1
|
He Y, Jiang J, Ou L, Chen Y, Abudukeremu A, Chen G, Zhong W, Jiang Z, Nuermaimaiti N, Guan Y. Impaired RelA signaling and lipid metabolism dysregulation in hepatocytes: driving forces in the progression of metabolic dysfunction-associated steatotic liver disease. Cell Death Discov 2025; 11:49. [PMID: 39910053 PMCID: PMC11799324 DOI: 10.1038/s41420-025-02312-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 12/25/2024] [Accepted: 01/21/2025] [Indexed: 02/07/2025] Open
Abstract
RelA, also known as nuclear factor kappa B p65, plays a crucial role in the pathogenesis of various liver diseases. However, the specific role of RelA in hepatocytes during the progression of metabolic dysfunction-associated steatotic liver disease (MASLD) is not well understood. This study explored the relationship between impaired RelA signaling and lipid metabolism disorders in hepatocytes, and how they synergistically contribute to the advancement of MASLD. We assessed the changes, regulatory relationships, and impacts of RelA signaling and lipid metabolism remodeling on disease progression both in vitro and in vivo. During MASLD, there was a decrease in the expression of RelA and hepatocyte nuclear factor 1 alpha (HNF1α), with both factors showing mutual enhancement of each other's expression under normal conditions. This synergistic effect was absent during hepatocyte steatosis. RelA or HNF1α depletion in hepatocytes intensified MASLD symptoms, whereas overexpression of RELA or treatment with necrostatin-1 (a necroptosis inhibitor) or Z-VAD (a caspase inhibitor) significantly mitigated these effects. Mechanistically, during hepatic steatosis, altered lipid profiles exhibited lipotoxicity, inducing hepatocyte apoptosis and necroptosis, whereas endoplasmic reticulum (ER) stress triggered lipid remodeling processes similar to those observed in MASLD. RelA signaling upregulated the expression of activating transcription factor 4 and glucose-regulated protein 78, thereby alleviating ER stress. Impaired RelA signaling remodeled the ER stress response and lipid metabolism, and enhanced lipid accumulation and lipid toxicity. In conclusion, impaired RelA signaling and disrupted lipid metabolism form a detrimental feedback loop in hepatocytes that promotes MASLD progression. Lipid accumulation suppresses RelA signaling, remodeling the ER stress response and exacerbating lipid metabolism disorder, ultimately leading to hepatocyte apoptosis and necroptosis.
Collapse
Affiliation(s)
- Yihuai He
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Xinjiang Key Laboratory of Molecular Biology for Endemic Diseases, Department of Pathology, School of Basic Medical Sciences, Xinjiang Medical University, Urumqi, Xinjiang, China
- Department of Infectious Diseases, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
| | - Jinlian Jiang
- Department of Infectious Diseases, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
| | - Lili Ou
- Department of Infectious Diseases, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
| | - Yunfen Chen
- Department of Infectious Diseases, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
| | - Aikedaimu Abudukeremu
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Xinjiang Key Laboratory of Molecular Biology for Endemic Diseases, Department of Pathology, School of Basic Medical Sciences, Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Guimei Chen
- Department of Infectious Diseases, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
| | - Weiwei Zhong
- Department of Infectious Diseases, Jingmen Central Hospital, Jingmen, Hubei, China
| | - Zhigang Jiang
- School of Public Health, Zunyi Medical University, Zunyi, Guizhou, China
| | - Nuerbiye Nuermaimaiti
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Xinjiang Key Laboratory of Molecular Biology for Endemic Diseases, Department of Pathology, School of Basic Medical Sciences, Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Yaqun Guan
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Xinjiang Key Laboratory of Molecular Biology for Endemic Diseases, Department of Pathology, School of Basic Medical Sciences, Xinjiang Medical University, Urumqi, Xinjiang, China.
- Xinjiang Second Medical College, Karamay, Xinjiang, China.
| |
Collapse
|
2
|
Baddela VS, Michaelis M, Tao X, Koczan D, Brenmoehl J, Vanselow J. Comparative analysis of PI3K-AKT and MEK-ERK1/2 signaling-driven molecular changes in granulosa cells. Reproduction 2025; 169:e240317. [PMID: 39665647 PMCID: PMC11774274 DOI: 10.1530/rep-24-0317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 11/13/2024] [Accepted: 12/12/2024] [Indexed: 12/13/2024]
Abstract
In brief PI3K-AKT signaling activates steroidogenesis by inducing estradiol and progesterone production, while MEK-ERK1/2 signaling regulates steroidogenesis by inhibiting estradiol and inducing progesterone production in granulosa cells (GCs). Both pathways are essential for glycolytic and mitochondrial metabolism in these cells. Abstract The PI3K-AKT and MEK-ERK1/2 signaling pathways are integral to fundamental cellular processes, such as proliferation, viability and differentiation. In GCs, these pathways are activated by follicle-stimulating hormone (FSH) and IGF1 through respective receptors. We investigated the comparative transcriptome changes induced by the AKT and ERK (ERK1/2) pathways using corresponding inhibitors in GCs. GCs isolated from antral follicles showed positive signals for phospho-AKT and phospho-ERK proteins. Treatment of cultured GCs with FSH and IGF1 induced phospho-AKT and phospho-ERK levels. Transcriptome analysis revealed 1436 genes regulated by AKT and 654 genes regulated by the ERK pathway. Among these, 94 genes were commonly downregulated and 11 genes were commonly upregulated in both datasets, while 110 genes were oppositely regulated. Bioinformatics analysis revealed that the inhibition of the PI3K-AKT and MEK-ERK pathways downregulates key reproductive processes and upstream molecules. Notably, AKT inhibition affected FSH, ESRRG and HIF1 pathways, while ERK inhibition impacted CG, FOS, TGFβ, EGR1 and LH pathways. Transcriptome data showed that genes related to estradiol production were inhibited by ERK and induced by the AKT pathway. This was verified by radioimmunoassays, and mRNA and protein analysis of CYP19A1 and STAR genes. In addition, transcriptome data suggested the downregulation of glucose metabolism in GCs. Using validation experiments, we confirm that both pathways are essential for glucose uptake, lactate production and mitochondrial activity in GCs. These data provide a resource for informing future research for analyzing various novel candidate genes regulated by the AKT and ERK pathways in GCs and other cell types.
Collapse
Affiliation(s)
| | - Marten Michaelis
- Research Institute for Farm Animal Biology (FBN), Dummerstorf, Germany
| | - Xuelian Tao
- Research Institute for Farm Animal Biology (FBN), Dummerstorf, Germany
| | - Dirk Koczan
- Institute of Immunology, University of Rostock, Rostock, Germany
| | - Julia Brenmoehl
- Research Institute for Farm Animal Biology (FBN), Dummerstorf, Germany
| | - Jens Vanselow
- Research Institute for Farm Animal Biology (FBN), Dummerstorf, Germany
| |
Collapse
|
3
|
Jasani N, Xu X, Posorske B, Kim Y, Wang K, Vera O, Tsai KY, DeNicola GM, Karreth FA. PHGDH Induction by MAPK Is Essential for Melanoma Formation and Creates an Actionable Metabolic Vulnerability. Cancer Res 2025; 85:314-328. [PMID: 39495254 PMCID: PMC11735329 DOI: 10.1158/0008-5472.can-24-2471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 09/20/2024] [Accepted: 10/29/2024] [Indexed: 11/05/2024]
Abstract
Overexpression of phosphoglycerate dehydrogenase (PHGDH), the rate-limiting enzyme in the serine synthesis pathway, promotes melanomagenesis, melanoma cell proliferation, and survival of metastases in serine-low environments such as the brain. Here, we found that PHGDH is universally increased in melanoma cells and required for melanomagenesis. Although PHGDH amplification explained PHGDH overexpression in a subset of melanomas, oncogenic BRAFV600E also promoted PHGDH transcription through mTORC1-mediated translation of ATF4. Importantly, depletion of PHGDH in genetic mouse melanoma models blocked tumor formation. In addition to BRAFV600E-mediated upregulation, PHGDH was further induced by exogenous serine restriction. Surprisingly, BRAFV600E inhibition diminished serine restriction-mediated PHGDH expression by preventing ATF4 induction. Consequently, melanoma cells could be specifically starved of serine by combining BRAFV600E inhibition with exogenous serine restriction, which promoted cell death in vitro and attenuated melanoma growth in vivo. In summary, this study identified that PHGDH is essential for melanomagenesis and regulated by BRAFV600E, revealing a targetable vulnerability in BRAFV600E-mutant melanoma. Significance: BRAFV600E promotes the expression of the serine synthesis enzyme PHGDH, which is required for melanoma formation, and can be targeted to sensitize melanoma to dietary serine restriction, providing a melanoma cell-specific treatment strategy.
Collapse
Affiliation(s)
- Neel Jasani
- Department of Molecular Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida 33612, USA
- Cancer Biology PhD Program, University of South Florida, Tampa, FL 33612, USA
| | - Xiaonan Xu
- Department of Molecular Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida 33612, USA
| | - Benjamin Posorske
- Department of Molecular Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida 33612, USA
| | - Yumi Kim
- Department of Metabolism and Physiology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida 33612, USA
| | - Kaizhen Wang
- Department of Molecular Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida 33612, USA
- Cancer Biology PhD Program, University of South Florida, Tampa, FL 33612, USA
| | - Olga Vera
- Department of Molecular Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida 33612, USA
| | - Kenneth Y. Tsai
- Department of Tumor Microenvironment and Metastasis, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA
- Department of Pathology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA
| | - Gina M. DeNicola
- Department of Metabolism and Physiology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida 33612, USA
| | - Florian A. Karreth
- Department of Molecular Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida 33612, USA
| |
Collapse
|
4
|
Grmai L, Mychalczuk M, Arkalgud A, Vasudevan D. Sexually dimorphic ATF4 expression in the fat confers female stress tolerance in Drosophila melanogaster. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.27.630478. [PMID: 39763862 PMCID: PMC11703189 DOI: 10.1101/2024.12.27.630478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/11/2025]
Abstract
Metabolic differences between males and females have been well documented across many species. However, the molecular basis of these differences and how they impact tolerance to nutrient deprivation is still under investigation. In this work, we use Drosophila melanogaster to demonstrate that sex-specific differences in fat tissue metabolism are driven, in part, by dimorphic expression of the Integrated Stress Response (ISR) transcription factor, ATF4. We found that female fat tissues have higher ATF4 activity than their male counter parts under homeostatic conditions. This dimorphism was partly due to a female bias in transcript abundance of specific ATF4 splice isoforms. We found that the canonical sex determinants transformer (tra) and doublesex (dsx) drive such dimorphic ATF4 transcript abundance. These differences persist in a genetic model of nutrient deprivation, where female animals showed greater resistance to lethality than males in an ATF4-dependent manner. These results suggest that higher ATF4 activity confers higher tolerance to stress in females. Together, our data describe a previously unknown facet of ISR signaling wherein sexual identity of adipose tissue confers differential stress tolerance in males and females. Since energy storage mechanisms are known to be dimorphic and have been linked to ATF4 regulation, our studies provide a mechanistic starting point for understanding how sexual identity influences metabolic disease outcomes.
Collapse
Affiliation(s)
- Lydia Grmai
- Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Present Address: Department of Comparative Medicine, Yale School of Medicine, New Haven, CT, USA
| | - Melissa Mychalczuk
- Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Present Address: Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, USA
| | - Aditya Arkalgud
- Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Deepika Vasudevan
- Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| |
Collapse
|
5
|
Jian H, Li R, Huang X, Li J, Li Y, Ma J, Zhu M, Dong X, Yang H, Zou X. Branched-chain amino acids alleviate NAFLD via inhibiting de novo lipogenesis and activating fatty acid β-oxidation in laying hens. Redox Biol 2024; 77:103385. [PMID: 39426289 PMCID: PMC11536022 DOI: 10.1016/j.redox.2024.103385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 10/02/2024] [Accepted: 10/02/2024] [Indexed: 10/21/2024] Open
Abstract
The adverse metabolic impacts of branched-chain amino acids (BCAA) have been elucidated are mediated by isoleucine and valine. Dietary restriction of isoleucine promotes metabolic health and increases lifespan. However, a high protein diet enriched in BCAA is presently the most useful therapeutic strategy for nonalcoholic fatty liver disease (NAFLD), yet, its underlying mechanism remains largely unknown. Fatty liver hemorrhagic syndrome (FLHS), a specialized laying hen NAFLD model, can spontaneously develop fatty liver and hepatic steatosis under a high-energy and high-protein dietary background that the pathogenesis of FLHS is similar to human NAFLD. The mechanism underlying dietary BCAA control of NAFLD development in laying hens remains unclear. Herein, we demonstrate that dietary supplementation with 67 % High BCAA has unique mitigative impacts on NAFLD in laying hens. A High BCAA diet alleviates NAFLD, by inhibiting the tryptophan-ILA-AHR axis and MAPK9-mediated de novo lipogenesis (DNL), promoting ketogenesis and energy metabolism, and activating PPAR-RXR and pexophagy to promote fatty acid β-oxidation. Furthermore, we uncover that High BCAA strongly activates ubiquitin-proteasome autophagy via downregulating UFMylation to trigger MAPK9-mediated DNL, fatty acid elongation and lipid droplet formation-related proteins ubiquitination degradation, activating PPAR-RXR and pexophagy mediated fatty acid β-oxidation and lipolysis. Together, our data highlight moderating intake of high BCAA by inhibiting the AHR/MAPK9 are promising new strategies in NAFLD and FLHS treatment.
Collapse
Affiliation(s)
- Huafeng Jian
- Institute of Feed Science, College of Animal Sciences, Zhejiang University, Key Laboratory of Molecular Animal Nutrition (Zhejiang University), Ministry of Education, Zhejiang Key Laboratory of Nutrition and Breeding for High-quality Animal Products, Hangzhou, 310058, China; Xianghu Laboratory, Hangzhou, 311231, China
| | - Ru Li
- Institute of Feed Science, College of Animal Sciences, Zhejiang University, Key Laboratory of Molecular Animal Nutrition (Zhejiang University), Ministry of Education, Zhejiang Key Laboratory of Nutrition and Breeding for High-quality Animal Products, Hangzhou, 310058, China
| | - Xuan Huang
- Institute of Feed Science, College of Animal Sciences, Zhejiang University, Key Laboratory of Molecular Animal Nutrition (Zhejiang University), Ministry of Education, Zhejiang Key Laboratory of Nutrition and Breeding for High-quality Animal Products, Hangzhou, 310058, China
| | - Jiankui Li
- Institute of Feed Science, College of Animal Sciences, Zhejiang University, Key Laboratory of Molecular Animal Nutrition (Zhejiang University), Ministry of Education, Zhejiang Key Laboratory of Nutrition and Breeding for High-quality Animal Products, Hangzhou, 310058, China
| | - Yan Li
- Institute of Feed Science, College of Animal Sciences, Zhejiang University, Key Laboratory of Molecular Animal Nutrition (Zhejiang University), Ministry of Education, Zhejiang Key Laboratory of Nutrition and Breeding for High-quality Animal Products, Hangzhou, 310058, China
| | | | - Mingkun Zhu
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, 212100, China; Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, The Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, 212100, China
| | - Xinyang Dong
- Institute of Feed Science, College of Animal Sciences, Zhejiang University, Key Laboratory of Molecular Animal Nutrition (Zhejiang University), Ministry of Education, Zhejiang Key Laboratory of Nutrition and Breeding for High-quality Animal Products, Hangzhou, 310058, China
| | - Hua Yang
- Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China.
| | - Xiaoting Zou
- Institute of Feed Science, College of Animal Sciences, Zhejiang University, Key Laboratory of Molecular Animal Nutrition (Zhejiang University), Ministry of Education, Zhejiang Key Laboratory of Nutrition and Breeding for High-quality Animal Products, Hangzhou, 310058, China.
| |
Collapse
|
6
|
Chen K, Wang Y, Yang J, Klöting N, Liu C, Dai J, Jin S, Chen L, Liu S, Liu Y, Yu Y, Liu X, Miao Q, Liew CW, Wang Y, Dietrich A, Blüher M, Wang X. EMC10 modulates hepatic ER stress and steatosis in an isoform-specific manner. J Hepatol 2024; 81:479-491. [PMID: 38599383 DOI: 10.1016/j.jhep.2024.03.047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 03/26/2024] [Accepted: 03/27/2024] [Indexed: 04/12/2024]
Abstract
BACKGROUND & AIMS Endoplasmic reticulum (ER) membrane protein complex subunit 10 (EMC10) has been implicated in obesity. Here we investigated the roles of the two isoforms of EMC10, including a secreted isoform (scEMC10) and an ER membrane-bound isoform (mEMC10), in metabolic dysfunction-associated steatotic liver disease (MASLD). METHODS Manifold steatotic mouse models and HepG2 cells were employed to investigate the role of EMC10 in the regulation of hepatic PERK-eIF2α-ATF4 signaling and hepatosteatosis. The therapeutic effect of scEMC10-neutralizing antibody on mouse hepatosteatosis was explored. Associations of MASLD with serum scEMC10 and hepatic mEMC10 were determined in two cohorts of participants with MASLD. RESULTS scEMC10 promoted, while mEMC10 suppressed, the activation of hepatic PERK-eIF2α-ATF4 signaling. Emc10 gene knockout exacerbated, while hepatic overexpression of mEMC10 ameliorated, hepatic ER stress and steatosis in mice challenged with either a methionine- and choline-deficient diet or tunicamycin, highlighting a direct, suppressive role of mEMC10 in MASLD via modulation of hepatic ER stress. Overexpression of scEMC10 promoted, whereas neutralization of circulating scEMC10 prevented, hepatosteatosis in mice with fatty liver, suggesting a role of scEMC10 in MASLD development. Clinically, serum scEMC10 was increased, while hepatic mEMC10 was decreased, in participants with MASLD. Correlative analysis indicated that serum scEMC10 positively, whereas hepatic mEMC10 negatively, correlated with liver fat content and serum ALT, AST, and GGT. CONCLUSIONS These findings demonstrate a novel isoform-specific role for EMC10 in the pathogenesis of MASLD and identify the secreted isoform as a tractable therapeutic target for MASLD via antibody-based neutralization. IMPACT AND IMPLICATIONS We have shown the role of EMC10 in the regulation of energy homeostasis and obesity. In this study, we determine the distinct roles of the two isoforms of EMC10 in the regulation of hepatic endoplasmic reticulum stress and steatosis in mice, and report on the associations of the different EMC10 isoforms with metabolic dysfunction-associated steatotic liver disease in humans. Our findings delineate a novel regulatory axis for hepatosteatosis and identify EMC10 as a modulator of the PERK-eIF2α-ATF4 signaling cascade that may be of broad physiological significance. Moreover, our pre-clinical and clinical studies provide evidence of the therapeutic potential of targeting scEMC10 in MASLD.
