department of Psychiatry, Magnetic Resonance Research Center, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Henk M De Feyter
- Departments of Radiology and Biomedical Imaging, Magnetic Resonance Research Center, Yale University School of Medicine, New Haven, Connecticut, USA
| |
Collapse
|
3
|
Lindberg D, Ho AMC, Peyton L, Choi DS. Chronic Ethanol Exposure Disrupts Lactate and Glucose Homeostasis and Induces Dysfunction of the Astrocyte-Neuron Lactate Shuttle in the Brain. Alcohol Clin Exp Res 2019; 43:1838-1847. [PMID: 31237693 PMCID: PMC6722005 DOI: 10.1111/acer.14137] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Accepted: 06/14/2019] [Indexed: 12/31/2022]
Abstract
BACKGROUND Impairment of monocarboxylate transporter (MCT)-dependent astrocyte-neuron lactate transfer disrupts long-term memory and erases drug-associated memories in mice. However, few studies have examined how drugs of abuse alter astrocyte-neuron lactate transfer in neurocircuits related to addiction. This is particularly pertinent for ethanol (EtOH), which has been demonstrated to impair central nervious system (CNS) glucose uptake and significantly alter peripheral levels of glucose, lactate, acetate, and ketones. METHODS We subjected C57BL/6J mice to a chronic intermittent EtOH (CIE) exposure paradigm to investigate how chronic EtOH exposure alters the concentration of glucose and lactate within the serum and CNS during withdrawal. Next, we determine how chronic injections of lactate (1 g/kg, twice daily for 2 weeks) influence central and peripheral glucose and lactate concentrations. Finally, we determine how CIE and chronic lactate injection affect astrocyte-neuron lactate transfer by analyzing the expression of MCTs. RESULTS Our results show that CIE induces lasting changes in CNS glucose and lactate concentrations, accompanied by increased expression of MCTs. Interestingly, although chronic lactate injection mimics the effect of EtOH on CNS metabolites, chronic lactate injection is not associated with increased expression of MCTs. CONCLUSION CIE increases CNS concentrations of glucose and lactate and augments the expression of MCTs. Although we found that chronic lactate injection mimics EtOH-induced increases in CNS lactate and glucose, lactate failed to alter the expression of MCTs. This suggests that although lactate may influence the homeostasis of bioenergetic molecules in the CNS, EtOH-associated increases in lactate are not responsible for increased MCT expression.
Collapse
Affiliation(s)
- Daniel Lindberg
- Mayo Clinic MD/PhD Program, Mayo Clinic School of Medicine, Mayo Clinic, Rochester, MN, 55905
- Neuroscience Program, Mayo Clinic College of Medicine, Rochester, Minnesota, 55905
| | - Ada Man Choi Ho
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic School of Medicine, Rochester, MN, 55905
| | - Lee Peyton
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic School of Medicine, Rochester, MN, 55905
| | - Doo-Sup Choi
- Neuroscience Program, Mayo Clinic College of Medicine, Rochester, Minnesota, 55905
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic School of Medicine, Rochester, MN, 55905
- Department of Psychiatry and Psychology, Mayo Clinic College of Medicine, Rochester, Minnesota, 55905
| |
Collapse
|
4
|
Shah M, Addison A, Wang P, Zhu W, Chan O. Recurrent glucose deprivation leads to the preferential use of lactate by neurons in the ventromedial hypothalamus. Am J Physiol Endocrinol Metab 2019; 316:E948-E955. [PMID: 30888861 PMCID: PMC6580165 DOI: 10.1152/ajpendo.00468.2018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Increased GABAergic output in the ventromedial hypothalamus (VMH) contributes to counterregulatory failure in recurrently hypoglycemic (RH) rats, and lactate, an alternate fuel source in the brain, contributes to this phenomenon. The current study assessed whether recurring bouts of glucose deprivation enhanced neuronal lactate uptake and, if so, whether this influenced γ-aminobutyric acid (GABA) output and the counterregulatory responses. Glucose deprivation was induced using 5-thioglucose (5TG). Control rats received an infusion of artificial extracellular fluid. These groups were compared with RH animals. Subsequently, the rats underwent a hypoglycemic clamp with microdialysis. To test whether 5TG affected neuronal lactate utilization, a subgroup of 5TG-treated rats was microinjected with a lactate transporter inhibitor [cyano-4-hydroxycinnamate (4CIN)] just before the start of the clamp. Both RH and 5TG raised VMH GABA levels, and this was associated with impaired counterregulatory responses. 4CIN reduced VMH GABA levels and restored the hormone responses in the 5TG group. We then evaluated [14C]lactate uptake in hypothalamic neuronal cultures. Recurring exposure to low glucose increased monocarboxylate transporter-2 mRNA expression and augmented lactate uptake. Taken together, our data suggest that glucose deprivation, per se, enhances lactate utilization in hypothalamic neurons, and this may contribute to suppression of the counterregulatory responses to hypoglycemia.
Collapse
Affiliation(s)
- Maitreyee Shah
- Section of Endocrinology, Department of Internal Medicine, Yale School of Medicine , New Haven, Connecticut
| | - Augustina Addison
- Section of Endocrinology, Department of Internal Medicine, Yale School of Medicine , New Haven, Connecticut
| | - Peili Wang
- Section of Endocrinology, Department of Internal Medicine, Yale School of Medicine , New Haven, Connecticut
| | - Wanling Zhu
- Section of Endocrinology, Department of Internal Medicine, Yale School of Medicine , New Haven, Connecticut
| | - Owen Chan
- Division of Endocrinology, Metabolism and Diabetes, Department of Internal Medicine, University of Utah School of Medicine , Salt Lake City, Utah
| |
Collapse
|
5
|
Languren G, Montiel T, Ramírez-Lugo L, Balderas I, Sánchez-Chávez G, Sotres-Bayón F, Bermúdez-Rattoni F, Massieu L. Recurrent moderate hypoglycemia exacerbates oxidative damage and neuronal death leading to cognitive dysfunction after the hypoglycemic coma. J Cereb Blood Flow Metab 2019; 39:808-821. [PMID: 29047291 PMCID: PMC6501509 DOI: 10.1177/0271678x17733640] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Moderate recurrent hypoglycemia (RH) is frequent in Type 1 diabetes mellitus (TIDM) patients who are under intensive insulin therapy increasing the risk for severe hypoglycemia (SH). The consequences of RH are not well understood and its repercussions on neuronal damage and cognitive function after a subsequent episode of SH have been poorly investigated. In the current study, we have addressed this question and observed that previous RH during seven consecutive days exacerbated oxidative damage and neuronal death induced by a subsequent episode of SH accompanied by a short period of coma, in the parietal cortex, the striatum and mainly in the hippocampus. These changes correlated with a severe decrease in reduced glutathione content (GSH), and a significant spatial and contextual memory deficit. Administration of the antioxidant, N-acetyl-L-cysteine, (NAC) reduced neuronal death and prevented cognitive impairment. These results demonstrate that previous RH enhances brain vulnerability to acute hypoglycemia and suggests that this effect is mediated by the decline in the antioxidant defense and oxidative damage. The present results highlight the importance of an adequate control of moderate hypoglycemic episodes in TIDM.
Collapse
Affiliation(s)
- Gabriela Languren
- División de Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México (UNAM), Ciudad Universitaria, Ciudad de México, México
| | - Teresa Montiel
- División de Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México (UNAM), Ciudad Universitaria, Ciudad de México, México
| | - Leticia Ramírez-Lugo
- División de Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México (UNAM), Ciudad Universitaria, Ciudad de México, México
| | - Israela Balderas
- División de Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México (UNAM), Ciudad Universitaria, Ciudad de México, México
| | - Gustavo Sánchez-Chávez
- División de Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México (UNAM), Ciudad Universitaria, Ciudad de México, México
| | - Francisco Sotres-Bayón
- División de Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México (UNAM), Ciudad Universitaria, Ciudad de México, México
| | - Federico Bermúdez-Rattoni
- División de Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México (UNAM), Ciudad Universitaria, Ciudad de México, México
| | - Lourdes Massieu
- División de Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México (UNAM), Ciudad Universitaria, Ciudad de México, México
| |
Collapse
|
6
|
Rehni AK, Dave KR. Impact of Hypoglycemia on Brain Metabolism During Diabetes. Mol Neurobiol 2018; 55:9075-9088. [PMID: 29637442 PMCID: PMC6179939 DOI: 10.1007/s12035-018-1044-6] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2018] [Accepted: 03/27/2018] [Indexed: 12/24/2022]
Abstract
Diabetes is a metabolic disease afflicting millions of people worldwide. A substantial fraction of world's total healthcare expenditure is spent on treating diabetes. Hypoglycemia is a serious consequence of anti-diabetic drug therapy, because it induces metabolic alterations in the brain. Metabolic alterations are one of the central mechanisms mediating hypoglycemia-related functional changes in the brain. Acute, chronic, and/or recurrent hypoglycemia modulate multiple metabolic pathways, and exposure to hypoglycemia increases consumption of alternate respiratory substrates such as ketone bodies, glycogen, and monocarboxylates in the brain. The aim of this review is to discuss hypoglycemia-induced metabolic alterations in the brain in glucose counterregulation, uptake, utilization and metabolism, cellular respiration, amino acid and lipid metabolism, and the significance of other sources of energy. The present review summarizes information on hypoglycemia-induced metabolic changes in the brain of diabetic and non-diabetic subjects and the manner in which they may affect brain function.
