1
|
Yang G, Su R, Bu J, Li Y, Lin X, Jin J, Zhang Y, Zhuang P, Guo H, Yin Q. Emerging role of adaptive immunity in diabetes-induced cognitive impairment: from the periphery to the brain. Metab Brain Dis 2025; 40:102. [PMID: 39821703 DOI: 10.1007/s11011-025-01532-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Accepted: 01/09/2025] [Indexed: 01/19/2025]
Abstract
Diabetic cognitive impairment (DCI) is a central nervous system complication induced by peripheral metabolic dysfunction of diabetes mellitus. Cumulative studies have shown that neuro-immune crosstalk is involved in the pathological progression of DCI. However, current studies mostly focus on the interaction between innate immunity cells and neurons, while ignoring the role of adaptive immunity cells in DCI. Notably, recent studies have revealed adaptive immune cells are involved in cognitive development and the progression of neurodegenerative diseases. Equally important, accumulated past studies have also shown that diabetic patients experience imbalanced peripheral adaptive immune homeostasis and disrupted transmission of adaptive immune cells to the central system. Therefore, this review first updated the cognitive mechanism of adaptive immune regulation, and then summarized the contribution of adaptive immunity to DCI from the aspects of peripheral adaptive immune homeostasis, transmission pathways, and brain tissue infiltration. Furthermore, we also summarized the potential of anti-diabetic drugs to regulate adaptive immunity, and looked forward to the potential value of regulatory adaptive immunity in the prevention and treatment of DCI, to provide a new strategy for the prevention and treatment of DCI.
Collapse
Affiliation(s)
- Genhui Yang
- National Key Laboratory of Chinese Medicine Modernization, Tianjin University of Traditional Chinese Medicine, Jinghai District, Tianjin, 301617, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Runtao Su
- National Key Laboratory of Chinese Medicine Modernization, Tianjin University of Traditional Chinese Medicine, Jinghai District, Tianjin, 301617, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Jie Bu
- National Key Laboratory of Chinese Medicine Modernization, Tianjin University of Traditional Chinese Medicine, Jinghai District, Tianjin, 301617, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Ying Li
- National Key Laboratory of Chinese Medicine Modernization, Tianjin University of Traditional Chinese Medicine, Jinghai District, Tianjin, 301617, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Xueling Lin
- National Key Laboratory of Chinese Medicine Modernization, Tianjin University of Traditional Chinese Medicine, Jinghai District, Tianjin, 301617, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Jiahui Jin
- National Key Laboratory of Chinese Medicine Modernization, Tianjin University of Traditional Chinese Medicine, Jinghai District, Tianjin, 301617, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Yanjun Zhang
- National Key Laboratory of Chinese Medicine Modernization, Tianjin University of Traditional Chinese Medicine, Jinghai District, Tianjin, 301617, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, 300193, China
| | - Pengwei Zhuang
- National Key Laboratory of Chinese Medicine Modernization, Tianjin University of Traditional Chinese Medicine, Jinghai District, Tianjin, 301617, China.
- Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China.
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China.
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, 300193, China.
| | - Hong Guo
- National Key Laboratory of Chinese Medicine Modernization, Tianjin University of Traditional Chinese Medicine, Jinghai District, Tianjin, 301617, China.
- Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China.
| | - Qingsheng Yin
- National Key Laboratory of Chinese Medicine Modernization, Tianjin University of Traditional Chinese Medicine, Jinghai District, Tianjin, 301617, China.
- Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China.
| |
Collapse
|
2
|
Shimada A, Kawasaki E, Abiru N, Awata T, Oikawa Y, Osawa H, Kajio H, Kozawa J, Takahashi K, Chujo D, Noso S, Fukui T, Miura J, Yasuda K, Yasuda H, Imagawa A, Ikegami H. Practice guideline: Statement regarding treatment for suspected slowly progressive type 1 diabetes (SPIDDM; probable) cases (English Version). Diabetol Int 2025; 16:1-6. [PMID: 39877440 PMCID: PMC11769915 DOI: 10.1007/s13340-024-00753-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 06/10/2024] [Indexed: 01/31/2025]
Abstract
Insulin treatment should be introduced in patients with slowly progressive type 1 diabetes (SPIDDM; definite), according to the revised diagnostic criteria of SPIDDM (2023). In contrast, SPIDDM (probable) patients are in a non-insulin-dependent state; therefore, a more flexible treatment can be considered, although sulfonylurea agents should be avoided. Insulin treatment has been shown to maintain endogenous insulin secretion capacity in SPIDDM (probable); however, this does not mean that all SPIDDM (probable) patients should use insulin from the early phase. Dipeptidyl peptidase-4 inhibitors and biguanides might be the treatment of choice for SPIDDM (probable), but no evidence exists for other hypoglycemic agents. In any case, careful monitoring of the endogenous insulin secretion capacity should be carried out, and if a decrease in insulin secretion capacity is suspected, a change in treatment should be considered to prevent progression to an insulin-dependent state.
Collapse
Affiliation(s)
- Akira Shimada
- Department of Endocrinology and Diabetes, Saitama Medical University, 38 Morohongo, Moroyama, Saitama, 350-0495 Japan
| | - Eiji Kawasaki
- Diabetes Center, Shin-Koga Hospital, 120 Tenjin-Cho, Kurume-Shi, Fukuoka, 830-8577 Japan
| | - Norio Abiru
- Midori Clinic, 32-20 Joei-Machi, Nagasaki, 852-8034 Japan
| | - Takuya Awata
- Diabetes Research Center, National Center for Global Health and Medicine, 1-21-1 Toyama, Shinjuku-Ku, Tokyo, 162-8655 Japan
| | - Yoichi Oikawa
- Department of Endocrinology and Diabetes, Saitama Medical University, 38 Morohongo, Moroyama, Saitama, 350-0495 Japan
| | - Haruhiko Osawa
- Department of Diabetology, Ehime University Graduate School of Medicine, Toon, Shizugawa, Ehime 791-0295 Japan
| | - Hiroshi Kajio
- Department of Diabetes, Endocrinology and Metabolism, National Center for Global Health and Medicine Hospital, 1-21-1 Toyama, Shinjuku-Ku, Tokyo 162-8655 Japan
| | - Junji Kozawa
- Endowed Department of Diabetes Medicine, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka 565-0871 Japan
| | - Kazuma Takahashi
- School of Nursing, Iwate Prefectural University, 152-52, Suuko, Takizawa, Iwate 020-0693 Japan
| | - Daisuke Chujo
- Center for Clinical Research, Toyama University Hospital, 2630 Sugitani, Toyama, 930-0194 Japan
| | - Shinsuke Noso
- Department of Endocrinology, Metabolism and Diabetes, Faculty of Medicine, Kindai University, 377-2, Ohnohigashi, Osaka-Sayama, Osaka 589-8511 Japan
| | - Tomoyasu Fukui
- Division of Diabetes, Metabolism and Endocrinology, Department of Internal Medicine, Showa University, 1-5-8 Hatanodai, Shinagawa-Ku, Tokyo 142-8555 Japan
| | - Junnosuke Miura
- Division of Diabetes and Metabolism, Department of Internal Medicine, Tokyo Women’s Medical University School of Medicine, 8-1 Kawada-Cho, Shinjuku-Ku, Tokyo 162-8666 Japan
| | - Kazuki Yasuda
- Department of Diabetes, Endocrinology and Metabolism, Kyorin University School of Medicine, 6-20-2 Shinkawa, Mitaka-Shi, Tokyo 181-8611 Japan
| | - Hisafumi Yasuda
- Division of Health Sciences, Department of Public Health, Kobe University Graduate School of Health Sciences, 7-10-2 Tomogaoka, Suma-Ku, Kobe, Hyogo 654-0142 Japan
| | - Akihisa Imagawa
- Department of Internal Medicine (I), Faculty of Medicine, Osaka Medical and Pharmaceutical University, 2-7 Daigaku-Cho, Takatsuki, Osaka 569-8686 Japan
| | - Hiroshi Ikegami
- Department of Endocrinology, Metabolism and Diabetes, Faculty of Medicine, Kindai University, 377-2, Ohnohigashi, Osaka-Sayama, Osaka 589-8511 Japan
| |
Collapse
|
3
|
Shimada A, Kawasaki E, Abiru N, Awata T, Oikawa Y, Osawa H, Kajio H, Kozawa J, Takahashi K, Chujo D, Noso S, Fukui T, Miura J, Yasuda K, Yasuda H, Imagawa A, Ikegami H. Practice guideline: Statement regarding treatment for suspected slowly progressive type 1 diabetes (SPIDDM; probable) cases (English version). J Diabetes Investig 2025; 16:163-168. [PMID: 39529490 DOI: 10.1111/jdi.14267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 06/27/2024] [Accepted: 07/01/2024] [Indexed: 11/16/2024] Open
Abstract
Insulin treatment should be introduced in patients with slowly progressive type 1 diabetes (SPIDDM; definite), according to the revised diagnostic criteria of SPIDDM (2023). In contrast, SPIDDM (probable) patients are in a non-insulin-dependent state; therefore, a more flexible treatment can be considered, although sulfonylurea agents should be avoided. Insulin treatment has been shown to maintain endogenous insulin secretion capacity in SPIDDM (probable); however, this does not mean that all SPIDDM (probable) patients should use insulin from the early phase. Dipeptidyl peptidase-4 inhibitors and biguanides might be the treatment of choice for SPIDDM (probable), but no evidence exists for other hypoglycemic agents. In any case, careful monitoring of the endogenous insulin secretion capacity should be carried out, and if a decrease in insulin secretion capacity is suspected, a change in treatment should be considered to prevent progression to an insulin-dependent state.
Collapse
Affiliation(s)
- Akira Shimada
- Department of Endocrinology and Diabetes, Saitama Medical University, Saitama, Japan
| | | | | | - Takuya Awata
- Diabetes Research Center, National Center for Global Health and Medicine, Tokyo, Japan
| | - Yoichi Oikawa
- Department of Endocrinology and Diabetes, Saitama Medical University, Saitama, Japan
| | - Haruhiko Osawa
- Department of Diabetology, Ehime University Graduate School of Medicine, Toon, Ehime, Japan
| | - Hiroshi Kajio
- Department of Diabetes, Endocrinology and Metabolism, National Center for Global Health and Medicine Hospital, Tokyo, Japan
| | - Junji Kozawa
- Endowed Department of Diabetes Medicine, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Kazuma Takahashi
- School of Nursing, Iwate Prefectural University, Takizawa, Iwate, Japan
| | - Daisuke Chujo
- Center for Clinical Research, Toyama University Hospital, Toyama, Japan
| | - Shinsuke Noso
- Department of Endocrinology, Metabolism and Diabetes, Kindai University Faculty of Medicine, Osaka, Japan
| | - Tomoyasu Fukui
- Division of Diabetes, Metabolism and Endocrinology, Department of Internal Medicine, Showa University, Tokyo, Japan
| | - Junnosuke Miura
- Division of Diabetes and Metabolism, Department of Internal Medicine, Tokyo Women's Medical University School of Medicine, Tokyo, Japan
| | - Kazuki Yasuda
- Department of Diabetes, Endocrinology and Metabolism, Kyorin University School of Medicine, Tokyo, Japan
| | - Hisafumi Yasuda
- Division of Health Sciences, Department of Public Health, Kobe University Graduate School of Health Sciences, Kobe, Hyogo, Japan
| | - Akihisa Imagawa
- Department of Internal Medicine (I), Faculty of Medicine, Osaka Medical and Pharmaceutical University, Takatsuki, Osaka, Japan
| | - Hiroshi Ikegami
- Department of Endocrinology, Metabolism and Diabetes, Kindai University Faculty of Medicine, Osaka, Japan
| |
Collapse
|
4
|
Drakul M, Čolić M. Immunomodulatory activity of dipeptidyl peptidase-4 inhibitors in immune-related diseases. Eur J Immunol 2023; 53:e2250302. [PMID: 37732495 DOI: 10.1002/eji.202250302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 07/22/2023] [Accepted: 09/20/2023] [Indexed: 09/22/2023]
Abstract
Dipeptidyl peptidase-4 (DPP-4), also known as CD26, is a 110-kDa cell surface glycoprotein with enzymatic and signal transducing activity. DPP-4/CD26 is expressed by various cells, including CD4+ and CD8+ T cells, B cells, dendritic cells, macrophages, and NK cells. DPP-4 inhibitors (DPP-4i) were introduced to clinics in 2006 as new oral antihyperglycemic drugs approved for type 2 diabetes mellitus treatment. In addition to glucose-lowering effects, emerging data, from clinical studies and their animal models, suggest that DPP-4i could display anti-inflammatory and immunomodulatory effects as well, but the molecular and immunological mechanisms of these actions are insufficiently investigated. This review focuses on the modulatory activity of DPP-4i in the immune system and the possible application of DPP-4i in other immune-related diseases in patients with or without diabetes.