Collapse
Affiliation(s)
- Kuangyang Chen
- Department of Endocrinology, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China; Department of Endocrinology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yahao Wang
- Department of Endocrinology, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Jia Yang
- Department of Endocrinology, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Nora Klöting
- Helmholtz Institute for Metabolic, Obesity and Vascular Research (HI-MAG) of the Helmholtz Zentrum München at the University of Leipzig and University Hospital Leipzig, Leipzig, Germany; Medical Department III - Endocrinology, Nephrology, Rheumatology, University of Leipzig Medical Center, Leipzig, Germany
| | - Chuanfeng Liu
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Jiarong Dai
- Department of Endocrinology, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Shuoshuo Jin
- Department of Endocrinology, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Lijiao Chen
- Department of Endocrinology, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Shan Liu
- Department of Endocrinology, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yuzhao Liu
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Yongzhuo Yu
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Xiaoxia Liu
- Department of Endocrinology, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Qing Miao
- Department of Endocrinology, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Chong Wee Liew
- Department of Physiology & Biophysics, University of Illinois at Chicago, Chicago, IL, USA
| | - Yangang Wang
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Arne Dietrich
- Department of Visceral, Transplant, Thoracic and Vascular Surgery, University Hospital Leipzig, Leipzig, Germany
| | - Matthias Blüher
- Helmholtz Institute for Metabolic, Obesity and Vascular Research (HI-MAG) of the Helmholtz Zentrum München at the University of Leipzig and University Hospital Leipzig, Leipzig, Germany; Medical Department III - Endocrinology, Nephrology, Rheumatology, University of Leipzig Medical Center, Leipzig, Germany
| | - Xuanchun Wang
- Department of Endocrinology, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China.
| |
Collapse
|
7
|
Melnik BC, Weiskirchen R, Stremmel W, John SM, Schmitz G. Risk of Fat Mass- and Obesity-Associated Gene-Dependent Obesogenic Programming by Formula Feeding Compared to Breastfeeding. Nutrients 2024; 16:2451. [PMID: 39125332 PMCID: PMC11314333 DOI: 10.3390/nu16152451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 07/21/2024] [Accepted: 07/25/2024] [Indexed: 08/12/2024] Open
Abstract
It is the purpose of this review to compare differences in postnatal epigenetic programming at the level of DNA and RNA methylation and later obesity risk between infants receiving artificial formula feeding (FF) in contrast to natural breastfeeding (BF). FF bears the risk of aberrant epigenetic programming at the level of DNA methylation and enhances the expression of the RNA demethylase fat mass- and obesity-associated gene (FTO), pointing to further deviations in the RNA methylome. Based on a literature search through Web of Science, Google Scholar, and PubMed databases concerning the dietary and epigenetic factors influencing FTO gene and FTO protein expression and FTO activity, FTO's impact on postnatal adipogenic programming was investigated. Accumulated translational evidence underscores that total protein intake as well as tryptophan, kynurenine, branched-chain amino acids, milk exosomal miRNAs, NADP, and NADPH are crucial regulators modifying FTO gene expression and FTO activity. Increased FTO-mTORC1-S6K1 signaling may epigenetically suppress the WNT/β-catenin pathway, enhancing adipocyte precursor cell proliferation and adipogenesis. Formula-induced FTO-dependent alterations of the N6-methyladenosine (m6A) RNA methylome may represent novel unfavorable molecular events in the postnatal development of adipogenesis and obesity, necessitating further investigations. BF provides physiological epigenetic DNA and RNA regulation, a compelling reason to rely on BF.
Collapse
Affiliation(s)
- Bodo C. Melnik
- Department of Dermatology, Environmental Medicine and Health Theory, University of Osnabrück, D-49076 Osnabrück, Germany
| | - Ralf Weiskirchen
- Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry (IFMPEGKC), RWTH University Hospital Aachen, D-52074 Aachen, Germany;
| | - Wolfgang Stremmel
- Praxis for Internal Medicine, Beethovenstrasse 2, D-76530 Baden-Baden, Germany;
| | - Swen Malte John
- Department of Dermatology, Environmental Medicine and Health Theory, University of Osnabrück, D-49076 Osnabrück, Germany
- Institute for Interdisciplinary Dermatological Prevention and Rehabilitation (iDerm), University of Osnabrück, D-49076 Osnabrück, Germany;
| | - Gerd Schmitz
- Institute for Clinical Chemistry and Laboratory Medicine, University Hospital of Regensburg, D-93053 Regensburg, Germany;
| |
Collapse
|
8
|
Zhang N, Nao J, Zhang S, Dong X. Novel insights into the activating transcription factor 4 in Alzheimer's disease and associated aging-related diseases: Mechanisms and therapeutic implications. Front Neuroendocrinol 2024; 74:101144. [PMID: 38797197 DOI: 10.1016/j.yfrne.2024.101144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 05/16/2024] [Accepted: 05/22/2024] [Indexed: 05/29/2024]
Abstract
Ageing is inherent to all human beings, most mechanistic explanations of ageing results from the combined effects of various physiological and pathological processes. Additionally, aging pivotally contributes to several chronic diseases. Activating transcription factor 4 (ATF4), a member of the ATF/cAMP response element-binding protein family, has recently emerged as a pivotal player owing to its indispensable role in the pathophysiological processes of Alzheimer's disease and aging-related diseases. Moreover, ATF4 is integral to numerous biological processes. Therefore, this article aims to comprehensively review relevant research on the role of ATF4 in the onset and progression of aging-related diseases, elucidating its potential mechanisms and therapeutic approaches. Our objective is to furnish scientific evidence for the early identification of risk factors in aging-related diseases and pave the way for new research directions for their treatment. By elucidating the signaling pathway network of ATF4 in aging-related diseases, we aspire to gain a profound understanding of the molecular and cellular mechanisms, offering novel strategies for addressing aging and developing related therapeutics.
Collapse
Affiliation(s)
- Nan Zhang
- Department of Neurology, the Seventh Clinical College of China Medical University, No. 24 Central Street, Xinfu District, Fushun 113000, Liaoning, China.
| | - Jianfei Nao
- Department of Neurology, Shengjing Hospital of China Medical University, No. 36 Sanhao Street, Heping District, Shenyang 110000, Liaoning, China.
| | - Shun Zhang
- Department of Neurology, Shengjing Hospital of China Medical University, No. 36 Sanhao Street, Heping District, Shenyang 110000, Liaoning, China.
| | - Xiaoyu Dong
- Department of Neurology, Shengjing Hospital of China Medical University, No. 36 Sanhao Street, Heping District, Shenyang 110000, Liaoning, China.
| |
Collapse
|
9
|
Tomikawa J. Potential roles of inter-chromosomal interactions in cell fate determination. Front Cell Dev Biol 2024; 12:1397807. [PMID: 38774644 PMCID: PMC11106443 DOI: 10.3389/fcell.2024.1397807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 04/23/2024] [Indexed: 05/24/2024] Open
Abstract
Mammalian genomic DNA is packed in a small nucleus, and its folding and organization in the nucleus are critical for gene regulation and cell fate determination. In interphase, chromosomes are compartmentalized into certain nuclear spaces and territories that are considered incompatible with each other. The regulation of gene expression is influenced by the epigenetic characteristics of topologically associated domains and A/B compartments within chromosomes (intrachromosomal). Previously, interactions among chromosomes detected via chromosome conformation capture-based methods were considered noise or artificial errors. However, recent studies based on newly developed ligation-independent methods have shown that inter-chromosomal interactions play important roles in gene regulation. This review summarizes the recent understanding of spatial genomic organization in mammalian interphase nuclei and discusses the potential mechanisms that determine cell identity. In addition, this review highlights the potential role of inter-chromosomal interactions in early mouse development.
Collapse
Affiliation(s)
- Junko Tomikawa
- Department of Maternal-Fetal Biology, National Research Institute for Child Health and Development, Tokyo, Japan
| |
Collapse
|
10
|
Jasani N, Xu X, Posorske B, Kim Y, Vera O, Tsai KY, DeNicola GM, Karreth FA. MAPK-mediated PHGDH induction is essential for melanoma formation and represents an actionable vulnerability. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.11.589139. [PMID: 38659816 PMCID: PMC11042198 DOI: 10.1101/2024.04.11.589139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
Overexpression of PHGDH, the rate-limiting enzyme in the serine synthesis pathway, promotes melanomagenesis, melanoma cell proliferation, and survival of metastases in serine-low environments such as the brain. While PHGDH amplification explains PHGDH overexpression in a subset of melanomas, we find that PHGDH levels are universally increased in melanoma cells due to oncogenic BRAFV600E promoting PHGDH transcription through mTORC1-mediated translation of ATF4. Importantly, PHGDH expression was critical for melanomagenesis as depletion of PHGDH in genetic mouse models blocked melanoma formation. Despite BRAFV600E-mediated upregulation, PHGDH was further induced by exogenous serine restriction. Surprisingly, BRAFV600E inhibition diminished serine restriction-mediated PHGDH expression by preventing ATF4 induction, creating a potential vulnerability whereby melanoma cells could be specifically starved of serine by combining BRAFV600E inhibition with exogenous serine restriction. Indeed, we show that this combination promoted cell death in vitro and attenuated melanoma growth in vivo. This study identified a melanoma cell-specific PHGDH-dependent vulnerability.
Collapse
Affiliation(s)
- Neel Jasani
- Department of Molecular Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida 33612, USA
- Cancer Biology PhD Program, University of South Florida, Tampa, FL 33612, USA
| | - Xiaonan Xu
- Department of Molecular Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida 33612, USA
| | - Benjamin Posorske
- Department of Molecular Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida 33612, USA
| | - Yumi Kim
- Department of Metabolism and Physiology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida 33612, USA
| | - Olga Vera
- Department of Molecular Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida 33612, USA
| | - Kenneth Y. Tsai
- Department of Tumor Microenvironment and Metastasis, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA
- Department of Pathology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA
| | - Gina M. DeNicola
- Department of Metabolism and Physiology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida 33612, USA
| | - Florian A. Karreth
- Department of Molecular Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida 33612, USA
| |
Collapse
|
11
|
Grmai L, Michaca M, Lackner E, Nampoothiri V P N, Vasudevan D. Integrated stress response signaling acts as a metabolic sensor in fat tissues to regulate oocyte maturation and ovulation. Cell Rep 2024; 43:113863. [PMID: 38457339 PMCID: PMC11077669 DOI: 10.1016/j.celrep.2024.113863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 11/23/2023] [Accepted: 02/08/2024] [Indexed: 03/10/2024] Open
Abstract
Reproduction is an energy-intensive process requiring systemic coordination. However, the inter-organ signaling mechanisms that relay nutrient status to modulate reproductive output are poorly understood. Here, we use Drosophila melanogaster as a model to establish the integrated stress response (ISR) transcription factor, Atf4, as a fat tissue metabolic sensor that instructs oogenesis. We demonstrate that Atf4 regulates lipase activity to mediate yolk lipoprotein synthesis in the fat body. Depletion of Atf4 in the fat body also blunts oogenesis recovery after amino acid deprivation and re-feeding, suggestive of a nutrient-sensing role for Atf4. We also discovered that Atf4 promotes secretion of a fat-body-derived neuropeptide, CNMamide, which modulates neural circuits that promote egg-laying behavior (ovulation). Thus, we posit that ISR signaling in fat tissue acts as a "metabolic sensor" that instructs female reproduction-directly by impacting yolk lipoprotein production and follicle maturation and systemically by regulating ovulation.
Collapse
Affiliation(s)
- Lydia Grmai
- Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; Department of Psychiatry and Behavioral Sciences, Duke University Medical Center, Durham, NC, USA
| | - Manuel Michaca
- Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Emily Lackner
- Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | | | - Deepika Vasudevan
- Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
| |
Collapse
|
12
|
Tatara Y, Kasai S, Kokubu D, Tsujita T, Mimura J, Itoh K. Emerging Role of GCN1 in Disease and Homeostasis. Int J Mol Sci 2024; 25:2998. [PMID: 38474243 PMCID: PMC10931611 DOI: 10.3390/ijms25052998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 02/29/2024] [Accepted: 03/02/2024] [Indexed: 03/14/2024] Open
Abstract
GCN1 is recognized as a factor that is essential for the activation of GCN2, which is a sensor of amino acid starvation. This function is evolutionarily conserved from yeast to higher eukaryotes. However, recent studies have revealed non-canonical functions of GCN1 that are independent of GCN2, such as its participation in cell proliferation, apoptosis, and the immune response, beyond the borders of species. Although it is known that GCN1 and GCN2 interact with ribosomes to accomplish amino acid starvation sensing, recent studies have reported that GCN1 binds to disomes (i.e., ribosomes that collide each other), thereby regulating both the co-translational quality control and stress response. We propose that GCN1 regulates ribosome-mediated signaling by dynamically changing its partners among RWD domain-possessing proteins via unknown mechanisms. We recently demonstrated that GCN1 is essential for cell proliferation and whole-body energy regulation in mice. However, the manner in which ribosome-initiated signaling via GCN1 is related to various physiological functions warrants clarification. GCN1-mediated mechanisms and its interaction with other quality control and stress response signals should be important for proteostasis during aging and neurodegenerative diseases, and may be targeted for drug development.
Collapse
Affiliation(s)
- Yota Tatara
- Department of Stress Response Science, Biomedical Research Center, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki 036-8562, Aomori, Japan
| | - Shuya Kasai
- Department of Stress Response Science, Biomedical Research Center, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki 036-8562, Aomori, Japan
| | - Daichi Kokubu
- Diet and Well-Being Research Institute, KAGOME, Co., Ltd., 17 Nishitomiyama, Nasushiobara 329-2762, Tochigi, Japan
- Department of Vegetable Life Science, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki 036-8562, Aomori, Japan
| | - Tadayuki Tsujita
- Laboratory of Biochemistry, Department of Applied Biochemistry and Food Science, Faculty of Agriculture, Saga University, 1 Honjo-machi, Saga City 840-8502, Saga, Japan;
| | - Junsei Mimura
- Department of Stress Response Science, Biomedical Research Center, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki 036-8562, Aomori, Japan
| | - Ken Itoh
- Department of Stress Response Science, Biomedical Research Center, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki 036-8562, Aomori, Japan
- Department of Vegetable Life Science, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki 036-8562, Aomori, Japan
| |
Collapse
|
13
|
Fu HY, Li Y, Cui H, Li JZ, Xu WX, Wang X, Fan RF. miR-15b-5p promotes HgCl 2-induced chicken embryo kidney cells ferroptosis by targeting β-TrCP-mediated ATF4 ubiquitin degradation. Toxicology 2024; 503:153742. [PMID: 38325558 DOI: 10.1016/j.tox.2024.153742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 01/21/2024] [Accepted: 02/03/2024] [Indexed: 02/09/2024]
Abstract
Mercuric chloride (HgCl2), a widespread environmental pollutant, induces ferroptosis in chicken embryonic kidney (CEK) cells. Whereas activating transcription factor 4 (ATF4), a critical mediator of oxidative homeostasis, plays a dual role in ferroptosis, but its precise mechanisms in HgCl2-induced ferroptosis remain elusive. This study aims to investigate the function and molecular mechanism of ATF4 in HgCl2-induced ferroptosis. Our results revealed that ATF4 was downregulated during HgCl2-induced ferroptosis in CEK cells. Surprisingly, HgCl2 exposure has no significant impact on ATF4 mRNA level. Further investigation indicated that HgCl2 enhanced the expression of the E3 ligase beta-transducin repeat-containing protein (β-TrCP) and increased ATF4 ubiquitination. Subsequent findings identified that miR-15b-5p as an upstream modulator of β-TrCP, with miR-15b-5p downregulation observed in HgCl2-exposed CEK cells. Importantly, miR-15b-5p mimics suppressed β-TrCP expression and reversed HgCl2-induced cellular ferroptosis. Mechanistically, HgCl2 inhibited miR-15b-5p, and promoted β-TrCP-mediated ubiquitin degradation of ATF4, thereby inhibited the expression of antioxidant-related target genes and promoted ferroptosis. In conclusion, our study highlighted the crucial role of the miR-15b-5p/β-TrCP/ATF4 axis in HgCl2-induced nephrotoxicity, offering a new therapeutic target for understanding the mechanism of HgCl2 nephrotoxicity.
Collapse
Affiliation(s)
- Hong-Yu Fu
- College of Veterinary Medicine, Shandong Agricultural University, 61 Daizong Street, Tai'an City, Shandong Province 271018, China; Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, 61 Daizong Street, Tai'an City, Shandong Province 271018, China; Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, 61 Daizong Street, Tai'an City, Shandong Province 271018, China
| | - Yue Li
- College of Veterinary Medicine, Shandong Agricultural University, 61 Daizong Street, Tai'an City, Shandong Province 271018, China; Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, 61 Daizong Street, Tai'an City, Shandong Province 271018, China; Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, 61 Daizong Street, Tai'an City, Shandong Province 271018, China
| | - Han Cui
- College of Veterinary Medicine, Shandong Agricultural University, 61 Daizong Street, Tai'an City, Shandong Province 271018, China; Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, 61 Daizong Street, Tai'an City, Shandong Province 271018, China; Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, 61 Daizong Street, Tai'an City, Shandong Province 271018, China
| | - Jiu-Zhi Li
- College of Veterinary Medicine, Shandong Agricultural University, 61 Daizong Street, Tai'an City, Shandong Province 271018, China; Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, 61 Daizong Street, Tai'an City, Shandong Province 271018, China; Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, 61 Daizong Street, Tai'an City, Shandong Province 271018, China
| | - Wan-Xue Xu
- College of Veterinary Medicine, Shandong Agricultural University, 61 Daizong Street, Tai'an City, Shandong Province 271018, China; Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, 61 Daizong Street, Tai'an City, Shandong Province 271018, China; Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, 61 Daizong Street, Tai'an City, Shandong Province 271018, China
| | - Xi Wang
- College of Veterinary Medicine, Shandong Agricultural University, 61 Daizong Street, Tai'an City, Shandong Province 271018, China; Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, 61 Daizong Street, Tai'an City, Shandong Province 271018, China; Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, 61 Daizong Street, Tai'an City, Shandong Province 271018, China
| | - Rui-Feng Fan
- College of Veterinary Medicine, Shandong Agricultural University, 61 Daizong Street, Tai'an City, Shandong Province 271018, China; Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, 61 Daizong Street, Tai'an City, Shandong Province 271018, China; Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, 61 Daizong Street, Tai'an City, Shandong Province 271018, China.
| |
Collapse
|
14
|
Bjorkman SH, Marti A, Jena J, García-Peña LM, Weatherford ET, Kato K, Koneru J, Chen J, Sood A, Potthoff MJ, Adams CM, Abel ED, Pereira RO. ATF4 expression in thermogenic adipocytes is required for cold-induced thermogenesis in mice via FGF21-independent mechanisms. Sci Rep 2024; 14:1563. [PMID: 38238383 PMCID: PMC10796914 DOI: 10.1038/s41598-024-52004-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 01/12/2024] [Indexed: 01/22/2024] Open
Abstract
In brown adipose tissue (BAT), short-term cold exposure induces the activating transcription factor 4 (ATF4), and its downstream target fibroblast growth factor 21 (FGF21). Induction of ATF4 in BAT in response to mitochondrial stress is required for thermoregulation, partially by increasing FGF21 expression. In the present study, we tested the hypothesis that Atf4 and Fgf21 induction in BAT are both required for BAT thermogenesis under physiological stress by generating mice selectively lacking either Atf4 (ATF4 BKO) or Fgf21 (FGF21 BKO) in UCP1-expressing adipocytes. After 3 days of cold exposure, core body temperature was significantly reduced in ad-libitum-fed ATF4 BKO mice, which correlated with Fgf21 downregulation in brown and beige adipocytes, and impaired browning of white adipose tissue. Conversely, despite having reduced browning, FGF21 BKO mice had preserved core body temperature after cold exposure. Mechanistically, ATF4, but not FGF21, regulates amino acid import and metabolism in response to cold, likely contributing to BAT thermogenic capacity under ad libitum-fed conditions. Importantly, under fasting conditions, both ATF4 and FGF21 were required for thermogenesis in cold-exposed mice. Thus, ATF4 regulates BAT thermogenesis under fed conditions likely in a FGF21-independent manner, in part via increased amino acid uptake and metabolism.