Collapse
Affiliation(s)
- Ashish K Rehni
- Cerebral Vascular Disease Research Laboratories, University of Miami Miller School of Medicine, Miami, FL, 33136, USA
- Department of Neurology, University of Miami Miller School of Medicine, 1420 NW 9th Ave, NRB/203E, Miami, FL, 33136, USA
| | - Kunjan R Dave
- Cerebral Vascular Disease Research Laboratories, University of Miami Miller School of Medicine, Miami, FL, 33136, USA.
- Department of Neurology, University of Miami Miller School of Medicine, 1420 NW 9th Ave, NRB/203E, Miami, FL, 33136, USA.
- Neuroscience Program, University of Miami Miller School of Medicine, Miami, FL, 33136, USA.
| |
Collapse
|
7
|
McNeilly AD, McCrimmon RJ. Impaired hypoglycaemia awareness in type 1 diabetes: lessons from the lab. Diabetologia 2018; 61:743-750. [PMID: 29417183 PMCID: PMC6448989 DOI: 10.1007/s00125-018-4548-8] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2017] [Accepted: 10/20/2017] [Indexed: 01/28/2023]
Abstract
Hypoglycaemia remains the most common metabolic adverse effect of insulin and sulfonylurea therapy in diabetes. Repeated exposure to hypoglycaemia leads to a change in the symptom complex that characterises hypoglycaemia, culminating in a clinical phenomenon referred to as impaired awareness of hypoglycaemia (IAH). IAH effects approximately 20-25% of people with type 1 diabetes and increases the risk of severe hypoglycaemia. This review focuses on the mechanisms that are responsible for the much higher frequency of hypoglycaemia in people with diabetes compared with those without, and subsequently how repeated exposure to hypoglycaemia leads to the development of IAH. The mechanisms that result in IAH development are incompletely understood and likely to reflect changes in multiple aspects of the counterregulatory response to hypoglycaemia, from adaptations within glucose and non-glucose-sensing cells to changes in the integrative networks that govern glucose homeostasis. Finally, we propose that the general process that incorporates many of these changes and results in IAH following recurrent hypoglycaemia is a form of adaptive memory called 'habituation'.
Collapse
Affiliation(s)
- Alison D McNeilly
- Division of Molecular and Clinical Medicine, Mailbox 12, Level 5, Ninewells Hospital and Medical School, University of Dundee, Dundee, DD1 9SY, UK
| | - Rory J McCrimmon
- Division of Molecular and Clinical Medicine, Mailbox 12, Level 5, Ninewells Hospital and Medical School, University of Dundee, Dundee, DD1 9SY, UK.
| |
Collapse
|
8
|
Rehni AK, Shukla V, Perez-Pinzon MA, Dave KR. Acidosis mediates recurrent hypoglycemia-induced increase in ischemic brain injury in treated diabetic rats. Neuropharmacology 2018; 135:192-201. [PMID: 29551689 DOI: 10.1016/j.neuropharm.2018.03.016] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Revised: 03/12/2018] [Accepted: 03/14/2018] [Indexed: 12/18/2022]
Abstract
OBJECTIVES Cerebral ischemia is a serious possible manifestation of diabetic vascular disease. Recurrent hypoglycemia (RH) enhances ischemic brain injury in insulin-treated diabetic (ITD) rats. In the present study, we determined the role of ischemic acidosis in enhanced ischemic brain damage in RH-exposed ITD rats. METHODS Diabetic rats were treated with insulin and mild/moderate RH was induced for 5 days. Three sets of experiments were performed. The first set evaluated the effects of RH exposure on global cerebral ischemia-induced acidosis in ITD rats. The second set evaluated the effect of an alkalizing agent (Tris-(hydroxymethyl)-aminomethane: THAM) on ischemic acidosis-induced brain injury in RH-exposed ITD rats. The third experiment evaluated the effect of the glucose transporter (GLUT) inhibitor on ischemic acidosis-induced brain injury in RH-exposed ITD rats. Hippocampal pH and lactate were measured during ischemia and early reperfusion for all three experiments. Neuronal survival in Cornu Ammonis 1 (CA1) hippocampus served as a measure of ischemic brain injury. FINDINGS Prior RH exposure increases lactate concentration and decreases pH during ischemia and early reperfusion when compared to controls. THAM and GLUT inhibitor treatments attenuated RH-induced increase in ischemic acidosis. GLUT inhibitor treatment reduced the RH-induced increase in lactate levels. Both THAM and GLUT inhibitor treatments significantly decreased ischemic damage in RH-exposed ITD rats. CONCLUSIONS Ischemia causes increased acidosis in RH-exposed ITD rats via a GLUT-sensitive mechanism. Exploring downstream pathways may help understand mechanisms by which prior exposure to RH increases cerebral ischemic damage.
Collapse
Affiliation(s)
- Ashish K Rehni
- Cerebral Vascular Disease Research Laboratories, University of Miami Miller School of Medicine, Miami, FL, 33136, USA; Department of Neurology, University of Miami Miller School of Medicine, Miami, FL, 33136, USA
| | - Vibha Shukla
- Cerebral Vascular Disease Research Laboratories, University of Miami Miller School of Medicine, Miami, FL, 33136, USA; Department of Neurology, University of Miami Miller School of Medicine, Miami, FL, 33136, USA
| | - Miguel A Perez-Pinzon
- Cerebral Vascular Disease Research Laboratories, University of Miami Miller School of Medicine, Miami, FL, 33136, USA; Department of Neurology, University of Miami Miller School of Medicine, Miami, FL, 33136, USA; Neuroscience Program, University of Miami Miller School of Medicine, Miami, FL, 33136, USA
| | - Kunjan R Dave
- Cerebral Vascular Disease Research Laboratories, University of Miami Miller School of Medicine, Miami, FL, 33136, USA; Department of Neurology, University of Miami Miller School of Medicine, Miami, FL, 33136, USA; Neuroscience Program, University of Miami Miller School of Medicine, Miami, FL, 33136, USA.
| |
Collapse
|
9
|
Hsieh YJ, Wu LC, Ke CC, Chang CW, Kuo JW, Huang WS, Chen FD, Yang BH, Tai HT, Chen SCJ, Liu RS. Effects of the Acute and Chronic Ethanol Intoxication on Acetate Metabolism and Kinetics in the Rat Brain. Alcohol Clin Exp Res 2017; 42:329-337. [PMID: 29205407 DOI: 10.1111/acer.13573] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Accepted: 11/20/2017] [Indexed: 10/18/2022]
Abstract
BACKGROUND Ethanol (EtOH) intoxication inhibits glucose transport and decreases overall brain glucose metabolism; however, humans with long-term EtOH consumption were found to have a significant increase in [1-11 C]-acetate uptake in the brain. The relationship between the cause and effect of [1-11 C]-acetate kinetics and acute/chronic EtOH intoxication, however, is still unclear. METHODS [1-11 C]-acetate positron emission tomography (PET) with dynamic measurement of K1 and k2 rate constants was used to investigate the changes in acetate metabolism in different brain regions of rats with acute or chronic EtOH intoxication. RESULTS PET imaging demonstrated decreased [1-11 C]-acetate uptake in rat brain with acute EtOH intoxication, but this increased with chronic EtOH intoxication. Tracer uptake rate constant K1 and clearance rate constant k2 were decreased in acutely intoxicated rats. No significant change was noted in K1 and k2 in chronic EtOH intoxication, although 6 of 7 brain regions showed slightly higher k2 than baseline. These results indicate that acute EtOH intoxication accelerated acetate transport and metabolism in the rat brain, whereas chronic EtOH intoxication status showed no significant effect. CONCLUSIONS In vivo PET study confirmed the modulatory role of EtOH, administered acutely or chronically, in [1-11 C]-acetate kinetics and metabolism in the rat brain. Acute EtOH intoxication may inhibit the transport and metabolism of acetate in the brain, whereas chronic EtOH exposure may lead to the adaptation of the rat brain to EtOH in acetate utilization. [1-11 C]-acetate PET imaging is a feasible approach to study the effect of EtOH on acetate metabolism in rat brain.