Collapse
Affiliation(s)
- Marija Drakul
- Medical Faculty Foča, University of East Sarajevo, Foča, Bosnia and Herzegovina
| | - Miodrag Čolić
- Medical Faculty Foča, University of East Sarajevo, Foča, Bosnia and Herzegovina
- Serbian Academy of Sciences and Arts, Belgrade, Serbia
| |
Collapse
|
5
|
Yan X, Li X, Liu B, Huang J, Xiang Y, Hu Y, Tang X, Zhang Z, Huang G, Xie Z, Zhou H, Liu Z, Wang X, Leslie RD, Zhou Z. Combination therapy with saxagliptin and vitamin D for the preservation of β-cell function in adult-onset type 1 diabetes: a multi-center, randomized, controlled trial. Signal Transduct Target Ther 2023; 8:158. [PMID: 37076476 PMCID: PMC10115841 DOI: 10.1038/s41392-023-01369-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 02/12/2023] [Accepted: 02/14/2023] [Indexed: 04/21/2023] Open
Abstract
Disease modifying therapies aiming to preserve β-cell function in patients with adult-onset autoimmune type 1 diabetes are lacking. Here, we conducted a multi-centre, randomized, controlled trial to assess the β-cell preservation effects of saxagliptin alone and saxagliptin combined with vitamin D as adjunctive therapies in adult-onset autoimmune type 1 diabetes. In this 3-arm trial, 301 participants were randomly assigned to a 24-month course of the conventional therapy (metformin with or without insulin) or adjunctive saxagliptin or adjunctive saxagliptin plus vitamin D to the conventional therapy. The primary endpoint was the change from baseline to 24 months in the fasting C-peptide. The secondary endpoints included the area under the concentration-time curve (AUC) for C-peptide level in a 2-h mixed-meal tolerance test, glycemic control, total daily insulin use and safety, respectively. The primary endpoint was not achieved in saxagliptin plus vitamin D group (P = 0.18) and saxagliptin group (P = 0.26). However, compared with the conventional therapy, 2-h C-peptide AUC from 24 months to baseline decreased less with saxagliptin plus vitamin D (-276 pmol/L vs. -419 pmol/L; P = 0.01), and not to the same degree with saxagliptin alone (-314 pmol/L; P = 0.14). Notably, for participants with higher glutamic acid decarboxylase antibody (GADA) levels, the decline of β-cell function was much lower in saxagliptin plus vitamin D group than in the conventional therapy group (P = 0.001). Insulin dose was significantly reduced in both active treatment groups than in the conventional therapy group despite all groups having similar glycemic control. In conclusion, the combination of saxagliptin and vitamin D preserves pancreatic β-cell function in adult-onset autoimmune type 1 diabetes, an effect especially efficacious in individuals with higher GADA levels. Our results provide evidence for a novel adjunct to insulin and metformin as potential initial treatment for adult-onset type 1 diabetes. (ClinicalTrials.gov identifier: NCT02407899).
Collapse
Affiliation(s)
- Xiang Yan
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology (Central South University), Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Xia Li
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology (Central South University), Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Bingwen Liu
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology (Central South University), Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Jiaqi Huang
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology (Central South University), Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Yufei Xiang
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology (Central South University), Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Yuhang Hu
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology (Central South University), Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Xiaohan Tang
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology (Central South University), Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Ziwei Zhang
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology (Central South University), Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Gan Huang
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology (Central South University), Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Zhiguo Xie
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology (Central South University), Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Houde Zhou
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology (Central South University), Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Zhenqi Liu
- Division of Endocrinology and Metabolism, Department of Medicine, University of Virginia Health System, Charlottesville, VA, USA
| | - Xiangbing Wang
- Division of Endocrinology, Metabolism and Nutrition, Rutgers University-Robert Wood Johnson Medical School, New Brunswick, NJ, USA
| | - Richard David Leslie
- Centre for Immunobiology, Blizard Institute, Queen Mary University of London, London, UK.
| | - Zhiguang Zhou
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology (Central South University), Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China.
| |
Collapse
|
6
|
da Silva EM, Yariwake VY, Alves RW, de Araujo DR, Andrade-Oliveira V. Crosstalk between incretin hormones, Th17 and Treg cells in inflammatory diseases. Peptides 2022; 155:170834. [PMID: 35753504 DOI: 10.1016/j.peptides.2022.170834] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 06/20/2022] [Accepted: 06/20/2022] [Indexed: 02/07/2023]
Abstract
Intestinal epithelial cells constantly crosstalk with the gut microbiota and immune cells of the gut lamina propria. Enteroendocrine cells, secrete hormones, such as incretin hormones, which participate in host physiological events, such as stimulating insulin secretion, satiety, and glucose homeostasis. Interestingly, evidence suggests that the incretin pathway may influence immune cell activation. Consequently, drugs targeting the incretin hormone signaling pathway may ameliorate inflammatory diseases such as inflammatory bowel diseases, cancer, and autoimmune diseases. In this review, we discuss how these hormones may modulate two subsets of CD4 + T cells, the regulatory T cells (Treg)/Th17 axis important for gut homeostasis: thus, preventing the development and progression of inflammatory diseases. We also summarize the main experimental and clinical findings using drugs targeting the glucose-dependent insulinotropic polypeptide (GIP) and glucagon-like peptide (GLP-1) signaling pathways and their great impact on conditions in which the Treg/Th17 axis is disturbed such as inflammatory diseases and cancer. Understanding the role of incretin stimulation in immune cell activation and function, might contribute to new therapeutic designs for the treatment of inflammatory diseases, autoimmunity, and tumors.
Collapse
Affiliation(s)
| | - Victor Yuji Yariwake
- Department of Immunology - Institute of Biomedical Sciences, University of São Paulo (USP), Brazil
| | - Renan Willian Alves
- Center for Natural and Human Sciences, Federal University of ABC (UFABC), Brazil
| | | | - Vinicius Andrade-Oliveira
- Paulista School of Medicine, Federal University of São Paulo (UNIFESP), Brazil; Department of Immunology - Institute of Biomedical Sciences, University of São Paulo (USP), Brazil; Center for Natural and Human Sciences, Federal University of ABC (UFABC), Brazil.
| |
Collapse
|
7
|
Pang J, Feng JN, Ling W, Jin T. The anti-inflammatory feature of glucagon-like peptide-1 and its based diabetes drugs—Therapeutic potential exploration in lung injury. Acta Pharm Sin B 2022; 12:4040-4055. [PMID: 36386481 PMCID: PMC9643154 DOI: 10.1016/j.apsb.2022.06.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 05/25/2022] [Accepted: 06/01/2022] [Indexed: 12/02/2022] Open
Abstract
Since 2005, GLP-1 receptor (GLP-1R) agonists (GLP-1RAs) have been developed as therapeutic agents for type 2 diabetes (T2D). GLP-1R is not only expressed in pancreatic islets but also other organs, especially the lung. However, controversy on extra-pancreatic GLP-1R expression still needs to be further resolved, utilizing different tools including the use of more reliable GLP-1R antibodies in immune-staining and co-immune-staining. Extra-pancreatic expression of GLP-1R has triggered extensive investigations on extra-pancreatic functions of GLP-1RAs, aiming to repurpose them into therapeutic agents for other disorders. Extensive studies have demonstrated promising anti-inflammatory features of GLP-1RAs. Whether those features are directly mediated by GLP-1R expressed in immune cells also remains controversial. Following a brief review on GLP-1 as an incretin hormone and the development of GLP-1RAs as therapeutic agents for T2D, we have summarized our current understanding of the anti-inflammatory features of GLP-1RAs and commented on the controversy on extra-pancreatic GLP-1R expression. The main part of this review is a literature discussion on GLP-1RA utilization in animal models with chronic airway diseases and acute lung injuries, including studies on the combined use of mesenchymal stem cell (MSC) based therapy. This is followed by a brief summary.
Collapse
|
8
|
Radbakhsh S, Atkin SL, Simental-Mendia LE, Sahebkar A. The role of incretins and incretin-based drugs in autoimmune diseases. Int Immunopharmacol 2021; 98:107845. [PMID: 34126341 DOI: 10.1016/j.intimp.2021.107845] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 05/25/2021] [Accepted: 05/31/2021] [Indexed: 02/07/2023]
Abstract
Incretin hormones, including glucagon-like peptide (GLP)-1, GLP-2 and glucose-dependent insulinotropic polypeptide (GIP), are gastrointestinal peptides secreted from enteroendocrine cells. These hormones play significant roles in many physiological processes via binding to G-protein coupled receptors (GPCRs) on different organs and tissues; one of them is the immunomodulatory effect on the immune system and its molecular components such as cytokines and chemokines. Anti-inflammatory effects of incretins and dependent molecules involving long-acting analogs and DPP4 inhibitors through regulation of T and B cell activation may attenuate autoimmune diseases caused by immune system disorders in mistakenly recognizing self as the foreign agent. In this review, we investigate incretin effects on the immune system response and the potential benefits of incretin-based therapy for treating autoimmune diseases.
Collapse
Affiliation(s)
- Shabnam Radbakhsh
- Department of Medical Biotechnology and Nanotechnology, Mashhad University of Medical Sciences, Mashhad, Iran; Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | | | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; School of Medicine, The University of Western Australia, Perth, Australia; School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
9
|
Pinheiro MM, Pinheiro FMM, Diniz SN, Fabbri A, Infante M. Combination of vitamin D and dipeptidyl peptidase-4 inhibitors (VIDPP-4i) as an immunomodulation therapy for autoimmune diabetes. Int Immunopharmacol 2021; 95:107518. [PMID: 33756226 DOI: 10.1016/j.intimp.2021.107518] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 02/15/2021] [Accepted: 02/16/2021] [Indexed: 12/18/2022]
Abstract
Type 1 diabetes (T1D) and latent autoimmune diabetes in adults (LADA) represent the most common types of autoimmune diabetes and are characterized by different age of onset, degrees of immune-mediated destruction of pancreatic beta cells and rates of disease progression towards insulin dependence. Several immunotherapies aimed to counteract autoimmune responses against beta cells and preserve beta-cell function are currently being investigated, particularly in T1D. Preliminary findings suggest a potential role of combination therapy with vitamin D and dipeptidyl peptidase-4 (DPP-4) inhibitors (VIDPP-4i) in preserving beta-cell function in autoimmune diabetes. This manuscript aims to provide a comprehensive overview of the immunomodulatory properties of vitamin D and DPP-4 inhibitors, as well as the rationale for investigation of their combined use as an immunomodulation therapy for autoimmune diabetes.