Collapse
Affiliation(s)
- Sarah H Bjorkman
- Fraternal Order of Eagles Diabetes Research Center and Division of Endocrinology and Metabolism, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, 169 Newton Road, 4338 PBDB, Iowa City, IA, 52242, USA
- Department of Obstetrics and Gynecology, Reproductive Endocrinology and Infertility, University of Iowa Hospital and Clinics, Iowa City, IA, USA
| | - Alex Marti
- Fraternal Order of Eagles Diabetes Research Center and Division of Endocrinology and Metabolism, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, 169 Newton Road, 4338 PBDB, Iowa City, IA, 52242, USA
| | - Jayashree Jena
- Fraternal Order of Eagles Diabetes Research Center and Division of Endocrinology and Metabolism, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, 169 Newton Road, 4338 PBDB, Iowa City, IA, 52242, USA
| | - Luis Miguel García-Peña
- Fraternal Order of Eagles Diabetes Research Center and Division of Endocrinology and Metabolism, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, 169 Newton Road, 4338 PBDB, Iowa City, IA, 52242, USA
| | - Eric T Weatherford
- Fraternal Order of Eagles Diabetes Research Center and Division of Endocrinology and Metabolism, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, 169 Newton Road, 4338 PBDB, Iowa City, IA, 52242, USA
| | - Kevin Kato
- Fraternal Order of Eagles Diabetes Research Center and Division of Endocrinology and Metabolism, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, 169 Newton Road, 4338 PBDB, Iowa City, IA, 52242, USA
| | - Jivan Koneru
- Fraternal Order of Eagles Diabetes Research Center and Division of Endocrinology and Metabolism, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, 169 Newton Road, 4338 PBDB, Iowa City, IA, 52242, USA
| | - Jason Chen
- Fraternal Order of Eagles Diabetes Research Center and Division of Endocrinology and Metabolism, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, 169 Newton Road, 4338 PBDB, Iowa City, IA, 52242, USA
| | - Ayushi Sood
- Fraternal Order of Eagles Diabetes Research Center and Division of Endocrinology and Metabolism, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, 169 Newton Road, 4338 PBDB, Iowa City, IA, 52242, USA
| | - Matthew J Potthoff
- Fraternal Order of Eagles Diabetes Research Center and Division of Endocrinology and Metabolism, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, 169 Newton Road, 4338 PBDB, Iowa City, IA, 52242, USA
- Department of Neuroscience and Pharmacology, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Christopher M Adams
- Fraternal Order of Eagles Diabetes Research Center and Division of Endocrinology and Metabolism, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, 169 Newton Road, 4338 PBDB, Iowa City, IA, 52242, USA
- Division of Endocrinology, Metabolism and Nutrition, Department of Medicine, Mayo Clinic, Rochester, MN, USA
| | - E Dale Abel
- Fraternal Order of Eagles Diabetes Research Center and Division of Endocrinology and Metabolism, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, 169 Newton Road, 4338 PBDB, Iowa City, IA, 52242, USA
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Renata O Pereira
- Fraternal Order of Eagles Diabetes Research Center and Division of Endocrinology and Metabolism, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, 169 Newton Road, 4338 PBDB, Iowa City, IA, 52242, USA.
| |
Collapse
|
15
|
Yang M, Yao X, Xia F, Xiang S, Tang W, Zhou B. Hugan Qingzhi tablets attenuates endoplasmic reticulum stress in nonalcoholic fatty liver disease rats by regulating PERK and ATF6 pathways. BMC Complement Med Ther 2024; 24:36. [PMID: 38216941 PMCID: PMC10785447 DOI: 10.1186/s12906-024-04336-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 01/03/2024] [Indexed: 01/14/2024] Open
Abstract
BACKGROUND Endoplasmic reticulum (ER) stress, promoting lipid metabolism disorders and steatohepatitis, contributes significantly to the pathogenesis of nonalcoholic fatty liver disease (NAFLD). Hugan Qingzhi tablets (HQT) has a definite effect in the clinical treatment of NAFLD patients, but its mechanism is still unclear. This study aims to investigate the effects of HQT on ER stress in the liver tissues of NAFLD rats and explore the underlying mechanism. METHODS The NAFLD rat model was managed with high-fat diet (HFD) for 12weeks. HQT was administrated in a daily basis to the HFD groups. Biochemical markers, pro-inflammatory cytokines, liver histology were assayed to evaluate HQT effects in HFD-induced NAFLD rats. Furthermore, the expression of ER stress-related signal molecules including glucose regulating protein 78 (GRP78), protein kinase RNA-like endoplasmic reticulum kinase (PERK), p-PERK, eukaryotic translation initiation factor 2α (EIF2α), p-EIF2α, activating transcription factor 4 (ATF4), acetyl-coenzyme A-carboxylase (ACC), activating transcription factor (ATF6), and nuclear factor-kappa B-p65 (NF-κB-p65) were detected by western blot and/or qRT-PCR. RESULTS The histopathological characteristics and biochemical data indicated that HQT exhibited protective effects on HFD-induced NAFLD rats. Furthermore, it caused significant reduction in the expression of ERS markers, such as GRP78, PERK, p-PERK, and ATF6, and subsequently downregulated the expression of EIF2α, p-EIF2α ATF4, ACC, and NF-κB-p65. CONCLUSIONS The results suggested that HQT has protective effect against hepatic steatosis and inflammation in NAFLD rats by attenuating ER stress, and the potential mechanism is through inhibition of PERK and ATF6 pathways.
Collapse
Affiliation(s)
- Miaoting Yang
- Department of Pharmacy, People's Hospital of Longhua, Shenzhen, 518109, Guangdong, China
| | - Xiaorui Yao
- Department of Pharmacy, Shantou Central Hospital, Shantou, 515041, Guangdong, China
| | - Fan Xia
- Department of Pharmacy, the Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518107, PR China
| | - Shijian Xiang
- Department of Pharmacy, the Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518107, PR China
| | - Waijiao Tang
- Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, Guangdong, China
| | - Benjie Zhou
- Department of Pharmacy, the Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518107, PR China.
| |
Collapse
|
16
|
Wang D, Jabile MJT, Lu J, Townsend LK, Valvano CM, Gautam J, Batchuluun B, Tsakiridis EE, Lally JS, Steinberg GR. Fatty Acids Increase GDF15 and Reduce Food Intake Through a GFRAL Signaling Axis. Diabetes 2024; 73:51-56. [PMID: 37847913 PMCID: PMC10784653 DOI: 10.2337/db23-0495] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 10/01/2023] [Indexed: 10/19/2023]
Abstract
In contrast to the well-defined biological feedback loops controlling glucose, the mechanisms by which the body responds to changes in fatty acid availability are less clearly defined. Growth differentiating factor 15 (GDF15) suppresses the consumption of diets high in fat but is paradoxically increased in obese mice fed a high-fat diet. Given this interrelationship, we investigated whether diets high in fat could directly increase GDF15 independently of obesity. We found that fatty acids increase GDF15 levels dose dependently, with the greatest response observed with linolenic acid. GDF15 mRNA expression was modestly increased in the gastrointestinal tract; however, kidney GDF15 mRNA was ∼1,000-fold higher and was increased by more than threefold, with subsequent RNAscope analysis showing elevated expression within the cortex and outer medulla. Treatment of wild-type mice with linolenic acid reduced food intake and body mass; however, this effect disappeared in mice lacking the GDF15 receptor GFRAL. An equal caloric load of glucose did not suppress food intake or reduce body mass in either wild-type or GFRAL-knockout mice. These data indicate that fatty acids such as linolenic acid increase GDF15 and suppress food intake through a mechanism requiring GFRAL. These data suggest that a primary physiological function of GDF15 may be as a fatty acid sensor designed to protect cells from fatty acid overload. ARTICLE HIGHLIGHTS The mechanisms by which the body responds to changes in fatty acid availability are less clearly defined. We investigated whether diets high in fat could directly increase growth differentiating factor 15 (GDF15) independently of obesity. Fatty acids increase GDF15 and reduce food intake through a GFRAL signaling axis. GDF15 is a sensor of fatty acids that may have important implications for explaining increased satiety after consumption of diets high in fat.
Collapse
Affiliation(s)
- Dongdong Wang
- Centre for Metabolism, Obesity and Diabetes Research, McMaster University, Hamilton, Ontario, Canada
- Division of Endocrinology and Metabolism, Department of Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Maria Joy Therese Jabile
- Centre for Metabolism, Obesity and Diabetes Research, McMaster University, Hamilton, Ontario, Canada
- Division of Endocrinology and Metabolism, Department of Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Junfeng Lu
- Centre for Metabolism, Obesity and Diabetes Research, McMaster University, Hamilton, Ontario, Canada
- Division of Endocrinology and Metabolism, Department of Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Logan K. Townsend
- Centre for Metabolism, Obesity and Diabetes Research, McMaster University, Hamilton, Ontario, Canada
- Division of Endocrinology and Metabolism, Department of Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Celina M. Valvano
- Centre for Metabolism, Obesity and Diabetes Research, McMaster University, Hamilton, Ontario, Canada
- Division of Endocrinology and Metabolism, Department of Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Jaya Gautam
- Centre for Metabolism, Obesity and Diabetes Research, McMaster University, Hamilton, Ontario, Canada
- Division of Endocrinology and Metabolism, Department of Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Battsetseg Batchuluun
- Centre for Metabolism, Obesity and Diabetes Research, McMaster University, Hamilton, Ontario, Canada
- Division of Endocrinology and Metabolism, Department of Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Evangelia E. Tsakiridis
- Centre for Metabolism, Obesity and Diabetes Research, McMaster University, Hamilton, Ontario, Canada
- Division of Endocrinology and Metabolism, Department of Medicine, McMaster University, Hamilton, Ontario, Canada
| | - James S.V. Lally
- Centre for Metabolism, Obesity and Diabetes Research, McMaster University, Hamilton, Ontario, Canada
- Division of Endocrinology and Metabolism, Department of Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Gregory R. Steinberg
- Centre for Metabolism, Obesity and Diabetes Research, McMaster University, Hamilton, Ontario, Canada
- Division of Endocrinology and Metabolism, Department of Medicine, McMaster University, Hamilton, Ontario, Canada
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
17
|
Liao W, Cao X, Xia H, Wang S, Chen L, Sun G. Pea protein hydrolysate reduces blood glucose in high-fat diet and streptozotocin-induced diabetic mice. Front Nutr 2023; 10:1298046. [PMID: 38156281 PMCID: PMC10754521 DOI: 10.3389/fnut.2023.1298046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 11/29/2023] [Indexed: 12/30/2023] Open
Abstract
Introduction Food proteins have been recognized as an ideal source to release bioactive peptides with the potential to intervene nutrition related chronic diseases, such as cardiovascular diseases, obesity and diabetes. Our previous studies showed that pea protein hydrolysate (PPH) could suppress hepatic glucose production in hepatic cells via inhibiting the gluconeogenic signaling. Thus, we hypothesized that PPH could play the hypoglycemic role in vivo. Methods In the present study, the mice model with type 2 diabetic mellitus (T2DM) was developed by high-fat diet and low dose of streptozotocin injections. PPH was administered orally with a dosage of 1000 mg/kg body weight for 9 weeks, followed by the downstream biomedical analyses. Results The results showed that the 9-week treatment of PPH could reduce fasting blood glucose by 29.6% and improve glucose tolerance in the T2DM mice. The associated mechanisms included suppression of the gluconeogenic pathway, activation of the insulin signaling and modulation of the renin angiotensin system in the liver of the diabetic mice. In addition, the levels of pro-inflammatory markers in both liver and serum were reduced by the PPH treatment. Conclusion The hypoglycemic effect of PPH in T2DM mice was demonstrated in the present study. Findings from this study could provide rationale to incorporate PPH into functional foods or nutraceuticals for glycemic control.
Collapse
Affiliation(s)
- Wang Liao
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, Department of Nutrition and Food Hygiene, School of Public Health, Southeast University, Nanjing, China
| | - Xinyi Cao
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, Department of Nutrition and Food Hygiene, School of Public Health, Southeast University, Nanjing, China
| | - Hui Xia
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, Department of Nutrition and Food Hygiene, School of Public Health, Southeast University, Nanjing, China
| | - Shaokang Wang
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, Department of Nutrition and Food Hygiene, School of Public Health, Southeast University, Nanjing, China
| | - Liang Chen
- Public Service Platform of South China Sea for R&D Marine Biomedicine Resources, The Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang, China
| | - Guiju Sun
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, Department of Nutrition and Food Hygiene, School of Public Health, Southeast University, Nanjing, China
| |
Collapse
|
18
|
Na M, Yang X, Deng Y, Yin Z, Li M. Endoplasmic reticulum stress in the pathogenesis of alcoholic liver disease. PeerJ 2023; 11:e16398. [PMID: 38025713 PMCID: PMC10655704 DOI: 10.7717/peerj.16398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 10/12/2023] [Indexed: 12/01/2023] Open
Abstract
The endoplasmic reticulum (ER) plays a pivotal role in protein synthesis, folding, and modification. Under stress conditions such as oxidative stress and inflammation, the ER can become overwhelmed, leading to an accumulation of misfolded proteins and ensuing ER stress. This triggers the unfolded protein response (UPR) designed to restore ER homeostasis. Alcoholic liver disease (ALD), a spectrum disorder resulting from chronic alcohol consumption, encompasses conditions from fatty liver and alcoholic hepatitis to cirrhosis. Metabolites of alcohol can incite oxidative stress and inflammation in hepatic cells, instigating ER stress. Prolonged alcohol exposure further disrupts protein homeostasis, exacerbating ER stress which can lead to irreversible hepatocellular damage and ALD progression. Elucidating the contribution of ER stress to ALD pathogenesis may pave the way for innovative therapeutic interventions. This review delves into ER stress, its basic signaling pathways, and its role in the alcoholic liver injury.
Collapse
Affiliation(s)
- Man Na
- Department of Pharmacy, The 926th Hospital of Joint Logistics Support Force of Chinese People’s Liberation Army, Kaiyuan, Yunan, China
| | - Xingbiao Yang
- Department of Pharmacy, The 926th Hospital of Joint Logistics Support Force of Chinese People’s Liberation Army, Kaiyuan, Yunan, China
| | - Yongkun Deng
- Department of Pharmacy, The 926th Hospital of Joint Logistics Support Force of Chinese People’s Liberation Army, Kaiyuan, Yunan, China
| | - Zhaoheng Yin
- Department of Pharmacy, The 926th Hospital of Joint Logistics Support Force of Chinese People’s Liberation Army, Kaiyuan, Yunan, China
| | - Mingwei Li
- Department of Pharmacy, The 926th Hospital of Joint Logistics Support Force of Chinese People’s Liberation Army, Kaiyuan, Yunan, China
| |
Collapse
|
19
|
Örd T, Örd D, Adler P, Örd T. Genome-wide census of ATF4 binding sites and functional profiling of trait-associated genetic variants overlapping ATF4 binding motifs. PLoS Genet 2023; 19:e1011014. [PMID: 37906604 PMCID: PMC10637723 DOI: 10.1371/journal.pgen.1011014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 11/10/2023] [Accepted: 10/11/2023] [Indexed: 11/02/2023] Open
Abstract
Activating Transcription Factor 4 (ATF4) is an important regulator of gene expression in stress responses and developmental processes in many cell types. Here, we catalogued ATF4 binding sites in the human genome and identified overlaps with trait-associated genetic variants. We probed these genetic variants for allelic regulatory activity using a massively parallel reporter assay (MPRA) in HepG2 hepatoma cells exposed to tunicamycin to induce endoplasmic reticulum stress and ATF4 upregulation. The results revealed that in the majority of cases, the MPRA allelic activity of these SNPs was in agreement with the nucleotide preference seen in the ATF4 binding motif from ChIP-Seq. Luciferase and electrophoretic mobility shift assays in additional cellular models further confirmed ATF4-dependent regulatory effects for the SNPs rs532446 (GADD45A intronic; linked to hematological parameters), rs7011846 (LPL upstream; myocardial infarction), rs2718215 (diastolic blood pressure), rs281758 (psychiatric disorders) and rs6491544 (educational attainment). CRISPR-Cas9 disruption and/or deletion of the regulatory elements harboring rs532446 and rs7011846 led to the downregulation of GADD45A and LPL, respectively. Thus, these SNPs could represent examples of GWAS genetic variants that affect gene expression by altering ATF4-mediated transcriptional activation.
Collapse
Affiliation(s)
- Tiit Örd
- Institute of Genomics, University of Tartu, Tartu, Estonia
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Daima Örd
- Institute of Genomics, University of Tartu, Tartu, Estonia
| | - Priit Adler
- Institute of Computer Science, University of Tartu, Tartu, Estonia
| | - Tõnis Örd
- Institute of Genomics, University of Tartu, Tartu, Estonia
| |
Collapse
|
20
|
Bjorkman SH, Marti A, Jena J, Garcia Pena LM, Weatherford ET, Kato K, Koneru J, Chen J, Sood A, Potthoff MJ, Adams CM, Abel ED, Pereira RO. ATF4 Expression in Thermogenic Adipocytes is Required for Cold-Induced Thermogenesis in Mice via FGF21-Independent Mechanisms. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.09.531964. [PMID: 36945390 PMCID: PMC10028960 DOI: 10.1101/2023.03.09.531964] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
In brown adipose tissue (BAT), short-term cold exposure induces the activating transcription factor 4 (ATF4), and its downstream target fibroblast growth factor 21 (FGF21). Induction of ATF4 in BAT in response to mitochondrial stress is required for thermoregulation, partially via upregulation of FGF21. In the present study, we tested the hypothesis that Atf4 and Fgf21 induction in BAT are both required for BAT thermogenesis by generating mice selectively lacking either Atf4 ( ATF4 BKO ) or Fgf21 (FGF21 BKO) in UCP1-expressing adipocytes. After 3 days of cold exposure, core body temperature was significantly reduced in ad-libitum -fed ATF4 BKO mice, which correlated with Fgf21 downregulation in brown and beige adipocytes, and impaired browning of white adipose tissue (WAT). Conversely, despite having reduced browning, FGF21 BKO mice had preserved core body temperature after cold exposure. Mechanistically, ATF4, but not FGF21, regulates amino acid import and metabolism in response to cold, likely contributing to BAT thermogenic capacity under ad libitum -fed conditions. Importantly, under fasting conditions, both ATF4 and FGF21 were required for thermogenesis in cold-exposed mice. Thus, ATF4 regulates BAT thermogenesis by activating amino acid metabolism in BAT in a FGF21-independent manner.