Collapse
Affiliation(s)
- Ya-Ju Hsieh
- Department of Medical Imaging and Radiological Sciences, Kaohsiung Medical University, Kaohsiung, Taiwan.,Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Liang-Chih Wu
- National PET/Cyclotron Center, Department of Nuclear Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Chien-Chih Ke
- Biomedical Imaging Research Center, National Yang-Ming University, Taipei, Taiwan.,Molecular and Genetic Imaging Core/Taiwan Mouse Clinic, National Comprehensive Mouse Phenotyping and Drug Testing Center, Taipei, Taiwan
| | - Chi-Wei Chang
- National PET/Cyclotron Center, Department of Nuclear Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Jung-Wen Kuo
- Biomedical Imaging Research Center, National Yang-Ming University, Taipei, Taiwan.,Molecular and Genetic Imaging Core/Taiwan Mouse Clinic, National Comprehensive Mouse Phenotyping and Drug Testing Center, Taipei, Taiwan
| | - Wen-Sheng Huang
- National PET/Cyclotron Center, Department of Nuclear Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Fu-Du Chen
- Biomedical Imaging Research Center, National Yang-Ming University, Taipei, Taiwan.,Department of Biomedical Imaging and Radiological Sciences, National Yang-Ming University, Taipei, Taiwan
| | - Bang-Hung Yang
- National PET/Cyclotron Center, Department of Nuclear Medicine, Taipei Veterans General Hospital, Taipei, Taiwan.,Department of Biomedical Imaging and Radiological Sciences, National Yang-Ming University, Taipei, Taiwan
| | - Hsiao-Ting Tai
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Sharon Chia-Ju Chen
- Department of Medical Imaging and Radiological Sciences, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Ren-Shyan Liu
- National PET/Cyclotron Center, Department of Nuclear Medicine, Taipei Veterans General Hospital, Taipei, Taiwan.,Biomedical Imaging Research Center, National Yang-Ming University, Taipei, Taiwan.,Molecular and Genetic Imaging Core/Taiwan Mouse Clinic, National Comprehensive Mouse Phenotyping and Drug Testing Center, Taipei, Taiwan.,Department of Biomedical Imaging and Radiological Sciences, National Yang-Ming University, Taipei, Taiwan.,Institute of Clinical Medicine, National Yang-Ming University, Taipei, Taiwan.,Biophotonic and Molecular Imaging Research Center, National Yang-Ming University, Taipei, Taiwan.,Department of Nuclear Medicine, Cheng-Hsin General Hospital, Taipei, Taiwan
| |
Collapse
|
10
|
Rooijackers HMM, Wiegers EC, Tack CJ, van der Graaf M, de Galan BE. Brain glucose metabolism during hypoglycemia in type 1 diabetes: insights from functional and metabolic neuroimaging studies. Cell Mol Life Sci 2016; 73:705-22. [PMID: 26521082 PMCID: PMC4735263 DOI: 10.1007/s00018-015-2079-8] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2015] [Revised: 10/16/2015] [Accepted: 10/20/2015] [Indexed: 12/30/2022]
Abstract
Hypoglycemia is the most frequent complication of insulin therapy in patients with type 1 diabetes. Since the brain is reliant on circulating glucose as its main source of energy, hypoglycemia poses a threat for normal brain function. Paradoxically, although hypoglycemia commonly induces immediate decline in cognitive function, long-lasting changes in brain structure and cognitive function are uncommon in patients with type 1 diabetes. In fact, recurrent hypoglycemia initiates a process of habituation that suppresses hormonal responses to and impairs awareness of subsequent hypoglycemia, which has been attributed to adaptations in the brain. These observations sparked great scientific interest into the brain's handling of glucose during (recurrent) hypoglycemia. Various neuroimaging techniques have been employed to study brain (glucose) metabolism, including PET, fMRI, MRS and ASL. This review discusses what is currently known about cerebral metabolism during hypoglycemia, and how findings obtained by functional and metabolic neuroimaging techniques contributed to this knowledge.
Collapse
Affiliation(s)
- Hanne M M Rooijackers
- Department of Internal Medicine 463, Radboud University Medical Center, PO Box 9101, 6500 HB, Nijmegen, The Netherlands.
| | - Evita C Wiegers
- Department of Radiology and Nuclear Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Cees J Tack
- Department of Internal Medicine 463, Radboud University Medical Center, PO Box 9101, 6500 HB, Nijmegen, The Netherlands
| | - Marinette van der Graaf
- Department of Radiology and Nuclear Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
- Department of Pediatrics, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Bastiaan E de Galan
- Department of Internal Medicine 463, Radboud University Medical Center, PO Box 9101, 6500 HB, Nijmegen, The Netherlands
| |
Collapse
|
11
|
Rao R, Ennis K, Mitchell EP, Tran PV, Gewirtz JC. Recurrent Moderate Hypoglycemia Suppresses Brain-Derived Neurotrophic Factor Expression in the Prefrontal Cortex and Impairs Sensorimotor Gating in the Posthypoglycemic Period in Young Rats. Dev Neurosci 2016; 38:74-82. [PMID: 26820887 DOI: 10.1159/000442878] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Accepted: 11/29/2015] [Indexed: 01/04/2023] Open
Abstract
Recurrent hypoglycemia is common in infants and children. In developing rat models, recurrent moderate hypoglycemia leads to neuronal injury in the medial prefrontal cortex. To understand the effects beyond neuronal injury, 3-week-old male rats were subjected to 5 episodes of moderate hypoglycemia (blood glucose concentration, approx. 30 mg/dl for 90 min) once daily from postnatal day 24 to 28. Neuronal injury was determined using Fluoro-Jade B histochemistry on postnatal day 29. The effects on brain-derived neurotrophic factor (BDNF) and its cognate receptor, tyrosine kinase receptor B (TrkB) expression, which is critical for prefrontal cortex development, were determined on postnatal day 29 and at adulthood. The effects on prefrontal cortex-mediated function were determined by assessing the prepulse inhibition of the acoustic startle reflex on postnatal day 29 and 2 weeks later, and by testing for fear-potentiated startle at adulthood. Recurrent hypoglycemia led to neuronal injury confined primarily to the medial prefrontal cortex. BDNF/TrkB expression in the prefrontal cortex was suppressed on postnatal day 29 and was accompanied by lower prepulse inhibition, suggesting impaired sensorimotor gating. Following the cessation of recurrent hypoglycemia, the prepulse inhibition had recovered at 2 weeks. BDNF/TrkB expression in the prefrontal cortex had normalized and fear-potentiated startle was intact at adulthood. Recurrent moderate hypoglycemia during development has significant adverse effects on the prefrontal cortex in the posthypoglycemic period.
Collapse
|
12
|
Fan X, Chan O, Ding Y, Zhu W, Mastaitis J, Sherwin R. Reduction in SGLT1 mRNA Expression in the Ventromedial Hypothalamus Improves the Counterregulatory Responses to Hypoglycemia in Recurrently Hypoglycemic and Diabetic Rats. Diabetes 2015; 64:3564-72. [PMID: 26130763 PMCID: PMC4587643 DOI: 10.2337/db15-0022] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2015] [Accepted: 06/23/2015] [Indexed: 12/11/2022]
Abstract
The objective of this study was to determine whether the sodium-glucose transporter SGLT1 in the ventromedial hypothalamus (VMH) plays a role in glucose sensing and in regulating the counterregulatory response to hypoglycemia, and if so, whether knockdown of in the VMH can improve counterregulatory responses to hypoglycemia in diabetic rats or rats exposed to recurrent bouts of hypoglycemia (RH). Normal Sprague-Dawley rats as well as RH or streptozotocin (STZ)-diabetic rats received bilateral VMH microinjections of an adenoassociated viral vector containing either the SGLT1 short hairpin RNA (shRNA) or a scrambled RNA sequence. Subsequently, these rats underwent a hypoglycemic clamp to assess hormone responses. In a subgroup of rats, glucose kinetics was determined using tritiated glucose. The shRNA reduced VMH SGLT1 expression by 53% in nondiabetic rats, and this augmented glucagon and epinephrine responses and hepatic glucose production during hypoglycemia. Similarly, SGLT1 knockdown improved the glucagon and epinephrine responses in RH rats and restored the impaired epinephrine response to hypoglycemia in STZ-diabetic animals. These findings suggest that SGLT1 in the VMH plays a significant role in the detection and activation of counterregulatory responses to hypoglycemia. Inhibition of SGLT1 may offer a potential therapeutic target to diminish the risk of hypoglycemia in diabetes.