Collapse
Affiliation(s)
- Marcelo Maia Pinheiro
- UNIVAG, University Center, Dom Orlando Chaves Ave, 2655 - Cristo Rei, Várzea Grande, 78118-000 Mato Grosso, Brazil; Universidade Anhanguera de São Paulo - SP, 3305, Raimundo Pereira de Magalhães Ave., Pirituba, São Paulo, 05145-200 São Paulo, Brazil.
| | - Felipe Moura Maia Pinheiro
- Hospital de Base, Faculdade de Medicina de São José do Rio Preto FAMERP - SP, 5546, Brigadeiro Faria Lima Ave, Vila São Pedro, São José do Rio Preto, 15015-500 São Paulo, Brazil
| | - Susana Nogueira Diniz
- Universidade Anhanguera de São Paulo - SP, 3305, Raimundo Pereira de Magalhães Ave., Pirituba, São Paulo, 05145-200 São Paulo, Brazil
| | - Andrea Fabbri
- Diabetes Research Institute Federation (DRIF), Division of Endocrinology and Diabetes, CTO Andrea Alesini Hospital, ASL Roma 2, Department of Systems Medicine, University of Rome Tor Vergata, Via San Nemesio 21, 00145 Rome, Italy
| | - Marco Infante
- Diabetes Research Institute Federation (DRIF), Division of Endocrinology and Diabetes, CTO Andrea Alesini Hospital, ASL Roma 2, Department of Systems Medicine, University of Rome Tor Vergata, Via San Nemesio 21, 00145 Rome, Italy; UniCamillus, Saint Camillus International University of Health Sciences, Via di Sant'Alessandro, 8, 00131 Rome, Italy; Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Via San Nemesio 21, 00145 Rome, Italy.
| |
Collapse
|
10
|
Seo S, Kim MK, Kim RI, Yeo Y, Kim KL, Suh W. Evogliptin, a dipeptidyl peptidase-4 inhibitor, attenuates pathological retinal angiogenesis by suppressing vascular endothelial growth factor-induced Arf6 activation. Exp Mol Med 2020; 52:1744-1753. [PMID: 33051573 PMCID: PMC8080693 DOI: 10.1038/s12276-020-00512-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 08/12/2020] [Accepted: 08/13/2020] [Indexed: 12/17/2022] Open
Abstract
Dipeptidyl peptidase-4 (DPP-4) inhibitors are used for the treatment of type 2 diabetes mellitus (DM). Recent studies have shown that beyond their effect in lowing glucose, DPP-4 inhibitors mitigate DM-related microvascular complications, such as diabetic retinopathy. However, the mechanism by which pathological retinal neovascularization, a major clinical manifestation of diabetic retinopathy, is inhibited is unclear. This study sought to examine the effects of evogliptin, a potent DPP-4 inhibitor, on pathological retinal neovascularization in mice and elucidate the mechanism by which evogliptin inhibits angiogenesis mediated by vascular endothelial growth factor (VEGF), a key factor in the vascular pathogenesis of proliferative diabetic retinopathy (PDR). In a murine model of PDR, an intravitreal injection of evogliptin significantly suppressed aberrant retinal neovascularization. In human endothelial cells, evogliptin reduced VEGF-induced angiogenesis. Western blot analysis showed that evogliptin inhibited the phosphorylation of signaling molecules associated with VEGF-induced cell adhesion and migration. Moreover, evogliptin substantially inhibited the VEGF-induced activation of adenosine 5′-diphosphate ribosylation factor 6 (Arf6), a small guanosine 5′-triphosphatase (GTPase) that regulates VEGF receptor 2 signal transduction. Direct activation of Arf6 using a chemical inhibitor of Arf-directed GTPase-activating protein completely abrogated the inhibitory effect of evogliptin on VEGF-induced activation of the angiogenic signaling pathway, which suggests that evogliptin suppresses VEGF-induced angiogenesis by blocking Arf6 activation. Our results provide insights into the molecular mechanism of the direct inhibitory effect of the DPP-4 inhibitor evogliptin on pathological retinal neovascularization. In addition to its glucose-lowering effect, the antiangiogenic effect of evogliptin could also render it beneficial for individuals with PDR. Pathological retinal angiogenesis, the damaging formation of new blood vessels in the retina, which is associated with various diseases including diabetes, could be reduced using the anti-diabetic drug evogliptin to inhibit the effects of a vascular growth factor. Researchers in South Korea led by Wonhee Suh and Koung Li Kim at Chung-Ang University in Seoul investigated the molecular mechanism underlying evogliptin’s effects. In studies using mice and cultured human cells they found that evogliptin inhibited the activation of signaling molecules that mediate the effects of vascular endothelial growth factor. They also identified an enzyme in the signaling pathway that is directly inhibited by evogliptin. The results offer molecular level insights into the additional benefit gained from using evogliptin to treat diabetes, distinct from the drug’s established effects in lowering blood glucose.
Collapse
Affiliation(s)
- Songyi Seo
- Department of Global Innovative Drug, College of Pharmacy, Chung-Ang University, Seoul, 06974, Korea
| | - Mi-Kyung Kim
- Drug Discovery Research Laboratories, Dong-A ST Co., Ltd., Gyeonggi-Do, 17073, Korea
| | - Ryul-I Kim
- Department of Global Innovative Drug, College of Pharmacy, Chung-Ang University, Seoul, 06974, Korea
| | - Yeongju Yeo
- Department of Global Innovative Drug, College of Pharmacy, Chung-Ang University, Seoul, 06974, Korea
| | - Koung Li Kim
- Department of Global Innovative Drug, College of Pharmacy, Chung-Ang University, Seoul, 06974, Korea.
| | - Wonhee Suh
- Department of Global Innovative Drug, College of Pharmacy, Chung-Ang University, Seoul, 06974, Korea.
| |
Collapse
|
11
|
Lin SR, Chang CH, Tsai MJ, Cheng H, Chen JC, Leong MK, Weng CF. The perceptions of natural compounds against dipeptidyl peptidase 4 in diabetes: from in silico to in vivo. Ther Adv Chronic Dis 2019; 10:2040622319875305. [PMID: 31555430 PMCID: PMC6753520 DOI: 10.1177/2040622319875305] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Accepted: 08/12/2019] [Indexed: 12/13/2022] Open
Abstract
Dipeptidyl peptidase IV (DPP-4), an incretin glucagon-like peptide-1 (GLP-1) degrading enzyme, contains two forms and it can exert various physiological functions particular in controlling blood glucose through the action of GLP-1. In diabetic use, the DPP-4 inhibitor can block the DDP-4 to attenuate GLP-1 degradation and prolong GLP-1 its action and sensitize insulin activity for the purpose of lowering blood glucose. Nonetheless the adverse effects of DPP-4 inhibitors severely hinder their clinical applications, and notably there is a clinical demand for novel DPP-4 inhibitors from various sources including chemical synthesis, herbs, and plants with fewer side effects. In this review, we highlight various strategies, namely computational biology (in silico), in vitro enzymatic and cell assays, and in vivo animal tests, for seeking natural DPP-4 inhibitors from botanic sources including herbs and plants. The pros and cons of all approaches for new inhibitor candidates or hits will be under discussion.
Collapse
Affiliation(s)
- Shian-Ren Lin
- Department of Life Science and Institute of
Biotechnology, National Dong Hwa University, Hualien
| | - Chia-Hsiang Chang
- Department of Life Science and Institute of
Biotechnology, National Dong Hwa University, Hualien
| | - May-Jwan Tsai
- Neural Regeneration Laboratory, Neurological
Institute, Taipei Veterans General Hospital, Beitou, Taipei
| | - Henrich Cheng
- Neural Regeneration Laboratory, Neurological
Institute, Taipei Veterans General Hospital, Beitou, Taipei
| | - Jian-Chyi Chen
- Department of Biotechnology, Southern Taiwan
University of Science and Technology, Yungkang, Tainan
| | - Max K. Leong
- Department of Chemistry, National Dong Hwa
University, No.1, Sec.2, Da-Hsueh Road, Shoufeng, Hualien, 97401,
Taiwan
| | - Ching-Feng Weng
- Department of Basic Medical Science, Center for
Transitional Medicine, Xiamen Medical College, Xiamen, 361023, China
| |
Collapse
|
12
|
Infante M, Ricordi C, Sanchez J, Clare-Salzler MJ, Padilla N, Fuenmayor V, Chavez C, Alvarez A, Baidal D, Alejandro R, Caprio M, Fabbri A. Influence of Vitamin D on Islet Autoimmunity and Beta-Cell Function in Type 1 Diabetes. Nutrients 2019; 11:E2185. [PMID: 31514368 PMCID: PMC6769474 DOI: 10.3390/nu11092185] [Citation(s) in RCA: 115] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 09/05/2019] [Accepted: 09/06/2019] [Indexed: 02/06/2023] Open
Abstract
Type 1 diabetes (T1D) is a chronic autoimmune disease leading to immune-mediated destruction of pancreatic beta cells, resulting in the need for insulin therapy. The incidence of T1D is increasing worldwide, thus prompting researchers to investigate novel immunomodulatory strategies to halt autoimmunity and modify disease progression. T1D is considered as a multifactorial disease, in which genetic predisposition and environmental factors interact to promote the triggering of autoimmune responses against beta cells. Over the last decades, it has become clear that vitamin D exerts anti-inflammatory and immunomodulatory effects, apart from its well-established role in the regulation of calcium homeostasis and bone metabolism. Importantly, the global incidence of vitamin D deficiency is also dramatically increasing and epidemiologic evidence suggests an involvement of vitamin D deficiency in T1D pathogenesis. Polymorphisms in genes critical for vitamin D metabolism have also been shown to modulate the risk of T1D. Moreover, several studies have investigated the role of vitamin D (in different doses and formulations) as a potential adjuvant immunomodulatory therapy in patients with new-onset and established T1D. This review aims to present the current knowledge on the immunomodulatory effects of vitamin D and summarize the clinical interventional studies investigating its use for prevention or treatment of T1D.
Collapse
Affiliation(s)
- Marco Infante
- Diabetes Research Institute (DRI) and Clinical Cell Transplant Program, University of Miami Miller School of Medicine, Miami, FL 33136, USA.
- Department of Systems Medicine, University of Rome "Tor Vergata", Via Montpellier 1, 00133 Rome, Italy.
| | - Camillo Ricordi
- Diabetes Research Institute (DRI) and Clinical Cell Transplant Program, University of Miami Miller School of Medicine, Miami, FL 33136, USA.
| | - Janine Sanchez
- Pediatric Endocrinology, University of Miami Miller School of Medicine, 1601 NW 12th Avenue, Miami, FL 33136, USA.
| | - Michael J Clare-Salzler
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida, 1600 SW Archer Rd, Gainesville, FL 32610, USA.
| | - Nathalia Padilla
- Diabetes Research Institute (DRI) and Clinical Cell Transplant Program, University of Miami Miller School of Medicine, Miami, FL 33136, USA.
| | - Virginia Fuenmayor
- Diabetes Research Institute (DRI) and Clinical Cell Transplant Program, University of Miami Miller School of Medicine, Miami, FL 33136, USA.
| | - Carmen Chavez
- Diabetes Research Institute (DRI) and Clinical Cell Transplant Program, University of Miami Miller School of Medicine, Miami, FL 33136, USA.
| | - Ana Alvarez
- Diabetes Research Institute (DRI) and Clinical Cell Transplant Program, University of Miami Miller School of Medicine, Miami, FL 33136, USA.
| | - David Baidal
- Diabetes Research Institute (DRI) and Clinical Cell Transplant Program, University of Miami Miller School of Medicine, Miami, FL 33136, USA.
| | - Rodolfo Alejandro
- Diabetes Research Institute (DRI) and Clinical Cell Transplant Program, University of Miami Miller School of Medicine, Miami, FL 33136, USA.
| | - Massimiliano Caprio
- Laboratory of Cardiovascular Endocrinology, IRCCS San Raffaele Pisana, Via di Val Cannuta 247, 00133 Rome, Italy.
- Department of Human Sciences and Promotion of the Quality of Life, San Raffaele Roma Open University, Via di Val Cannuta 247, 00166 Rome, Italy.
| | - Andrea Fabbri
- Department of Systems Medicine, University of Rome "Tor Vergata", Via Montpellier 1, 00133 Rome, Italy.
| |
Collapse
|
13
|
Davanso MR, Caliari-Oliveira C, Couri CEB, Covas DT, de Oliveira Leal AM, Voltarelli JC, Malmegrim KCR, Yaochite JNU. DPP-4 Inhibition Leads to Decreased Pancreatic Inflammatory Profile and Increased Frequency of Regulatory T Cells in Experimental Type 1 Diabetes. Inflammation 2019; 42:449-462. [PMID: 30707388 DOI: 10.1007/s10753-018-00954-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Sitagliptin is a dipeptidyl peptidase-4 inhibitor (iDPP-4), which has been used for type 2 diabetes treatment. Recently, iDPP-4 has been described as a promising treatment of type 1 diabetes (T1D) but is still necessary to evaluate immune effects of sitagliptin. C57BL/6 mice were induced by multiple low doses of streptozotocin. Diabetes incidence, insulin, glucagon, glucagon-like peptide-1 (GLP-1) serum levels, and inflammatory cytokine levels were quantified in pancreas homogenate after 30 and 90 days of treatment. In addition, frequencies of inflammatory and regulatory T cell subsets were determined in the spleen and in the pancreatic lymph nodes. iDPP-4 decreased blood glucose level while increased GLP-1 and insulin levels. After long-term treatment, treated diabetic mice presented decreased frequency of CD4+CD26+ T cells and increased percentage of CD4+CD25hiFoxp3+ T cells in the spleen. Besides, pancreatic lymph nodes from diabetic mice treated with iDPP-4 presented lower percentage of CD11b+ cells and decreased levels of inflammatory cytokines in the pancreas. Treatment of type 1 diabetic mice with iDPP-4 improved metabolic control, decreased inflammatory profile in the pancreatic microenvironment, and increased systemic regulatory T cell frequency. Therefore, we suggest the long-term use of sitagliptin as a feasible and effective therapy for T1D.
