1
|
Hashmi HZ, Khowaja A, Moheet A. Experimental pharmacological approaches to reverse impaired awareness of hypoglycemia-a review. Front Pharmacol 2024; 15:1349004. [PMID: 38323079 PMCID: PMC10844401 DOI: 10.3389/fphar.2024.1349004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Accepted: 01/04/2024] [Indexed: 02/08/2024] Open
Abstract
The colossal global burden of diabetes management is compounded by the serious complication of hypoglycemia. Protective physiologic hormonal and neurogenic counterregulatory responses to hypoglycemia are essential to preserve glucose homeostasis and avert serious morbidity. With recurrent exposure to hypoglycemic episodes over time, these counterregulatory responses to hypoglycemia can diminish, resulting in an impaired awareness of hypoglycemia (IAH). IAH is characterized by sudden neuroglycopenia rather than preceding cautionary autonomic symptoms. IAH increases the risk of subsequent sudden and severe hypoglycemic episodes in patients with diabetes. The postulated causative mechanisms behind IAH are complex and varied. It is therefore challenging to identify a single effective therapeutic strategy. In this review, we closely examine the efficacy and feasibility of a myriad of pharmaceutical interventions in preventing and treating IAH as described in clinical and preclinical studies. Pharmaceutical agents outlined include N-acetyl cysteine, GABA A receptor blockers, opioid receptor antagonists, AMP activated protein kinase agonists, potassium channel openers, dehydroepiandrosterone, metoclopramide, antiadrenergic agents, antidiabetic agents and glucagon.
Collapse
Affiliation(s)
- Hiba Z. Hashmi
- Division of Diabetes, Endocrinology and Metabolism, Department of Medicine, University of Minnesota, Minneapolis, MN, United States
| | - Ameer Khowaja
- Northeast Endocrinology Associates, San Antonio, TX, United States
| | - Amir Moheet
- Division of Diabetes, Endocrinology and Metabolism, Department of Medicine, University of Minnesota, Minneapolis, MN, United States
| |
Collapse
|
2
|
Wu W, Zhang J, Qiao Y, Ren L, Chen Z, Fu Y, Yang Z. Association of long-term benzodiazepine hypnotic use and prediabetes in US population: A cross-sectional analysis of national health and nutrition examination survey data. Medicine (Baltimore) 2023; 102:e35705. [PMID: 37960777 PMCID: PMC10637564 DOI: 10.1097/md.0000000000035705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 09/28/2023] [Indexed: 11/15/2023] Open
Abstract
Benzodiazepine hypnotics' effects on glucose metabolism are seldom reported, and the association between long-term (≥4 weeks) benzodiazepine usage and prediabetes has not been studied. This study was aimed to investigate the association between benzodiazepine hypnotic usage for ≥ 3 months and the prevalence of prediabetes. We analyzed cross-sectional data from the National Health and Nutrition Examination Survey (NHANES) during 2005 to 2008, selecting adult participants without diabetes who used benzodiazepine hypnotics for at least 3 months or did not take any hypnotics. Individuals taking other hypnotics, antipsychotics, glucocorticoids, or hypoglycemic drugs were excluded. We defined prediabetes as an hemoglobin A1C (HbA1C) 5.7-6.4%, as suggested by the American Diabetes Association. Prescribed drug information was self-reported and checked by official interviewers, and HbA1C data in NHANES was recognized by the National Glycohemoglobin Standardization Program. We calculated the propensity score according to the covariates and adjusted it using multivariate logistic regression. Lower thresholds of HbA1C ≥ 5.5% or ≥ 5.3% were also analyzed. Among 4694 eligible participants, 38 received benzodiazepine hypnotics; using these hypnotics for ≥ 3 months was not significantly associated with the prevalence of prediabetes, as well as HbA1C ≥ 5.5% or ≥ 5.3%. Adjusted for propensity score, the respective odds ratios for prediabetes, HbA1C ≥ 5.5%, and HbA1C ≥ 5.3% were 1.09 (95% confidence interval [CI] 0.19-6.32), 0.83 (95% CI 0.22-3.13), and 1.22 (95% CI 0.3-4.93). No significant association was found between benzodiazepine hypnotic usage ≥ 3 months and the prevalence of prediabetes.
Collapse
Affiliation(s)
- Weizhen Wu
- Graduate School, Beijing University of Chinese Medicine, Beijing, P.R. China
| | - Junning Zhang
- Graduate School, Beijing University of Chinese Medicine, Beijing, P.R. China
| | - Yizhuo Qiao
- Graduate School, China Academy of Chinese Medical Science, Beijing, P.R. China
| | - Lijiang Ren
- Graduate School, Beijing University of Chinese Medicine, Beijing, P.R. China
| | - Zhe Chen
- Graduate School, Beijing University of Chinese Medicine, Beijing, P.R. China
| | - Yan Fu
- Xiyuan Hospital of China Academy of Chinese Medical Science, Beijing, P.R. China
| | - Zhixu Yang
- Xiyuan Hospital of China Academy of Chinese Medical Science, Beijing, P.R. China
| |
Collapse
|
3
|
Macon EL, Devore MH, Lin YK, Music MB, Wooten M, McMullen CA, Woodcox AM, Marksbury AR, Beckner Z, Patel BV, Schoeder LA, Iles AN, Fisher SJ. Current and future therapies to treat impaired awareness of hypoglycemia. Front Pharmacol 2023; 14:1271814. [PMID: 37942482 PMCID: PMC10628050 DOI: 10.3389/fphar.2023.1271814] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 10/05/2023] [Indexed: 11/10/2023] Open
Abstract
In order to achieve optimal glycemic control, intensive insulin regimes are needed for individuals with Type 1 Diabetes (T1D) and insulin-dependent Type 2 Diabetes (T2D). Unfortunately, intensive glycemic control often results in insulin-induced hypoglycemia. Moreover, recurrent episodes of hypoglycemia result in both the loss of the characteristic warning symptoms associated with hypoglycemia and an attenuated counterregulatory hormone responses. The blunting of warning symptoms is known as impaired awareness of hypoglycemia (IAH). Together, IAH and the loss of the hormonal response is termed hypoglycemia associated autonomic failure (HAAF). IAH is prevalent in up to 25% in people with T1D and up to 10% in people with T2D. IAH and HAAF increase the risk of severe hypoglycemia 6-fold and 25-fold, respectively. To reduce this risk for severe hypoglycemia, multiple different therapeutic approaches are being explored that could improve awareness of hypoglycemia. Current therapies to improve awareness of hypoglycemia include patient education and psychoeducation, the use of novel glycemic control technology, pancreas/islet transplantation, and drug therapy. This review examines both existing therapies and potential therapies that are in pre-clinical testing. Novel treatments that improve awareness of hypoglycemia, via improving the counterregulatory hormone responses or improving hypoglycemic symptom recognition, would also shed light on the possible neurological mechanisms that lead to the development of IAH. To reduce the risk of severe hypoglycemia in people with diabetes, elucidating the mechanism behind IAH, as well as developing targeted therapies is currently an unmet need for those that suffer from IAH.