Collapse
Affiliation(s)
- Xiaoning Fan
- Department of Internal Medicine, Section of Endocrinology, Yale School of Medicine, New Haven, CT
| | - Owen Chan
- Department of Internal Medicine, Section of Endocrinology, Yale School of Medicine, New Haven, CT
| | - Yuyan Ding
- Department of Internal Medicine, Section of Endocrinology, Yale School of Medicine, New Haven, CT
| | - Wanling Zhu
- Department of Internal Medicine, Section of Endocrinology, Yale School of Medicine, New Haven, CT
| | - Jason Mastaitis
- Department of Internal Medicine, Section of Endocrinology, Yale School of Medicine, New Haven, CT
| | - Robert Sherwin
- Department of Internal Medicine, Section of Endocrinology, Yale School of Medicine, New Haven, CT
| |
Collapse
|
13
|
Rana P, Gupta M, Khan AR, Hemanth Kumar BS, Roy R, Khushu S. NMR based metabolomics reveals acute hippocampal metabolic fluctuations during cranial irradiation in murine model. Neurochem Int 2014; 74:1-7. [PMID: 24787771 DOI: 10.1016/j.neuint.2014.04.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2014] [Revised: 04/15/2014] [Accepted: 04/21/2014] [Indexed: 01/28/2023]
Abstract
Cranial irradiation is widely used as a treatment modality or prophylactic treatment in cancer patients, but it is frequently related to neurocognitive impairment in cancer survivors. Though most of radiation-induced changes occur during early and late delayed phase of radiation sickness, recent reports have supported the evidence of impaired neurogenesis within 24-48 h of radiation exposure that may implicate changes in acute phase as well. Inspection of these acute changes could be considered important as they may have long lasting effect on cognitive development and functions. In the present study, (1)H NMR spectroscopy based metabolomic approach was used to obtain comprehensive information of hippocampus metabolic physiology during acute phase of radiation sickness in a mouse model for single dose 8 Gy cranial irradiation. The analysis demonstrated reduced metabolic activity in irradiated animals compared to controls, typically evident in citric acid cycle intermediates, glutamine/glutamate and ketone bodies metabolism thus providing strong indication that the hippocampus is metabolically responsive to radiation exposure. The data suggested reduced glucose utilization, altered intermediary and neurotransmitter metabolism in hippocampus tissue extract. To the best of our knowledge this is the first metabolomic study to document cranial irradiation induced acute metabolic changes using in vitro(1)H NMR spectroscopy.
Collapse
Affiliation(s)
- Poonam Rana
- NMR Research Centre, Institute of Nuclear Medicine and Allied Sciences, Delhi, India
| | - Mamta Gupta
- NMR Research Centre, Institute of Nuclear Medicine and Allied Sciences, Delhi, India
| | - Ahmad Raza Khan
- NMR Research Centre, Institute of Nuclear Medicine and Allied Sciences, Delhi, India
| | - B S Hemanth Kumar
- NMR Research Centre, Institute of Nuclear Medicine and Allied Sciences, Delhi, India
| | - Raja Roy
- Centre for Biomedical Magnetic Resonance (CBMR), SGPGIMS Campus, Lucknow, Uttar Pradesh, India
| | - Subash Khushu
- NMR Research Centre, Institute of Nuclear Medicine and Allied Sciences, Delhi, India.
| |
Collapse
|
14
|
Abstract
Hypoglycemia occurs in diabetic patients as a consequence of treatment with hypoglycemic agents, in insulinoma patients as a result of excessive insulin production, and in infants as a result of abnormal regulation of metabolism. Profound hypoglycemia can cause structural and functional disturbances in both the central (CNS) and the peripheral nervous system (PNS). The brain is damaged by a short and severe episode of hypoglycemia, whereas PNS pathology appears after a mild and prolonged episode. In the CNS, damaged mitochondria, elevated intracellular Ca2(+) level, released cytochrome c to the cytosol, extensive production of superoxide, increased caspase-3 activity, release of aspartate and glutamate from presynaptic terminals, and altered biosynthetic machinery can lead to neuronal cell death in the brain. Considering the PNS, chronic hypoglycemia is associated with delayed motor and sensory conduction velocities in peripheral nerves. With respect to pathology, hypoglycemic neuropathy in the PNS is characterized by Wallerian-like axonal degeneration that starts at the nerve terminal and progresses to a more proximal part of the axon, and motor axons to the muscles may be more severely damaged than sensory axons. Since excitatory neurotransmitters primarily involve the neuron in the CNS, this "dying back" pattern of axonal damage in the PNS may involve mechanisms other than excitotoxicity.
Collapse
Affiliation(s)
- Simin Mohseni
- Department of Clinical and Experimental Medicine, Division of Cell Biology, Faculty of Health Sciences, Linköping University, Linköping, Sweden.
| |
Collapse
|
15
|
Chan O, Paranjape SA, Horblitt A, Zhu W, Sherwin RS. Lactate-induced release of GABA in the ventromedial hypothalamus contributes to counterregulatory failure in recurrent hypoglycemia and diabetes. Diabetes 2013; 62:4239-46. [PMID: 23939392 PMCID: PMC3837027 DOI: 10.2337/db13-0770] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Suppression of GABAergic neurotransmission in the ventromedial hypothalamus (VMH) is crucial for full activation of counterregulatory responses to hypoglycemia, and increased γ-aminobutyric acid (GABA) output contributes to counterregulatory failure in recurrently hypoglycemic (RH) and diabetic rats. The goal of this study was to establish whether lactate contributes to raising VMH GABA levels in these two conditions. We used microdialysis to deliver artificial extracellular fluid or L-lactate into the VMH and sample for GABA. We then microinjected a GABAA receptor antagonist, an inhibitor of lactate transport (4CIN), or an inhibitor of lactate dehydrogenase, oxamate (OX), into the VMH prior to inducing hypoglycemia. To assess whether lactate contributes to raising GABA in RH and diabetes, we injected 4CIN or OX into the VMH of RH and diabetic rats before inducing hypoglycemia. L-lactate raised VMH GABA levels and suppressed counterregulatory responses to hypoglycemia. While blocking GABAA receptors did not prevent the lactate-induced rise in GABA, inhibition of lactate transport or utilization did, despite the presence of lactate. All three treatments restored the counterregulatory responses, suggesting that lactate suppresses these responses by enhancing GABA release. Both RH and diabetic rats had higher baseline GABA levels and were unable to reduce GABA levels sufficiently to fully activate counterregulatory responses during hypoglycemia. 4CIN or OX lowered VMH GABA levels in both RH and diabetic rats and restored the counterregulatory responses. Lactate likely contributes to counterregulatory failure in RH and diabetes by increasing VMH GABA levels.
Collapse
|
16
|
Chan O, Sherwin R. Influence of VMH fuel sensing on hypoglycemic responses. Trends Endocrinol Metab 2013; 24:616-24. [PMID: 24063974 PMCID: PMC3909530 DOI: 10.1016/j.tem.2013.08.005] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2013] [Revised: 08/20/2013] [Accepted: 08/27/2013] [Indexed: 12/12/2022]
Abstract
Hypoglycemia produces complex neural and hormonal responses that restore glucose levels to normal. Glucose, metabolic substrates and their transporters, neuropeptides and neurotransmitters alter the firing rate of glucose-sensing neurons in the ventromedial hypothalamus (VMH); these monitor energy status and regulate the release of neurotransmitters that instigate a suitable counter-regulatory response. Under normal physiological conditions, these mechanisms maintain blood glucose concentrations within narrow margins. However, antecedent hypoglycemia and diabetes can lead to adaptations within the brain that impair counter-regulatory responses. Clearly, the mechanisms employed to detect and regulate the response to hypoglycemia, and the pathophysiology of defective counter-regulation in diabetes, are complex and need to be elucidated to permit the development of therapies that prevent or reduce the risk of hypoglycemia.