Collapse
|
21
|
Liu T, Wen Z, Shao L, Cui Y, Tang X, Miao H, Shi J, Jiang L, Feng S, Zhao Y, Zhang H, Liang Q, Chen D, Zhang Y, Wang C. ATF4 knockdown in macrophage impairs glycolysis and mediates immune tolerance by targeting HK2 and HIF-1α ubiquitination in sepsis. Clin Immunol 2023; 254:109698. [PMID: 37481013 DOI: 10.1016/j.clim.2023.109698] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 06/30/2023] [Accepted: 07/18/2023] [Indexed: 07/24/2023]
Abstract
Strengthened glycolysis is crucial for the macrophage pro-inflammatory response during sepsis. Activating transcription factor 4 (ATF4) plays an important role in regulating glucose and lipid metabolic homeostasis in hepatocytes and adipocytes. However, its immunometabolic role in macrophage during sepsis remains largely unknown. In the present study, we found that the expression of ATF4 in peripheral blood mononuclear cells (PBMCs) was increased and associated with glucose metabolism in septic patients. Atf4 knockdown specifically decreased LPS-induced spleen macrophages and serum pro-inflammatory cytokines levels in mice. Moreover, Atf4 knockdown partially blocked LPS-induced pro-inflammatory cytokines, lactate accumulation and glycolytic capacity in RAW264.7. Mechanically, ATF4 binds to the promoter region of hexokinase II (HK2), and interacts with hypoxia inducible factor-1α (HIF-1α) and stabilizes HIF-1α through ubiquitination modification in response to LPS. Furthermore, ATF4-HIF-1α-HK2-glycolysis axis launches pro-inflammatory response in macrophage depending on the activation of mammalian target of rapamycin (mTOR). Importantly, Atf4 overexpression improves the decreased level of pro-inflammatory cytokines and lactate secretion and HK2 expression in LPS-induced tolerant macrophages. In conclusion, we propose a novel function of ATF4 as a crucial glycolytic activator contributing to pro-inflammatory response and improving immune tolerant in macrophage involved in sepsis. So, ATF4 could be a potential new target for immunotherapy of sepsis.
Collapse
Affiliation(s)
- Tiantian Liu
- Department of Critical Care Medicine, Shanghai Children's Hospital, Shanghai Jiao Tong University School of Medicine, 200062 Shanghai, China; Laboratory of Critical Care Translational Medicine, Institute of Pediatric Infection, Immunity, and Critical Care Medicine, Shanghai Jiao Tong University School of Medicine, 200062 Shanghai, China
| | - Zhenliang Wen
- Department of Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 200025 Shanghai, China
| | - Lujing Shao
- Department of Critical Care Medicine, Shanghai Children's Hospital, Shanghai Jiao Tong University School of Medicine, 200062 Shanghai, China; Laboratory of Critical Care Translational Medicine, Institute of Pediatric Infection, Immunity, and Critical Care Medicine, Shanghai Jiao Tong University School of Medicine, 200062 Shanghai, China
| | - Yun Cui
- Department of Critical Care Medicine, Shanghai Children's Hospital, Shanghai Jiao Tong University School of Medicine, 200062 Shanghai, China; Laboratory of Critical Care Translational Medicine, Institute of Pediatric Infection, Immunity, and Critical Care Medicine, Shanghai Jiao Tong University School of Medicine, 200062 Shanghai, China; Institute of Pediatric Critical Care, Shanghai Jiao Tong University, 200062, Shanghai, China
| | - Xiaomeng Tang
- Department of Critical Care Medicine, Shanghai Children's Hospital, Shanghai Jiao Tong University School of Medicine, 200062 Shanghai, China; Laboratory of Critical Care Translational Medicine, Institute of Pediatric Infection, Immunity, and Critical Care Medicine, Shanghai Jiao Tong University School of Medicine, 200062 Shanghai, China
| | - Huijie Miao
- Department of Critical Care Medicine, Shanghai Children's Hospital, Shanghai Jiao Tong University School of Medicine, 200062 Shanghai, China; Laboratory of Critical Care Translational Medicine, Institute of Pediatric Infection, Immunity, and Critical Care Medicine, Shanghai Jiao Tong University School of Medicine, 200062 Shanghai, China; Institute of Pediatric Critical Care, Shanghai Jiao Tong University, 200062, Shanghai, China
| | - Jingyi Shi
- Department of Critical Care Medicine, Shanghai Children's Hospital, Shanghai Jiao Tong University School of Medicine, 200062 Shanghai, China; Laboratory of Critical Care Translational Medicine, Institute of Pediatric Infection, Immunity, and Critical Care Medicine, Shanghai Jiao Tong University School of Medicine, 200062 Shanghai, China; Institute of Pediatric Critical Care, Shanghai Jiao Tong University, 200062, Shanghai, China
| | - Linlin Jiang
- Department of Clinical Laboratory, Shanghai Children's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200062, China
| | - Shuyun Feng
- Department of Critical Care Medicine, Shanghai Children's Hospital, Shanghai Jiao Tong University School of Medicine, 200062 Shanghai, China; Laboratory of Critical Care Translational Medicine, Institute of Pediatric Infection, Immunity, and Critical Care Medicine, Shanghai Jiao Tong University School of Medicine, 200062 Shanghai, China
| | - Yilin Zhao
- Department of Critical Care Medicine, Shanghai Children's Hospital, Shanghai Jiao Tong University School of Medicine, 200062 Shanghai, China; Laboratory of Critical Care Translational Medicine, Institute of Pediatric Infection, Immunity, and Critical Care Medicine, Shanghai Jiao Tong University School of Medicine, 200062 Shanghai, China
| | - Hong Zhang
- Department of Clinical Laboratory, Shanghai Children's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200062, China
| | - Qiming Liang
- Research Center of Translational Medicine, Shanghai Institute of Immunology, Shanghai Children's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Dechang Chen
- Department of Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 200025 Shanghai, China..
| | - Yucai Zhang
- Department of Critical Care Medicine, Shanghai Children's Hospital, Shanghai Jiao Tong University School of Medicine, 200062 Shanghai, China; Laboratory of Critical Care Translational Medicine, Institute of Pediatric Infection, Immunity, and Critical Care Medicine, Shanghai Jiao Tong University School of Medicine, 200062 Shanghai, China; Institute of Pediatric Critical Care, Shanghai Jiao Tong University, 200062, Shanghai, China.
| | - Chunxia Wang
- Department of Critical Care Medicine, Shanghai Children's Hospital, Shanghai Jiao Tong University School of Medicine, 200062 Shanghai, China; Laboratory of Critical Care Translational Medicine, Institute of Pediatric Infection, Immunity, and Critical Care Medicine, Shanghai Jiao Tong University School of Medicine, 200062 Shanghai, China; Institute of Pediatric Critical Care, Shanghai Jiao Tong University, 200062, Shanghai, China.
| |
Collapse
|
22
|
He F, Zhang P, Liu J, Wang R, Kaufman RJ, Yaden BC, Karin M. ATF4 suppresses hepatocarcinogenesis by inducing SLC7A11 (xCT) to block stress-related ferroptosis. J Hepatol 2023; 79:362-377. [PMID: 36996941 PMCID: PMC11332364 DOI: 10.1016/j.jhep.2023.03.016] [Citation(s) in RCA: 159] [Impact Index Per Article: 79.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Revised: 03/02/2023] [Accepted: 03/06/2023] [Indexed: 04/01/2023]
Abstract
BACKGROUND & AIMS Hepatocellular carcinoma (HCC), a leading cause of cancer-related death, is associated with viral hepatitis, non-alcoholic steatohepatitis (NASH), and alcohol-related steatohepatitis, all of which trigger endoplasmic reticulum (ER) stress, hepatocyte death, inflammation, and compensatory proliferation. Using ER stress-prone MUP-uPA mice, we established that ER stress and hypernutrition cooperate to cause NASH and HCC, but the contribution of individual stress effectors, such as activating transcription factor 4 (ATF4), to HCC and their underlying mechanisms of action remained unknown. METHODS Hepatocyte-specific ATF4-deficient MUP-uPA mice (MUP-uPA/Atf4Δhep) and control MUP-uPA/Atf4F/F mice were fed a high-fat diet to induce NASH-related HCC, and Atf4F/F and Atf4Δhep mice were injected with diethylnitrosamine to model carcinogen-induced HCC. Histological, biochemical, and RNA-sequencing analyses were performed to identify and define the role of ATF4-induced solute carrier family 7a member 11 (SLC7A11) expression in hepatocarcinogenesis. Reconstitution of SLC7A11 in ATF4-deficient primary hepatocytes and mouse livers was used to study its effects on ferroptosis and HCC development. RESULTS Hepatocyte ATF4 ablation inhibited hepatic steatosis, but increased susceptibility to ferroptosis, resulting in accelerated HCC development. Although ATF4 activates numerous genes, ferroptosis susceptibility and hepatocarcinogenesis were reversed by ectopic expression of a single ATF4 target, Slc7a11, coding for a subunit of the cystine/glutamate antiporter xCT, which is needed for glutathione synthesis. A ferroptosis inhibitor also reduced liver damage and inflammation. ATF4 and SLC7A11 amounts were positively correlated in human HCC and livers of patients with NASH. CONCLUSIONS Despite ATF4 being upregulated in established HCC, it serves an important protective function in normal hepatocytes. By maintaining glutathione production, ATF4 inhibits ferroptosis-dependent inflammatory cell death, which is known to promote compensatory proliferation and hepatocarcinogenesis. Ferroptosis inhibitors or ATF4 activators may also blunt HCC onset. IMPACT AND IMPLICATIONS Liver cancer or hepatocellular carcinoma (HCC) is associated with multiple aetiologies. Most HCC aetiologies cause hepatocyte stress and death, as well as subsequent inflammation, and compensatory proliferation, thereby accelerating HCCdevelopment. The contribution of individual stress effectors to HCC and their underlying mechanisms of action were heretofore unknown. This study shows that the stress-responsive transcription factor ATF4 blunts liver damage and cancer development by suppressing iron-dependent cell death (ferroptosis). Although ATF4 ablation prevents hepatic steatosis, it also increases susceptibility to ferroptosis, due to decreased expression of the cystine/glutamate antiporter SLC7A11, whose expression in human HCC and NASH correlates with ATF4. These findings reinforce the notion that benign steatosis may be protective and does not increase cancer risk unless accompanied by stress-induced liver damage. These results have important implications for prevention of liver damage and cancer.
Collapse
Affiliation(s)
- Feng He
- Academy of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China; Laboratory of Gene Regulation and Signal Transduction, Department of Pharmacology, School of Medicine, University of California San Diego, San Diego, CA, USA.
| | - Peng Zhang
- Laboratory of Gene Regulation and Signal Transduction, Department of Pharmacology, School of Medicine, University of California San Diego, San Diego, CA, USA
| | - Junlai Liu
- Laboratory of Gene Regulation and Signal Transduction, Department of Pharmacology, School of Medicine, University of California San Diego, San Diego, CA, USA
| | - Ruolei Wang
- Academy of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Randal J Kaufman
- Degenerative Diseases Program, Center for Genetic Disorders and Aging Research, SBP Medical Discovery Institute, La Jolla, CA, USA
| | - Benjamin C Yaden
- Diabetes Novel Therapies and External Innovation, Eli Lilly and Company, Indianapolis, IN, USA.
| | - Michael Karin
- Laboratory of Gene Regulation and Signal Transduction, Department of Pharmacology, School of Medicine, University of California San Diego, San Diego, CA, USA; Department of Pathology, School of Medicine, University of California San Diego, San Diego, CA, USA.
| |
Collapse
|
23
|
Masschelin PM, Saha P, Ochsner SA, Cox AR, Kim KH, Felix JB, Sharp R, Li X, Tan L, Park JH, Wang L, Putluri V, Lorenzi PL, Nuotio-Antar AM, Sun Z, Kaipparettu BA, Putluri N, Moore DD, Summers SA, McKenna NJ, Hartig SM. Vitamin B2 enables regulation of fasting glucose availability. eLife 2023; 12:e84077. [PMID: 37417957 PMCID: PMC10328530 DOI: 10.7554/elife.84077] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 06/24/2023] [Indexed: 07/08/2023] Open
Abstract
Flavin adenine dinucleotide (FAD) interacts with flavoproteins to mediate oxidation-reduction reactions required for cellular energy demands. Not surprisingly, mutations that alter FAD binding to flavoproteins cause rare inborn errors of metabolism (IEMs) that disrupt liver function and render fasting intolerance, hepatic steatosis, and lipodystrophy. In our study, depleting FAD pools in mice with a vitamin B2-deficient diet (B2D) caused phenotypes associated with organic acidemias and other IEMs, including reduced body weight, hypoglycemia, and fatty liver disease. Integrated discovery approaches revealed B2D tempered fasting activation of target genes for the nuclear receptor PPARα, including those required for gluconeogenesis. We also found PPARα knockdown in the liver recapitulated B2D effects on glucose excursion and fatty liver disease in mice. Finally, treatment with the PPARα agonist fenofibrate activated the integrated stress response and refilled amino acid substrates to rescue fasting glucose availability and overcome B2D phenotypes. These findings identify metabolic responses to FAD availability and nominate strategies for the management of organic acidemias and other rare IEMs.
Collapse
Affiliation(s)
- Peter M Masschelin
- Department of Diabetes, Endocrinology, and Metabolism, Baylor College of MedicineHoustonUnited States
- Department of Medicine, Baylor College of MedicineHoustonUnited States
- Department of Molecular and Cellular Biology, Baylor College of MedicineHoustonUnited States
| | - Pradip Saha
- Department of Diabetes, Endocrinology, and Metabolism, Baylor College of MedicineHoustonUnited States
- Department of Medicine, Baylor College of MedicineHoustonUnited States
| | - Scott A Ochsner
- Department of Molecular and Cellular Biology, Baylor College of MedicineHoustonUnited States
| | - Aaron R Cox
- Department of Diabetes, Endocrinology, and Metabolism, Baylor College of MedicineHoustonUnited States
- Department of Medicine, Baylor College of MedicineHoustonUnited States
| | - Kang Ho Kim
- Department of Anesthesiology, University of Texas Health Sciences CenterHoustonUnited States
| | - Jessica B Felix
- Department of Diabetes, Endocrinology, and Metabolism, Baylor College of MedicineHoustonUnited States
- Department of Medicine, Baylor College of MedicineHoustonUnited States
- Department of Molecular and Cellular Biology, Baylor College of MedicineHoustonUnited States
| | - Robert Sharp
- Department of Diabetes, Endocrinology, and Metabolism, Baylor College of MedicineHoustonUnited States
- Department of Medicine, Baylor College of MedicineHoustonUnited States
| | - Xin Li
- Department of Diabetes, Endocrinology, and Metabolism, Baylor College of MedicineHoustonUnited States
- Department of Medicine, Baylor College of MedicineHoustonUnited States
| | - Lin Tan
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer CenterHoustonUnited States
| | - Jun Hyoung Park
- Department of Molecular and Human Genetics, Baylor College of MedicineHoustonUnited States
| | - Liping Wang
- Department of Nutrition and Integrative Physiology, University of UtahSalt Lake CityUnited States
| | - Vasanta Putluri
- Department of Molecular and Cellular Biology, Baylor College of MedicineHoustonUnited States
| | - Philip L Lorenzi
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer CenterHoustonUnited States
| | | | - Zheng Sun
- Department of Diabetes, Endocrinology, and Metabolism, Baylor College of MedicineHoustonUnited States
- Department of Medicine, Baylor College of MedicineHoustonUnited States
| | | | - Nagireddy Putluri
- Department of Molecular and Cellular Biology, Baylor College of MedicineHoustonUnited States
| | - David D Moore
- Department of Molecular and Cellular Biology, Baylor College of MedicineHoustonUnited States
- Department of Nutritional Sciences and Toxicology, University of California, BerkeleyBerkeleyUnited States
| | - Scott A Summers
- Department of Nutrition and Integrative Physiology, University of UtahSalt Lake CityUnited States
| | - Neil J McKenna
- Department of Molecular and Cellular Biology, Baylor College of MedicineHoustonUnited States
| | - Sean M Hartig
- Department of Diabetes, Endocrinology, and Metabolism, Baylor College of MedicineHoustonUnited States
- Department of Medicine, Baylor College of MedicineHoustonUnited States
- Department of Molecular and Cellular Biology, Baylor College of MedicineHoustonUnited States
| |
Collapse
|
24
|
Soleimani E, Abbasalizad Farhangi M. Protein Quality, Glycemic and Metabolic Indices and Anthropometric Features Among Overweight and Obese Adults. Nutr Metab Insights 2023; 16:11786388231181038. [PMID: 37435042 PMCID: PMC10331230 DOI: 10.1177/11786388231181038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 05/22/2023] [Indexed: 07/13/2023] Open
Abstract
Background Various studies have shown an inverse relationship between the quality of protein intake based on essential amino acids (EAAs) with obesity and its complications. We assumed that increasing EAAs-based protein intake quality improves glycemic and metabolic markers and anthropometric measurements in obese and overweight people. Methods This cross-sectional study included 180 obese and overweight participants aged 18 to 35. Dietary information was obtained using an 80-item food frequency questionnaire. The total intake of EAAs was calculated using the United States department of agriculture (USDA) database. Quality protein was defined as the ratio of EAAs (gr) to total dietary protein (gr). Sociodemographic status, physical activity (PA), and anthropometric characteristics were evaluated using a valid and reliable method. Analysis of covariance (ANCOVA) tests adjusted for sex, PA, age, energy, and body mass index (BMI) were used to measure this association. Results Protein quality intake was highest among the group with the lowest weight, body mass index (BMI), waist circumference (WC), hip circumference (HC), waist-to-hip ratio (WHR), and fat mass (FM); and on the other hand, the fat-free mass (FFM) has increased; also Increasing the quality of protein intake improved the lipid profile and some glycemic indices and insulin sensitivity, although this association was not significant. Conclusions Increasing the quality of protein intake significantly improved anthropometric measurements, and also improved some glycemic and metabolic indices although, their relationship was not significant.