Collapse
Affiliation(s)
- Mariana Rodrigues Davanso
- Centro de Terapia Celular, Centro Regional de Hemoterapia do Hospital das Clínicas, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Rua Tenente Catão Roxo 2501, Ribeirão Preto, São Paulo, 14049-900, Brazil. .,Departamento de Bioquímica e Imunologia, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Av. Bandeirantes 3900, Ribeirão Preto, São Paulo, 14049-900, Brazil.
| | - Carolina Caliari-Oliveira
- In Situ Cell Therapy, Supera Innovation Technology Park, Av. Dra. Nadir Aguiar, 1805, prédio 2, sala 313, Ribeirão Preto, São Paulo, 14056-680, Brazil
| | - Carlos Eduardo Barra Couri
- Departamento de Clínica Médica, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Av. Bandeirantes 3900, Ribeirão Preto, São Paulo, 14049-900, Brazil
| | - Dimas Tadeu Covas
- Centro de Terapia Celular, Centro Regional de Hemoterapia do Hospital das Clínicas, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Rua Tenente Catão Roxo 2501, Ribeirão Preto, São Paulo, 14049-900, Brazil.,Departamento de Clínica Médica, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Av. Bandeirantes 3900, Ribeirão Preto, São Paulo, 14049-900, Brazil
| | - Angela Merice de Oliveira Leal
- Departamento de Medicina, Universidade Federal de São Carlos, Rodovia Washington Luís Km 235, São Carlos, São Paulo, 13565-905, Brazil
| | - Júlio César Voltarelli
- Centro de Terapia Celular, Centro Regional de Hemoterapia do Hospital das Clínicas, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Rua Tenente Catão Roxo 2501, Ribeirão Preto, São Paulo, 14049-900, Brazil.,Departamento de Clínica Médica, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Av. Bandeirantes 3900, Ribeirão Preto, São Paulo, 14049-900, Brazil
| | - Kelen Cristina Ribeiro Malmegrim
- Centro de Terapia Celular, Centro Regional de Hemoterapia do Hospital das Clínicas, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Rua Tenente Catão Roxo 2501, Ribeirão Preto, São Paulo, 14049-900, Brazil.,Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Av. do Café, s/n, Ribeirão Preto, São Paulo, 14040-903, Brazil
| | - Juliana Navarro Ueda Yaochite
- Departmento de Análises Clínicas e Toxicológicas, Faculdade de Farmácia, Odontologia e Enfermagem, Universidade Federal do Ceará, Rua Alexandre Baraúna, 949, Fortaleza, Ceará, 60430-160, Brazil
| |
Collapse
|
14
|
Wang X, Yang L, Cheng Y, Zheng P, Hu J, Huang G, Zhou Z. Altered T-cell subsets and transcription factors in latent autoimmune diabetes in adults taking sitagliptin, a dipeptidyl peptidase-4 inhibitor: A 1-year open-label randomized controlled trial. J Diabetes Investig 2019; 10:375-382. [PMID: 29883070 PMCID: PMC6400151 DOI: 10.1111/jdi.12873] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Revised: 05/04/2018] [Accepted: 06/05/2018] [Indexed: 12/16/2022] Open
Abstract
AIMS/INTRODUCTION Dipeptidyl peptidase-4 inhibitor has been proven to improve glycemic control and β-cell function in latent autoimmune diabetes in adults (LADA). The potential immune modulation mechanism is still unknown. Thus, we tested T-lymphocyte subsets and expression of relevant transcription factors in LADA patients with sitagliptin intervention for up to 1-year. MATERIALS AND METHODS A total of 40 LADA patients were randomly assigned to sitagliptin and/or insulin treatment (SITA group; n = 20) or insulin alone treatment (CONT group; n = 20). Peripheral blood mononuclear cells were isolated at baseline, 6 months and 12 months. The percentage of T-lymphocyte subsets (T helper 1, T helper 2, T helper 17 and regulatory T cells) tested by flow cytometry, and the messenger ribonucleic acid expression (T box expressed in T cells [T-BET], GATA binding protein 3 [GATA3], forkhead box protein 3 [FOXP3] and related orphan receptor C [RORC]) tested by real-time polymerase chain reaction were determined at baseline, 6 months and 12 months. RESULTS The percentage of regulatory T cells in the SITA group was significantly lower than that of the CONT group at baseline. The percentage of T helper 2 cells was higher than that of the CONT group at 6 months and 12 months. At 12 months, the percentage of T helper 17 cells was lower in the SITA group than that of the CONT group. After a 1-year visit, the messenger ribonucleic acid expression levels of T-BET expressed in T cells and RORC in the SITA group were significantly lower than at baseline. Whereas that of RORC in the CONT group were significantly lower than that at baseline. CONCLUSIONS The data confirmed that sitagliptin altered the phenotype of T cells and downregulated the expression of T-BET and RORC in LADA patients, and ameliorated glycemic control in LADA patients.
Collapse
Affiliation(s)
- Xia Wang
- Department of Metabolism & EndocrinologyThe Second Xiangya HospitalCentral South UniversityChangshaHunanChina
| | - Lin Yang
- Department of Metabolism & EndocrinologyThe Second Xiangya HospitalCentral South UniversityChangshaHunanChina
| | - Ying Cheng
- Department of Metabolism & EndocrinologyThe Second Xiangya HospitalCentral South UniversityChangshaHunanChina
| | - Peilin Zheng
- Department of Metabolism & EndocrinologyThe Second Xiangya HospitalCentral South UniversityChangshaHunanChina
| | - Jingping Hu
- Department of Metabolism & EndocrinologyThe Second Xiangya HospitalCentral South UniversityChangshaHunanChina
| | - Gan Huang
- Department of Metabolism & EndocrinologyThe Second Xiangya HospitalCentral South UniversityChangshaHunanChina
| | - Zhiguang Zhou
- Department of Metabolism & EndocrinologyThe Second Xiangya HospitalCentral South UniversityChangshaHunanChina
| |
Collapse
|
15
|
Nishimura A, Matsumura K, Kikuno S, Nagasawa K, Okubo M, Mori Y, Kobayashi T. Slowly Progressive Type 1 Diabetes Mellitus: Current Knowledge And Future Perspectives. Diabetes Metab Syndr Obes 2019; 12:2461-2477. [PMID: 31819572 PMCID: PMC6886592 DOI: 10.2147/dmso.s191007] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 10/18/2019] [Indexed: 12/21/2022] Open
Abstract
Slowly progressive type 1 insulin-dependent diabetes mellitus (SPIDDM), sometimes referred to as latent autoimmune diabetes in adults (LADA), is a heterogeneous disease that is often confused with type 1 and type 2 diabetes. As a result, there were few diagnostic criteria for this disorder until 2012, when the Japan Diabetes Society established criteria that could be used in clinical practice. A primary question is whether pathologic markers for type 1 or type 2 diabetes are present in the pancreas of patients with SPIDDM, because the phenotype of SPIDDM is similar to both type 1 and type 2 diabetes. Recent studies clarified pathologic findings in the pancreas of patients with SPIDDM, which included T-cell-mediated insulitis, a marker of type 1 diabetes; pseudoatrophic islets (islets specifically devoid of beta cells), another hallmark of type 1 diabetes; and a lack of amylin (ie, islet amyloid polypeptide) deposition to the islet cells, a pathologic marker of type 2 diabetes. In terms of preventing the loss of beta-cell function in patients with SPIDDM, several studies have shown that some drugs, including dipeptidyl peptidase-4 inhibitors, are effective. There is an increased need for early diagnosis of SPIDDM to preserve beta-cell function. This review presents updated findings on the pathogenesis and immunologic findings of the affected pancreas, diagnostic markers, risk factors for progression of beta-cell dysfunction, epidemiology, clinical features, diagnostic strategies, prevention strategies, and clinical options for patients with SPIDDM.
Collapse
Affiliation(s)
- Akihiro Nishimura
- Department of Endocrinology and Metabolism, Toranomon Hospital, Tokyo, Japan
| | - Kimio Matsumura
- Department of Endocrinology and Metabolism, Toranomon Hospital, Tokyo, Japan
| | - Shota Kikuno
- Department of Endocrinology and Metabolism, Toranomon Hospital, Tokyo, Japan
| | - Kaoru Nagasawa
- Department of Endocrinology and Metabolism, Toranomon Hospital, Tokyo, Japan
| | - Minoru Okubo
- Department of Endocrinology and Metabolism, Toranomon Hospital, Tokyo, Japan
| | - Yasumichi Mori
- Department of Endocrinology and Metabolism, Toranomon Hospital, Tokyo, Japan
| | - Tetsuro Kobayashi
- Division of Immunology and Molecular Medicine, Okinaka Memorial Institute for Medical Research, Tokyo, Japan
- Correspondence: Tetsuro Kobayashi Okinaka Memorial Institute for Medical Research, 2-2-2 Toranomon, Minato-Ku, Tokyo, JapanTel +81-3-3588-1111Fax +81-3-3582-7068 Email
| |
Collapse
|
16
|
Wang X, Zheng P, Huang G, Yang L, Zhou Z. Dipeptidyl peptidase-4(DPP-4) inhibitors: promising new agents for autoimmune diabetes. Clin Exp Med 2018; 18:473-480. [PMID: 30022375 DOI: 10.1007/s10238-018-0519-0] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Accepted: 07/08/2018] [Indexed: 12/16/2022]
Abstract
Dipeptidyl peptidase-4 (DPP-4) inhibitors constitute a novel class of anti-diabetic agents confirmed to improve glycemic control and preserve β-cell function in type 2 diabetes. Three major large-scale studies, EXAMINE, SAVOR-TIMI 53, and TECOS, have confirmed the cardiovascular safety profile of DPP-4 inhibitors. Based on these results, DPP-4 inhibitors have gained widespread use in type 2 diabetes treatment. It is currently unknown, however, whether DPP-4 inhibitors have similar therapeutic efficacy against autoimmune diabetes. Several in vitro and in vivo studies have addressed this issue, but the results remain controversial. In this review, we summarize experimental findings and preliminary clinical trial results, and identify potentially effective immune modulation targets of DPP-4 inhibitors for autoimmune diabetes.