Collapse
Affiliation(s)
- Owen Chan
- Yale University School of Medicine, Department of Internal Medicine - Section of Endocrinology, New Haven, CT, 06520 U.S.A
| | - Robert Sherwin
- Yale University School of Medicine, Department of Internal Medicine - Section of Endocrinology, New Haven, CT, 06520 U.S.A
| |
Collapse
|
17
|
Wang J, Du H, Ma X, Pittman B, Castracane L, Li TK, Behar KL, Mason GF. Metabolic products of [2-(13) C]ethanol in the rat brain after chronic ethanol exposure. J Neurochem 2013; 127:353-64. [PMID: 24033360 PMCID: PMC6145094 DOI: 10.1111/jnc.12405] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2013] [Revised: 08/04/2013] [Accepted: 08/06/2013] [Indexed: 01/05/2023]
Abstract
Most ingested ethanol is metabolized in the liver to acetaldehyde and then to acetate, which can be oxidized by the brain. This project assessed whether chronic exposure to alcohol can increase cerebral oxidation of acetate. Through metabolism, acetate may contribute to long-term adaptation to drinking. Two groups of adult male Sprague-Dawley rats were studied, one treated with ethanol vapor and the other given room air. After 3 weeks the rats received an intravenous infusion of [2-(13) C]ethanol via a lateral tail vein for 2 h. As the liver converts ethanol to [2-(13) C]acetate, some of the acetate enters the brain. Through oxidation the (13) C is incorporated into the metabolic intermediate α-ketoglutarate, which is converted to glutamate (Glu), glutamine (Gln), and GABA. These were observed by magnetic resonance spectroscopy and found to be (13) C-labeled primarily through the consumption of ethanol-derived acetate. Brain Gln, Glu, and, GABA (13) C enrichments, normalized to (13) C-acetate enrichments in the plasma, were higher in the chronically treated rats than in the ethanol-naïve rats, suggesting increased cerebral uptake and oxidation of circulating acetate. Chronic ethanol exposure increased incorporation of systemically derived acetate into brain Gln, Glu, and GABA, key neurochemicals linked to brain energy metabolism and neurotransmission. The liver converts ethanol to acetate, which may contribute to long-term adaptation to drinking. Astroglia oxidize acetate and generate neurochemicals, while neurons and glia may also oxidize ethanol. When (13) C-ethanol is administered intravenously, (13) C-glutamine, glutamate, and GABA, normalized to (13) C-acetate, were higher in chronic ethanol-exposed rats than in control rats, suggesting that ethanol exposure increases cerebral oxidation of circulating acetate.
Collapse
Affiliation(s)
- Jie Wang
- Wuhan Institute of Physics and Mathematics, Chinese Academy of Science, Wuhan, Hubei, China, 430071
- Department of Diagnostic Radiology
| | - Hongying Du
- Department of Diagnostic Radiology
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, P. R.China, 430070
| | | | - Brian Pittman
- Department of Psychiatry, School of Medicine, Yale University, New Haven, Connecticut, USA, 06511
| | | | - Ting-Kai Li
- Department of Psychiatry and Behavioral Sciences, Duke University School of Medicine, Durham, NC, USA, 27710
| | - Kevin L. Behar
- Department of Psychiatry, School of Medicine, Yale University, New Haven, Connecticut, USA, 06511
| | - Graeme F. Mason
- Department of Diagnostic Radiology
- Department of Psychiatry, School of Medicine, Yale University, New Haven, Connecticut, USA, 06511
| |
Collapse
|
18
|
Qin L, Crews FT. Focal thalamic degeneration from ethanol and thiamine deficiency is associated with neuroimmune gene induction, microglial activation, and lack of monocarboxylic acid transporters. Alcohol Clin Exp Res 2013; 38:657-71. [PMID: 24117525 PMCID: PMC3959259 DOI: 10.1111/acer.12272] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2013] [Accepted: 08/12/2013] [Indexed: 12/19/2022]
Abstract
Background Wernicke's encephalopathy-Korsakoff syndrome (WE-KS) is common in alcoholics, caused by thiamine deficiency (TD; vitamin B1) and associated with lesions to the thalamus (THAL). Although TD alone can cause WE, the high incidence in alcoholism suggests that TD and ethanol (EtOH) interact. Methods Mice in control, TD, or EtOH groups alone or combined were studied after 5 or 10 days of treatment. THAL and entorhinal cortex (ENT) histochemistry and mRNA were assessed. Results Combined EtOH-TD treatment for 5 days (EtOH-TD5) showed activated microglia, proinflammatory gene induction and THAL neurodegeneration that was greater than that found with TD alone (TD5), whereas 10 days resulted in marked THAL degeneration and microglial-neuroimmune activation in both groups. In contrast, 10 days of TD did not cause ENT degeneration. Interestingly, in ENT, TD10 activated microglia and astrocytes more than EtOH-TD10. In THAL, multiple astrocytic markers were lost consistent with glial cell loss. TD blocks glucose metabolism more than acetate. Acetate derived from hepatic EtOH metabolism is transported by monocarboxylic acid transporters (MCT) into both neurons and astrocytes that use acetyl-CoA synthetase (AcCoAS) to generate cellular energy from acetate. MCT and AcCoAS expression in THAL is lower than ENT prompting the hypothesis that focal THAL degeneration is related to insufficient MCT and AcCoAS in THAL. To test this hypothesis, we administered glycerin triacetate (GTA) to increase blood acetate and found it protected the THAL from TD-induced degeneration. Conclusions Our findings suggest that EtOH potentiates TD-induced THAL degeneration through neuroimmune gene induction. The findings support the hypothesis that TD deficiency inhibits global glucose metabolism and that a reduced ability to process acetate for cellular energy results in THAL focal degeneration in alcoholics contributing to the high incidence of Wernicke-Korsakoff syndrome in alcoholism.
Collapse
Affiliation(s)
- Liya Qin
- Bowles Center for Alcohol Studies, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | | |
Collapse
|
19
|
Gulanski BI, De Feyter HM, Page KA, Belfort-DeAguiar R, Mason GF, Rothman DL, Sherwin RS. Increased brain transport and metabolism of acetate in hypoglycemia unawareness. J Clin Endocrinol Metab 2013; 98:3811-20. [PMID: 23796565 PMCID: PMC4425818 DOI: 10.1210/jc.2013-1701] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
CONTEXT Intensive insulin therapy reduces the risk for long-term complications in patients with type 1 diabetes mellitus (T1DM) but increases the risk for hypoglycemia-associated autonomic failure (HAAF), a syndrome that includes hypoglycemia unawareness and defective glucose counterregulation (reduced epinephrine and glucagon responses to hypoglycemia). OBJECTIVE The objective of the study was to address mechanisms underlying HAAF, we investigated whether nonglucose fuels such as acetate, a monocarboxylic acid (MCA), can support cerebral energetics during hypoglycemia in T1DM individuals with hypoglycemia unawareness. DESIGN Magnetic resonance spectroscopy was used to measure brain transport and metabolism of [2-(13)C]acetate under hypoglycemic conditions. SETTING The study was conducted at the Yale Center for Clinical Investigation Hospital Research Unit, Yale Magnetic Resonance Research Center. PATIENTS AND OTHER PARTICIPANTS T1DM participants with moderate to severe hypoglycemia unawareness (n = 7), T1DM controls without hypoglycemia unawareness (n = 5), and healthy nondiabetic controls (n = 10) participated in the study. MAIN OUTCOME MEASURE(S) Brain acetate concentrations, (13)C percent enrichment of glutamine and glutamate, and absolute rates of acetate metabolism were measured. RESULTS Absolute rates of acetate metabolism in the cerebral cortex were 1.5-fold higher among T1DM/unaware participants compared with both control groups during hypoglycemia (P = .001). Epinephrine levels of T1DM/unaware subjects were significantly lower than both control groups (P < .05). Epinephrine levels were inversely correlated with levels of cerebral acetate use across the entire study population (P < .01), suggesting a relationship between up-regulated brain MCA use and HAAF. CONCLUSION Increased MCA transport and metabolism among T1DM individuals with hypoglycemia unawareness may be a mechanism to supply the brain with nonglucose fuels during episodes of acute hypoglycemia and may contribute to the syndrome of hypoglycemia unawareness, independent of diabetes.
Collapse
|
20
|
Oxidation of ethanol in the rat brain and effects associated with chronic ethanol exposure. Proc Natl Acad Sci U S A 2013; 110:14444-9. [PMID: 23940368 DOI: 10.1073/pnas.1306011110] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
It has been reported that chronic and acute alcohol exposure decreases cerebral glucose metabolism and increases acetate oxidation. However, it remains unknown how much ethanol the living brain can oxidize directly and whether such a process would be affected by alcohol exposure. The questions have implications for reward, oxidative damage, and long-term adaptation to drinking. One group of adult male Sprague-Dawley rats was treated with ethanol vapor and the other given room air. After 3 wk the rats received i.v. [2-(13)C]ethanol and [1, 2-(13)C2]acetate for 2 h, and then the brain was fixed, removed, and divided into neocortex and subcortical tissues for measurement of (13)C isotopic labeling of glutamate and glutamine by magnetic resonance spectroscopy. Ethanol oxidation was seen to occur both in the cortex and the subcortex. In ethanol-naïve rats, cortical oxidation of ethanol occurred at rates of 0.017 ± 0.002 µmol/min/g in astroglia and 0.014 ± 0.003 µmol/min/g in neurons, and chronic alcohol exposure increased the astroglial ethanol oxidation to 0.028 ± 0.002 µmol/min/g (P = 0.001) with an insignificant effect on neuronal ethanol oxidation. Compared with published rates of overall oxidative metabolism in astroglia and neurons, ethanol provided 12.3 ± 1.4% of cortical astroglial oxidation in ethanol-naïve rats and 20.2 ± 1.5% in ethanol-treated rats. For cortical astroglia and neurons combined, the ethanol oxidation for naïve and treated rats was 3.2 ± 0.3% and 3.8 ± 0.2% of total oxidation, respectively. (13)C labeling from subcortical oxidation of ethanol was similar to that seen in cortex but was not affected by chronic ethanol exposure.