Collapse
Affiliation(s)
- Erica L. Macon
- Division of Endocrinology, Diabetes and Metabolism, Department of Internal Medicine, College of Medicine, University of Kentucky, Lexington, KY, United States
| | - Micah H. Devore
- Division of Endocrinology, Diabetes and Metabolism, Department of Internal Medicine, College of Medicine, University of Kentucky, Lexington, KY, United States
| | - Yu Kuei Lin
- Division of Metabolism, Endocrinology and Diabetes, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Megan B. Music
- Division of Endocrinology, Diabetes and Metabolism, Department of Internal Medicine, College of Medicine, University of Kentucky, Lexington, KY, United States
| | - Mason Wooten
- Division of Endocrinology, Diabetes and Metabolism, Department of Internal Medicine, College of Medicine, University of Kentucky, Lexington, KY, United States
| | - Colleen A. McMullen
- Division of Endocrinology, Diabetes and Metabolism, Department of Internal Medicine, College of Medicine, University of Kentucky, Lexington, KY, United States
| | - Andrea M. Woodcox
- Division of Endocrinology, Diabetes and Metabolism, Department of Internal Medicine, College of Medicine, University of Kentucky, Lexington, KY, United States
| | - Ashlee R. Marksbury
- Division of Endocrinology, Diabetes and Metabolism, Department of Internal Medicine, College of Medicine, University of Kentucky, Lexington, KY, United States
| | - Zachary Beckner
- Division of Endocrinology, Diabetes and Metabolism, Department of Internal Medicine, College of Medicine, University of Kentucky, Lexington, KY, United States
| | - Bansi V. Patel
- Division of Endocrinology, Diabetes and Metabolism, Department of Internal Medicine, College of Medicine, University of Kentucky, Lexington, KY, United States
| | - Lily A. Schoeder
- Division of Endocrinology, Diabetes and Metabolism, Department of Internal Medicine, College of Medicine, University of Kentucky, Lexington, KY, United States
| | - Ashley N. Iles
- Division of Endocrinology, Diabetes and Metabolism, Department of Internal Medicine, College of Medicine, University of Kentucky, Lexington, KY, United States
| | - Simon J. Fisher
- Division of Endocrinology, Diabetes and Metabolism, Department of Internal Medicine, College of Medicine, University of Kentucky, Lexington, KY, United States
| |
Collapse
|
4
|
Teixeira AL, Nardone M, Samora M, Fernandes IA, Ramos PS, Sabino-Carvalho JL, Ricardo DR, Millar PJ, Vianna LC. Potentiation of GABAergic synaptic transmission by diazepam acutely increases resting beat-to-beat blood pressure variability in young adults. Am J Physiol Regul Integr Comp Physiol 2022; 322:R501-R510. [PMID: 35348021 DOI: 10.1152/ajpregu.00291.2021] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Resting beat-to-beat blood pressure variability is a powerful predictor of cardiovascular events and end-organ damage. However, its underlying mechanisms remain unknown. Herein, we tested the hypothesis that a potentiation of GABAergic synaptic transmission by diazepam would acutely increase resting beat-to-beat blood pressure variability. In 40 (17 females) young, normotensive subjects, resting beat-to-beat blood pressure (finger photoplethysmography) was continuously measured for 5 to 10 min, 60 min after the oral administration of either diazepam (10 mg) or placebo. The experiments were conducted in a randomized, double-blinded, and placebo-controlled design. Stroke volume was estimated from the blood pressure waveform (ModelFlow) permitting the calculation of cardiac output and total peripheral resistance. Direct recordings of muscle sympathetic nerve activity (MSNA, microneurography) were obtained in a subset of subjects (N=13) and spontaneous cardiac and sympathetic baroreflex sensitivity calculated. Compared to placebo, diazepam significantly increased the standard deviation of systolic (4.7±1.4 vs. 5.7±1.5 mmHg, P=0.001), diastolic (3.8±1.2 vs. 4.5±1.2 mmHg, P=0.007) and mean blood pressure (3.8±1.1 vs. 4.5±1.1 mmHg, P=0.002), as well as cardiac output (469±149 vs. 626±259 ml/min, P<0.001) and total peripheral resistance (1.0±0.3 vs. 1.4±0.6 mmHg/l/min, P<0.001). Similar results were found using different indices of variability. Furthermore, diazepam reduced MSNA burst frequency (placebo: 22±6 vs. diazepam: 18±8 bursts/min, P=0.025) without affecting the arterial baroreflex control of heart rate (placebo: 18.6±6.7 vs. diazepam: 18.8±7.0 ms/mmHg, P=0.87) and MSNA (placebo: -3.6±1.2 vs. diazepam: -3.4±1.5 bursts/100Hb/mmHg, P=0.55). These findings suggest that GABAA receptors modulate resting beat-to-beat blood pressure variability in young adults.
Collapse
Affiliation(s)
- André L Teixeira
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, Ontario, Canada.,NeuroVASQ - Integrative Physiology Laboratory, Faculty of Physical Education, University of Brasília, Brasília, DF, Brazil
| | - Massimo Nardone
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, Ontario, Canada
| | - Milena Samora
- NeuroVASQ - Integrative Physiology Laboratory, Faculty of Physical Education, University of Brasília, Brasília, DF, Brazil
| | - Igor Alexandre Fernandes
- NeuroVASQ - Integrative Physiology Laboratory, Faculty of Physical Education, University of Brasília, Brasília, DF, Brazil
| | - Plinio Santos Ramos
- Maternity Hospital Therezinha de Jesus, Faculty of Health and Medical Sciences (SUPREMA), Juiz de Fora, MG, Brazil
| | - Jeann L Sabino-Carvalho
- NeuroVASQ - Integrative Physiology Laboratory, Faculty of Physical Education, University of Brasília, Brasília, DF, Brazil
| | - Djalma Rabelo Ricardo
- Maternity Hospital Therezinha de Jesus, Faculty of Health and Medical Sciences (SUPREMA), Juiz de Fora, MG, Brazil
| | - Philip J Millar
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, Ontario, Canada
| | - Lauro C Vianna
- NeuroVASQ - Integrative Physiology Laboratory, Faculty of Physical Education, University of Brasília, Brasília, DF, Brazil
| |
Collapse
|
5
|
The Case for Clinical Trials with Novel GABAergic Drugs in Diabetes Mellitus and Obesity. Life (Basel) 2022; 12:life12020322. [PMID: 35207609 PMCID: PMC8876029 DOI: 10.3390/life12020322] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Revised: 02/09/2022] [Accepted: 02/16/2022] [Indexed: 11/17/2022] Open
Abstract
Obesity and diabetes mellitus have become the surprising menaces of relative economic well-being worldwide. Gamma amino butyric acid (GABA) has a prominent role in the control of blood glucose, energy homeostasis as well as food intake at several levels of regulation. The effects of GABA in the body are exerted through ionotropic GABAA and metabotropic GABAB receptors. This treatise will focus on the pharmacologic targeting of GABAA receptors to reap beneficial therapeutic effects in diabetes mellitus and obesity. A new crop of drugs selectively targeting GABAA receptors has been under investigation for efficacy in stroke recovery and cognitive deficits associated with schizophrenia. Although these trials have produced mixed outcomes the compounds are safe to use in humans. Preclinical evidence is summarized here to support the rationale of testing some of these compounds in diabetic patients receiving insulin in order to achieve better control of blood glucose levels and to combat the decline of cognitive performance. Potential therapeutic benefits could be achieved (i) By resetting the hypoglycemic counter-regulatory response; (ii) Through trophic actions on pancreatic islets, (iii) By the mobilization of antioxidant defence mechanisms in the brain. Furthermore, preclinical proof-of-concept work, as well as clinical trials that apply the novel GABAA compounds in eating disorders, e.g., olanzapine-induced weight-gain, also appear warranted.