Collapse
Affiliation(s)
- Ensiye Soleimani
- Tabriz Health Services Management Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | |
Collapse
|
25
|
Cao R, Tian H, Zhang Y, Liu G, Xu H, Rao G, Tian Y, Fu X. Signaling pathways and intervention for therapy of type 2 diabetes mellitus. MedComm (Beijing) 2023; 4:e283. [PMID: 37303813 PMCID: PMC10248034 DOI: 10.1002/mco2.283] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 04/18/2023] [Accepted: 04/27/2023] [Indexed: 06/13/2023] Open
Abstract
Type 2 diabetes mellitus (T2DM) represents one of the fastest growing epidemic metabolic disorders worldwide and is a strong contributor for a broad range of comorbidities, including vascular, visual, neurological, kidney, and liver diseases. Moreover, recent data suggest a mutual interplay between T2DM and Corona Virus Disease 2019 (COVID-19). T2DM is characterized by insulin resistance (IR) and pancreatic β cell dysfunction. Pioneering discoveries throughout the past few decades have established notable links between signaling pathways and T2DM pathogenesis and therapy. Importantly, a number of signaling pathways substantially control the advancement of core pathological changes in T2DM, including IR and β cell dysfunction, as well as additional pathogenic disturbances. Accordingly, an improved understanding of these signaling pathways sheds light on tractable targets and strategies for developing and repurposing critical therapies to treat T2DM and its complications. In this review, we provide a brief overview of the history of T2DM and signaling pathways, and offer a systematic update on the role and mechanism of key signaling pathways underlying the onset, development, and progression of T2DM. In this content, we also summarize current therapeutic drugs/agents associated with signaling pathways for the treatment of T2DM and its complications, and discuss some implications and directions to the future of this field.
Collapse
Affiliation(s)
- Rong Cao
- Department of Endocrinology and MetabolismState Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan University and Collaborative Innovation Center of BiotherapyChengduSichuanChina
| | - Huimin Tian
- Department of Endocrinology and MetabolismState Key Laboratory of Biotherapy and Cancer CenterWest China Medical School, West China HospitalSichuan UniversityChengduSichuanChina
| | - Yu Zhang
- Department of Endocrinology and MetabolismState Key Laboratory of Biotherapy and Cancer CenterWest China Medical School, West China HospitalSichuan UniversityChengduSichuanChina
| | - Geng Liu
- Department of Endocrinology and MetabolismState Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan University and Collaborative Innovation Center of BiotherapyChengduSichuanChina
| | - Haixia Xu
- Department of Endocrinology and MetabolismState Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan University and Collaborative Innovation Center of BiotherapyChengduSichuanChina
| | - Guocheng Rao
- Department of Endocrinology and MetabolismState Key Laboratory of Biotherapy and Cancer CenterWest China Medical School, West China HospitalSichuan UniversityChengduSichuanChina
| | - Yan Tian
- Department of Endocrinology and MetabolismState Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan University and Collaborative Innovation Center of BiotherapyChengduSichuanChina
| | - Xianghui Fu
- Department of Endocrinology and MetabolismState Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan University and Collaborative Innovation Center of BiotherapyChengduSichuanChina
- Department of Endocrinology and MetabolismState Key Laboratory of Biotherapy and Cancer CenterWest China Medical School, West China HospitalSichuan UniversityChengduSichuanChina
| |
Collapse
|
26
|
Wang W, Liang M, Wang L, Bei W, Guo J. 15-Hydroxyprostaglandin dehydrogenase inhibitor SW033291 ameliorates hepatic abnormal lipid metabolism, ER stress, and inflammation through PGE 2/EP4 in T2DM mice. Bioorg Chem 2023; 137:106646. [PMID: 37285764 DOI: 10.1016/j.bioorg.2023.106646] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 04/13/2023] [Accepted: 05/29/2023] [Indexed: 06/09/2023]
Abstract
Type 2 diabetes mellitus (T2DM) is a rapidly growing epidemic that results in increased morbidity, mortality, and soaring medical costs. Prostaglandin E2 (PGE2), a vital lipid mediator, has been reported to protect against hepatic steatosis, inflammation, endoplasmic reticulum (ER) stress, and insulin resistance, indicating its potential therapeutic role in T2DM. PGE2 can be degraded by 15-hydroxyprostaglandin dehydrogenase (15-PGDH). SW033291, an inhibitor of 15-PGDH, has been reported to increase PGE2 levels, however, the effect of SW033291 in T2DM remains to be explored. This study aims to evaluate whether SW033291 protects against T2DM and explore its potential mechanisms. A T2DM mouse model was established through high-fat diet/streptozotocin injection, while palmitic acid-treated mouse primary hepatocytes were used as insulin-resistant cell models. SW033291 treatment reduced body weight, fat weight, fasting blood glucose, and improved impaired glucose tolerance and insulin resistance in T2DM mice. More importantly, SW033291 alleviated steatosis, inflammation, and ER stress in the liver of T2DM mice. Mechanistically, SW033291 decreased the expressions of SREBP-1c and ACC1, and increased the expression of PPARα in T2DM mice. Additionally, SW033291 inhibited NF-κB and eIF2α/CHOP signaling in T2DM mice. Further, we showed that the protective effects of SW033291 on the above-mentioned pathophysiological processes could be hindered by inhibition of the PGE2 receptor EP4. Overall, our study reveals a novel role of SW033291 in alleviating T2DM and suggests its potential as a new therapeutic strategy for T2DM.
Collapse
Affiliation(s)
- Weixuan Wang
- Traditional Chinese Medicine Research Institute, Guangdong Pharmaceutical University, Guangzhou, Guangdong Province, China; Guangdong Provincial Research Center of Integration of Traditional Chinese Medicine and Western Medicine in Metabolic Diseases, Guangzhou, Guangdong Province, China; Key Laboratory of Glucolipid Metabolic Diseases, Ministry of Education, Guangzhou, Guangdong Province, China; Guangdong Provincial TCM Key Laboratory for Metabolic Diseases, Guangdong Pharmaceutical University, Guangzhou, Guangdong Province, China
| | - Mingjie Liang
- Traditional Chinese Medicine Research Institute, Guangdong Pharmaceutical University, Guangzhou, Guangdong Province, China; Guangdong Provincial Research Center of Integration of Traditional Chinese Medicine and Western Medicine in Metabolic Diseases, Guangzhou, Guangdong Province, China; Key Laboratory of Glucolipid Metabolic Diseases, Ministry of Education, Guangzhou, Guangdong Province, China; Guangdong Provincial TCM Key Laboratory for Metabolic Diseases, Guangdong Pharmaceutical University, Guangzhou, Guangdong Province, China
| | - Lexun Wang
- Traditional Chinese Medicine Research Institute, Guangdong Pharmaceutical University, Guangzhou, Guangdong Province, China; Guangdong Provincial Research Center of Integration of Traditional Chinese Medicine and Western Medicine in Metabolic Diseases, Guangzhou, Guangdong Province, China; Key Laboratory of Glucolipid Metabolic Diseases, Ministry of Education, Guangzhou, Guangdong Province, China; Guangdong Provincial TCM Key Laboratory for Metabolic Diseases, Guangdong Pharmaceutical University, Guangzhou, Guangdong Province, China
| | - Weijian Bei
- Traditional Chinese Medicine Research Institute, Guangdong Pharmaceutical University, Guangzhou, Guangdong Province, China; Guangdong Provincial Research Center of Integration of Traditional Chinese Medicine and Western Medicine in Metabolic Diseases, Guangzhou, Guangdong Province, China; Key Laboratory of Glucolipid Metabolic Diseases, Ministry of Education, Guangzhou, Guangdong Province, China; Guangdong Provincial TCM Key Laboratory for Metabolic Diseases, Guangdong Pharmaceutical University, Guangzhou, Guangdong Province, China
| | - Jiao Guo
- Traditional Chinese Medicine Research Institute, Guangdong Pharmaceutical University, Guangzhou, Guangdong Province, China; Guangdong Provincial Research Center of Integration of Traditional Chinese Medicine and Western Medicine in Metabolic Diseases, Guangzhou, Guangdong Province, China; Key Laboratory of Glucolipid Metabolic Diseases, Ministry of Education, Guangzhou, Guangdong Province, China; Guangdong Provincial TCM Key Laboratory for Metabolic Diseases, Guangdong Pharmaceutical University, Guangzhou, Guangdong Province, China.
| |
Collapse
|
27
|
Griffiths A, Wang J, Song Q, Lee SM, Cordoba-Chacon J, Song Z. ATF4-mediated CD36 upregulation contributes to palmitate-induced lipotoxicity in hepatocytes. Am J Physiol Gastrointest Liver Physiol 2023; 324:G341-G353. [PMID: 36852918 PMCID: PMC10069970 DOI: 10.1152/ajpgi.00163.2022] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 01/24/2023] [Accepted: 02/13/2023] [Indexed: 03/01/2023]
Abstract
Hepatic lipotoxicity plays a central role in the pathogenesis of nonalcoholic fatty liver disease; however, the underlying mechanisms remain elusive. Here, using both cultured hepatocytes (AML-12 cells and primary mouse hepatocytes) and the liver-specific gene knockout mice, we investigated the mechanisms underlying palmitate-elicited upregulation of CD36, a class B scavenger receptor mediating long-chain fatty acids uptake, and its role in palmitate-induced hepatolipotoxicity. We found that palmitate upregulates hepatic CD36 expression. Despite being a well-established target gene of PPARγ transactivation, our data demonstrated that the palmitate-induced CD36 upregulation in hepatocytes is in fact PPARγ-independent. We previously reported that the activation of ATF4, one of three canonical pathways activated upon endoplasmic reticulum (ER) stress induction, contributes to palmitate-triggered lipotoxicity in hepatocytes. In this study, our data revealed for the first time that ATF4 plays a critical role in mediating hepatic CD36 expression. Genetic inhibition of ATF4 attenuated CD36 upregulation induced by either palmitate or ER stress inducer tunicamycin in hepatocytes. In mice, tunicamycin upregulates liver CD36 expression, whereas hepatocyte-specific ATF4 knockout mice manifest lower hepatic CD36 expression when compared with control animals. Furthermore, we demonstrated that CD36 upregulation upon palmitate exposure represents a feedforward mechanism in that siRNA knockdown of CD36 in hepatocytes blunted ATF4 activation induced by both palmitate and tunicamycin. Finally, we confirmed that the ATF4-CD36 pathway activation contributes to palmitate-induced hepatolipotoxicity as genetic inhibition of either ATF4 or CD36 alleviated cell death and intracellular triacylglycerol accumulation. Collectively, our data demonstrate that CD36 upregulation by ATF4 activation contributes to palmitate-induced hepatic lipotoxicity.NEW & NOTEWORTHY We provided the initial evidence that ATF4 is a principal transcription factor mediating hepatic CD36 expression in that both palmitate- and ER stress-elicited CD36 upregulation was blunted by ATF4 gene knockdown in hepatocytes, and hepatocyte-specific ATF4 knockout mice manifested lower hepatic CD36 expression. We further confirmed that the ATF4-CD36 pathway activation contributes to palmitate-induced hepatolipotoxicity as genetic inhibition of either ATF4 or CD36 alleviated cell death and intracellular triacylglycerol accumulation in response to exogenous palmitate exposure.
Collapse
Affiliation(s)
- Alexandra Griffiths
- Department of Kinesiology and Nutrition, University of Illinois at Chicago, Chicago, Illinois, United States
| | - Jun Wang
- Department of Kinesiology and Nutrition, University of Illinois at Chicago, Chicago, Illinois, United States
| | - Qing Song
- Department of Kinesiology and Nutrition, University of Illinois at Chicago, Chicago, Illinois, United States
| | - Samuel Man Lee
- Division of Endocrinology/Diabetes & Metabolism, Department of Medicine, University of Illinois at Chicago, Chicago, Illinois, United States
| | - Jose Cordoba-Chacon
- Division of Endocrinology/Diabetes & Metabolism, Department of Medicine, University of Illinois at Chicago, Chicago, Illinois, United States
| | - Zhenyuan Song
- Department of Kinesiology and Nutrition, University of Illinois at Chicago, Chicago, Illinois, United States
| |
Collapse
|
28
|
Grmai L, Michaca M, Lackner E, Nampoothiri V P N, Vasudevan D. Integrated Stress Response signaling acts as a metabolic sensor in fat tissues to regulate oocyte maturation and ovulation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.27.530289. [PMID: 36909541 PMCID: PMC10002630 DOI: 10.1101/2023.02.27.530289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/04/2023]
Abstract
Reproduction is an energy-intensive process requiring systemic coordination. However, the inter-organ signaling mechanisms that relay nutrient status to modulate reproductive output are poorly understood. Here, we use Drosophila melanogaster as a model to establish the Integrated Stress response (ISR) transcription factor, Atf4, as a fat tissue metabolic sensor which instructs oogenesis. We demonstrate that Atf4 regulates the lipase Brummer to mediate yolk lipoprotein synthesis in the fat body. Depletion of Atf4 in the fat body also blunts oogenesis recovery after amino acid deprivation and re-feeding, suggestive of a nutrient sensing role for Atf4. We also discovered that Atf4 promotes secretion of a fat body-derived neuropeptide, CNMamide, which modulates neural circuits that promote egg-laying behavior (ovulation). Thus, we posit that ISR signaling in fat tissue acts as a "metabolic sensor" that instructs female reproduction: directly, by impacting yolk lipoprotein production and follicle maturation, and systemically, by regulating ovulation.
Collapse
|
29
|
Miranda CS, Silva-Veiga FM, Fernandes-da-Silva A, Guimarães Pereira VR, Martins BC, Daleprane JB, Martins FF, Souza-Mello V. Peroxisome proliferator-activated receptors-alpha and gamma synergism modulate the gut-adipose tissue axis and mitigate obesity. Mol Cell Endocrinol 2023; 562:111839. [PMID: 36581062 DOI: 10.1016/j.mce.2022.111839] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 12/21/2022] [Accepted: 12/22/2022] [Indexed: 12/28/2022]
Abstract
AIM To evaluate the effects of single PPARα or PPARγ activation, and their synergism (combined PPARα/γ activation) upon the gut-adipose tissue axis, focusing on the endotoxemia and upstream interscapular brown adipose tissue (iBAT) function in high-saturated fat-fed mice. METHODS Male C57BL/6 mice received a control diet (C, 10% lipids) or a high-fat diet (HF, 50% lipids) for 12 weeks. Then, the HF group was divided to receive the treatments for four weeks: HFγ (pioglitazone, 10 mg/kg), HFα (WY-14643, 3.5 mg/kg), and HFα/γ (tesaglitazar, 4 mg/kg). RESULTS The HF group exhibited overweight, oral glucose intolerance, gut dysbiosis, altered gut permeability, and endotoxemia, culminating in iBAT whitening. The downregulation of LPS-Tlr4 signaling underpinned reduced inflammation and improved lipid metabolism in iBAT in the HFα/γ group, the unique to show normalized body mass and increased energy expenditure. CONCLUSION PPARα/γ synergism treated obesity by ameliorating the gut-adipose tissue axis, where restored gut microbiota and permeability controlled endotoxemia and rescued iBAT whitening through favored thermogenesis.
Collapse
Affiliation(s)
- Carolline Santos Miranda
- Laboratory of Morphometry, Metabolism and Cardiovascular Diseases, Biomedical Center, Institute of Biology, Rio de Janeiro State University, Rio de Janeiro, Brazil
| | - Flávia Maria Silva-Veiga
- Laboratory of Morphometry, Metabolism and Cardiovascular Diseases, Biomedical Center, Institute of Biology, Rio de Janeiro State University, Rio de Janeiro, Brazil
| | - Aline Fernandes-da-Silva
- Laboratory of Morphometry, Metabolism and Cardiovascular Diseases, Biomedical Center, Institute of Biology, Rio de Janeiro State University, Rio de Janeiro, Brazil
| | - Vitória Regina Guimarães Pereira
- Laboratory of Morphometry, Metabolism and Cardiovascular Diseases, Biomedical Center, Institute of Biology, Rio de Janeiro State University, Rio de Janeiro, Brazil
| | - Bruna Cadete Martins
- Laboratory for Studies of Interactions Between Nutrition and Genetics (LEING), Institute of Nutrition, Rio de Janeiro State University, Rio de Janeiro, Brazil
| | - Julio Beltrame Daleprane
- Laboratory for Studies of Interactions Between Nutrition and Genetics (LEING), Institute of Nutrition, Rio de Janeiro State University, Rio de Janeiro, Brazil
| | - Fabiane Ferreira Martins
- Laboratory of Morphometry, Metabolism and Cardiovascular Diseases, Biomedical Center, Institute of Biology, Rio de Janeiro State University, Rio de Janeiro, Brazil
| | - Vanessa Souza-Mello
- Laboratory of Morphometry, Metabolism and Cardiovascular Diseases, Biomedical Center, Institute of Biology, Rio de Janeiro State University, Rio de Janeiro, Brazil.
| |
Collapse
|
30
|
Pan Z, Wu X, Zhang X, Hu K. Phosphodiesterase 4B activation exacerbates pulmonary hypertension induced by intermittent hypoxia by regulating mitochondrial injury and cAMP/PKA/p-CREB/PGC-1α signaling. Biomed Pharmacother 2023; 158:114095. [PMID: 36495666 DOI: 10.1016/j.biopha.2022.114095] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 11/28/2022] [Accepted: 12/05/2022] [Indexed: 12/12/2022] Open
Abstract
Proliferation of smooth muscle cells, oxidative stress, and pulmonary vasoconstriction resulting from intermittent hypoxia (IH) facilitate pulmonary hypertension (PH) in patients with obstructive sleep apnea. The role of Phosphodiesterase 4 B (PDE4B) in PH has not yet been established. Herein, we investigated whether PDE4B inhibition ameliorates experimental PH by modulating cAMP signaling. We performed an integrative analysis of PDE4B expression in Gene Expression Omnibus datasets, experimental IH-induced rat PH samples, and IH-induced pulmonary arterial smooth muscle cells (PASMCs). PDE4B expression was modulated using siRNA in vitro and a specific adeno-associated virus serotype 1 in vivo. In the databases of mouse models of IH-induced and sustained hypoxia-induced PH and in a rat model of six weeks of IH, the expression of PDE4B was up-regulated. Inhibition of PDE4B attenuated IH-induced pulmonary vascular remodeling and right ventricular hypertrophy. Our results also showed that PDE4B deficiency inhibited IH-induced proliferation of PASMCs with less mitochondrial reactive oxygen species and mitochondrial damage. Meanwhile, IH induced an increase in ATF4, which positively regulated the expression of PDE4B through transcription, and inhibition of ATF4 exerted effects similar to those of PDE4B inhibition. Mechanistically, downregulating the expression of PDE4B resulted in the activation of the cAMP/PKA/p-CREB/PGC-1α pathway in PASMCs after IH. Taken together, our present study provides evidence that inhibition of PDE4B attenuates IH-induced PH by regulating cAMP signaling.