Collapse
|
21
|
Amaral AI. Effects of hypoglycaemia on neuronal metabolism in the adult brain: role of alternative substrates to glucose. J Inherit Metab Dis 2013; 36:621-34. [PMID: 23109064 DOI: 10.1007/s10545-012-9553-3] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2012] [Revised: 10/02/2012] [Accepted: 10/11/2012] [Indexed: 12/22/2022]
Abstract
Hypoglycaemia is characterized by decreased blood glucose levels and is associated with different pathologies (e.g. diabetes, inborn errors of metabolism). Depending on its severity, it might affect cognitive functions, including impaired judgment and decreased memory capacity, which have been linked to alterations of brain energy metabolism. Glucose is the major cerebral energy substrate in the adult brain and supports the complex metabolic interactions between neurons and astrocytes, which are essential for synaptic activity. Therefore, hypoglycaemia disturbs cerebral metabolism and, consequently, neuronal function. Despite the high vulnerability of neurons to hypoglycaemia, important neurochemical changes enabling these cells to prolong their resistance to hypoglycaemia have been described. This review aims at providing an overview over the main metabolic effects of hypoglycaemia on neurons, covering in vitro and in vivo findings. Recent studies provided evidence that non-glucose substrates including pyruvate, glycogen, ketone bodies, glutamate, glutamine, and aspartate, are metabolized by neurons in the absence of glucose and contribute to prolong neuronal function and delay ATP depletion during hypoglycaemia. One of the pathways likely implicated in the process is the pyruvate recycling pathway, which allows for the full oxidation of glutamate and glutamine. The operation of this pathway in neurons, particularly after hypoglycaemia, has been re-confirmed recently using metabolic modelling tools (i.e. Metabolic Flux Analysis), which allow for a detailed investigation of cellular metabolism in cultured cells. Overall, the knowledge summarized herein might be used for the development of potential therapies targeting neuronal protection in patients vulnerable to hypoglycaemic episodes.
Collapse
Affiliation(s)
- Ana I Amaral
- Anne McLaren Laboratory for Regenerative Medicine, Department of Clinical Neurosciences, MRC Centre for Stem Cell Biology and Regenerative Medicine, University of Cambridge, West Forvie Building, Robinson Way, CB2 0SZ Cambridge, UK.
| |
Collapse
|
22
|
|
23
|
Herzog RI, Jiang L, Herman P, Zhao C, Sanganahalli BG, Mason GF, Hyder F, Rothman DL, Sherwin RS, Behar KL. Lactate preserves neuronal metabolism and function following antecedent recurrent hypoglycemia. J Clin Invest 2013; 123:1988-98. [PMID: 23543056 DOI: 10.1172/jci65105] [Citation(s) in RCA: 77] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2012] [Accepted: 01/31/2013] [Indexed: 12/30/2022] Open
Abstract
Hypoglycemia occurs frequently during intensive insulin therapy in patients with both type 1 and type 2 diabetes and remains the single most important obstacle in achieving tight glycemic control. Using a rodent model of hypoglycemia, we demonstrated that exposure to antecedent recurrent hypoglycemia leads to adaptations of brain metabolism so that modest increments in circulating lactate allow the brain to function normally under acute hypoglycemic conditions. We characterized 3 major factors underlying this effect. First, we measured enhanced transport of lactate both into as well as out of the brain that resulted in only a small increase of its contribution to total brain oxidative capacity, suggesting that it was not the major fuel. Second, we observed a doubling of the glucose contribution to brain metabolism under hypoglycemic conditions that restored metabolic activity to levels otherwise only observed at euglycemia. Third, we determined that elevated lactate is critical for maintaining glucose metabolism under hypoglycemia, which preserves neuronal function. These unexpected findings suggest that while lactate uptake was enhanced, it is insufficient to support metabolism as an alternate substrate to replace glucose. Lactate is, however, able to modulate metabolic and neuronal activity, serving as a "metabolic regulator" instead.
Collapse
Affiliation(s)
- Raimund I Herzog
- Department of Internal Medicine, Section of Endocrinology, Yale School of Medicine, New Haven, Connecticut 06520-8040, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Jiang L, Gulanski BI, De Feyter HM, Weinzimer SA, Pittman B, Guidone E, Koretski J, Harman S, Petrakis IL, Krystal JH, Mason GF. Increased brain uptake and oxidation of acetate in heavy drinkers. J Clin Invest 2013; 123:1605-14. [PMID: 23478412 DOI: 10.1172/jci65153] [Citation(s) in RCA: 106] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2012] [Accepted: 01/17/2013] [Indexed: 11/17/2022] Open
Abstract
When a person consumes ethanol, the body quickly begins to convert it to acetic acid, which circulates in the blood and can serve as a source of energy for the brain and other organs. This study used 13C magnetic resonance spectroscopy to test whether chronic heavy drinking is associated with greater brain uptake and oxidation of acetic acid, providing a potential metabolic reward or adenosinergic effect as a consequence of drinking. Seven heavy drinkers, who regularly consumed at least 8 drinks per week and at least 4 drinks per day at least once per week, and 7 light drinkers, who consumed fewer than 2 drinks per week were recruited. The subjects were administered [2-13C]acetate for 2 hours and scanned throughout that time with magnetic resonance spectroscopy of the brain to observe natural 13C abundance of N-acetylaspartate (NAA) and the appearance of 13C-labeled glutamate, glutamine, and acetate. Heavy drinkers had approximately 2-fold more brain acetate relative to blood and twice as much labeled glutamate and glutamine. The results show that acetate transport and oxidation are faster in heavy drinkers compared with that in light drinkers. Our finding suggests that a new therapeutic approach to supply acetate during alcohol detoxification may be beneficial.
Collapse
Affiliation(s)
- Lihong Jiang
- Department of Diagnostic Radiology, Yale University, School of Medicine, New Haven, Connecticut 06520, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Reno CM, Litvin M, Clark AL, Fisher SJ. Defective counterregulation and hypoglycemia unawareness in diabetes: mechanisms and emerging treatments. Endocrinol Metab Clin North Am 2013; 42:15-38. [PMID: 23391237 PMCID: PMC3568263 DOI: 10.1016/j.ecl.2012.11.005] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
For people with diabetes, hypoglycemia remains the limiting factor in achieving glycemic control. This article reviews recent advances in how the brain senses and responds to hypoglycemia. Novel mechanisms by which individuals with insulin-treated diabetes develop hypoglycemia unawareness and impaired counterregulatory responses are outlined. Prevention strategies for reducing the incidence of hypoglycemia are discussed.
Collapse
Affiliation(s)
- Candace M. Reno
- Division of Endocrinology, Metabolism, & Lipid Research, Department of Medicine, Washington University, St. Louis, MO
| | - Marina Litvin
- Division of Endocrinology, Metabolism, & Lipid Research, Department of Medicine, Washington University, St. Louis, MO
| | - Amy L. Clark
- Division of Endocrinology and Diabetes, Department of Pediatrics, Washington University, St. Louis, MO
| | - Simon J. Fisher
- Division of Endocrinology, Metabolism, & Lipid Research, Department of Medicine, Washington University, St. Louis, MO
- Department of Cell Biology and Physiology, Washington University, St. Louis, MO
| |
Collapse
|
26
|
The unfolded protein response to endoplasmic reticulum stress in cultured astrocytes and rat brain during experimental diabetes. Neurochem Int 2013; 62:784-95. [PMID: 23411409 DOI: 10.1016/j.neuint.2013.02.009] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2012] [Revised: 01/29/2013] [Accepted: 02/04/2013] [Indexed: 12/21/2022]
Abstract
Oxidative-nitrosative stress and inflammatory responses are associated with endoplasmic reticulum (ER) stress in diabetic retinopathy, raising the possibility that disturbances in ER protein processing may contribute to CNS dysfunction in diabetics. Upregulation of the unfolded protein response (UPR) is a homeostatic response to accumulation of abnormal proteins in the ER, and the present study tested the hypothesis that the UPR is upregulated in two models for diabetes, cultured astrocytes grown in 25mmol/L glucose for up to 4weeks and brain of streptozotocin (STZ)-treated rats with diabetes for 1-7months. Markers associated with translational blockade (phospho-eIF2α and apoptosis (CHOP), inflammatory response (inducible nitric oxide synthase, iNOS), and nitrosative stress (nuclear translocation of glyceraldehyde-3-phosphate dehydrogenase, GAPDH) were not detected in either model. Nrf2 was present in nuclei of low- and high-glucose cultures, consistent with oxidative stress. Astrocytic ATF4 expression was not altered by culture glucose concentration, whereas phospho-IRE and ATF6 levels were higher in low- compared with high-glucose cultures. The glucose-regulated chaperones, GRP78 and GRP94, were also expressed at higher levels in low- than high-glucose cultures, probably due to recurrent glucose depletion between feeding cycles. In STZ-rat cerebral cortex, ATF4 level was transiently reduced at 4months, and p-IRE levels were transiently elevated at 3months. However, GRP78 and GRP94 expression was not upregulated, and iNOS, amyloid-β, and nuclear accumulation of GAPDH were not evident in STZ-diabetic brain. High-glucose cultured astrocytes and STZ-diabetic brain are relatively resistant to diabetes-induced ER stress, in sharp contrast with cultured retinal Müller cells and diabetic rodent retina.