Collapse
|
6
|
Hamasaki H. Differences in muscle strength, physical activity, and cardiometabolic risk factors between type 2 diabetic patients with and without benzodiazepines or antipsychotic medications. HEART AND MIND 2022. [DOI: 10.4103/hm.hm_14_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
7
|
Teixeira AL, Fernandes IA, Millar PJ, Vianna LC. GABA A receptor activation modulates the muscle sympathetic nerve activity responses at the onset of static exercise in humans. J Appl Physiol (1985) 2021; 131:1138-1147. [PMID: 34410847 DOI: 10.1152/japplphysiol.00423.2021] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Exercise is a well-known sympathoexcitatory stimulus. However, muscle sympathetic nerve activity (MSNA) can decrease during the onset of muscle contraction. Yet, the underlying mechanisms and neurotransmitters involved in the sympathetic responses at the onset of exercise remain unknown. Herein, we tested the hypothesis that GABAA receptors may contribute to the MSNA responses at the onset of static handgrip in humans. Thirteen young, healthy individuals (4 females) performed 30 s of ischemic static handgrip at 30% of maximum volitional contraction before and following oral administration of either placebo or diazepam (10 mg), a benzodiazepine that enhances GABAA activity. MSNA (microneurography), beat-to-beat blood pressure (finger photopletysmography), heart rate (electrocardiogram), and stroke volume (ModelFlow) were continuously measured. Cardiac output (CO = stroke volume × heart rate) and total vascular conductance (TVC = CO/mean blood pressure) were subsequently calculated. At rest, MSNA was reduced while hemodynamic variables were unchanged after diazepam administration. Before diazepam, static handgrip elicited a significant decrease in MSNA burst frequency (Δ-7 ± 2 bursts/min, P < 0.01 vs. baseline) and MSNA burst incidence (Δ-16 ± 2 bursts/100 heart beats, P < 0.01 vs. baseline); however, these responses were attenuated following diazepam administration (Δ-1 ± 2 bursts/min and Δ-7 ± 2 bursts/100 heart beats, respectively; P < 0.01 vs. before diazepam). Diazepam did not affect the increases in heart rate, blood pressure, CO, and TVC at the exercise onset. Importantly, the placebo had no effect on any variable at rest or exercise onset. These findings suggest that GABAA receptor activation modulates the MSNA responses at the onset of static exercise in young, healthy humans.NEW & NOTEWORTHY In this study, we found that the reduction in muscle sympathetic nerve activity at the onset of static handgrip exercise was blunted following GABAA receptor activation with oral administration of diazepam in young, healthy individuals. The present findings provide novel insight into neural circuitry mechanisms controlling muscle sympathetic outflow during exercise in humans.
Collapse
Affiliation(s)
- André L Teixeira
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, Ontario, Canada.,NeuroV̇ASQ̇ - Integrative Physiology Laboratory, Faculty of Physical Education, University of Brasília, Brasília, Brazil
| | - Igor A Fernandes
- NeuroV̇ASQ̇ - Integrative Physiology Laboratory, Faculty of Physical Education, University of Brasília, Brasília, Brazil
| | - Philip J Millar
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, Ontario, Canada
| | - Lauro C Vianna
- NeuroV̇ASQ̇ - Integrative Physiology Laboratory, Faculty of Physical Education, University of Brasília, Brasília, Brazil
| |
Collapse
|
8
|
Abstract
The pandemic viral illness COVID-19 is especially life-threatening in the elderly and in those with any of a variety of chronic medical conditions. This essay explores the possibility that the heightened risk may involve activation of the "extended autonomic system" (EAS). Traditionally, the autonomic nervous system has been viewed as consisting of the sympathetic nervous system, the parasympathetic nervous system, and the enteric nervous system. Over the past century, however, neuroendocrine and neuroimmune systems have come to the fore, justifying expansion of the meaning of "autonomic." Additional facets include the sympathetic adrenergic system, for which adrenaline is the key effector; the hypothalamic-pituitary-adrenocortical axis; arginine vasopressin (synonymous with anti-diuretic hormone); the renin-angiotensin-aldosterone system, with angiotensin II and aldosterone the main effectors; and cholinergic anti-inflammatory and sympathetic inflammasomal pathways. A hierarchical brain network-the "central autonomic network"-regulates these systems; embedded within it are components of the Chrousos/Gold "stress system." Acute, coordinated alterations in homeostatic settings (allostasis) can be crucial for surviving stressors such as traumatic hemorrhage, asphyxiation, and sepsis, which throughout human evolution have threatened homeostasis; however, intense or long-term EAS activation may cause harm. While required for appropriate responses in emergencies, EAS activation in the setting of chronically decreased homeostatic efficiencies (dyshomeostasis) may reduce thresholds for induction of destabilizing, lethal vicious cycles. Testable hypotheses derived from these concepts are that biomarkers of EAS activation correlate with clinical and pathophysiologic data and predict outcome in COVID-19 and that treatments targeting specific abnormalities identified in individual patients may be beneficial.
Collapse
Affiliation(s)
- David S Goldstein
- Autonomic Medicine Section, Clinical Neurosciences Program, Division of Intramural Research, National Institute of Neurological Disorders and Stroke, National Institutes of Health, 9000 Rockville Pike MSC-1620, Building 10 Room 8N260, Bethesda, MD, 20892-1620, USA.
| |
Collapse
|
9
|
Manceau R, Majeur D, Alquier T. Neuronal control of peripheral nutrient partitioning. Diabetologia 2020; 63:673-682. [PMID: 32030470 DOI: 10.1007/s00125-020-05104-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Accepted: 12/20/2019] [Indexed: 12/16/2022]
Abstract
The appropriate utilisation, storage and conversion of nutrients in peripheral tissues, referred to as nutrient partitioning, is a fundamental process to adapt to nutritional and metabolic challenges and is thus critical for the maintenance of a healthy energy balance. Alterations in this process during nutrient excess can have deleterious effects on glucose and lipid homeostasis and contribute to the development of obesity and type 2 diabetes. Nutrient partitioning is a complex integrated process under the control of hormonal and neural signals. Neural control relies on the capacity of the brain to sense circulating metabolic signals and mount adaptive neuroendocrine and autonomic responses. This review aims to discuss the hypothalamic neurocircuits and molecular mechanisms controlling nutrient partitioning and their potential contribution to metabolic maladaptation and disease.
Collapse
Affiliation(s)
- Romane Manceau
- Montréal Diabetes Research Center and Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), 900 rue Saint-Denis, Montréal, QC, H2X 0A9, Canada
- Department of Neurosciences, Université de Montréal, Montréal, QC, Canada
| | - Danie Majeur
- Montréal Diabetes Research Center and Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), 900 rue Saint-Denis, Montréal, QC, H2X 0A9, Canada
- Department of Neurosciences, Université de Montréal, Montréal, QC, Canada
| | - Thierry Alquier
- Montréal Diabetes Research Center and Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), 900 rue Saint-Denis, Montréal, QC, H2X 0A9, Canada.