Collapse
Affiliation(s)
- Xia Wang
- Department of Metabolism and Endocrinology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China.,Key Laboratory of Diabetes Immunology (Central South University), Ministry of Education, National Clinical Research Center for Metabolic Diseases, Changsha, Hunan, China.,Department of Metabolism and Endocrinology, Hunan Provincial People's Hospital, Changsha, Hunan, China
| | - Peilin Zheng
- Department of Metabolism and Endocrinology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China.,Key Laboratory of Diabetes Immunology (Central South University), Ministry of Education, National Clinical Research Center for Metabolic Diseases, Changsha, Hunan, China
| | - Gan Huang
- Department of Metabolism and Endocrinology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China.,Key Laboratory of Diabetes Immunology (Central South University), Ministry of Education, National Clinical Research Center for Metabolic Diseases, Changsha, Hunan, China
| | - Lin Yang
- Department of Metabolism and Endocrinology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China.,Key Laboratory of Diabetes Immunology (Central South University), Ministry of Education, National Clinical Research Center for Metabolic Diseases, Changsha, Hunan, China
| | - Zhiguang Zhou
- Department of Metabolism and Endocrinology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China. .,Key Laboratory of Diabetes Immunology (Central South University), Ministry of Education, National Clinical Research Center for Metabolic Diseases, Changsha, Hunan, China.
| |
Collapse
|
17
|
Awata T, Shimada A, Maruyama T, Oikawa Y, Yasukawa N, Kurihara S, Miyashita Y, Hatano M, Ikegami Y, Matsuda M, Niwa M, Kazama Y, Tanaka S, Kobayashi T. Possible Long-Term Efficacy of Sitagliptin, a Dipeptidyl Peptidase-4 Inhibitor, for Slowly Progressive Type 1 Diabetes (SPIDDM) in the Stage of Non-Insulin-Dependency: An Open-Label Randomized Controlled Pilot Trial (SPAN-S). Diabetes Ther 2017; 8:1123-1134. [PMID: 28929327 PMCID: PMC5630555 DOI: 10.1007/s13300-017-0299-7] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Indexed: 12/18/2022] Open
Abstract
INTRODUCTION We tested the hypothesis that dipeptidyl peptidase-4 (DPP-4) inhibitors are effective in preserving the β-cell function for long-term periods in patients with slowly progressive type 1 diabetes (SPIDDM) or latent autoimmune diabetes in adults (LADA). METHODS In the present open-label, randomized, controlled trial, 14 non-insulin-requiring diabetic patients with glutamic acid decarboxylase autoantibodies (GADAb) were randomly assigned to receive either sitagliptin (S group) or pioglitazone (P group). As a historical control, the Tokyo Study, in which non-insulin-dependent patients with SPIDDM were assigned to receive treatment by either insulin or sulfonylurea (SU), was used. RESULTS On average, the ∑C-peptide values during the oral glucose tolerance test through the follow-up periods showed a nonsignificant increase in the S group (n = 6, n = 5 at 48 months) compared to the P group (n = 5, n = 2 at 48 months). In comparison to the data in the Tokyo Study, treatment by sitagliptin significantly influenced the longitudinal changes in the ∑C-peptide values with a more increased direction than insulin or SU, especially in patients with 48 months of follow-up (p = 0.014 and p = 0.007, respectively). Although the titers of GADAb were not significantly different between the S and P groups during the study, the change ratio of the GADAb titers from baseline was significantly inversely correlated with the change ratio of the ∑C-peptide values from baseline in the S group (p = 0.003); in particular, when the GADAb titers decreased from baseline, the ∑C-peptide values frequently increased. CONCLUSION The present pilot trial suggests that treatment of SPIDDM/LADA by sitagliptin, a DPP-4 inhibitor, may be more effective in preserving the β-cell function than insulin treatment for at least 4 years, possibly through the immune modulatory effects of DPP-4 inhibitors. CLINICAL TRIAL REGISTRATION Japanese Clinical Trials Registry UMIN000003693.
Collapse
Affiliation(s)
- Takuya Awata
- Department of Diabetes, Endocrinology and Metabolism, International University of Health and Welfare Hospital, Iguchi, Nasushiobara-shi, Tochigi, Japan.
| | - Akira Shimada
- Department of Endocrinology and Diabetes, Faculty of Medicine, Saitama Medical University, Saitama, Japan
| | - Taro Maruyama
- Department of Internal Medicine, Saitama Social Insurance Hospital, Saitama, Japan
| | - Yoichi Oikawa
- Department of Endocrinology and Diabetes, Faculty of Medicine, Saitama Medical University, Saitama, Japan
| | - Nobuyuki Yasukawa
- Department of Diabetes, Endocrinology and Metabolism, International University of Health and Welfare Hospital, Iguchi, Nasushiobara-shi, Tochigi, Japan
| | - Susumu Kurihara
- Department of Endocrinology and Diabetes, Faculty of Medicine, Saitama Medical University, Saitama, Japan
| | - Yumi Miyashita
- Division of RI Laboratory, Biomedical Research Center, Saitama Medical University, Saitama, Japan
| | - Masako Hatano
- Department of Endocrinology and Diabetes, Faculty of Medicine, Saitama Medical University, Saitama, Japan
| | - Yuichi Ikegami
- Department of Endocrinology and Diabetes, Faculty of Medicine, Saitama Medical University, Saitama, Japan
| | - Masafumi Matsuda
- Department of Endocrinology and Diabetes, Saitama Medical Center, Saitama Medical University, Saitama, Japan
| | | | | | | | - Tetsuro Kobayashi
- Division of Immunology and Molecular Medicine, Okinaka Memorial Institute for Medical Research, Tokyo, Japan
| |
Collapse
|
18
|
Lu HY, Huang CY, Shih CM, Lin YW, Tsai CS, Lin FY, Shih CC. A potential contribution of dipeptidyl peptidase-4 by the mediation of monocyte differentiation in the development and progression of abdominal aortic aneurysms. J Vasc Surg 2016; 66:1217-1226.e1. [PMID: 27887857 DOI: 10.1016/j.jvs.2016.05.093] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Accepted: 05/24/2016] [Indexed: 12/18/2022]
Abstract
OBJECTIVE Abdominal aortic aneurysms (AAAs) are characterized by the destruction of elastin and collagen in the media and adventitia. Dipeptidyl peptidase-4 (DPP-4, an adipokine known as CD26) influences cell signaling, cell-matrix interactions, and the regulation of the functional activity of incretins in metabolic and inflammatory disorders. Although the role of DPP-4 in AAA evolution has been demonstrated, the underlying mechanisms of DPP-4-regulated AAA development remains unknown. METHODS Patients with AAA (n = 93) and healthy controls (CTL, n = 20) were recruited. Based on computed tomography image analyses, 93 patients were divided into two groups: those with a small AAA (SAA, aortic diameter <5 cm, n = 16) and those with a large AAA (LAA, aortic diameter ≥5 cm, n = 77). Plasma DPP-4, glucagon-like peptide-1 levels, and expression of CD26 on mononuclear cells were analyzed. In addition, phorbol 12-myristate 13-acetate (PMA)-induced THP-1 cells and angiotensin II-infused apolipoprotein EtmlUnc mice were used to explore the underlying mechanisms. RESULTS The levels of DPP-4 (μU/μg) increased while active glucagon-like peptide-1 (pM) decreased in patients with AAA in a diameter-dependent manner [CTL: 2.3 ± 1.5 and 3.7 ± 2.4, respectively; SAA: 10.0 ± 10.9 and 2.1 ± 0.9, respectively; LAA: 32.2 ± 15.0 and 1.8 ± 1.1, respectively]. A significant decline in monocyte CD26 expression in patients with AAAs was observed relative to the CTL group. In vitro studies demonstrated that the inhibition of DPP-4 promoted PMA-induced monocytic cells differentiation, with increased CD68 and p21 expression, regulated by extracellular signal-regulated protein kinase 1/2 activation. Furthermore, inhibition of DPP-4 significantly increased the phosphorylation of PYK2 and paxillin in PMA-induced THP-1 cell differentiation. Finally, the animal study was used to confirm the in vitro results that LAA mice showed marked macrophage infiltration in the adventitia with a decreased expression of DPP-4 as compared with SAA mice. CONCLUSIONS Increased plasma DPP-4 activity may correlate with aneurysmal development. CD26 on monocytes plays a critical role in cell differentiation, possibly mediated by extracellular signal-regulated protein kinase 1/2-p21 axis signaling pathways and cytoskeletal proteins reassembly. Exploring the role of DPP-4 further may yield potential therapeutic insights.
Collapse
Affiliation(s)
- Hsin-Ying Lu
- Institute of Clinical Medicine, National Yang-Ming University, Taipei, Taiwan; Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan; Division of Cardiology and Cardiovascular Research Center, Taipei Medical University Hospital, Taipei, Taiwan
| | - Chun-Yao Huang
- Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan; Division of Cardiology and Cardiovascular Research Center, Taipei Medical University Hospital, Taipei, Taiwan
| | - Chun-Ming Shih
- Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan; Division of Cardiology and Cardiovascular Research Center, Taipei Medical University Hospital, Taipei, Taiwan
| | - Yi-Wen Lin
- Institute of Oral Biology, National Yang-Ming University, Taipei, Taiwan; Division of Cardiovascular Surgery, Department of Surgery, Tri-Service General Hospital, Taipei, Taiwan
| | - Chein-Sung Tsai
- Division of Cardiovascular Surgery, Department of Surgery, Tri-Service General Hospital, Taipei, Taiwan; Department and Graduate Institute of Pharmacology, National Defense Medical Center, Taipei, Taiwan; Division of Cardiovascular Surgery, Department of Surgery, Taoyuan Armed Forces General Hospital, Taoyuan, Taiwan
| | - Feng-Yen Lin
- Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan; Division of Cardiology and Cardiovascular Research Center, Taipei Medical University Hospital, Taipei, Taiwan
| | - Chun-Che Shih
- Institute of Clinical Medicine, National Yang-Ming University, Taipei, Taiwan; Division of Cardiovascular Surgery, Department of Surgery, Taipei Veterans General Hospital, Taipei, Taiwan.
| |
Collapse
|
19
|
Guo H, Fang C, Huang Y, Pei Y, Chen L, Hu J. The efficacy and safety of DPP4 inhibitors in patients with type 1 diabetes: A systematic review and meta-analysis. Diabetes Res Clin Pract 2016; 121:184-191. [PMID: 27741478 DOI: 10.1016/j.diabres.2016.08.022] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Revised: 08/10/2016] [Accepted: 08/19/2016] [Indexed: 10/20/2022]
Abstract
AIMS Dipeptidyl peptidase-4 (DPP4) inhibitors are a novel class of antidiabetic medication in the treatment of type 2 diabetes mellitus. Several studies have indicated that DPP4 inhibitors could be used for type 1diabetes (T1DM). Here, we performed a meta-analysis to assess the efficacy and safety of DPP4 inhibitor therapy in patients with T1DM. METHODS We conducted searches on Medline, Cochrane Library, Web of Science, and EMBASE for relevant studies published before November 21, 2015. Mean difference (MD) with 95% confidence interval (CI) was calculated for the mean glycated hemoglobin (HbA1c) changes and insulin dosage from baseline to endpoint. Risk ratio (RR) with 95% CI was calculated for severe hypoglycemia. Data was extracted by two independent reviewers, and the meta-analysis was performed using Review Manager version 5.3. RESULTS Six randomized controlled trials with a total of 228 individuals were finally included into the meta-analysis. DPP4 inhibitors reduced daily insulin dosage significantly (MD -2.41U/day, 95% CI [-3.87, -0.94], P=0.001) but did not reduce HbA1c level (MD 0.0% (0mmol/mol), 95% CI [-0.16, 0.15], P=0.97). Furthermore, DPP4 inhibitors did not change the incidence of severe hypoglycemia (RR 0.81, 95% CI [0.34, 1.93], P=0.64). CONCLUSION In patients with T1DM, DPP4 inhibitors combined with insulin do not increase or decrease the risk of hypoglycemia and do not decrease HbA1c levels.
Collapse
Affiliation(s)
- Heming Guo
- Department of Endocrinology, The Second Affiliated Hospital of Soochow University, Suzhou 215004, Jiangsu, China
| | - Chen Fang
- Department of Endocrinology, The Second Affiliated Hospital of Soochow University, Suzhou 215004, Jiangsu, China
| | - Yun Huang
- Department of Endocrinology, The Second Affiliated Hospital of Soochow University, Suzhou 215004, Jiangsu, China
| | - Yufang Pei
- Department of Epidemiology and Health Statistics, School of Public Health, Medical College, Soochow University, Suzhou 215003, Jiangsu, China
| | - Linqi Chen
- Department of Endocrinology, Children's Hospital of Soochow University, Suzhou 215000, Jiangsu, China
| | - Ji Hu
- Department of Endocrinology, The Second Affiliated Hospital of Soochow University, Suzhou 215004, Jiangsu, China.
| |
Collapse
|
20
|
Choi SH, Leem J, Park S, Lee CK, Park KG, Lee IK. Gemigliptin ameliorates Western-diet-induced metabolic syndrome in mice. Can J Physiol Pharmacol 2016; 95:129-139. [PMID: 27918207 DOI: 10.1139/cjpp-2016-0026] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Dipeptidyl peptidase 4 (DPP-4) inhibitors are widely used antihyperglycemic agents for type 2 diabetes mellitus. Recently, increasing attention has been focused on the pleiotropic actions of DPP-4 inhibitors. The aim of the present study was to examine whether gemigliptin, a recently developed DPP-4 inhibitor, could ameliorate features of metabolic syndrome. Mice were fed a Western diet (WD) for 12 weeks and were subsequently divided into 2 groups: mice fed a WD diet alone or mice fed a WD diet supplemented with gemigliptin for an additional 4 weeks. Gemigliptin treatment attenuated WD-induced body mass gain, hypercholesterolemia, adipocyte hypertrophy, and macrophage infiltration into adipose tissue, which were accompanied by an increased expression of uncoupling protein 1 in subcutaneous fat. These events contributed to improved insulin sensitivity, as assessed by the homeostasis model assessment of insulin resistance and intraperitoneal insulin tolerance test. Furthermore, gemigliptin reduced WD-induced hepatic triglyceride accumulation via inhibition of de novo lipogenesis and activation of fatty acid oxidation, which was accompanied by AMP-dependent protein kinase activation. Gemigliptin ameliorated WD-induced hepatic inflammation and fibrosis through suppression of oxidative stress. These results suggest that DPP-4 inhibitors may represent promising therapeutic agents for metabolic syndrome beyond their current role as antihyperglycemic agents.