Collapse
Affiliation(s)
- Zhou Pan
- Department of Respiratory and Critical Care Medicine, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Xiaofeng Wu
- Department of Respiratory and Critical Care Medicine, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Xinyue Zhang
- Department of Respiratory and Critical Care Medicine, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Ke Hu
- Department of Respiratory and Critical Care Medicine, Renmin Hospital of Wuhan University, Wuhan 430060, China.
| |
Collapse
|
31
|
Rhinacanthin C Ameliorates Insulin Resistance and Lipid Accumulation in NAFLD Mice via the AMPK/SIRT1 and SREBP-1c/FAS/ACC Signaling Pathways. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2023; 2023:6603522. [PMID: 36660274 PMCID: PMC9845057 DOI: 10.1155/2023/6603522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 12/09/2022] [Accepted: 12/22/2022] [Indexed: 01/12/2023]
Abstract
Rhinacanthin C (RC) is a naphthoquinone ester with an anti-inflammatory activity extracted from Rhinacanthus nasutus (L.) Kurz (Rn). It has been proven to improve hyperglycemia and hyperlipidemia, but the prevention and mechanism of RC in nonalcoholic fatty liver disease (NAFLD) are not clear. In the current study, we first extracted RC from Rn using ethyl acetate and identified it by HPLC, MS, and NMR. At the same time, molecular docking analysis of RC with AMPK and SREBP-1c was performed using AutoDock software. In addition, the mouse model of NAFLD was induced by a high-fat diet in vivo, and low, medium, and high concentrations of RC were used for intervention. The results showed that RC significantly reduced the body mass and liver body coefficient of NAFLD mice, inhibited liver inflammation and fat accumulation, and improved insulin resistance. Further studies showed that RC significantly reduced the levels of serum leptin and resistin, upregulated the expression levels of adiponectin and adiponectin receptor in the liver, and inhibited the expression levels of MCP-1, TNF-α, and IL-6. In terms of mechanism, RC upregulates the expression of p-AMPK and SIRT1 and downregulates the expression of p-p65, SREBP-1c, Fas, Acc-α, PPAR-γ, and SCD1. These studies suggest that RC improves insulin resistance and lipid accumulation in NAFLD by activating the AMPK/SIRT1 and SREBP-1c/Fas/ACC pathways, respectively.
Collapse
|
32
|
Higher Intake of Total Dietary Essential Amino Acids Is Associated with a Lower Prevalence of Metabolic Syndrome among Korean Adults. Nutrients 2022; 14:nu14224771. [PMID: 36432458 PMCID: PMC9694173 DOI: 10.3390/nu14224771] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 11/07/2022] [Accepted: 11/08/2022] [Indexed: 11/16/2022] Open
Abstract
We hypothesized that a well-balanced intake of total essential amino acids (EAAs) may be associated with lower prevalence of metabolic syndrome among Korean adults. This population-based cross-sectional study included 25,787 participants aged ≥30 years from the 2008-2019 Korea National Health and Nutrition Examination Survey. Dietary information was obtained from 24 h recall data. Demographic and lifestyle factors were assessed using self-administered questionnaires, and metabolic biomarkers were obtained from a health examination. Total essential amino acid score (EAAS) was calculated to determine whether essential amino acid (EAA) intake meets the recommended nutrient intake (RNI). Multivariable-adjusted odds ratios (ORs) and 95% confidence intervals (CIs) were estimated using logistic regression models. After adjusting for multiple confounding factors, participants with higher EAAS had a significantly lower prevalence of high blood pressure (OR: 0.86, 95% CI: 0.75-0.98), hypertriglyceridemia (OR: 0.86, 95% CI: 0.76-0.98), and Metabolic syndrome (MetS) (OR: 0.86, 95% CI: 0.74-0.996). Spline regression analysis confirmed linearity of the association between total EAAS and MetS. EAA intake and MetS are associated with an inverse dose-response relationship in which metabolic disease may be prevented when the overall EAA intake meets the RNI.
Collapse
|
33
|
Zhou N, Shen B, Bai C, Ma L, Wang S, Wu D. Nutritional deficiency induces nucleus pulposus cell apoptosis via the ATF4-PKM2-AKT signal axis. BMC Musculoskelet Disord 2022; 23:946. [PMID: 36324122 PMCID: PMC9628105 DOI: 10.1186/s12891-022-05853-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Accepted: 09/19/2022] [Indexed: 11/05/2022] Open
Abstract
Background The intervertebral disc is the largest avascular tissue in the human body. The nucleus pulposus (NP) consumes glucose and oxygen to generate energy to maintain cellular metabolism via nutrients that diffuse from the cartilage endplate. The microenvironment in the intervertebral disc becomes nutritionally deficient during degeneration, and nutritional deficiency has been shown to inhibit the viability and proliferation of NP cells. Methods To investigate the molecular mechanism by which nutritional deficiency reduces viability and decreases proliferation, we created an in vitro model by using decreasing serum concentration percentages. Results In this study, we found that nutritional deficiency reduced NP cell viability and increased cell apoptosis and that the upregulation of ATF4 expression and the downregulation of PKM2 expression were involved in this process. Moreover, we found that PKM2 inhibition can reduce the cell apoptosis induced by ATF4 silence under nutritional deficiency. Conclusion Our findings revealed that PKM2 inhibition reduces the cell apoptosis induced by ATF4 silence under nutritional deficiency by inhibiting AKT phosphate. Revealing the function and mechanism of NP cell development under nutritional deficiency will provide new insights into the etiology, diagnosis, and treatment of intervertebral disc and related diseases. Supplementary Information The online version contains supplementary material available at 10.1186/s12891-022-05853-1.
Collapse
Affiliation(s)
- Ningfeng Zhou
- grid.24516.340000000123704535Department of Spinal Surgery, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Bin Shen
- grid.24516.340000000123704535Department of Spinal Surgery, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Chong Bai
- grid.24516.340000000123704535Department of Spinal Surgery, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Liang Ma
- grid.24516.340000000123704535Department of Spinal Surgery, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Shanjin Wang
- grid.24516.340000000123704535Department of Spinal Surgery, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Desheng Wu
- grid.24516.340000000123704535Department of Spinal Surgery, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
34
|
Jiang J, Ma Y, Liu Y, Lu D, Gao X, Krausz KW, Desai D, Amin SG, Patterson AD, Gonzalez FJ, Xie C. Glycine-β-muricholic acid antagonizes the intestinal farnesoid X receptor-ceramide axis and ameliorates NASH in mice. Hepatol Commun 2022; 6:3363-3378. [PMID: 36196594 PMCID: PMC9701488 DOI: 10.1002/hep4.2099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 08/10/2022] [Indexed: 01/21/2023] Open
Abstract
Nonalcoholic steatohepatitis (NASH) is a rapidly developing pathology around the world, with limited treatment options available. Some farnesoid X receptor (FXR) agonists have been applied in clinical trials for NASH, but side effects such as pruritus and low-density lipoprotein elevation have been reported. Intestinal FXR is recognized as a promising therapeutic target for metabolic diseases. Glycine-β-muricholic acid (Gly-MCA) is an intestine-specific FXR antagonist previously shown to have favorable metabolic effects on obesity and insulin resistance. Herein, we identify a role for Gly-MCA in the pathogenesis of NASH, and explore the underlying molecular mechanism. Gly-MCA improved lipid accumulation, inflammatory response, and collagen deposition in two different NASH models. Mechanistically, Gly-MCA decreased intestine-derived ceramides by suppressing ceramide synthesis-related genes via decreasing intestinal FXR signaling, leading to lower liver endoplasmic reticulum (ER) stress and proinflammatory cytokine production. The role of bile acid metabolism and adiposity was excluded in the suppression of NASH by Gly-MCA, and a correlation was found between intestine-derived ceramides and NASH severity. This study revealed that Gly-MCA, an intestine-specific FXR antagonist, has beneficial effects on NASH by reducing ceramide levels circulating to liver via lowering intestinal FXR signaling, and ceramide production, followed by decreased liver ER stress and NASH progression. Intestinal FXR is a promising drug target and Gly-MCA a novel agent for the prevention and treatment of NASH.
Collapse
Affiliation(s)
- Jie Jiang
- School of Chinese Materia MedicaNanjing University of Chinese MedicineNanjingChina,State Key Laboratory of Drug ResearchShanghai Institute of Materia Medica, Chinese Academy of SciencesShanghaiChina
| | - Yuandi Ma
- State Key Laboratory of Drug ResearchShanghai Institute of Materia Medica, Chinese Academy of SciencesShanghaiChina,University of Chinese Academy of SciencesBeijingChina
| | - Yameng Liu
- State Key Laboratory of Drug ResearchShanghai Institute of Materia Medica, Chinese Academy of SciencesShanghaiChina
| | - Dasheng Lu
- Department of Pharmacology, College of MedicineThe Pennsylvania State UniversityHersheyPennsylvaniaUSA
| | - Xiaoxia Gao
- Department of Pharmacology, College of MedicineThe Pennsylvania State UniversityHersheyPennsylvaniaUSA
| | - Kristopher W. Krausz
- Department of Pharmacology, College of MedicineThe Pennsylvania State UniversityHersheyPennsylvaniaUSA
| | - Dhimant Desai
- Laboratory of Metabolism, Center for Cancer ResearchNational Cancer Institute, National Institutes of HealthBethesdaMarylandUSA
| | - Shantu G. Amin
- Laboratory of Metabolism, Center for Cancer ResearchNational Cancer Institute, National Institutes of HealthBethesdaMarylandUSA
| | - Andrew D. Patterson
- Department of Veterinary and Biomedical Sciences and the Center for Molecular Toxicology and CarcinogenesisThe Pennsylvania State UniversityUniversity ParkPennsylvaniaUSA
| | - Frank J. Gonzalez
- Department of Pharmacology, College of MedicineThe Pennsylvania State UniversityHersheyPennsylvaniaUSA
| | - Cen Xie
- School of Chinese Materia MedicaNanjing University of Chinese MedicineNanjingChina,State Key Laboratory of Drug ResearchShanghai Institute of Materia Medica, Chinese Academy of SciencesShanghaiChina,University of Chinese Academy of SciencesBeijingChina,Department of Pharmacology, College of MedicineThe Pennsylvania State UniversityHersheyPennsylvaniaUSA
| |
Collapse
|
35
|
Perea-Gil I, Seeger T, Bruyneel AAN, Termglinchan V, Monte E, Lim EW, Vadgama N, Furihata T, Gavidia AA, Arthur Ataam J, Bharucha N, Martinez-Amador N, Ameen M, Nair P, Serrano R, Kaur B, Feyen DAM, Diecke S, Snyder MP, Metallo CM, Mercola M, Karakikes I. Serine biosynthesis as a novel therapeutic target for dilated cardiomyopathy. Eur Heart J 2022; 43:3477-3489. [PMID: 35728000 PMCID: PMC9794189 DOI: 10.1093/eurheartj/ehac305] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Revised: 04/14/2022] [Accepted: 05/24/2022] [Indexed: 12/30/2022] Open
Abstract
AIMS Genetic dilated cardiomyopathy (DCM) is a leading cause of heart failure. Despite significant progress in understanding the genetic aetiologies of DCM, the molecular mechanisms underlying the pathogenesis of familial DCM remain unknown, translating to a lack of disease-specific therapies. The discovery of novel targets for the treatment of DCM was sought using phenotypic sceening assays in induced pluripotent stem cell-derived cardiomyocytes (iPSC-CMs) that recapitulate the disease phenotypes in vitro. METHODS AND RESULTS Using patient-specific iPSCs carrying a pathogenic TNNT2 gene mutation (p.R183W) and CRISPR-based genome editing, a faithful DCM model in vitro was developed. An unbiased phenotypic screening in TNNT2 mutant iPSC-derived cardiomyocytes (iPSC-CMs) with small molecule kinase inhibitors (SMKIs) was performed to identify novel therapeutic targets. Two SMKIs, Gö 6976 and SB 203580, were discovered whose combinatorial treatment rescued contractile dysfunction in DCM iPSC-CMs carrying gene mutations of various ontologies (TNNT2, TTN, LMNA, PLN, TPM1, LAMA2). The combinatorial SMKI treatment upregulated the expression of genes that encode serine, glycine, and one-carbon metabolism enzymes and significantly increased the intracellular levels of glucose-derived serine and glycine in DCM iPSC-CMs. Furthermore, the treatment rescued the mitochondrial respiration defects and increased the levels of the tricarboxylic acid cycle metabolites and ATP in DCM iPSC-CMs. Finally, the rescue of the DCM phenotypes was mediated by the activating transcription factor 4 (ATF4) and its downstream effector genes, phosphoglycerate dehydrogenase (PHGDH), which encodes a critical enzyme of the serine biosynthesis pathway, and Tribbles 3 (TRIB3), a pseudokinase with pleiotropic cellular functions. CONCLUSIONS A phenotypic screening platform using DCM iPSC-CMs was established for therapeutic target discovery. A combination of SMKIs ameliorated contractile and metabolic dysfunction in DCM iPSC-CMs mediated via the ATF4-dependent serine biosynthesis pathway. Together, these findings suggest that modulation of serine biosynthesis signalling may represent a novel genotype-agnostic therapeutic strategy for genetic DCM.
Collapse
Affiliation(s)
- Isaac Perea-Gil
- Department of Cardiothoracic Surgery, Stanford University School of Medicine, 240 Pasteur Dr, Stanford, CA 94304, USA
- Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - Timon Seeger
- Department of Medicine III, University Hospital Heidelberg, Heidelberg, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Heidelberg/Mannheim, Heidelberg, Germany
| | - Arne A N Bruyneel
- Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, USA
- Department of Medicine, Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Vittavat Termglinchan
- Department of Cardiothoracic Surgery, Stanford University School of Medicine, 240 Pasteur Dr, Stanford, CA 94304, USA
- Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - Emma Monte
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
| | - Esther W Lim
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, USA
- Molecular and Cell Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Nirmal Vadgama
- Department of Cardiothoracic Surgery, Stanford University School of Medicine, 240 Pasteur Dr, Stanford, CA 94304, USA
| | - Takaaki Furihata
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
| | - Alexandra A Gavidia
- Department of Cardiothoracic Surgery, Stanford University School of Medicine, 240 Pasteur Dr, Stanford, CA 94304, USA
| | - Jennifer Arthur Ataam
- Department of Cardiothoracic Surgery, Stanford University School of Medicine, 240 Pasteur Dr, Stanford, CA 94304, USA
- Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - Nike Bharucha
- Department of Cardiothoracic Surgery, Stanford University School of Medicine, 240 Pasteur Dr, Stanford, CA 94304, USA
- Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - Noel Martinez-Amador
- Department of Cardiothoracic Surgery, Stanford University School of Medicine, 240 Pasteur Dr, Stanford, CA 94304, USA
| | - Mohamed Ameen
- Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, USA
- Department of Medicine, Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Pooja Nair
- Department of Cardiothoracic Surgery, Stanford University School of Medicine, 240 Pasteur Dr, Stanford, CA 94304, USA
| | - Ricardo Serrano
- Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, USA
- Department of Medicine, Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Balpreet Kaur
- Department of Cardiothoracic Surgery, Stanford University School of Medicine, 240 Pasteur Dr, Stanford, CA 94304, USA
| | - Dries A M Feyen
- Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, USA
- Department of Medicine, Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Sebastian Diecke
- Max-Delbrueck-Center for Molecular Medicine, Berlin, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Berlin, Berlin, Germany
| | - Michael P Snyder
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
| | - Christian M Metallo
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, USA
- Molecular and Cell Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Mark Mercola
- Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, USA
- Department of Medicine, Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Ioannis Karakikes
- Department of Cardiothoracic Surgery, Stanford University School of Medicine, 240 Pasteur Dr, Stanford, CA 94304, USA
- Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, USA
| |
Collapse
|
36
|
Fang H, Stone KP, Wanders D, Forney LA, Gettys TW. The Origins, Evolution, and Future of Dietary Methionine Restriction. Annu Rev Nutr 2022; 42:201-226. [PMID: 35588443 PMCID: PMC9936953 DOI: 10.1146/annurev-nutr-062320-111849] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The original description of dietary methionine restriction (MR) used semipurified diets to limit methionine intake to 20% of normal levels, and this reduction in dietary methionine increased longevity by ∼30% in rats. The MR diet also produces paradoxical increases in energy intake and expenditure and limits fat deposition while reducing tissue and circulating lipids and enhancing overall insulin sensitivity. In the years following the original 1993 report, a comprehensive effort has been made to understand the nutrient sensing and signaling systems linking reduced dietary methionine to the behavioral, physiological, biochemical, and transcriptional components of the response. Recent work has shown that transcriptional activation of hepatic fibroblast growth factor 21 (FGF21) is a key event linking the MR diet to many but not all components of its metabolic phenotype. These findings raise the interesting possibility of developing therapeutic, MR-based diets that produce the beneficial effects of FGF21 by nutritionally modulating its transcription and release.
Collapse
Affiliation(s)
- Han Fang
- Laboratory of Nutrient Sensing and Adipocyte Signaling, Pennington Biomedical Research Center, Baton Rouge, Louisiana, USA;
| | - Kirsten P Stone
- Laboratory of Nutrient Sensing and Adipocyte Signaling, Pennington Biomedical Research Center, Baton Rouge, Louisiana, USA;
| | - Desiree Wanders
- Department of Nutrition, Georgia State University, Atlanta, Georgia, USA
| | - Laura A Forney
- Department of Kinesiology, Houston Baptist University, Houston, Texas, USA
| | - Thomas W Gettys
- Laboratory of Nutrient Sensing and Adipocyte Signaling, Pennington Biomedical Research Center, Baton Rouge, Louisiana, USA;
| |
Collapse
|
37
|
Liu J, Lai F, Hou Y, Zheng R. Leptin signaling and leptin resistance. MEDICAL REVIEW (BERLIN, GERMANY) 2022; 2:363-384. [PMID: 37724323 PMCID: PMC10388810 DOI: 10.1515/mr-2022-0017] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 07/12/2022] [Indexed: 09/20/2023]
Abstract
With the prevalence of obesity and associated comorbidities, studies aimed at revealing mechanisms that regulate energy homeostasis have gained increasing interest. In 1994, the cloning of leptin was a milestone in metabolic research. As an adipocytokine, leptin governs food intake and energy homeostasis through leptin receptors (LepR) in the brain. The failure of increased leptin levels to suppress feeding and elevate energy expenditure is referred to as leptin resistance, which encompasses complex pathophysiological processes. Within the brain, LepR-expressing neurons are distributed in hypothalamus and other brain areas, and each population of the LepR-expressing neurons may mediate particular aspects of leptin effects. In LepR-expressing neurons, the binding of leptin to LepR initiates multiple signaling cascades including janus kinase (JAK)-signal transducers and activators of transcription (STAT) phosphatidylinositol 3-kinase (PI3K)-protein kinase B (AKT), extracellular regulated protein kinase (ERK), and AMP-activated protein kinase (AMPK) signaling, etc., mediating leptin actions. These findings place leptin at the intersection of metabolic and neuroendocrine regulations, and render leptin a key target for treating obesity and associated comorbidities. This review highlights the main discoveries that shaped the field of leptin for better understanding of the mechanism governing metabolic homeostasis, and guides the development of safe and effective interventions to treat obesity and associated diseases.