- Department of Medicine, Université de Montréal, Montréal, QC, Canada.
| |
Collapse
|
10
|
Rickels MR. Hypoglycemia-associated autonomic failure, counterregulatory responses, and therapeutic options in type 1 diabetes. Ann N Y Acad Sci 2019; 1454:68-79. [PMID: 31389033 DOI: 10.1111/nyas.14214] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 07/06/2019] [Accepted: 07/19/2019] [Indexed: 12/12/2022]
Abstract
Hypoglycemia remains a major barrier to the achievement of target levels of glycemic control for most individuals with insulin-dependent type 1 diabetes (T1D). Both the loss of β cells and an accompanying defect in the α cell response to hypoglycemia predispose patients with T1D to the development of low blood glucose. Increased glucose variability, exposure to hypoglycemia, and impaired awareness of hypoglycemia all contribute to increased risk of experiencing severe hypoglycemia, which is explained by progressive impairment in epinephrine secretion and autonomic symptom generation in response to hypoglycemia leading to defective glucose counterregulation and hypoglycemia unawareness that characterize hypoglycemia-associated autonomic failure (HAAF). Interruption of HAAF requires interfering with the mechanisms of brain adaptation to low blood glucose that affect central glucose sensing and the autonomic response to hypoglycemia, or avoidance of hypoglycemia that may allow for eventual recovery of counterregulatory and autonomic symptom responses. Strategies for hypoglycemia avoidance that include continuous glucose monitoring may reduce, but do not eliminate, clinically significant hypoglycemia, with ongoing counterregulatory defects and impaired awareness of hypoglycemia. Complete avoidance of hypoglycemia can be achieved following pancreatic islet transplantation and allows for the restoration of counterregulatory and autonomic symptom responses that evidences the potential for reversing HAAF in T1D.
Collapse
Affiliation(s)
- Michael R Rickels
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, Hospital of the University of Pennsylvania, Philadelphia, Pennsylvania.,Institute for Diabetes, Obesity and Metabolism, the University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| |
Collapse
|
11
|
Teixeira AL, Fernandes IA, Vianna LC. GABA A receptors modulate sympathetic vasomotor outflow and the pressor response to skeletal muscle metaboreflex activation in humans. J Physiol 2019; 597:4139-4150. [PMID: 31247674 DOI: 10.1113/jp277929] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Accepted: 06/24/2019] [Indexed: 11/08/2022] Open
Abstract
KEY POINTS The activation of the group III/IV skeletal muscle afferents is one of the principal mediators of cardiovascular responses to exercise; however, the neuronal circuitry mechanisms that are involved during the activation of group III/IV muscle afferents in humans remain unknown. Recently, we showed that GABAergic mechanisms are involved in the cardiac vagal withdrawal during the activation of mechanically sensitive (predominantly mediated by group III fibres) skeletal muscle afferents in humans. In the present study, we found that increases in muscle sympathetic nerve activity and mean blood pressure during isometric handgrip exercise and postexercise ischaemia were significantly greater after the oral administration of diazepam, a benzodiazepine that increases GABAA activity, but not after placebo administration in young healthy subjects. These findings indicate for the first time that GABAA receptors modulate sympathetic vasomotor outflow and the pressor responses to activation of metabolically sensitive (predominantly mediated by group IV fibres) skeletal muscle afferents in humans. ABSTRACT Animal studies have indicated that GABAA receptors are involved in the neuronal circuitry of the group III/IV skeletal muscle afferent activation-induced neurocardiovascular responses to exercise. In the present study, we aimed to determine whether GABAA receptors modulate the neurocardiovascular responses to activation of metabolically sensitive (predominantly mediated by group IV fibres) skeletal muscle afferents in humans. In a randomized, double-blinded, placebo-controlled and cross-over design, 17 healthy subjects (eight women) performed 2 min of ischaemic isometric handgrip exercise at 30% of the maximal voluntary contraction followed by 2 min of postexercise ischaemia (PEI). Muscle sympathetic nerve activity (MSNA), blood pressure (BP) and heart rate (HR) were continuously measured and trials were conducted before and 60 min after the oral administration of either placebo or diazepam (10 mg), a benzodiazepine that enhances GABAA activity. At rest, MSNA was reduced, whereas HR and BP did not change after diazepam administration. During ischaemic isometric handgrip, greater MSNA (pre: ∆13 ± 9 bursts min-1 vs. post: ∆29 ± 15 bursts min-1 , P < 0.001), HR (pre: ∆23 ± 11 beats min-1 vs. post: ∆31 ± 17 beats min-1 , P < 0.01) and mean BP (pre: ∆33 ± 12 mmHg vs. post: ∆37 ± 12 mmHg, P < 0.01) responses were observed after diazepam. During PEI, MSNA and mean BP remained elevated from baseline before diazepam (∆10 ± 8 bursts min-1 and ∆25 ± 14 mmHg, respectively) and these elevations were increased after diazepam (∆17 ± 12 bursts min-1 and ∆28 ± 13 mmHg, respectively) (P ≤ 0.05). Importantly, placebo pill had no effect on neural, cardiac and pressor responses. These findings demonstrate for the first time that GABAA receptors modulate MSNA and the pressor responses to skeletal muscle metaboreflex activation in humans.
Collapse
Affiliation(s)
- André L Teixeira
- NeuroV̇ASQ̇ - Integrative Physiology Laboratory, Faculty of Physical Education, University of Brasília, Brasília, DF, Brazil
| | - Igor A Fernandes
- NeuroV̇ASQ̇ - Integrative Physiology Laboratory, Faculty of Physical Education, University of Brasília, Brasília, DF, Brazil
| | - Lauro C Vianna
- NeuroV̇ASQ̇ - Integrative Physiology Laboratory, Faculty of Physical Education, University of Brasília, Brasília, DF, Brazil
| |
Collapse
|
12
|
Stanley S, Moheet A, Seaquist ER. Central Mechanisms of Glucose Sensing and Counterregulation in Defense of Hypoglycemia. Endocr Rev 2019; 40:768-788. [PMID: 30689785 PMCID: PMC6505456 DOI: 10.1210/er.2018-00226] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Accepted: 01/17/2019] [Indexed: 12/12/2022]
Abstract
Glucose homeostasis requires an organism to rapidly respond to changes in plasma glucose concentrations. Iatrogenic hypoglycemia as a result of treatment with insulin or sulfonylureas is the most common cause of hypoglycemia in humans and is generally only seen in patients with diabetes who take these medications. The first response to a fall in glucose is the detection of impending hypoglycemia by hypoglycemia-detecting sensors, including glucose-sensing neurons in the hypothalamus and other regions. This detection is then linked to a series of neural and hormonal responses that serve to prevent the fall in blood glucose and restore euglycemia. In this review, we discuss the current state of knowledge about central glucose sensing and how detection of a fall in glucose leads to the stimulation of counterregulatory hormone and behavior responses. We also review how diabetes and recurrent hypoglycemia impact glucose sensing and counterregulation, leading to development of impaired awareness of hypoglycemia in diabetes.
Collapse
Affiliation(s)
- Sarah Stanley
- Diabetes, Obesity and Metabolism Institute, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Amir Moheet
- Division of Diabetes, Endocrinology, and Metabolism, Department of Medicine, University of Minnesota, Minneapolis, Minnesota
| | - Elizabeth R Seaquist
- Division of Diabetes, Endocrinology, and Metabolism, Department of Medicine, University of Minnesota, Minneapolis, Minnesota
| |
Collapse
|
13
|
McNeilly AD, McCrimmon RJ. Impaired hypoglycaemia awareness in type 1 diabetes: lessons from the lab. Diabetologia 2018; 61:743-750. [PMID: 29417183 PMCID: PMC6448989 DOI: 10.1007/s00125-018-4548-8] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2017] [Accepted: 10/20/2017] [Indexed: 01/28/2023]
Abstract
Hypoglycaemia remains the most common metabolic adverse effect of insulin and sulfonylurea therapy in diabetes. Repeated exposure to hypoglycaemia leads to a change in the symptom complex that characterises hypoglycaemia, culminating in a clinical phenomenon referred to as impaired awareness of hypoglycaemia (IAH). IAH effects approximately 20-25% of people with type 1 diabetes and increases the risk of severe hypoglycaemia. This review focuses on the mechanisms that are responsible for the much higher frequency of hypoglycaemia in people with diabetes compared with those without, and subsequently how repeated exposure to hypoglycaemia leads to the development of IAH. The mechanisms that result in IAH development are incompletely understood and likely to reflect changes in multiple aspects of the counterregulatory response to hypoglycaemia, from adaptations within glucose and non-glucose-sensing cells to changes in the integrative networks that govern glucose homeostasis. Finally, we propose that the general process that incorporates many of these changes and results in IAH following recurrent hypoglycaemia is a form of adaptive memory called 'habituation'.