Collapse
|
27
|
van de Ven KC, Tack CJ, Heerschap A, van der Graaf M, de Galan BE. Patients with type 1 diabetes exhibit altered cerebral metabolism during hypoglycemia. J Clin Invest 2013; 123:623-9. [PMID: 23298837 PMCID: PMC3561817 DOI: 10.1172/jci62742] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2012] [Accepted: 11/08/2012] [Indexed: 01/24/2023] Open
Abstract
Patients with type 1 diabetes mellitus (T1DM) experience, on average, 2 to 3 hypoglycemic episodes per week. This study investigated the effect of hypoglycemia on cerebral glucose metabolism in patients with uncomplicated T1DM. For this purpose, hyperinsulinemic euglycemic and hypoglycemic glucose clamps were performed on separate days, using [1-13C]glucose infusion to increase plasma 13C enrichment. In vivo brain 13C magnetic resonance spectroscopy was used to measure the time course of 13C label incorporation into different metabolites and to calculate the tricarboxylic acid cycle flux (VTCA) by a one-compartment metabolic model. We found that cerebral glucose metabolism, as reflected by the VTCA, was not significantly different comparing euglycemic and hypoglycemic conditions in patients with T1DM. However, the VTCA was inversely related to the HbA1C and was, under hypoglycemic conditions, approximately 45% higher than that in a previously investigated group of healthy subjects. These data suggest that the brains of patients with T1DM are better able to endure moderate hypoglycemia than those of subjects without diabetes.
Collapse
Affiliation(s)
- Kim C.C. van de Ven
- Department of Radiology,
Department of General Internal Medicine, and
Clinical Physics Laboratory, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | - Cees J. Tack
- Department of Radiology,
Department of General Internal Medicine, and
Clinical Physics Laboratory, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | - Arend Heerschap
- Department of Radiology,
Department of General Internal Medicine, and
Clinical Physics Laboratory, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | - Marinette van der Graaf
- Department of Radiology,
Department of General Internal Medicine, and
Clinical Physics Laboratory, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | - Bastiaan E. de Galan
- Department of Radiology,
Department of General Internal Medicine, and
Clinical Physics Laboratory, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| |
Collapse
|
28
|
Brain glycogen content and metabolism in subjects with type 1 diabetes and hypoglycemia unawareness. J Cereb Blood Flow Metab 2012; 32:256-63. [PMID: 21971353 PMCID: PMC3272603 DOI: 10.1038/jcbfm.2011.138] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Supercompensated brain glycogen may contribute to the development of hypoglycemia unawareness in patients with type 1 diabetes by providing energy for the brain during periods of hypoglycemia. Our goal was to determine if brain glycogen content is elevated in patients with type 1 diabetes and hypoglycemia unawareness. We used in vivo (13)C nuclear magnetic resonance spectroscopy in conjunction with [1-(13)C]glucose administration in five patients with type 1 diabetes and hypoglycemia unawareness and five age-, gender-, and body mass index-matched healthy volunteers to measure brain glycogen content and metabolism. Glucose and insulin were administered intravenously over ∼51 hours at a rate titrated to maintain a blood glucose concentration of 7 mmol/L. (13)C-glycogen levels in the occipital lobe were measured at ∼5, 8, 13, 23, 32, 37, and 50 hours, during label wash-in and wash-out. Newly synthesized glycogen levels were higher in controls than in patients (P<0.0001) for matched average blood glucose and insulin levels, which may be due to higher brain glycogen content or faster turnover in controls. Metabolic modeling indicated lower brain glycogen content in patients than in controls (P=0.07), implying that glycogen supercompensation does not contribute to the development of hypoglycemia unawareness in humans with type 1 diabetes.
Collapse
|
29
|
Abstract
Ketone bodies are important alternate brain fuels, but their capacity to replace glucose and support neural function is unclear. In this study, the contributions of ketone bodies and glucose to cerebral cortical metabolism were measured in vivo in halothane-anesthetized rats fasted for 36 hours (n=6) and receiving intravenous [2,4-(13)C(2)]-D-β-hydroxybutyrate (BHB). Time courses of (13)C-enriched brain amino acids (glutamate-C4, glutamine-C4, and glutamate and glutamine-C3) were measured at 9.4 Tesla using spatially localized (1)H-[(13)C]-nuclear magnetic resonance spectroscopy. Metabolic rates were estimated by fitting a constrained, two-compartment (neuron-astrocyte) metabolic model to the (13)C time-course data. We found that ketone body oxidation was substantial, accounting for 40% of total substrate oxidation (glucose plus ketone bodies) by neurons and astrocytes. D-β-Hydroxybutyrate was oxidized to a greater extent in neurons than in astrocytes (≈ 70:30), and followed a pattern closely similar to the metabolism of [1-(13)C]glucose reported in previous studies. Total neuronal tricarboxylic acid cycle (TCA) flux in hyperketonemic rats was similar to values reported for normal (nonketotic) anesthetized rats infused with [1-(13)C]glucose, but neuronal glucose oxidation was 40% to 50% lower, indicating that ketone bodies had compensated for the reduction in glucose use.
Collapse
|
30
|
Herzog RI, Sherwin RS, Rothman DL. Insulin-induced hypoglycemia and its effect on the brain: unraveling metabolism by in vivo nuclear magnetic resonance. Diabetes 2011; 60:1856-8. [PMID: 21709281 PMCID: PMC3121425 DOI: 10.2337/db11-0498] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Raimund I Herzog
- Section of Endocrinology, Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut, USA.
| | | | | |
Collapse
|
31
|
van de Ven KCC, de Galan BE, van der Graaf M, Shestov AA, Henry PG, Tack CJJ, Heerschap A. Effect of acute hypoglycemia on human cerebral glucose metabolism measured by ¹³C magnetic resonance spectroscopy. Diabetes 2011; 60:1467-73. [PMID: 21464446 PMCID: PMC3292319 DOI: 10.2337/db10-1592] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
OBJECTIVE To investigate the effect of acute insulin-induced hypoglycemia on cerebral glucose metabolism in healthy humans, measured by (13)C magnetic resonance spectroscopy (MRS). RESEARCH DESIGN AND METHODS Hyperinsulinemic glucose clamps were performed at plasma glucose levels of 5 mmol/L (euglycemia) or 3 mmol/L (hypoglycemia) in random order in eight healthy subjects (four women) on two occasions, separated by at least 3 weeks. Enriched [1-(13)C]glucose 20% w/w was used for the clamps to maintain stable plasma glucose labeling. The levels of the (13)C-labeled glucose metabolites glutamate C4 and C3 were measured over time in the occipital cortex during the clamp by continuous (13)C MRS in a 3T magnetic resonance scanner. Time courses of glutamate C4 and C3 labeling were fitted using a one-compartment model to calculate metabolic rates in the brain. RESULTS Plasma glucose (13)C isotopic enrichment was stable at 35.1 ± 1.8% during euglycemia and at 30.2 ± 5.5% during hypoglycemia. Hypoglycemia stimulated release of counterregulatory hormones (all P < 0.05) and tended to increase plasma lactate levels (P = 0.07). After correction for the ambient (13)C enrichment values, label incorporation into glucose metabolites was virtually identical under both glycemic conditions. Calculated tricarboxylic acid cycle rates (V(TCA)) were 0.48 ± 0.03 μmol/g/min during euglycemia and 0.43 ± 0.08 μmol/g/min during hypoglycemia (P = 0.42). CONCLUSIONS These results indicate that acute moderate hypoglycemia does not affect fluxes through the main pathways of glucose metabolism in the brain of healthy nondiabetic subjects.