Collapse
Affiliation(s)
- Jiarui Liu
- Department of Anatomy, Histology and Embryology, School of Basic Medical Sciences, Health Science Center, Peking University, Beijing, China
| | - Futing Lai
- Department of Anatomy, Histology and Embryology, School of Basic Medical Sciences, Health Science Center, Peking University, Beijing, China
| | - Yujia Hou
- Department of Anatomy, Histology and Embryology, School of Basic Medical Sciences, Health Science Center, Peking University, Beijing, China
| | - Ruimao Zheng
- Department of Anatomy, Histology and Embryology, School of Basic Medical Sciences, Health Science Center, Peking University, Beijing, China
- Neuroscience Research Institute, Peking University, Beijing, China
- Key Laboratory for Neuroscience of Ministry of Education, Peking University, Beijing, China
- Key Laboratory for Neuroscience of National Health Commission, Peking University, Beijing 100191, China
| |
Collapse
|
38
|
Choi M, Mukherjee S, Yun JW. Colchicine stimulates browning via antagonism of GABA receptor B and agonism of β3-adrenergic receptor in 3T3-L1 white adipocytes. Mol Cell Endocrinol 2022; 552:111677. [PMID: 35598717 DOI: 10.1016/j.mce.2022.111677] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 05/12/2022] [Accepted: 05/16/2022] [Indexed: 11/20/2022]
Abstract
Colchicine has been used for therapeutic purposes and has attracted considerable attention because of its association with tubulin and the inhibition of small tubular polymerization. Although several studies have examined the possible preventive role of colchicine in metabolic diseases, its role in adipocytes is largely unknown. This study examined the novel functional role of colchicine in adipocytes demonstrating that colchicine stimulates browning in cultured white adipocytes. Colchicine stimulates browning by increasing the brown- and beige fat-specific markers in 3T3-L1 white adipocytes. Interestingly, colchicine decreased the expression of the main lipolytic proteins (ATGL, p-HSL) while it activated Ces3, suggesting a possibility for supplying essential fatty acids for inducing thermogenesis. Molecular docking analysis showed that colchicine has a strong affinity against GABA-BR and β3-AR, and its binding activity with GABA-BR (-26.52 kJ/mol) was stronger than β3-AR (-20.71 kJ/mol). Mechanistic studies were conducted by treating the cells separately with agonists and antagonists of GABA-BR and β3-AR to understand the molecular mechanism underlying the browning effect of colchicine. The results showed that colchicine stimulates browning via the antagonism of GABA-BR and the agonism of β3-AR in 3T3-L1 white adipocytes. The colchicine-mediated activation of β3-AR stimulated the PKA/p38 MAPK signaling pathway, where consequently ATF2 acted as a positive regulator, but AFT4 was a negative regulator for the induction of browning.
Collapse
Affiliation(s)
- MinJi Choi
- Department of Biotechnology, Daegu University, Gyeongsan, Gyeongbuk, 38453, Republic of Korea
| | - Sulagna Mukherjee
- Laboratory of Metabolic Signaling,Institute of Bioengineering, School of Life Sciences, EPFL, CH-1015 Lausanne, Switzerland.
| | - Jong Won Yun
- Department of Biotechnology, Daegu University, Gyeongsan, Gyeongbuk, 38453, Republic of Korea.
| |
Collapse
|
39
|
Herrema H, Guan D, Choi JW, Feng X, Salazar Hernandez MA, Faruk F, Auen T, Boudett E, Tao R, Chun H, Ozcan U. FKBP11 rewires UPR signaling to promote glucose homeostasis in type 2 diabetes and obesity. Cell Metab 2022; 34:1004-1022.e8. [PMID: 35793654 DOI: 10.1016/j.cmet.2022.06.007] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 11/21/2021] [Accepted: 06/11/2022] [Indexed: 12/12/2022]
Abstract
Chronic endoplasmic reticulum (ER) stress and sustained activation of unfolded protein response (UPR) signaling contribute to the development of type 2 diabetes in obesity. UPR signaling is a complex signaling pathway, which is still being explored in many different cellular processes. Here, we demonstrate that FK506-binding protein 11 (FKBP11), which is transcriptionally regulated by XBP1s, is severely reduced in the livers of obese mice. Restoring hepatic FKBP11 expression in obese mice initiates an atypical UPR signaling pathway marked by rewiring of PERK signaling toward NRF2, away from the eIF2α-ATF4 axis of the UPR. This alteration in UPR signaling establishes glucose homeostasis without changing hepatic ER stress, food consumption, or body weight. We conclude that ER stress during obesity can be beneficially rewired to promote glucose homeostasis. These findings may uncover possible new avenues in the development of novel approaches to treat diseases marked by ER stress.
Collapse
Affiliation(s)
- Hilde Herrema
- Division of Endocrinology, Boston Children's Hospital, Harvard Medical School, Boston, MA 02130, USA.
| | - Dongxian Guan
- Division of Endocrinology, Boston Children's Hospital, Harvard Medical School, Boston, MA 02130, USA
| | - Jae Won Choi
- Division of Endocrinology, Boston Children's Hospital, Harvard Medical School, Boston, MA 02130, USA
| | - Xudong Feng
- Division of Endocrinology, Boston Children's Hospital, Harvard Medical School, Boston, MA 02130, USA
| | | | - Farhana Faruk
- Division of Endocrinology, Boston Children's Hospital, Harvard Medical School, Boston, MA 02130, USA
| | - Thomas Auen
- Division of Endocrinology, Boston Children's Hospital, Harvard Medical School, Boston, MA 02130, USA
| | - Eliza Boudett
- Division of Endocrinology, Boston Children's Hospital, Harvard Medical School, Boston, MA 02130, USA
| | - Rongya Tao
- Division of Endocrinology, Boston Children's Hospital, Harvard Medical School, Boston, MA 02130, USA
| | - Hyonho Chun
- Department of Mathematics and Statistics, Boston University, Boston, MA 02130, USA
| | - Umut Ozcan
- Division of Endocrinology, Boston Children's Hospital, Harvard Medical School, Boston, MA 02130, USA.
| |
Collapse
|
40
|
Alharbi S. Exogenous administration of unacylated ghrelin attenuates hepatic steatosis in high-fat diet-fed rats by modulating glucose homeostasis, lipogenesis, oxidative stress, and endoplasmic reticulum stress. Biomed Pharmacother 2022; 151:113095. [PMID: 35594708 DOI: 10.1016/j.biopha.2022.113095] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 05/01/2022] [Accepted: 05/04/2022] [Indexed: 11/25/2022] Open
Abstract
Low levels of unacylated ghrelin (UAG) and a higher ratio of acylated ghrelin (AG)/UAG in obesity are associated with non-alcoholic fatty liver disease (NAFLD). This study tested the potential protective effect of increased circulatory levels of UAG by exogenous UAG administration on hepatic steatosis in high-fat diet (HFD)-fed rats and investigated some possible mechanisms. Rats were divided (n = 6/group) as low fat diet (LFD), LFD + UAG (200 mg/kg), HFD, HFD + UAG (50, 100, or 200 mg/kg). Treatments were given for 8 weeks. Increasing the dose of UAG increased circulatory levels of UAG and normalized the ratio of AG/UAG at the dose of 200 mg/kg. With no change in insulin levels, and in a dose-dependent manner, treatment with UAG to HFD rats attenuated the gain in food intake, body weights, and liver weights, lowered fasting glucose levels, prevented hepatic cytoplasmic vacuolization, and reduced serum and hepatic levels of cholesterol, triglycerides, and free fatty acids. They also progressively reduced levels of reactive oxygen species, lipid peroxides, tumor necrosis factor-α, and interleukin-6, as well as mRNA levels of Bax and caspase-3 but increased levels of glutathione and superoxide dismutase and mRNA levels of Bcl2. In concomitant, UAG, in a dose-response manner, significantly reduced hepatic mRNA levels of SREBP1, SREBP2, ATF-6, IRE-1, and eIF-2α but increased those of PPARα. In conclusion, reducing the circulatory ratio of AG/UAG ratio by exogenous administration of UAG attenuates HFD-induced hepatic steatosis by suppressing lipogenesis, stimulating FAs oxidation, preventing oxidative stress, inflammation, ER stress, and apoptosis.
Collapse
Affiliation(s)
- Samah Alharbi
- Physiology Department, Faculty of Medicine, Umm Al-Qura University, Makkah, Saudi Arabia.
| |
Collapse
|
41
|
Sobajima M, Miyake M, Hamada Y, Tsugawa K, Oyadomari M, Inoue R, Shirakawa J, Arima H, Oyadomari S. The multifaceted role of ATF4 in regulating glucose-stimulated insulin secretion. Biochem Biophys Res Commun 2022; 611:165-171. [PMID: 35489203 DOI: 10.1016/j.bbrc.2022.04.038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 04/08/2022] [Indexed: 11/02/2022]
Abstract
Stress-inducible transcription factor ATF4 is essential for survival and identity of β-cell during stress conditions. However, the physiological role of ATF4 in β-cell function is not yet completely understood. To understand the role of ATF4 in glucose-stimulated insulin secretion (GSIS), β-cell-specific Atf4 knockout (βAtf4KO) mice were phenotypically characterized. Insulin secretion and mechanistic analyses were performed using islets from control Atf4f/f and βAtf4KO mice to assess key regulators for triggering and amplifying signals for GSIS. βAtf4KO mice displayed glucose intolerance due to reduced insulin secretion. Moreover, βAtf4KO islets exhibited a decrease in both the insulin content and first-phase insulin secretion. The analysis of βAtf4KO islets showed that ATF4 is required for insulin production and glucose-stimulated ATP and cAMP production. The results demonstrate that ATF4 contributes to the multifaceted regulatory process in GSIS even under stress-free conditions.
Collapse
Affiliation(s)
- Mitsuaki Sobajima
- Division of Molecular Biology, Institute of Advanced Medical Sciences, Tokushima University, 3-18-15 Kuramoto, Tokushima, 770-8503, Japan; Department of Molecular Physiology, Diabetes Therapeutics and Research Center, Tokushima University, 3-18-15 Kuramoto, Tokushima, 770-8503, Japan; Fujii Memorial Institute of Medical Sciences, Institute of Advanced Medical Sciences, Tokushima University, 3-18-15 Kuramoto, Tokushima, 770-8503, Japan; Laboratory of Diabetes and Metabolic Disorders, Institute for Molecular and Cellular Regulation, Gunma University, 3-39-15 Showa-machi, Maebashi, 371-8512, Japan
| | - Masato Miyake
- Division of Molecular Biology, Institute of Advanced Medical Sciences, Tokushima University, 3-18-15 Kuramoto, Tokushima, 770-8503, Japan; Department of Molecular Physiology, Diabetes Therapeutics and Research Center, Tokushima University, 3-18-15 Kuramoto, Tokushima, 770-8503, Japan; Fujii Memorial Institute of Medical Sciences, Institute of Advanced Medical Sciences, Tokushima University, 3-18-15 Kuramoto, Tokushima, 770-8503, Japan
| | - Yoshimasa Hamada
- Division of Molecular Biology, Institute of Advanced Medical Sciences, Tokushima University, 3-18-15 Kuramoto, Tokushima, 770-8503, Japan; Department of Molecular Physiology, Diabetes Therapeutics and Research Center, Tokushima University, 3-18-15 Kuramoto, Tokushima, 770-8503, Japan; Fujii Memorial Institute of Medical Sciences, Institute of Advanced Medical Sciences, Tokushima University, 3-18-15 Kuramoto, Tokushima, 770-8503, Japan
| | - Kazue Tsugawa
- Division of Molecular Biology, Institute of Advanced Medical Sciences, Tokushima University, 3-18-15 Kuramoto, Tokushima, 770-8503, Japan
| | - Miho Oyadomari
- Division of Molecular Biology, Institute of Advanced Medical Sciences, Tokushima University, 3-18-15 Kuramoto, Tokushima, 770-8503, Japan
| | - Ryota Inoue
- Laboratory of Diabetes and Metabolic Disorders, Institute for Molecular and Cellular Regulation, Gunma University, 3-39-15 Showa-machi, Maebashi, 371-8512, Japan
| | - Jun Shirakawa
- Laboratory of Diabetes and Metabolic Disorders, Institute for Molecular and Cellular Regulation, Gunma University, 3-39-15 Showa-machi, Maebashi, 371-8512, Japan
| | - Hiroshi Arima
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8560, Japan
| | - Seiichi Oyadomari
- Division of Molecular Biology, Institute of Advanced Medical Sciences, Tokushima University, 3-18-15 Kuramoto, Tokushima, 770-8503, Japan; Department of Molecular Physiology, Diabetes Therapeutics and Research Center, Tokushima University, 3-18-15 Kuramoto, Tokushima, 770-8503, Japan; Fujii Memorial Institute of Medical Sciences, Institute of Advanced Medical Sciences, Tokushima University, 3-18-15 Kuramoto, Tokushima, 770-8503, Japan.
| |
Collapse
|
42
|
Zou JM, Zhu QS, Liang H, Lu HL, Liang XF, He S. Lysine Deprivation Regulates Npy Expression via GCN2 Signaling Pathway in Mandarin Fish ( Siniperca chuatsi). Int J Mol Sci 2022; 23:ijms23126727. [PMID: 35743178 PMCID: PMC9223478 DOI: 10.3390/ijms23126727] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Revised: 06/11/2022] [Accepted: 06/13/2022] [Indexed: 11/18/2022] Open
Abstract
Regulation of food intake is associated with nutrient-sensing systems and the expression of appetite neuropeptides. Nutrient-sensing systems generate the capacity to sense nutrient availability to maintain energy and metabolism homeostasis. Appetite neuropeptides are prominent factors that are essential for regulating the appetite to adapt energy status. However, the link between the expression of appetite neuropeptides and nutrient-sensing systems remains debatable in carnivorous fish. Here, with intracerebroventricular (ICV) administration of six essential amino acids (lysine, methionine, tryptophan, arginine, phenylalanine, or threonine) performed in mandarin fish (Siniperca chuatsi), we found that lysine and methionine are the feeding-stimulating amino acids other than the reported valine, and found a key appetite neuropeptide, neuropeptide Y (NPY), mainly contributes to the regulatory role of the essential amino acids on food intake. With the brain cells of mandarin fish cultured in essential amino acid deleted medium (lysine, methionine, histidine, valine, or leucine), we showed that only lysine deprivation activated the general control nonderepressible 2 (GCN2) signaling pathway, elevated α subunit of eukaryotic translation initiation factor 2 (eIF2α) phosphorylation, increased activating transcription factor 4 (ATF4) protein expression, and finally induced transcription of npy. Furthermore, pharmacological inhibition of GCN2 and eIF2α phosphorylation signaling by GCN2iB or ISRIB, effectively blocked the transcriptional induction of npy in lysine deprivation. Overall, these findings could provide a better understanding of the GCN2 signaling pathway involved in food intake control by amino acids.
Collapse
Affiliation(s)
- Jia-Ming Zou
- College of Fisheries, Chinese Perch Research Center, Huazhong Agricultural University, Wuhan 430070, China; (J.-M.Z.); (Q.-S.Z.); (H.L.); (H.-L.L.)
- Engineering Research Center of Green development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China
| | - Qiang-Sheng Zhu
- College of Fisheries, Chinese Perch Research Center, Huazhong Agricultural University, Wuhan 430070, China; (J.-M.Z.); (Q.-S.Z.); (H.L.); (H.-L.L.)
- Engineering Research Center of Green development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China
| | - Hui Liang
- College of Fisheries, Chinese Perch Research Center, Huazhong Agricultural University, Wuhan 430070, China; (J.-M.Z.); (Q.-S.Z.); (H.L.); (H.-L.L.)
- Engineering Research Center of Green development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China
| | - Hai-Lin Lu
- College of Fisheries, Chinese Perch Research Center, Huazhong Agricultural University, Wuhan 430070, China; (J.-M.Z.); (Q.-S.Z.); (H.L.); (H.-L.L.)
- Engineering Research Center of Green development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China
| | - Xu-Fang Liang
- College of Fisheries, Chinese Perch Research Center, Huazhong Agricultural University, Wuhan 430070, China; (J.-M.Z.); (Q.-S.Z.); (H.L.); (H.-L.L.)
- Engineering Research Center of Green development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China
- Correspondence: (X.-F.L.); (S.H.); Tel.: +86-15007113487 (X.-F.L.); +86-18672986332 (S.H.); Fax: +86-027-8728-2114 (X.-F.L.); +86-027-8728-2113 (S.H.)
| | - Shan He
- College of Fisheries, Chinese Perch Research Center, Huazhong Agricultural University, Wuhan 430070, China; (J.-M.Z.); (Q.-S.Z.); (H.L.); (H.-L.L.)
- Engineering Research Center of Green development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China
- Correspondence: (X.-F.L.); (S.H.); Tel.: +86-15007113487 (X.-F.L.); +86-18672986332 (S.H.); Fax: +86-027-8728-2114 (X.-F.L.); +86-027-8728-2113 (S.H.)
| |
Collapse
|
43
|
Luo G, Zhu T, Ren Z. METTL3 Regulated the Meat Quality of Rex Rabbits by Controlling PCK2 Expression via a YTHDF2–N6-Methyladenosine Axis. Foods 2022; 11:foods11111549. [PMID: 35681299 PMCID: PMC9180525 DOI: 10.3390/foods11111549] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 05/10/2022] [Accepted: 05/15/2022] [Indexed: 01/27/2023] Open
Abstract
N6-methyladenosine (m6A) is the most prevalent internal mRNA modification in eukaryotes. The M6A modification plays an important role in transcription and cell function. The mechanism by which m6A modification regulates meat quality remains elusive. In this study, gene knockout and overexpression were used to explore m6A-modified regulation of meat quality. The content of PCK2 in blood increased significantly with the increase of Rex rabbits’ age. PCK2 expression levels in the longissimus lumborum and liver also increased significantly with the increase of Rex rabbits’ age. However, the expression level of PCK2 showed no significant difference in adipose tissue. In cell experiments, we found that METTL3 inhibited adipocyte differentiation by targeting the PCK2 gene via the recognition function of YTHDF2. Finally, the results of correlation analysis showed that PCK2 expression was positively correlated with intramuscular fat, whereas PCK2 expression was negatively correlated with total water loss rate at three different stages. In addition, PCK2 expression was also negatively correlated with reduced pH value at 75 and 165 days. Intramuscular fat content, pH and muscle water holding capacity are the main factors affecting the taste and flavor of muscle. Therefore, N6-methyladenosine regulated muscle quality by targeting the PCK2 gene.