Collapse
Affiliation(s)
- Seung Hee Choi
- a Department of Biomedical Science, Graduate School, Kyungpook National University, Daegu, Republic of Korea
| | - Jaechan Leem
- b Department of Immunology, School of Medicine, Catholic University of Daegu, Daegu, Republic of Korea
| | - Sungmi Park
- c Leading-edge Research Center for Drug Discovery and Development for Diabetes and Metabolic Disease, Kyungpook National University, Daegu, Republic of Korea
| | - Chong-Kee Lee
- b Department of Immunology, School of Medicine, Catholic University of Daegu, Daegu, Republic of Korea
| | - Keun-Gyu Park
- c Leading-edge Research Center for Drug Discovery and Development for Diabetes and Metabolic Disease, Kyungpook National University, Daegu, Republic of Korea.,d Division of Endocrinology and Metabolism, Department of Internal Medicine, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - In-Kyu Lee
- c Leading-edge Research Center for Drug Discovery and Development for Diabetes and Metabolic Disease, Kyungpook National University, Daegu, Republic of Korea.,d Division of Endocrinology and Metabolism, Department of Internal Medicine, School of Medicine, Kyungpook National University, Daegu, Republic of Korea.,e BK21 Plus KNU Biomedical Convergence Program, Kyungpook National University, Daegu, Republic of Korea
| |
Collapse
|
21
|
Rapti E, Karras S, Grammatiki M, Mousiolis A, Tsekmekidou X, Potolidis E, Zebekakis P, Daniilidis M, Kotsa K. Combined treatment with sitagliptin and vitamin D in a patient with latent autoimmune diabetes in adults. Endocrinol Diabetes Metab Case Rep 2016; 2016:150136. [PMID: 27252860 PMCID: PMC4888610 DOI: 10.1530/edm-15-0136] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2016] [Accepted: 05/06/2016] [Indexed: 12/19/2022] Open
Abstract
Latent autoimmune diabetes in adults (LADA) is a relatively new type of diabetes with a clinical phenotype of type 2 diabetes (T2D) and an immunological milieu characterized by high titers of islet autoantibodies, resembling the immunological profile of type 1 diabetes (T1D). Herein, we report a case of a young male, diagnosed with LADA based on both clinical presentation and positive anti-glutamic acid decarboxylase antibodies (GAD-abs), which were normalized after combined treatment with a dipeptidyl peptidase-4 inhibitor (DPP-4) (sitagliptin) and cholecalciferol.
Collapse
Affiliation(s)
- E Rapti
- Diabetes Center of 1st Department of Internal Medicine, AHEPA University Hospital , Thessaloniki , Greece
| | - S Karras
- Diabetes Center of 1st Department of Internal Medicine, AHEPA University Hospital , Thessaloniki , Greece
| | - M Grammatiki
- Diabetes Center of 1st Department of Internal Medicine, AHEPA University Hospital , Thessaloniki , Greece
| | - A Mousiolis
- Diabetes Center of 1st Department of Internal Medicine, AHEPA University Hospital , Thessaloniki , Greece
| | - X Tsekmekidou
- Diabetes Center of 1st Department of Internal Medicine, AHEPA University Hospital , Thessaloniki , Greece
| | - E Potolidis
- Diabetes Center of 1st Department of Internal Medicine, AHEPA University Hospital , Thessaloniki , Greece
| | - P Zebekakis
- Diabetes Center of 1st Department of Internal Medicine, AHEPA University Hospital , Thessaloniki , Greece
| | - M Daniilidis
- 1st Department of Internal Medicine, AHEPA University Hospital , Thessaloniki , Greece
| | - K Kotsa
- Diabetes Center of 1st Department of Internal Medicine, AHEPA University Hospital , Thessaloniki , Greece
| |
Collapse
|
22
|
Alonso N, Julián MT, Carrascal J, Colobran R, Pujol-Autonell I, Rodriguez-Fernández S, Teniente A, Fernández MA, Miñarro A, Ruiz de Villa MC, Vives-Pi M, Puig-Domingo M. Type 1 Diabetes Prevention in NOD Mice by Targeting DPPIV/CD26 Is Associated with Changes in CD8⁺T Effector Memory Subset. PLoS One 2015; 10:e0142186. [PMID: 26555789 PMCID: PMC4640511 DOI: 10.1371/journal.pone.0142186] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2014] [Accepted: 10/18/2015] [Indexed: 12/20/2022] Open
Abstract
CD26 is a T cell activation marker consisting in a type II transmembrane glycoprotein with dipeptidyl peptidase IV (DPPIV) activity in its extracellular domain. It has been described that DPPIV inhibition delays the onset of type 1 diabetes and reverses the disease in non-obese diabetic (NOD) mice. The aim of the present study was to assess the effect of MK626, a DPPIV inhibitor, in type 1 diabetes incidence and in T lymphocyte subsets at central and peripheral compartments. Pre-diabetic NOD mice were treated with MK626. Diabetes incidence, insulitis score, and phenotyping of T lymphocytes in the thymus, spleen and pancreatic lymph nodes were determined after 4 and 6 weeks of treatment, as well as alterations in the expression of genes encoding β-cell autoantigens in the islets. The effect of MK626 was also assessed in two in vitro assays to determine proliferative and immunosuppressive effects. Results show that MK626 treatment reduces type 1 diabetes incidence and after 6 weeks of treatment reduces insulitis. No differences were observed in the percentage of T lymphocyte subsets from central and peripheral compartments between treated and control mice. MK626 increased the expression of CD26 in CD8+ T effector memory (TEM) from spleen and pancreatic lymph nodes and in CD8+ T cells from islet infiltration. CD8+TEM cells showed an increased proliferation rate and cytokine secretion in the presence of MK626. Moreover, the combination of CD8+ TEM cells and MK626 induces an immunosuppressive response. In conclusion, treatment with the DPPIV inhibitor MK626 prevents experimental type 1 diabetes in association to increase expression of CD26 in the CD8+ TEM lymphocyte subset. In vitro assays suggest an immunoregulatory role of CD8+ TEM cells that may be involved in the protection against autoimmunity to β pancreatic islets associated to DPPIV inhibitor treatment.
Collapse
Affiliation(s)
- Núria Alonso
- Department of Endocrinology and Nutrition, Hospital Germans Trias i Pujol, Badalona, Department of Medicine, Autonomous University of Barcelona, Barcelona, Spain
- CIBER of Diabetes and Associated Metabolic Diseases (CIBERDEM). Instituto de Salud Carlos III (ISCIII), Madrid, Spain
- * E-mail:
| | - María Teresa Julián
- Department of Endocrinology and Nutrition, Hospital Germans Trias i Pujol, Badalona, Department of Medicine, Autonomous University of Barcelona, Barcelona, Spain
| | - Jorge Carrascal
- Immunology Department, Germans Trias i Pujol Research Institute, Autonomous University of Barcelona, Badalona, Spain
| | - Roger Colobran
- Service of Immunology, Vall d’Hebron Research Institute, Vall d'Hebron University Hospital, Barcelona, Spain
| | - Irma Pujol-Autonell
- Immunology Department, Germans Trias i Pujol Research Institute, Autonomous University of Barcelona, Badalona, Spain
| | - Silvia Rodriguez-Fernández
- Immunology Department, Germans Trias i Pujol Research Institute, Autonomous University of Barcelona, Badalona, Spain
| | - Aina Teniente
- Immunology Department, Germans Trias i Pujol Research Institute, Autonomous University of Barcelona, Badalona, Spain
| | | | - Antoni Miñarro
- Department of Statistics, Faculty of Biology, University of Barcelona, Barcelona, Spain
| | | | - Marta Vives-Pi
- Immunology Department, Germans Trias i Pujol Research Institute, Autonomous University of Barcelona, Badalona, Spain
- CIBER of Diabetes and Associated Metabolic Diseases (CIBERDEM). Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Manel Puig-Domingo
- Department of Endocrinology and Nutrition, Hospital Germans Trias i Pujol, Badalona, Department of Medicine, Autonomous University of Barcelona, Barcelona, Spain
- CIBER of Diabetes and Associated Metabolic Diseases (CIBERDEM). Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| |
Collapse
|
23
|
Abstract
Asia has a growing diabetic population. Linagliptin, a member of dipeptidyl peptidase-4 inhibitor class, is unique in its nonlinear pharmacokinetics with the characteristics of rapid attainment of steady state, little accumulation, predominantly nonrenal route of elimination, prolonged terminal half-life, and sustained inhibition of dipeptidyl peptidase-4 enzyme. No clinically relevant difference in pharmacokinetics was observed between Asians and non-Asians. The management of type 2 diabetes is increasingly challenging with the progression of disease, especially with the requirements of minimal hypoglycemia, weight gain, fluid retention, and other adverse effects. Linagliptin was efficacious and well-tolerated in Asian type 2 diabetes patients with or without renal or hepatic dysfunctions, comparable to that in Caucasians. This review will focus on the usage of linagliptin in clinical studies in Asians.
Collapse
Affiliation(s)
- Chu-Qing Cao
- Key Laboratory of Diabetes Immunology, Ministry of Education, National Clinical Research Center for Metabolic Diseases, Institute of Metabolism and Endocrinology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China
| | - Yu-Fei Xiang
- Key Laboratory of Diabetes Immunology, Ministry of Education, National Clinical Research Center for Metabolic Diseases, Institute of Metabolism and Endocrinology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China
| | - Zhi-Guang Zhou
- Key Laboratory of Diabetes Immunology, Ministry of Education, National Clinical Research Center for Metabolic Diseases, Institute of Metabolism and Endocrinology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China
| |
Collapse
|
24
|
Nagai H, Fujiwara S, Takahashi Y, Nishigori C. Ameliorating effect of the novel dipeptidyl peptidase-4 inhibitor teneligliptin on psoriasis: A report of two cases. J Dermatol 2015; 42:1094-7. [DOI: 10.1111/1346-8138.12955] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2015] [Accepted: 04/16/2015] [Indexed: 11/28/2022]
Affiliation(s)
- Hiroshi Nagai
- Division of Dermatology; Department of Internal Related; Kobe University Graduate School of Medicine; Kobe Japan
| | - Susumu Fujiwara
- Division of Dermatology; Department of Internal Related; Kobe University Graduate School of Medicine; Kobe Japan
| | - Yutaka Takahashi
- Division of Diabetes and Endocrinology; Department of Internal Medicine; Kobe University Graduate School of Medicine; Kobe Japan
| | - Chikako Nishigori
- Division of Dermatology; Department of Internal Related; Kobe University Graduate School of Medicine; Kobe Japan
| |
Collapse
|
25
|
Abstract
Dipeptidyl peptidase-4 (DPP4) is a widely expressed enzyme transducing actions through an anchored transmembrane molecule and a soluble circulating protein. Both membrane-associated and soluble DPP4 exert catalytic activity, cleaving proteins containing a position 2 alanine or proline. DPP4-mediated enzymatic cleavage alternatively inactivates peptides or generates new bioactive moieties that may exert competing or novel activities. The widespread use of selective DPP4 inhibitors for the treatment of type 2 diabetes has heightened interest in the molecular mechanisms through which DPP4 inhibitors exert their pleiotropic actions. Here we review the biology of DPP4 with a focus on: 1) identification of pharmacological vs physiological DPP4 substrates; and 2) elucidation of mechanisms of actions of DPP4 in studies employing genetic elimination or chemical reduction of DPP4 activity. We review data identifying the roles of key DPP4 substrates in transducing the glucoregulatory, anti-inflammatory, and cardiometabolic actions of DPP4 inhibitors in both preclinical and clinical studies. Finally, we highlight experimental pitfalls and technical challenges encountered in studies designed to understand the mechanisms of action and downstream targets activated by inhibition of DPP4.