Collapse
Affiliation(s)
- Alison D McNeilly
- Division of Molecular and Clinical Medicine, Mailbox 12, Level 5, Ninewells Hospital and Medical School, University of Dundee, Dundee, DD1 9SY, UK
| | - Rory J McCrimmon
- Division of Molecular and Clinical Medicine, Mailbox 12, Level 5, Ninewells Hospital and Medical School, University of Dundee, Dundee, DD1 9SY, UK.
| |
Collapse
|
14
|
Lontchi-Yimagou E, You JY, Carey M, Gabriely I, Shamoon H, Hawkins M. Potential approaches to prevent hypoglycemia-associated autonomic failure. J Investig Med 2018; 66:641-647. [PMID: 29141871 PMCID: PMC6338223 DOI: 10.1136/jim-2017-000582] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/12/2017] [Indexed: 01/27/2023]
Abstract
Clear health benefits are associated with intensive glucose control in type 1 diabetes mellitus (T1DM). However, maintaining near-normal glycemia remains an elusive goal for many patients, in large part owing to the risk of severe hypoglycemia. In fact, recurrent episodes of hypoglycemia lead to 'hypoglycemia-associated autonomic failure' (HAAF), characterized by defective counter-regulatory responses to hypoglycemia. Extensive studies to understand the mechanisms underlying HAAF have revealed multiple potential etiologies, suggesting various approaches to prevent the development of HAAF. In this review, we present an overview of the literature focused on pharmacological approaches that may prevent the development of HAAF. The purported underlying mechanisms of HAAF include: 1) central mechanisms (opioid receptors, ATP-sensitive K+(KATP) channels, adrenergic receptors, serotonin selective receptor inhibitors, γ-aminobuyric acid receptors, N-methyl D-aspartate receptors); 2) hormones (cortisol, estrogen, dehydroepiandrosterone (DHEA) or DHEA sulfate, glucagon-like peptide-1) and 3) nutrients (fructose, free fatty acids, ketones), all of which have been studied vis-à-vis their ability to impact the development of HAAF. A careful review of the current literature reveals many promising therapeutic approaches to treat or reduce this important limitation to optimal glycemic control.
Collapse
Affiliation(s)
- Eric Lontchi-Yimagou
- Diabetes Research and Training Center, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Jee Young You
- Diabetes Research and Training Center, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Michelle Carey
- Diabetes Research and Training Center, Albert Einstein College of Medicine, Bronx, New York, USA
- Center for Drug Evaluation and Research (CDER), US Food and Drug Administration (FDA), Silver Spring, Maryland, USA
| | - Ilan Gabriely
- Diabetes Research and Training Center, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Harry Shamoon
- Diabetes Research and Training Center, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Meredith Hawkins
- Diabetes Research and Training Center, Albert Einstein College of Medicine, Bronx, New York, USA
| |
Collapse
|
15
|
Rickels MR, Peleckis AJ, Dalton-Bakes C, Naji JR, Ran NA, Nguyen HL, O’Brien S, Chen S, Lee I, Schutta MH. Continuous Glucose Monitoring for Hypoglycemia Avoidance and Glucose Counterregulation in Long-Standing Type 1 Diabetes. J Clin Endocrinol Metab 2018; 103:105-114. [PMID: 29190340 PMCID: PMC6283439 DOI: 10.1210/jc.2017-01516] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Accepted: 10/10/2017] [Indexed: 11/19/2022]
Abstract
CONTEXT Patients with long-standing type 1 diabetes (T1D) are at increased risk for severe hypoglycemia because of defects in glucose counterregulation and recognition of hypoglycemia symptoms, in part mediated through exposure to hypoglycemia. OBJECTIVE To determine whether implementation of real-time continuous glucose monitoring (CGM) as a strategy for hypoglycemia avoidance could improve glucose counterregulation in patients with long-standing T1D and hypoglycemia unawareness. DESIGN, SETTING, PARTICIPANTS, AND INTERVENTION Eleven patients with T1D disease duration of ∼31 years were studied longitudinally in the Clinical & Translational Research Center of the University of Pennsylvania before and 6 and 18 months after initiation of CGM and were compared with 12 nondiabetic control participants. MAIN OUTCOME MEASURE Endogenous glucose production response derived from paired hyperinsulinemic stepped-hypoglycemic and euglycemic clamps with infusion of 6,6-2H2-glucose. RESULTS In patients with T1D, hypoglycemia awareness (Clarke score) and severity (HYPO score and severe events) improved (P < 0.01 for all) without change in hemoglobin A1c (baseline, 7.2% ± 0.2%). In response to insulin-induced hypoglycemia, endogenous glucose production did not change from before to 6 months (0.42 ± 0.08 vs 0.54 ± 0.07 mg·kg-1·min-1) but improved after 18 months (0.84 ± 0.15 mg·kg-1·min-1; P < 0.05 vs before CGM), albeit remaining less than in controls (1.39 ± 0.11 mg·kg-1·min-1; P ≤ 0.01 vs all). CONCLUSIONS Real-time CGM can improve awareness and reduce the burden of problematic hypoglycemia in patients with long-standing T1D, but with only modest improvement in the endogenous glucose production response that is required to prevent or correct low blood glucose.
Collapse
Affiliation(s)
- Michael R Rickels
- Department of Medicine, Division of Endocrinology, Diabetes & Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
- Correspondence and Reprint Requests: Michael R. Rickels, MD, MS, Perelman School of Medicine at the University of Pennsylvania, 12-134 Translational Research Center, 3400 Civic Center Boulevard, Philadelphia, Pennsylvania 19104. E-mail:
| | - Amy J Peleckis
- Department of Medicine, Division of Endocrinology, Diabetes & Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Cornelia Dalton-Bakes
- Department of Medicine, Division of Endocrinology, Diabetes & Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Joseph R Naji
- Department of Medicine, Division of Endocrinology, Diabetes & Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Nina A Ran
- Department of Medicine, Division of Endocrinology, Diabetes & Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Huong-Lan Nguyen
- Department of Medicine, Division of Endocrinology, Diabetes & Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Shannon O’Brien
- Department of Medicine, Division of Endocrinology, Diabetes & Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Sanjian Chen
- Department of Computer and Information Science, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Insup Lee
- Department of Computer and Information Science, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Mark H Schutta
- Department of Medicine, Division of Endocrinology, Diabetes & Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| |
Collapse
|
16
|
Yu T, Jiang Z, Liu L, Fan Z. Decrease of γ-aminobutyric acid and zinc ions in the islet periportal circulation stimulates glucagon secretion during hypoglycemia. Exp Ther Med 2017; 15:2507-2511. [PMID: 29467850 DOI: 10.3892/etm.2017.5670] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Accepted: 07/07/2017] [Indexed: 11/05/2022] Open
Abstract
The present study assessed the effects of γ-aminobutyric acid (GABA) from β-cells on glucose levels and glucagon secretion, and identified channels via which glucagon secretion is initiated. An in vivo experiment was performed containing three groups: Intrapancreatic artery infusion of GABA alone, GABA plus insulin or insulin alone in rats with diabetes. Rats infused with GABA and insulin were also subdivided in groups receiving additional infusion of K+-channel activator diazoxide (DIA), K+-channel blocker tolbutamide (TLB) and calcium channel blocker nifedipine (NIF). In the hypoglycemic state, termination of infusion of insulin and insulin plus GABA resulted in signaling to the α-cells to secrete glycogen, while that of GABA alone did not. However, intrapancreatic artery infusion of K+-channel activator DIA, K+-channel blocker TLB or calcium channel blocker NIF in addition to GABA and insulin had no effect on glucagon secretion. In conclusion, if the delivery of insulin or GABA plus insulin in rats with hypoglycemia is terminated, β-cells are stimulated and signal the α-cells to secrete glucagon. Thus, the detection of a sudden decrease in zinc levels by β-cells as well as a decrease in GABA in the periportal circulation induces signaling to α-cells to stimulate them to secrete glucagon.