Collapse
|
44
|
Agarwal N, Ramirez Bustamante CE, Wu H, Armamento‐Villareal R, Lake JE, Balasubramanyam A, Hartig S. Heightened levels of plasma growth differentiation factor 15 in men living with HIV. Physiol Rep 2022; 10:e15293. [PMID: 35510313 PMCID: PMC9069165 DOI: 10.14814/phy2.15293] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 04/14/2022] [Accepted: 04/17/2022] [Indexed: 01/13/2023] Open
Abstract
Plasma biomarkers that reflect energy balance disorders in people living with HIV (PLWH) remain limited. Growth differentiation factor 15 (GDF15) abundance in plasma of mice and humans induces negative energy balance but also becomes highly elevated in obesity and other metabolic diseases. We sought to compare plasma GDF15 levels in PLWH and HIV-negative persons and mouse models expressing the HIV accessory protein Vpr (that recapitulate HIV-associated metabolic disorders) and determine their relationship to metabolic parameters. We measured liver Gdf15 mRNA levels and plasma GDF15 levels in male Vpr mice and littermate controls. In parallel, we analyzed plasma GDF15 levels in 18 male PLWH on stable, long-term antiretroviral therapy and 13 HIV-negative men (6 healthy controls and 7 with metabolic syndrome). Plasma GDF15 levels were correlated with anthropometric and immune cell parameters in humans. Gene expression analysis of Vpr mouse liver demonstrated elevated Gdf15 mRNA. Plasma GDF15 levels were also higher in Vpr mouse models. Levels of plasma GDF15 in PLWH were greater than in both HIV-negative groups and correlated positively with the CD4/CD8 T cell ratio in PLWH. Plasma GDF15 levels correlated positively with age in the HIV-negative subjects but not in PLWH. Since GDF15 levels predict fatty liver disease and energy balance disorders, further studies are warranted to determine the effect of GDF15 in mediating the metabolic disturbances that occur in Vpr mice and PLWH.
Collapse
Affiliation(s)
- Neeti Agarwal
- Division of Diabetes, Endocrinology, and MetabolismBaylor College of MedicineHoustonTexasUSA
| | | | - Huaizhu Wu
- Atherosclerosis and Lipoprotein ResearchBaylor College of MedicineHoustonTexasUSA
| | - Reina Armamento‐Villareal
- Division of Diabetes, Endocrinology, and MetabolismBaylor College of MedicineHoustonTexasUSA
- Center for Translational Research on Inflammatory DiseasesMichael E DeBakey VA Medical CenterHoustonTexasUSA
| | - Jordan E. Lake
- Division of Infectious DiseasesDepartment of Internal MedicineMcGovern Medical SchoolUniversity of Texas Health Science CenterHoustonTexasUSA
| | - Ashok Balasubramanyam
- Division of Diabetes, Endocrinology, and MetabolismBaylor College of MedicineHoustonTexasUSA
| | - Sean M. Hartig
- Division of Diabetes, Endocrinology, and MetabolismBaylor College of MedicineHoustonTexasUSA
- Department of Molecular and Cellular BiologyBaylor College of MedicineHoustonTexasUSA
| |
Collapse
|
45
|
Flessa C, Kyrou I, Nasiri‐Ansari N, Kaltsas G, Kassi E, Randeva HS. Endoplasmic reticulum stress in nonalcoholic (metabolic associated) fatty liver disease (NAFLD/MAFLD). J Cell Biochem 2022; 123:1585-1606. [PMID: 35490371 DOI: 10.1002/jcb.30247] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 03/09/2022] [Accepted: 03/28/2022] [Indexed: 02/06/2023]
Affiliation(s)
- Christina‐Maria Flessa
- Department of Biological Chemistry, Medical School National and Kapodistrian University of Athens Athens Greece
- Warwickshire Institute for the Study of Diabetes, Endocrinology and Metabolism (WISDEM) University Hospitals Coventry and Warwickshire NHS Trust Coventry UK
| | - Ioannis Kyrou
- Warwickshire Institute for the Study of Diabetes, Endocrinology and Metabolism (WISDEM) University Hospitals Coventry and Warwickshire NHS Trust Coventry UK
- Division of Translational and Experimental Medicine, Metabolic and Vascular Health, Warwick Medical School University of Warwick Coventry UK
- Centre for Sport, Exercise and Life Sciences, Research Institute for Health & Wellbeing Coventry University Coventry UK
- Aston Medical School, College of Health and Life Sciences Aston University Birmingham UK
- Department of Food Science & Human Nutrition Agricultural University of Athens Athens Greece
| | - Narjes Nasiri‐Ansari
- Department of Biological Chemistry, Medical School National and Kapodistrian University of Athens Athens Greece
| | - Gregory Kaltsas
- Endocrine Unit, 1st Department of Propaedeutic and Internal Medicine, Laiko Hospital National and Kapodistrian University of Athens Athens Greece
| | - Eva Kassi
- Department of Biological Chemistry, Medical School National and Kapodistrian University of Athens Athens Greece
- Endocrine Unit, 1st Department of Propaedeutic and Internal Medicine, Laiko Hospital National and Kapodistrian University of Athens Athens Greece
| | - Harpal S. Randeva
- Warwickshire Institute for the Study of Diabetes, Endocrinology and Metabolism (WISDEM) University Hospitals Coventry and Warwickshire NHS Trust Coventry UK
- Division of Translational and Experimental Medicine, Metabolic and Vascular Health, Warwick Medical School University of Warwick Coventry UK
| |
Collapse
|
46
|
Martino MR, Gutiérrez-Aguilar M, Yiew NKH, Lutkewitte AJ, Singer JM, McCommis KS, Ferguson D, Liss KHH, Yoshino J, Renkemeyer MK, Smith GI, Cho K, Fletcher JA, Klein S, Patti GJ, Burgess SC, Finck BN. Silencing alanine transaminase 2 in diabetic liver attenuates hyperglycemia by reducing gluconeogenesis from amino acids. Cell Rep 2022; 39:110733. [PMID: 35476997 PMCID: PMC9121396 DOI: 10.1016/j.celrep.2022.110733] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 02/21/2022] [Accepted: 04/02/2022] [Indexed: 12/13/2022] Open
Abstract
Hepatic gluconeogenesis from amino acids contributes significantly to diabetic hyperglycemia, but the molecular mechanisms involved are incompletely understood. Alanine transaminases (ALT1 and ALT2) catalyze the interconversion of alanine and pyruvate, which is required for gluconeogenesis from alanine. We find that ALT2 is overexpressed in the liver of diet-induced obese and db/db mice and that the expression of the gene encoding ALT2 (GPT2) is downregulated following bariatric surgery in people with obesity. The increased hepatic expression of Gpt2 in db/db liver is mediated by activating transcription factor 4, an endoplasmic reticulum stress-activated transcription factor. Hepatocyte-specific knockout of Gpt2 attenuates incorporation of 13C-alanine into newly synthesized glucose by hepatocytes. In vivo Gpt2 knockdown or knockout in liver has no effect on glucose concentrations in lean mice, but Gpt2 suppression alleviates hyperglycemia in db/db mice. These data suggest that ALT2 plays a significant role in hepatic gluconeogenesis from amino acids in diabetes.
Collapse
Affiliation(s)
- Michael R Martino
- Department of Medicine, Center for Human Nutrition, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Manuel Gutiérrez-Aguilar
- Department of Medicine, Center for Human Nutrition, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Nicole K H Yiew
- Department of Medicine, Center for Human Nutrition, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Andrew J Lutkewitte
- Department of Medicine, Center for Human Nutrition, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Jason M Singer
- Department of Medicine, Center for Human Nutrition, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Kyle S McCommis
- Department of Medicine, Center for Human Nutrition, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Daniel Ferguson
- Department of Medicine, Center for Human Nutrition, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Kim H H Liss
- Department of Pediatrics, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Jun Yoshino
- Department of Medicine, Center for Human Nutrition, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - M Katie Renkemeyer
- Department of Medicine, Center for Human Nutrition, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Gordon I Smith
- Department of Medicine, Center for Human Nutrition, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Kevin Cho
- Department of Chemistry, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Justin A Fletcher
- Center for Human Nutrition, University of Texas Southwestern, Dallas, TX 75390, USA
| | - Samuel Klein
- Department of Medicine, Center for Human Nutrition, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Gary J Patti
- Department of Medicine, Center for Human Nutrition, Washington University in St. Louis, St. Louis, MO 63110, USA; Department of Chemistry, Washington University in St. Louis, St. Louis, MO 63110, USA; Siteman Cancer Center, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Shawn C Burgess
- Center for Human Nutrition, University of Texas Southwestern, Dallas, TX 75390, USA
| | - Brian N Finck
- Department of Medicine, Center for Human Nutrition, Washington University in St. Louis, St. Louis, MO 63110, USA.
| |
Collapse
|
47
|
Truman JP, Ruiz CF, Montal E, Garcia-Barros M, Mileva I, Snider AJ, Hannun YA, Obeid LM, Mao C. 1-Deoxysphinganine initiates adaptive responses to serine and glycine starvation in cancer cells via proteolysis of sphingosine kinase. J Lipid Res 2022; 63:100154. [PMID: 34838542 PMCID: PMC8953655 DOI: 10.1016/j.jlr.2021.100154] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 11/09/2021] [Accepted: 11/17/2021] [Indexed: 12/14/2022] Open
Abstract
Cancer cells may depend on exogenous serine, depletion of which results in slower growth and activation of adaptive metabolic changes. We previously demonstrated that serine and glycine (SG) deprivation causes loss of sphingosine kinase 1 (SK1) in cancer cells, thereby increasing the levels of its lipid substrate, sphingosine (Sph), which mediates several adaptive biological responses. However, the signaling molecules regulating SK1 and Sph levels in response to SG deprivation have yet to be defined. Here, we identify 1-deoxysphinganine (dSA), a noncanonical sphingoid base generated in the absence of serine from the alternative condensation of alanine and palmitoyl CoA by serine palmitoyl transferase, as a proximal mediator of SG deprivation in SK1 loss and Sph level elevation upon SG deprivation in cancer cells. SG starvation increased dSA levels in vitro and in vivo and in turn induced SK1 degradation through a serine palmitoyl transferase-dependent mechanism, thereby increasing Sph levels. Addition of exogenous dSA caused a moderate increase in intracellular reactive oxygen species, which in turn decreased pyruvate kinase PKM2 activity while increasing phosphoglycerate dehydrogenase levels, and thereby promoted serine synthesis. We further showed that increased dSA induces the adaptive cellular and metabolic functions in the response of cells to decreased availability of serine likely by increasing Sph levels. Thus, we conclude that dSA functions as an initial sensor of serine loss, SK1 functions as its direct target, and Sph functions as a downstream effector of cellular and metabolic adaptations. These studies define a previously unrecognized "physiological" nontoxic function for dSA.
Collapse
Affiliation(s)
- Jean-Philip Truman
- Department of Medicine, Stony Brook University, Stony Brook, NY, USA; Stony Brook Cancer Center, Stony Brook University, Stony Brook, NY, USA
| | - Christian F Ruiz
- Department of Genetics, School of Medicine, Yale University, New Haven, CT, USA
| | - Emily Montal
- Cancer Biology and Genetics Program, Sloan Kettering Institute, New York, NY, USA
| | - Monica Garcia-Barros
- Biorepository and Pathology Laboratory, Mount Sinai Icahn School of Medicine, New York, NY, USA
| | - Izolda Mileva
- Lipidomics Core, Stony Brook Cancer Center, Stony Brook University, Stony Brook, NY, USA
| | - Ashley J Snider
- Department of Nutritional Sciences, College of Agriculture and Life Sciences, BIO5 Institute, Tucson, AZ, USA
| | - Yusuf A Hannun
- Department of Medicine, Stony Brook University, Stony Brook, NY, USA; Stony Brook Cancer Center, Stony Brook University, Stony Brook, NY, USA; Departments of Biochemistry and Pathology, Stony Brook University, Stony Brook, NY, USA; Northport Veterans Affairs Medical Center, Northport, NY, USA.
| | - Lina M Obeid
- Department of Medicine, Stony Brook University, Stony Brook, NY, USA; Stony Brook Cancer Center, Stony Brook University, Stony Brook, NY, USA; Northport Veterans Affairs Medical Center, Northport, NY, USA
| | - Cungui Mao
- Department of Medicine, Stony Brook University, Stony Brook, NY, USA; Stony Brook Cancer Center, Stony Brook University, Stony Brook, NY, USA.
| |
Collapse
|
48
|
Borrello MT, Martin MB, Pin CL. The unfolded protein response: An emerging therapeutic target for pancreatitis and pancreatic ductal adenocarcinoma. Pancreatology 2022; 22:148-159. [PMID: 34774415 DOI: 10.1016/j.pan.2021.10.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 10/23/2021] [Accepted: 10/25/2021] [Indexed: 12/11/2022]
Abstract
Pancreatitis is a debilitating disease involving inflammation and fibrosis of the exocrine pancreas. Recurrent or chronic forms of pancreatitis are a significant risk factor for pancreatic ductal adenocarcinoma. While genetic factors have been identified for both pathologies, environmental stresses play a large role in their etiology. All cells have adapted mechanisms to handle acute environmental stress that alters energy demands. A common pathway involved in the stress response involves endoplasmic reticulum stress and the unfolded protein response (UPR). While rapidly activated by many external stressors, in the pancreas the UPR plays a fundamental biological role, likely due to the high protein demands in acinar cells. Despite this, increased UPR activity is observed in response to acute injury or following exposure to risk factors associated with pancreatitis and pancreatic cancer. Studies in animal and cell cultures models show the importance of affecting the UPR in the context of both diseases, and inhibitors have been developed for several specific mediators of the UPR. Given the importance of the UPR to normal acinar cell function, efforts to affect the UPR in the context of disease must be able to specifically target pathology vs. physiology. In this review, we highlight the importance of the UPR to normal and pathological conditions of the exocrine pancreas. We discuss recent studies suggesting the UPR may be involved in the initiation and progression of pancreatitis and PDAC, as well as contributing to chemoresistance that occurs in pancreatic cancer. Finally, we discuss the potential of targeting the UPR for treatment.
Collapse
Affiliation(s)
- M Teresa Borrello
- Newcastle Fibrosis Research Group, Biosciences Institute, Newcastle University, Newcastle Upon Tyne, UK
| | - Mickenzie B Martin
- Depts. of Physiology and Pharmacology, Paediatrics, and Oncology, Schulich School of Medicine and Dentistry, The University of Western Ontario, Canada; Children's Health Research Institute, Lawson Health Research Institute, London, Ontario, Canada
| | - Christopher L Pin
- Depts. of Physiology and Pharmacology, Paediatrics, and Oncology, Schulich School of Medicine and Dentistry, The University of Western Ontario, Canada; Children's Health Research Institute, Lawson Health Research Institute, London, Ontario, Canada.
| |
Collapse
|
49
|
Park CY, Lee SK, Kim J, Kim D, Choe H, Jeong JH, Choi KC, Park HS, Han SN, Jang YJ. Endoplasmic reticulum stress increases LECT2 expression via ATF4. Biochem Biophys Res Commun 2021; 585:169-176. [PMID: 34808500 DOI: 10.1016/j.bbrc.2021.11.038] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 11/11/2021] [Indexed: 12/23/2022]
Abstract
Non-alcoholic fatty liver disease (NAFLD) is frequently associated with obesity, insulin resistance, and endoplasmic reticulum (ER) stress. Elevated circulating levels of the hepatokine leukocyte cell-derived chemotaxin-2 (LECT2) have also been noted in NAFLD; however, the mechanism underlying this association is unclear. To investigate a possible link between ER stress/unfolded protein response (UPR) signaling and LECT2 secretion, HepG2 cells were incubated with ER stress inducers with or without an ER stress-reducing chemical chaperone. Additionally, UPR pathway genes were knocked down and overexpressed, and a ChIP assay was performed. In diet-induced obese mice, hepatic expression of LECT2 and activating transcription factor 4 (ATF4) was measured. In HepG2 cells, LECT2 expression was increased by ER stressors, an effect blocked by the chemical chaperone. Among UPR pathway proteins, only knockdown of ATF4 suppressed ER stress-induced LECT2 expression, while overexpression of ATF4 enhanced LECT2 expression. The ChIP assay revealed that ATF4 binds to three putative binding sites on the LECT2 promoter and binding is promoted by an ER stress inducer. In steatotic livers of obese mice, LECT2 and ATF4 expression was concomitantly elevated. Our data indicate that activation of ER stress/UPR signaling induces LECT2 expression in steatotic liver; specifically, ATF4 appears to mediate upregulation of LECT2 transcription.
Collapse
Affiliation(s)
- Chan Yoon Park
- Department of Physiology, University of Ulsan College of Medicine, Seoul, South Korea; Department of Food & Nutrition, College of Health Science, The University of Suwon, Hwaseong-si, Gyeonggi-do, South Korea
| | - Seul Ki Lee
- Department of Physiology, University of Ulsan College of Medicine, Seoul, South Korea
| | - Jimin Kim
- Department of Physiology, University of Ulsan College of Medicine, Seoul, South Korea
| | - Donguk Kim
- Department of Physiology, University of Ulsan College of Medicine, Seoul, South Korea
| | - Han Choe
- Department of Physiology, University of Ulsan College of Medicine, Seoul, South Korea
| | - Ji-Hoon Jeong
- Department of Biomedical Sciences, Asan Medical Center, AMIST, University of Ulsan College of Medicine, Seoul, South Korea
| | - Kyung-Chul Choi
- Department of Biomedical Sciences, Asan Medical Center, AMIST, University of Ulsan College of Medicine, Seoul, South Korea
| | - Hye Soon Park
- Department of Family Medicine, University of Ulsan College of Medicine, Seoul, South Korea
| | - Sung Nim Han
- Department of Food and Nutrition & Research Institute of Human Ecology, College of Human Ecology, Seoul National University, Seoul, South Korea
| | - Yeon Jin Jang
- Department of Physiology, University of Ulsan College of Medicine, Seoul, South Korea.
| |
Collapse
|
50
|
Vasudevan D, Katow H, Huang HW, Tang G, Ryoo HD. A Protein-trap allele reveals roles for Drosophila ATF4 in photoreceptor degeneration, oogenesis and wing development. Dis Model Mech 2021; 15:273766. [PMID: 34919148 PMCID: PMC8938396 DOI: 10.1242/dmm.049119] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 12/08/2021] [Indexed: 11/20/2022] Open
Abstract
Metazoans have evolved various quality control mechanisms to cope with cellular stress inflicted by external and physiological conditions. ATF4 is a major effector of the Integrated Stress Response (ISR), an evolutionarily conserved pathway that mediates adaptation to various cellular stressors. Loss of function of Drosophila ATF4, encoded by the gene cryptocephal (crc), results in lethality during pupal development. The roles of crc in Drosophila disease models and in adult tissue homeostasis thus remain poorly understood. Here, we report that a protein-trap MiMIC insertion in the crc locus generates a crc-GFP fusion protein that allows visualization of crc activity in vivo. This allele also acts as a hypomorphic mutant that uncovers previously unknown roles for crc. Specifically, the crc protein-trap line shows crc-GFP induction in a Drosophila model for Retinitis Pigmentosa (RP). This crc allele renders flies more vulnerable to amino acid deprivation and age-dependent retinal degeneration. These mutants also show defects in wing veins and oocyte maturation. Together, our data reveal previously unknown roles for crc in development, cellular homeostasis and photoreceptor survival.
Collapse
Affiliation(s)
- Deepika Vasudevan
- Department of Cell Biology, New York University Grossman School of Medicine, New York, NY 10016, USA.,Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Hidetaka Katow
- Department of Cell Biology, New York University Grossman School of Medicine, New York, NY 10016, USA
| | | | - Grace Tang
- Department of Cell Biology, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Hyung Don Ryoo
- Department of Cell Biology, New York University Grossman School of Medicine, New York, NY 10016, USA
| |
Collapse
|