Collapse
Affiliation(s)
- Erin E Mulvihill
- Department of Medicine, Lunenfeld-Tanenbaum Research Institute, Mt Sinai Hospital, University of Toronto, Toronto, ON M5G 1X5, Canada
| | | |
Collapse
|
26
|
Effects of dipeptidyl peptidase IV inhibitor sitagliptin on immunological parameters of lymphocytes in intact animals and animals with experimental autoimmune process. Bull Exp Biol Med 2014; 158:66-9. [PMID: 25408522 DOI: 10.1007/s10517-014-2693-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2013] [Indexed: 10/24/2022]
Abstract
The effects of dipeptidyl peptidase IV inhibitor sitagliptin on immunological parameters were studied in animals with experimental autoimmune process. The effects of the drug administered in preventive (before manifestation of autoimmune processes) and therapeutic (after manifestation of autoimmune process) modes were studied.
Collapse
|
27
|
Zhao Y, Yang L, Wang X, Zhou Z. The new insights from DPP-4 inhibitors: their potential immune modulatory function in autoimmune diabetes. Diabetes Metab Res Rev 2014; 30:646-53. [PMID: 24446278 DOI: 10.1002/dmrr.2530] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2012] [Revised: 12/26/2013] [Accepted: 01/04/2014] [Indexed: 12/12/2022]
Abstract
Dipeptidyl peptidase-4 (DPP-4) inhibitors are a new class of anti-diabetic agents that are widely used in clinical practice to improve glycemic control and protect β-cell function in patients with type 2 diabetes. DPP-4 is also known as lymphocyte cell surface protein CD26 and plays an important role in T-cell immunity. Autoimmune diabetes, a T-cell mediated organ-specific disease, is initiated by the imbalance between pathogenic and regulatory T-lymphocytes. DPP-4 inhibitors can suppress pathogenic effects of Th1 and Th17 cells and up-regulate Th2 cells and regulatory T cells, which play a critical role in ameliorating autoimmune diabetes. This provides a basis for the potential use of DPP-4 inhibitors in the treatment of autoimmune diabetes. Recent studies suggest that DPP-4 inhibitors improve β-cell function and attenuate autoimmunity in type 1 diabetic mouse models. However, there are few clinical studies on the treatment of autoimmune diabetes with DPP-4 inhibitors. Further studies are warranted to confirm the therapeutic effects of DPP-4 inhibitors on autoimmune diabetes in humans.
Collapse
Affiliation(s)
- Yunjuan Zhao
- Diabetes Center, Institute of Metabolism and Endocrinology, The Second Xiangya Hospital and Key Laboratory of Diabetes Immunology, Ministry of Education, Central South University, Changsha, China
| | | | | | | |
Collapse
|
28
|
Újhelyi J, Újhelyi Z, Szalai A, László JF, Cayasso M, Vecsernyés M, Pórszász R. Analgesic and anti-inflammatory effectiveness of sitagliptin and vildagliptin in mice. ACTA ACUST UNITED AC 2014; 194-195:23-9. [DOI: 10.1016/j.regpep.2014.09.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2014] [Revised: 09/05/2014] [Accepted: 09/11/2014] [Indexed: 01/14/2023]
|
29
|
Yang L, Yuan J, Zhou Z. Emerging roles of dipeptidyl peptidase 4 inhibitors: anti-inflammatory and immunomodulatory effect and its application in diabetes mellitus. Can J Diabetes 2014; 38:473-9. [PMID: 25034244 DOI: 10.1016/j.jcjd.2014.01.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2013] [Revised: 01/05/2014] [Accepted: 01/19/2014] [Indexed: 12/30/2022]
Abstract
Dipeptidyl peptidase 4 (DPP4) inhibitors have been widely used in the treatment of type 2 diabetes mellitus. It is well known that DPP4 inhibitors exert their antidiabetes effects mainly by inhibiting the enzymatic degradation of glucagon-like peptide-1 and glucose-dependent insulinotropic peptide. The anti-inflammatory effect of DPP4 inhibitors was proved by preclinical and clinical studies of type 2 diabetes and coronary artery disease. Preclinical data using DPP4 inhibitors-based therapies in studies of nonobese diabetic mice demonstrated additional effects, including immunomodulation, preserving beta-cell mass, promoting beta-cell regeneration and reversing newly diagnosed diabetes. Thus, these data show that DPP4 inhibitors may be effective for type 1 diabetes mellitus. However, their potential clinical benefits for type 1 diabetes remain to be evaluated. This paper will provide an overview of the progress of the anti-inflammatory and immunomodulatory effects of DPP4 inhibitors in treating both type 1 and type 2 diabetes.
Collapse
Affiliation(s)
- Lin Yang
- Diabetes Centre, Institute of Metabolism and Endocrinology, The Second Xiangya Hospital and Key Laboratory of Diabetes Immunology, Ministry of Education, Central South University, Changsha, China
| | - Jiao Yuan
- Diabetes Centre, Institute of Metabolism and Endocrinology, The Second Xiangya Hospital and Key Laboratory of Diabetes Immunology, Ministry of Education, Central South University, Changsha, China
| | - Zhiguang Zhou
- Diabetes Centre, Institute of Metabolism and Endocrinology, The Second Xiangya Hospital and Key Laboratory of Diabetes Immunology, Ministry of Education, Central South University, Changsha, China.
| |
Collapse
|
30
|
Tsuji T, Yoshida Y, Fujita T, Kohno T. Oral therapy for type 1 diabetes mellitus using a novel immunomodulator, FTY720 (fingolimod), in combination with sitagliptin, a dipeptidyl peptidase-4 inhibitor, examined in non-obese diabetic mice. J Diabetes Investig 2014; 3:441-8. [PMID: 24843604 PMCID: PMC4019244 DOI: 10.1111/j.2040-1124.2012.00218.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Aims/Introduction: The therapeutic effectiveness against type 1 diabetes mellitus of a novel immunomodulator, FTY720 (fingolimod), in combination with sitagliptin, a dipeptidyl peptidase‐4 inhibitor, was examined in the non‐obese diabetic (NOD) mouse model. Materials and Methods: Female NOD mice that had developed type 1 diabetes mellitus spontaneously were divided into four groups according to which therapy they received: (i) FTY720 (0.1 mg/kg, orally, six times a week) plus sitagliptin (1 mg/kg, orally, six times a week); (ii) FTY720 (0.1 mg/kg, orally, six times a week); (iii) sitagliptin (1 mg/kg, orally, six times a week); and (iv) the vehicle (water) alone. Therapeutic efficacy was evaluated in terms of survival rate, ratio of insulin‐positive β‐cells/total islet area, extent of islet inflammation (insulitis score) and blood‐glucose level. Results: The therapeutic administration of FTY720 plus sitagliptin significantly improved survival (83% at 70 days after onset, P < 0.05) compared with sitagliptin alone (17%) or vehicle alone (0%). The fasting‐blood glucose level, the ratio of insulin‐positive β‐cells/total islet area and the insulitis score in the surviving mice, which had been treated with FTY720 plus sitagliptin, were improved to the normal levels as in age‐matched NOD mice with normoglycemia. Conclusions: Combination therapy with FTY720 and sitagliptin is a promising candidate for type 1 diabetes mellitus treatment, and might allow the treatment of type 1 diabetes mellitus with only oral agents. (J Diabetes Invest, doi: 10.1111/j.2040‐1124.2012.00218.x, 2012)
Collapse
Affiliation(s)
- Takumi Tsuji
- Department of Pathological Biochemistry, Faculty of Pharmaceutical Sciences, Setsunan University, Osaka
| | - Yuya Yoshida
- Department of Pathological Biochemistry, Faculty of Pharmaceutical Sciences, Setsunan University, Osaka
| | - Tetsuro Fujita
- Research Institute for Production and Development, Kyoto, Japan
| | - Takeyuki Kohno
- Department of Pathological Biochemistry, Faculty of Pharmaceutical Sciences, Setsunan University, Osaka ; Research Institute for Production and Development, Kyoto, Japan
| |
Collapse
|
31
|
Combination of monoclonal antibodies and DPP-IV inhibitors in the treatment of type 1 diabetes: a plausible treatment modality? Med Hypotheses 2014; 83:1-5. [PMID: 24810674 DOI: 10.1016/j.mehy.2014.04.023] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2013] [Revised: 04/12/2014] [Accepted: 04/14/2014] [Indexed: 01/10/2023]
Abstract
Regulatory T cells (Tregs) are crucial for the maintenance of immunological tolerance. Type 1 diabetes (T1D) occurs when the immune-regulatory mechanism fails. In fact, T1D is reversed by islet transplantation but is associated with hostile effects of persistent immune suppression. T1D is believed to be dependent on the activation of type-1 helper T (Th1) cells. Immune tolerance is liable for the activation of the Th1 cells. The important role of Th1 cells in pathology of T1D entails the depletion of CD4(+) T cells, which initiated the use of monoclonal antibodies (mAbs) against CD4(+) T cells to interfere with induction of T1D. Prevention of autoimmunity is not only a step forward for the treatment of T1D, but could also restore the β-cell mass. Glucagon-like peptide (GLP)-1 stimulates β-cell proliferation and also has anti-apoptotic effects on them. However, the potential use of GLP-1 as a possible method to restore pancreatic β-cells is limited due to rapid degradation by dipeptidyl peptidase (DPP)-IV. We hypothesize that treatment with combination of CD4 mAbs and DPP-IV inhibitors could prevent/reverse T1D. CD4 mAbs have the ability to induce immune tolerance, thereby arresting further progression of T1D; DPP-IV inhibitors have the capability to regenerate the β-cell mass. Consequently, the combination of CD4 mAbs and DPP-IV inhibitor could avoid or at least minimize the constraints of intensive subcutaneous insulin therapy. We presume that if this hypothesis proves correct, it may become one of the plausible therapeutic options for T1D.
Collapse
|
32
|
Neuropeptide Y is produced by adipose tissue macrophages and regulates obesity-induced inflammation. PLoS One 2013; 8:e57929. [PMID: 23472120 PMCID: PMC3589443 DOI: 10.1371/journal.pone.0057929] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2012] [Accepted: 01/28/2013] [Indexed: 12/18/2022] Open
Abstract
Neuropeptide Y (NPY) is induced in peripheral tissues such as adipose tissue with obesity. The mechanism and function of NPY induction in fat are unclear. Given the evidence that NPY can modulate inflammation, we examined the hypothesis that NPY regulates the function of adipose tissue macrophages (ATMs) in response to dietary obesity in mice. NPY was induced by dietary obesity in the stromal vascular cells of visceral fat depots from mice. Surprisingly, the induction of Npy was limited to purified ATMs from obese mice. Significant basal production of NPY was observed in cultured bone marrow derived macrophage and dendritic cells (DCs) and was increased with LPS stimulation. In vitro, addition of NPY to myeloid cells had minimal effects on their activation profiles. NPY receptor inhibition promoted DC maturation and the production of IL-6 and TNFα suggesting an anti-inflammatory function for NPY signaling in DCs. Consistent with this, NPY injection into lean mice decreased the quantity of M1-like CD11c+ ATMs and suppressed Ly6chi monocytes. BM chimeras generated from Npy−/− donors demonstrated that hematopoietic NPY contributes to the obesity-induced induction of Npy in fat. In addition, loss of Npy expression from hematopoietic cells led to an increase in CD11c+ ATMs in visceral fat with high fat diet feeding. Overall, our studies suggest that NPY is produced by a range of myeloid cells and that obesity activates the production of NPY in adipose tissue macrophages with autocrine and paracrine effects.