Collapse
Affiliation(s)
- Tingting Yu
- Department of Digestive Medicine, Institute of Digestive Endoscopy, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210000, P.R. China.,Department of Gastroenterology, The First People's Hospital of Yancheng, Yancheng, Jiangsu 224000, P.R. China
| | - Zhonghua Jiang
- Department of Gastroenterology, The First People's Hospital of Yancheng, Yancheng, Jiangsu 224000, P.R. China
| | - Li Liu
- Department of Digestive Medicine, Institute of Digestive Endoscopy, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210000, P.R. China
| | - Zhining Fan
- Department of Digestive Medicine, Institute of Digestive Endoscopy, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210000, P.R. China
| |
Collapse
|
17
|
Mikeladze M, Hedrington MS, Joy N, Tate DB, Younk LM, Davis I, Davis SN. Acute Effects of Oral Dehydroepiandrosterone on Counterregulatory Responses During Repeated Hypoglycemia in Healthy Humans. Diabetes 2016; 65:3161-70. [PMID: 27486235 PMCID: PMC5033266 DOI: 10.2337/db16-0406] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2013] [Accepted: 07/15/2016] [Indexed: 11/13/2022]
Abstract
We tested the hypothesis that acute administration of oral dehydroepiandrosterone (DHEA) during episodes of repeated hypoglycemia can prevent the development of hypoglycemia-associated neuroendocrine and autonomic failure in healthy humans. Twenty-seven individuals (16 men, 11 women) participated in two separate randomized, single-blind, 2-day protocols. Day 1 consisted of morning and afternoon 2-h hypoglycemic clamps (2.9 mmol/L) with 800 mg of DHEA or placebo administered before each clamp. Day 2 consisted of a single 2-h hypoglycemic clamp (2.9 mmol/L) following either DHEA (1,600 mg) or placebo. A 3-tritiated glucose was used to determine glucose kinetics during hypoglycemia on day 2. Antecedent hypoglycemia with placebo resulted in significant reductions of epinephrine, norepinephrine, glucagon, growth hormone, cortisol, endogenous glucose production, and lipolytic and symptom responses. During hypoglycemia on day 2, DHEA prevented blunting of all neuroendocrine, autonomic nervous system (ANS), metabolic, and symptom counterregulatory responses following hypoglycemia on day 1. In summary, DHEA can acutely preserve a wide range of key neuroendocrine, ANS, and metabolic counterregulatory homeostatic responses during repeated hypoglycemia. We conclude that DHEA may have acute effects to protect against hypoglycemia-associated neuroendocrine and autonomic failure in healthy humans.
Collapse
Affiliation(s)
- Maia Mikeladze
- Department of Medicine, University of Maryland, Baltimore, MD
| | | | - Nino Joy
- Department of Medicine, University of Maryland, Baltimore, MD
| | - Donna B Tate
- Department of Medicine, University of Maryland, Baltimore, MD
| | - Lisa M Younk
- Department of Medicine, University of Maryland, Baltimore, MD
| | - Ian Davis
- Department of Medicine, University of Maryland, Baltimore, MD
| | - Stephen N Davis
- Department of Medicine, University of Maryland, Baltimore, MD
| |
Collapse
|
18
|
HHS in type 1 diabetes associated with medication overdose: can counter-regulatory hormone suppression prevent diabetic ketoacidosis? PRACTICAL DIABETES 2016. [DOI: 10.1002/pdi.2001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
19
|
Hedrington MS, Tate DB, Younk LM, Davis SN. Effects of Antecedent GABA A Receptor Activation on Counterregulatory Responses to Exercise in Healthy Man. Diabetes 2015; 64:3253-61. [PMID: 25901095 PMCID: PMC4542446 DOI: 10.2337/db15-0212] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2015] [Accepted: 04/14/2015] [Indexed: 11/13/2022]
Abstract
The aim of this study was to determine whether antecedent stimulation of γ-aminobutyric acid (GABA) A receptors with the benzodiazepine alprazolam can blunt physiologic responses during next-day moderate (90 min) exercise in healthy man. Thirty-one healthy individuals (16 male/15 female aged 28 ± 1 year, BMI 23 ± 3 kg/m(2)) were studied during separate, 2-day protocols. Day 1 consisted of morning and afternoon 2-h hyperinsulinemic-euglycemic or hypoglycemic clamps with or without 1 mg alprazolam given 30 min before a clamp. Day 2 consisted of 90-min euglycemic cycling exercise at 50% VO2max. Despite similar euglycemia (5.3 ± 0.1 mmol/L) and insulinemia (46 ± 6 pmol/L) during day 2 exercise studies, GABA A activation with alprazolam during day 1 euglycemia resulted in significant blunting of plasma epinephrine, norepinephrine, glucagon, cortisol, and growth hormone responses. Lipolysis (glycerol, nonesterified fatty acids) and endogenous glucose production during exercise were also reduced, and glucose infusion rates were increased following prior euglycemia with alprazolam. Prior hypoglycemia with alprazolam resulted in further reduction of glucagon and cortisol responses during exercise. We conclude that prior activation of GABA A pathways can play a significant role in blunting key autonomous nervous system, neuroendocrine, and metabolic physiologic responses during next-day exercise in healthy man.
Collapse
Affiliation(s)
| | - Donna B Tate
- Department of Medicine, University of Maryland, Baltimore, MD
| | - Lisa M Younk
- Department of Medicine, University of Maryland, Baltimore, MD
| | - Stephen N Davis
- Department of Medicine, University of Maryland, Baltimore, MD
| |
Collapse
|
20
|
Klement J, Mergelkuhl B, Born J, Lehnert H, Hallschmid M. Role of γ-aminobutyric acid signalling in the attenuation of counter-regulatory hormonal responses after antecedent hypoglycaemia in healthy men. Diabetes Obes Metab 2014; 16:1274-8. [PMID: 25059854 DOI: 10.1111/dom.12358] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2014] [Revised: 07/11/2014] [Accepted: 07/21/2014] [Indexed: 11/28/2022]
Abstract
The attenuated counter-regulatory response to hypoglycaemia after antecedent hypoglycaemic episodes has been observed in animals to be associated with an increase in γ-aminobutyric acid (GABA) signalling. We therefore tested the hypothesis that the pharmacological suppression of GABAergic activity during a repeated hypoglycaemic episode enhances counter-regulatory responses. Fourteen healthy men participated in two experimental sessions each comprising three insulin-induced hypoglycaemic episodes. Before the third hypoglycaemic episode, participants received the GABA-antagonistic drug modafinil (200 mg orally) and placebo, respectively. In the placebo condition, the secretion of norepinephrine, adrenocorticotropic hormone, cortisol and growth hormone, and the perception of neuroglycopenic symptoms were attenuated during the third as compared with the first hypoglycaemic episode (each p < 0.05). Modafinil reversed this effect for the noradrenergic response (p < 0.05), while not significantly altering the attenuation of other hormonal responses and symptom perception (p > 0.3). Our findings indicate that increased GABAergic transmission could contribute to aspects of the attenuated counter-regulatory response after recurrent hypoglycaemia in humans.