Collapse
Affiliation(s)
- Kim C C van de Ven
- Department of Radiology, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands.
| | | | | | | | | | | | | |
Collapse
|
32
|
Poplawski MM, Mastaitis JW, Mobbs CV. Naloxone, but not valsartan, preserves responses to hypoglycemia after antecedent hypoglycemia: role of metabolic reprogramming in counterregulatory failure. Diabetes 2011; 60:39-46. [PMID: 20811039 PMCID: PMC3012195 DOI: 10.2337/db10-0326] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
OBJECTIVE Hypoglycemia-associated autonomic failure (HAAF) constitutes one of the main clinical obstacles to optimum treatment of type 1 diabetes. Neurons in the ventromedial hypothalamus are thought to mediate counterregulatory responses to hypoglycemia. We have previously hypothesized that hypoglycemia-induced hypothalamic angiotensin might contribute to HAAF, suggesting that the angiotensin blocker valsartan might prevent HAAF. On the other hand, clinical studies have demonstrated that the opioid receptor blocker naloxone ameliorates HAAF. The goal of this study was to generate novel hypothalamic markers of hypoglycemia and use them to assess mechanisms mediating HAAF and its reversal. RESEARCH DESIGN AND METHODS Quantitative PCR was used to validate a novel panel of hypothalamic genes regulated by hypoglycemia. Mice were exposed to one or five episodes of insulin-induced hypoglycemia, with or without concurrent exposure to valsartan or naloxone. Corticosterone, glucagon, epinephrine, and hypothalamic gene expression were assessed after the final episode of hypoglycemia. RESULTS A subset of hypothalamic genes regulated acutely by hypoglycemia failed to respond after repetitive hypoglycemia. Responsiveness of a subset of these genes was preserved by naloxone but not valsartan. Notably, hypothalamic expression of four genes, including pyruvate dehydrogenase kinase 4 and glycerol 3-phosphate dehydrogenase 1, was acutely induced by a single episode of hypoglycemia, but not after antecedent hypoglycemia; naloxone treatment prevented this failure. Similarly, carnitine palmitoyltransferase-1 was inhibited after repetitive hypoglycemia, and this inhibition was prevented by naloxone. Repetitive hypoglycemia also caused a loss of hypoglycemia-induced elevation of glucocorticoid secretion, a failure prevented by naloxone but not valsartan. CONCLUSIONS Based on these observations we speculate that acute hypoglycemia induces reprogramming of hypothalamic metabolism away from glycolysis toward β-oxidation, HAAF is associated with a reversal of this reprogramming, and naloxone preserves some responses to hypoglycemia by preventing this reversal.
Collapse
Affiliation(s)
- Michal M. Poplawski
- Fishberg Center for Neurobiology, Mount Sinai School of Medicine, New York, New York
| | - Jason W. Mastaitis
- Department of Internal Medicine, The Anlyan Center, Yale University School of Medicine, New Haven, Connecticut
| | - Charles V. Mobbs
- Fishberg Center for Neurobiology, Mount Sinai School of Medicine, New York, New York
- Corresponding author: Charles V. Mobbs,
| |
Collapse
|
33
|
Moore H, Craft TK, Grimaldi LM, Babic B, Brunelli SA, Vannucci SJ. Moderate recurrent hypoglycemia during early development leads to persistent changes in affective behavior in the rat. Brain Behav Immun 2010; 24:839-49. [PMID: 19944751 PMCID: PMC2885529 DOI: 10.1016/j.bbi.2009.11.013] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2009] [Revised: 11/22/2009] [Accepted: 11/23/2009] [Indexed: 10/20/2022] Open
Abstract
Recurrent hypoglycemia is a common problem among infants and children that is associated with several metabolic disorders and insulin-dependent diabetes mellitus. Although studies have reported a relationship between a history of juvenile hypoglycemia and psychological health problems, the direct effects of recurrent moderate hypoglycemia have not been fully determined. Thus, in this study, we used an animal model to examine the effects of recurrent hypoglycemia during the juvenile period on affective, social, and motor function (assessed under euglycemic conditions) across development. To model recurrent hypoglycemia, rats were administered 5 U/kg of insulin or saline twice per day from postnatal day (P)10 to P19. Body weight gain was retarded in insulin-treated rats during the treatment period, but recovered by the end of treatment. However, insulin-treated rats displayed increases in affective reactivity that emerged early during treatment and persisted after treatment into early adulthood. Specifically, insulin-treated pups showed increased maternal separation-induced vocalizations as infants, and an exaggerated acoustic startle reflex as juveniles and young adults. Moreover, young adult rats with a history of recurrent juvenile hypoglycemia exhibited increased fear-potentiated startle and increases in behavioral and hormonal responses to restraint stress. Some of these effects were sex-dependent. The changes in affective behavior in insulin-exposed pups were accompanied by decreases in adolescent social play behavior. These results provide evidence that recurrent, transient hypoglycemia during juvenile development can lead to increases in fear-related behavior and stress reactivity. Importantly, these phenotypes are not reversed with normalization of blood glucose and may persist into adulthood.
Collapse
Affiliation(s)
- Holly Moore
- Department of Psychiatry, Columbia University College of Physicians and Surgeons, New York, NY, USA
- Department of Integrative Neuroscience, New York State Psychiatric Institute, New York, NY, USA
| | - Tara K.S. Craft
- Department of Psychiatry, Columbia University College of Physicians and Surgeons, New York, NY, USA
- Department of Integrative Neuroscience, New York State Psychiatric Institute, New York, NY, USA
- Department of Developmental Neuroscience, New York State Psychiatric Institute, New York, NY, USA
| | - Lisa M. Grimaldi
- Department of Pediatrics, Division of Pediatric Critical Care Medicine, Columbia University College of Physicians and Surgeons, The Morgan Stanley Children's Hospital of New York-Presbyterian, New York, NY, USA
| | - Bruna Babic
- Department of Pediatrics, Division of Pediatric Critical Care Medicine, Columbia University College of Physicians and Surgeons, The Morgan Stanley Children's Hospital of New York-Presbyterian, New York, NY, USA
| | - Susan A. Brunelli
- Department of Developmental Neuroscience, New York State Psychiatric Institute, New York, NY, USA
| | - Susan J. Vannucci
- Department of Pediatrics, Division of Pediatric Critical Care Medicine, Columbia University College of Physicians and Surgeons, The Morgan Stanley Children's Hospital of New York-Presbyterian, New York, NY, USA
- Department of Pediatrics/Newborn Medicine, Weill Medical College of Cornell University, New York, NY, USA
| |
Collapse
|
34
|
McNay EC, Cotero VE. Mini-review: impact of recurrent hypoglycemia on cognitive and brain function. Physiol Behav 2010; 100:234-8. [PMID: 20096711 DOI: 10.1016/j.physbeh.2010.01.004] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2009] [Revised: 01/09/2010] [Accepted: 01/11/2010] [Indexed: 01/03/2023]
Abstract
Recurrent hypoglycemia (RH), the most common side-effect of intensive insulin therapy for diabetes, is well established to diminish counter-regulatory responses to further hypoglycemia. However, despite significant patient concern, the impact of RH on cognitive and neural function remains controversial. Here we review the data from both human studies and recent animal studies regarding the impact of RH on cognitive, metabolic, and neural processes. Overall, RH appears to cause brain adaptations which may enhance cognitive performance and fuel supply when euglycemic but which pose significant threats during future hypoglycemic episodes.
Collapse
Affiliation(s)
- Ewan C McNay
- Department of Psychology and Center for Neuroscience Research, University at Albany, Albany, NY 12222, USA.
| | | |
Collapse
|
35
|
van de Ven KCC, van der Graaf M, Tack CJJ, Klomp DWJ, Heerschap A, de Galan BE. Optimized [1-(13)C]glucose infusion protocol for 13C magnetic resonance spectroscopy at 3T of human brain glucose metabolism under euglycemic and hypoglycemic conditions. J Neurosci Methods 2009; 186:68-71. [PMID: 19913052 DOI: 10.1016/j.jneumeth.2009.10.025] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2009] [Revised: 10/28/2009] [Accepted: 10/30/2009] [Indexed: 11/19/2022]
Abstract
The effect of insulin-induced hypoglycemia on cerebral glucose metabolism is largely unknown. (13)C MRS is a unique tool to study cerebral glucose metabolism, but the concurrent requirement for [1-(13)C]glucose administration limits its use under hypoglycemic conditions. To facilitate (13)C MRS data analysis we designed separate [1-(13)C]glucose infusion protocols for hyperinsulinemic euglycemic and hypoglycemic clamps in such a way that plasma isotopic enrichment of glucose was stable and comparable under both glycemic conditions. (13)C MR spectra were acquired with optimized (13)C MRS measurement techniques to obtain high quality (13)C MR spectra with these protocols.
Collapse
Affiliation(s)
- Kim C C van de Ven
- Department of Radiology, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands.
| | | | | | | | | | | |
Collapse
|