Collapse
Affiliation(s)
- J Klement
- Department of Internal Medicine I, University of Lübeck, Lübeck, Germany
| | | | | | | | | |
Collapse
|
21
|
Gramaglia E, Ramella Gigliardi V, Olivetti I, Tomelini M, Belcastro S, Calvi E, Dotta A, Ghigo E, Benso A, Broglio F. Impact of short-term treatment with benzodiazepines and imidazopyridines on glucose metabolism in healthy subjects. J Endocrinol Invest 2014; 37:203-6. [PMID: 24497220 DOI: 10.1007/s40618-013-0016-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2013] [Accepted: 11/16/2013] [Indexed: 11/29/2022]
Abstract
AIM In the last years there has been a progressive reduction of the average duration of sleep and an increase in the incidence of sleep disturbances. At the same time, an increase of the incidence of the metabolic syndrome has been described, partly attributable to the progressive worsening of dietary habits and the increase in sedentary lifestyle. Recent studies suggest that adequate sleep is essential to maintain good glucose metabolism and sleep disturbances may contribute to the manifestation of the metabolic syndrome. Benzodiazepines (BZ), such as brotizolam, and imidazopyridines, such as zolpidem, are frequently used as hypnotics but their potential impact on glucose metabolism has never been evaluated so far. METHODS In 12 healthy volunteers [age (mean ± SEM) 38.3 ± 8.1 years; body mass index (BMI) 21.9 ± 0.8 kg/m²] we studied glucose and insulin responses to oral glucose tolerance test (OGTT, 75 g) before and after 15 days treatment with brotizolam 0.25 mg/day or zolpidem 10 mg/day. RESULTS Brotizolam increased glucose delta area under curve response to the OGTT by 122 % (p < 0.01) and zolpidem by 86 % (p < 0.01) without significant variations of insulin levels, suggesting an impact on insulin sensitivity and/or insulin secretion. CONCLUSIONS This study suggests that BZ and imidazopyridines have a rapid glucometabolic effect that is detectable as early as after 15 days treatment.
Collapse
Affiliation(s)
- E Gramaglia
- Division of Endocrinology, Diabetology and Metabolism, Department of Internal Medicine, A.O. Città Della Salute e Della Scienza, San Giovanni Battista, Molinette Hospital, University of Turin, Corso Dogliotti, 14, 10126, Turin, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Davis SN, Tate D, Hedrington MS. Mechanisms of hypoglycemia and exercise-associated autonomic dysfunction. TRANSACTIONS OF THE AMERICAN CLINICAL AND CLIMATOLOGICAL ASSOCIATION 2014; 125:281-292. [PMID: 25125745 PMCID: PMC4112662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
It is well established that diabetes can lead to multiple microvascular and macrovascular complications. Several large scale randomized multicenter studies have shown that intensifying glucose control decreases microvascular and, to a certain extent, macrovascular complications of diabetes. However, intensifying glucose control in both type 1 and type 2 diabetes increases the risk of developing hypoglycemia, one of the most feared complications of people with the disease. The mechanisms responsible for intensive therapy causing increased hypoglycemia in patients with diabetes have been extensively investigated. It is now known that a single episode of hypoglycemia can blunt the body's normal counterregulatory defenses against subsequent hypoglycemia or exercise. Similarly, a single bout of exercise can also blunt counterregulatory responses against subsequent hypoglycemia. Both neuroendocrine and autonomic nervous system responses are reduced by prior hypoglycemia and/or exercise. Work from several laboratories has identified multiple physiologic mechanisms involved in the pathogenesis of this hypoglycemia and exercise-associated counterregulatory failure. By continuing to study these mechanisms, some promising approaches to amplify counterregulatory responses to hypoglycemia are being discovered.
Collapse
Affiliation(s)
- Stephen N. Davis
- Correspondence and reprint requests: Stephen N. Davis, MBBS, FRCP, FACP,
22 S. Greene Street, Room N3W42, Baltimore, MD 21201410-328-2488410-328-8688
| | | | | |
Collapse
|
23
|
Baradaran M, Hamidi MR, Moghimi Firoozabad MR, Kazemi S, Ashrafpour M, Moghadamnia AA. Alprazolam role in the analgesic effect of ibuprofen on postendodontic pain. CASPIAN JOURNAL OF INTERNAL MEDICINE 2014; 5:196-201. [PMID: 25489429 PMCID: PMC4247481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/22/2014] [Revised: 06/15/2014] [Accepted: 07/07/2014] [Indexed: 11/26/2022]
Abstract
BACKGROUND Postendodontic pain (PEP) has always been a major problem for patients and dentists and NSAIDs are being used to relieve PEP and it is supposed that some benzodiazepines may potentiate facilitate the analgesic effects of the NSAIDs. This study was conducted to evaluate the effect of alprazolam on the analgesic effect of ibuprofen in PEP treatment. METHODS This randomized double-blind clinical trial was conducted on 45 patients aged 20-45 years who were subjected of root canal treatment. A written informed consent was obtained from each patient. The subjects were randomly divided into three groups; placebo, ibuprofen (400 mg) and alprazolam (0.5) mg + ibuprofen (400 mg). The intensity of pain was recorded using visual analog scale (VAS) at 4, 6, 12, 24, 48 and 72 hours after drug administration. RESULTS Of the participants, twenty six (57.8%) were males and 19 patients (42.2%) were females. Four hours after starting treatment, the VAS scores in the placebo and ibuprofen -treated groups were significantly higher than ibuprofen and alprazolam+ibuprofen groups (4.93±1.16, 3.67±1.88 and 2.67±1.11, respectively, p<0.0001). The VAS scores in alprazolam + ibuprofen group (2.33±1.05) were significantly lower at 6 hours after treatment when compared to the other groups (Ibuprofen: 3.00±1.36 and placebo: 3.08±1.74, P=0.002). This decrease in VAS score sustained to 12 hours after the start of alprazolam + ibuprofen treatment when compared to ibuprofen or placebo receiving group alone (p<0.003). The average pain score in female patients who received alprazolam + ibuprofen was significantly lower than males at 12 hours (1.3±0.6 v.s 2.14±0.9, P=0.002) and 24 hours after treatment (0.88±0.6 v.s 1.86±0.9, P=0.003). CONCLUSION According to the results, it can conclude that alprazolam may enhance the analgesic efficacy of ibuprofen in postendodontic pain.
Collapse
Affiliation(s)
- Mahmoud Baradaran
- Department of Pharmacology, Babol University of Medical Sciences, Babol, Iran.
| | - Mahmoud Reza Hamidi
- Department of Endodontics, Babol University of Medical Sciences, Babol, Iran.
| | | | - Sohrab Kazemi
- Department of Pharmacology, Babol University of Medical Sciences, Babol, Iran. ,Cellular & Molecular Biology Research Center, Babol University of Medical Sciences, Babol, Iran.
| | - Manouchehr Ashrafpour
- Department of Pharmacology, Babol University of Medical Sciences, Babol, Iran. ,Cellular & Molecular Biology Research Center, Babol University of Medical Sciences, Babol, Iran.
| | - Ali Akbar Moghadamnia
- Department of Pharmacology, Babol University of Medical Sciences, Babol, Iran. ,Cellular & Molecular Biology Research Center, Babol University of Medical Sciences, Babol, Iran. ,Correspondence: Ali Akbar Moghadamnia, Cellular & Molecular Biology Research Center, Babol University of Medical Sciences, Babol, Iran. E-mail:, Tel: 0098 11 32197667, Fax: 0098 11 32197667
| |
Collapse
|
24
|
Chan O, Sherwin R. Influence of VMH fuel sensing on hypoglycemic responses. Trends Endocrinol Metab 2013; 24:616-24. [PMID: 24063974 PMCID: PMC3909530 DOI: 10.1016/j.tem.2013.08.005] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2013] [Revised: 08/20/2013] [Accepted: 08/27/2013] [Indexed: 12/12/2022]
Abstract
Hypoglycemia produces complex neural and hormonal responses that restore glucose levels to normal. Glucose, metabolic substrates and their transporters, neuropeptides and neurotransmitters alter the firing rate of glucose-sensing neurons in the ventromedial hypothalamus (VMH); these monitor energy status and regulate the release of neurotransmitters that instigate a suitable counter-regulatory response. Under normal physiological conditions, these mechanisms maintain blood glucose concentrations within narrow margins. However, antecedent hypoglycemia and diabetes can lead to adaptations within the brain that impair counter-regulatory responses. Clearly, the mechanisms employed to detect and regulate the response to hypoglycemia, and the pathophysiology of defective counter-regulation in diabetes, are complex and need to be elucidated to permit the development of therapies that prevent or reduce the risk of hypoglycemia.
Collapse
Affiliation(s)
- Owen Chan
- Yale University School of Medicine, Department of Internal Medicine - Section of Endocrinology, New Haven, CT, 06520 U.S.A
| | - Robert Sherwin
- Yale University School of Medicine, Department of Internal Medicine - Section of Endocrinology, New Haven, CT, 06520 U.S.A
| |
Collapse
|
25
|
Klement J, Pais I, Strube J, Lehnert H, Peters A, Hallschmid M, Born J. NMDA receptor blockade by memantine does not prevent adaptation to recurrent hypoglycaemia in healthy men. Diabetes Obes Metab 2013; 15:310-5. [PMID: 23072263 DOI: 10.1111/dom.12027] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2012] [Revised: 08/27/2012] [Accepted: 10/09/2012] [Indexed: 11/28/2022]
Abstract
AIMS Recurrent hypoglycaemia leads to an attenuation of hypoglycaemic symptoms and hormonal counterregulatory responses. This phenomenon poses a severe problem in the treatment of patients with diabetes mellitus, but the underlying neuroendocrine mechanisms are unclear. On the basis of animal experimental findings, we hypothesized that counterregulatory attenuation represents a basic adaptive learning process relying on synaptic long-term potentiation or depression. If so, attenuation should be prevented by blocking glutamatergic N-methyl-D-aspartate (NMDA) receptors. METHODS Sixteen healthy young men participated in two conditions, separated by 4 weeks. Participants received the NMDA antagonist memantine over 5 days (15 mg/day) in one condition and placebo in the other one. After 3 days of drug administration, participants underwent two hypoglycaemic clamps on day 4 and another one on day 5. We assessed blood concentrations of counterregulatory hormones (cortisol, ACTH, epinephrine, norepinephrine, growth hormone and glucagon) as well as subjective symptoms of hypoglycaemia and word-list recall as an indicator of short-term memory. RESULTS Counterregulatory responses of all hormones as well as neuroglycopenic and autonomic symptom ratings showed robust attenuation following the third as compared to the first hypoglycaemia (p < 0.05). NMDA receptor antagonization by memantine impaired memory function but did not alter any neuroendocrine measure of counterregulatory attenuation (p > 0.17). CONCLUSIONS Attenuation of the endocrine as well as symptomatic counterregulatory response to recurrent hypoglycaemia is not prevented by the NMDA receptor blocker memantine. Our results do not support the view that adaptation to repeated hypoglycaemia relies on NMDA receptor-mediated plastic processes involving long-term potentiation or depression.
Collapse
Affiliation(s)
- J Klement
- Department of Internal Medicine I, University of Lübeck, Lübeck, Germany.
| | | | | | | | | | | | | |
Collapse
|
26
|
Abstract
By definition, brittle diabetes (BD) is an unstable condition. Patients with BD suffer chronically from poor metabolic control, characterized by severe instability of glycemic values with frequent and unpredictable hypoglycemic and/or diabetic ketoacidosis episodes that cannot be attributed to failure in management. Quality of life is dramatically compromised because of very frequent acute complications leading to hospital admissions and because of premature chronic complications. It remains difficult to identify all patients with BD as diagnostic criteria are still not well defined. In practice, metabolic instability is manifested most obviously by chaotic glycemic profiles, which show greater and more unpredictable variation than in "stable" patients with diabetes. It is important that patients with BD are not adequately controlled, even by closely supervised, intensive insulin regimens, including continuous subcutaneous and/or intravenous insulin infusion. Their care is often very expensive in terms of time and resources, and their lives are constantly at risk for severe metabolic derangement. Management can also be frustrating and demoralizing for everyone involved, including the patient's family as well as the diabetes care team. Adopting a team approach, involving a broad range of disciplines, is essential in treating patients with BD and helping them to achieve and maintain both normoglycemia and quality of life.
Collapse
Affiliation(s)
- Christina Voulgari
- 3rd Department of Internal Medicine, Athens Regional General Hospital G Gennimatas, University Medical School, Athens, Greece.
| | | | | | | |
Collapse
|
27
|
Chan O, Paranjape S, Czyzyk D, Horblitt A, Zhu W, Ding Y, Fan X, Seashore M, Sherwin R. Increased GABAergic output in the ventromedial hypothalamus contributes to impaired hypoglycemic counterregulation in diabetic rats. Diabetes 2011; 60:1582-9. [PMID: 21411513 PMCID: PMC3292334 DOI: 10.2337/db10-1579] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
OBJECTIVE Impaired glucose counterregulation during hypoglycemia is well documented in patients with type 1 diabetes; however, the molecular mechanisms underlying this defect remain uncertain. We reported that the inhibitory neurotransmitter γ-aminobutyric acid (GABA), in a crucial glucose-sensing region within the brain, the ventromedial hypothalamus (VMH), plays an important role in modulating the magnitude of the glucagon and epinephrine responses to hypoglycemia and investigated whether VMH GABAergic tone is altered in diabetes and therefore might contribute to defective counterregulatory responses. RESEARCH DESIGN AND METHODS We used immunoblots to measure GAD(65) protein (a rate-limiting enzyme in GABA synthesis) and microdialysis to measure extracellular GABA levels in the VMH of two diabetic rat models, the diabetic BB rat and the streptozotocin (STZ)-induced diabetic rat, and compared them with nondiabetic controls. RESULTS Both diabetic rat models exhibited an ~50% increase in GAD(65) protein as well as a twofold increase in VMH GABA levels compared with controls under baseline conditions. Moreover, during hypoglycemia, VMH GABA levels did not change in the diabetic animals, whereas they significantly declined in nondiabetic animals. As expected, glucagon responses were absent and epinephrine responses were attenuated in diabetic rats compared with their nondiabetic control counterparts. The defective counterregulatory response in STZ-diabetic animals was restored to normal with either local blockade of GABA(A) receptors or knockdown of GAD(65) in the VMH. CONCLUSIONS These data suggest that increased VMH GABAergic inhibition is an important contributor to the absent glucagon response to hypoglycemia and the development of counterregulatory failure in type 1 diabetes.
Collapse
Affiliation(s)
- Owen Chan
- Section of Endocrinology, Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|