Collapse
|
33
|
Zhong J, Rao X, Rajagopalan S. An emerging role of dipeptidyl peptidase 4 (DPP4) beyond glucose control: potential implications in cardiovascular disease. Atherosclerosis 2013; 226:305-314. [PMID: 23083681 DOI: 10.1016/j.atherosclerosis.2012.09.012] [Citation(s) in RCA: 171] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2012] [Revised: 08/22/2012] [Accepted: 09/14/2012] [Indexed: 02/09/2023]
Abstract
The introduction of dipeptidyl peptidase 4 (DPP4) inhibitors for the treatment of Type 2 diabetes acknowledges the fundamental importance of incretin hormones in the regulation of glycemia. Small molecule inhibitors of DPP4 exert their effects via inhibition of enzymatic degradation of glucagon-like peptide-1 (GLP-1) and glucose-dependent insulinotropic peptide (GIP). The widespread expression of DPP4 in tissues such as the vasculature and immune cells suggests that this protein may play a role in cardiovascular function. DPP4 is known to exert its effects via both enzymatic and non-enzymatic mechanisms. A soluble form of DPP4 lacking the cytoplasmic and transmembrane domain has also been recently recognized. Besides enzymatic inactivation of incretins, DPP4 also mediates degradation of many chemokines and neuropeptides. The non-enzymatic function of DPP4 plays a critical role in providing co-stimulatory signals to T cells via adenosine deaminase (ADA). DPP4 may also regulate inflammatory responses in innate immune cells such as monocytes and dendritic cells. The multiplicity of functions and targets suggests that DPP4 may play a distinct role aside from its effects on the incretin axis. Indeed recent studies in experimental models of atherosclerosis provide evidence for a robust effect for these drugs in attenuating inflammation and plaque development. Several prospective randomized controlled clinical trials in humans with established atherosclerosis are testing the effects of DPP4 inhibition on hard cardiovascular events.
Collapse
Affiliation(s)
- Jixin Zhong
- Davis Heart and Lung Research Institute and Division of Cardiovascular Medicine, The Ohio State University, Columbus, OH, USA
| | | | | |
Collapse
|
34
|
Dipeptidyl peptidase IV inhibitor improves the salivary gland histology of spontaneously diabetic mice. Arch Oral Biol 2012; 58:755-61. [PMID: 23107049 DOI: 10.1016/j.archoralbio.2012.09.015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2012] [Revised: 09/22/2012] [Accepted: 09/25/2012] [Indexed: 02/07/2023]
Abstract
OBJECTIVES The incretin-based therapy might be effective in patients possessing certain levels of preserved pancreatic beta-cells. However, doubts still exist regarding the efficacy of this atment in the recovery of tissues damaged by type 1 diabetes. Thus, the objective of this study was to evaluate the treatment with MK0431 in salivary glands of spontaneously diabetic mice, focusing mainly on the possible therapeutic and hypoglycaemic effects of this dipeptidyl peptidase IV inhibitor in the recovery of these salivary tissues. METHODS AND RESULTS Twenty mice were divided into two groups of 10 animals each: group I (NOD diabetic/untreated) and group II (NOD diabetic MK0431/treated). The group II was treated during 4 weeks with MK0431 mixed in the food. The group I was maintained in the same way without receiving, however, any treatment. Glucose levels were monitored during treatment and salivary glands samples were collected at the end of treatment for the histological examination under both transmitted and polarized light microscopy. High glucose levels were observed in untreated animals, while in animals with treatment, reduction of these levels was observed. Tissue restructuring was also observed in animals submitted to therapy with MK0431, mainly in relation to the attempt to extracellular matrix reorganization. CONCLUSIONS According to results, the treatment with this dipeptidyl peptidase IV inhibitor contributed to the general homeostasis of the organism and to the reestablishment of both epithelial and stromal compartments which were damaged by the hyperglycaemic condition, demonstrating that the incretin-based therapy may be an important complementary treatment for the type 1 diabetic condition.
Collapse
|
35
|
Jelsing J, Vrang N, van Witteloostuijn SB, Mark M, Klein T. The DPP4 inhibitor linagliptin delays the onset of diabetes and preserves β-cell mass in non-obese diabetic mice. J Endocrinol 2012; 214:381-7. [PMID: 22761275 DOI: 10.1530/joe-11-0479] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Recent data indicate that dipeptidyl peptidase 4 (DPP4) inhibitors have anti-inflammatory and β-cell-sparing effects in animal models of type 1 diabetes. To evaluate the effects of the DPP4 inhibitor linagliptin on β-cell mass and insulinitis, we examined the progression of diabetes (blood glucose >11 mmol/l) in non-obese diabetic (NOD) mice with terminal stereological assessment of cellular pancreatic changes. Female NOD mice were fed a normal chow diet or a diet containing linagliptin 0.083 g/kg chow for 60 days. At study end, the incidence of diabetes in linagliptin-treated mice was reduced by almost 50% compared with vehicle (10 of 31 mice vs 18 of 30 mice, P=0.021). The total islet mass and total β-cell mass, identified by insulin immunoreactivity, were greater in non-diabetic linagliptin-treated mice compared with non-diabetic vehicle-treated mice (P<0.01 for both) but were greatly reduced in diabetic mice irrespective of treatment. No changes were seen in the α, δ and γ endocrine cell pool. Moreover, the total mass of lymphocyte insulinitis was significantly reduced in linagliptin-treated mice compared with vehicle. The data indicate that linagliptin treatment delays the onset of diabetes in NOD mice by protecting β-cell mass.
Collapse
|
36
|
Vittone F, Liberman A, Vasic D, Ostertag R, Esser M, Walcher D, Ludwig A, Marx N, Burgmaier M. Sitagliptin reduces plaque macrophage content and stabilises arteriosclerotic lesions in Apoe (-/-) mice. Diabetologia 2012; 55:2267-75. [PMID: 22648661 DOI: 10.1007/s00125-012-2582-5] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2011] [Accepted: 04/16/2012] [Indexed: 02/04/2023]
Abstract
AIMS/HYPOTHESIS Inhibitors of dipeptidyl peptidase-IV (DPP-IV), such as sitagliptin, increase glucagon-like peptide-1 (GLP-1) concentrations and are current treatment options for patients with type 2 diabetes mellitus. As patients with diabetes exhibit a high risk of developing severe atherosclerosis, we investigated the effect of sitagliptin on atherogenesis in Apoe (-/-) mice. METHODS Apoe (-/-) mice were fed a high-fat diet and treated with either sitagliptin or placebo for 12 weeks. Plaque size and plaque composition were analysed using Oil Red O staining and immunohistochemistry. Furthermore, in vitro experiments with the modified Boyden chamber and with gelatine zymography were performed to analyse the effects of GLP-1 on isolated human monocyte migration and metalloproteinase-9 (MMP-9) release. RESULTS Treatment of Apoe (-/-) mice with sitagliptin significantly reduced plaque macrophage infiltration (the aortic root and aortic arch both showing a 67% decrease; p < 0.05) and plaque MMP-9 levels (aortic root showing a 69% and aortic arch a 58% reduction; both p < 0.01) compared with controls. Moreover, sitagliptin significantly increased plaque collagen content more than twofold (aortic root showing an increase of 58% and aortic arch an increase of 73%; both p < 0.05) compared with controls but did not change overall lesion size (8.1 ± 3.5% vs 5.1 ± 2.5% for sitagliptin vs controls; p=NS). In vitro, pretreatment of isolated human monocytes with GLP-1 significantly decreased cell migration induced by both monocyte chemotactic protein-1 and by the protein known as regulated on activation, normal T cell expressed and secreted (RANTES) in a concentration-dependent manner. Furthermore, GLP-1 significantly decreased MMP-9 release from isolated human monocyte-derived macrophages. CONCLUSIONS/INTERPRETATION Sitagliptin reduces plaque inflammation and increases plaque stability, potentially by GLP-1-mediated inhibition of chemokine-induced monocyte migration and macrophage MMP-9 release. The effects observed may provide potential mechanisms for how DPP-IV inhibitors could modulate vascular disease in high-risk patients with type 2 diabetes mellitus.
Collapse
Affiliation(s)
- F Vittone
- Department of Internal Medicine II - Cardiology, University of Ulm, Ulm, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Method comparison of dipeptidyl peptidase IV activity assays and their application in biological samples containing reversible inhibitors. Clin Chim Acta 2012; 413:456-62. [DOI: 10.1016/j.cca.2011.10.031] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2011] [Revised: 10/26/2011] [Accepted: 10/26/2011] [Indexed: 01/14/2023]
|
38
|
Shah Z, Kampfrath T, Deiuliis JA, Zhong J, Pineda C, Ying Z, Xu X, Lu B, Moffatt-Bruce S, Durairaj R, Sun Q, Mihai G, Maiseyeu A, Rajagopalan S. Long-term dipeptidyl-peptidase 4 inhibition reduces atherosclerosis and inflammation via effects on monocyte recruitment and chemotaxis. Circulation 2011; 124:2338-2349. [PMID: 22007077 PMCID: PMC4224594 DOI: 10.1161/circulationaha.111.041418] [Citation(s) in RCA: 294] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2010] [Accepted: 08/24/2011] [Indexed: 12/12/2022]
Abstract
BACKGROUND Dipeptidyl-peptidase 4 (DPP-4) inhibitors are increasingly used to accomplish glycemic targets in patients with type II diabetes mellitus. Because DPP-4 is expressed in inflammatory cells, we hypothesized that its inhibition will exert favorable effects in atherosclerosis. METHODS AND RESULTS Male LDLR(-/-) mice (6 weeks) were fed a high-fat diet or normal chow diet for 4 weeks and then randomized to vehicle or alogliptin, a high-affinity DPP-4 inhibitor (40 mg · kg(-1) · d(-1)), for 12 weeks. Metabolic parameters, blood pressure, vascular function, atherosclerosis burden, and indexes of inflammation were obtained in target tissues, including the vasculature, adipose, and bone marrow, with assessment of global and cell-specific inflammatory pathways. In vitro and in vivo assays of DPP-4 inhibition (DPP-4i) on monocyte activation/migration were conducted in both human and murine cells and in a short-term ApoE(-/-) mouse model. DPP-4i improved markers of insulin resistance and reduced blood pressure. DPP-4i reduced visceral adipose tissue macrophage content (adipose tissue macrophages; CD11b(+), CD11c(+), Ly6C(hi)) concomitant with upregulation of CD163. DPP-4 was highly expressed in bone marrow-derived CD11b(+) cells, with DPP-4i downregulating proinflammatory genes in these cells. DPP-4i decreased aortic plaque with a striking reduction in plaque macrophages. DPP-4i prevented monocyte migration and actin polymerization in in vitro assays via Rac-dependent mechanisms and prevented in vivo migration of labeled monocytes to the aorta in response to exogenous tumor necrosis factor-α and DPP-4. CONCLUSION DPP-4i exerts antiatherosclerotic effects and reduces inflammation via inhibition of monocyte activation/chemotaxis. These findings have important implications for the use of this class of drugs in atherosclerosis.
Collapse
Affiliation(s)
- Zubair Shah
- Davis Heart & Lung Research Institute, 473 W 12th Avenue, Columbus, OH 43210, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Suen CS, Burn P. The potential of incretin-based therapies in type 1 diabetes. Drug Discov Today 2011; 17:89-95. [PMID: 21920456 DOI: 10.1016/j.drudis.2011.08.017] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2011] [Revised: 08/25/2011] [Accepted: 08/30/2011] [Indexed: 02/07/2023]
Abstract
Finding a cure for type 1 diabetes (T1D) has been elusive. Incretin-based therapies, since their approval, have demonstrated their clinical utilities in type 2 diabetes (T2D). Yet, their potential clinical benefits in T1D remain to be appraised. GLP-1, in addition to its insulinotropic action in alleviating hyperglycemia, possesses beneficial effects in protecting progressive impairment of pancreatic β-cell function, preservation of β-cell mass and suppression of glucagon secretion, gastric emptying and appetite. Preclinical data using incretin-based therapies in diabetic NOD mice demonstrated additional effects including immuno-modulation, anti-inflammation and β-cell regeneration. Thus, data accumulated hold the promise that incretin-based therapies may be effective in delaying the new-onset, halting the further progression, or reversing T1D in subjects with newly diagnosed or long-standing, established disease.
Collapse
Affiliation(s)
- Chen S Suen
- The Sanford Project, Sanford Research, Sanford Health and Department of Pediatrics, Sanford School of Medicine of The University of South Dakota, 2301 East 60th Street North, Sioux Falls, SD 57104, USA
| | | |
Collapse
|
40
|
Abstract
CD26 is a 110-kDa surface glycoprotein with intrinsic dipeptidyl peptidase IV (DPPIV) activity that is expressed on various cell types and has many biological functions. An important aspect of CD26 biology is its peptidase activity and its functional and physical association with molecules with key roles in human immunological programs. CD26 role in immune regulation has been extensively characterized, with recent findings elucidating its link age with signaling pathways and structures involved in T cell activation a well as antigen-presenting cell-T cell interaction, being a marker of diseas behavior clinically as well as playing an important role in autoimmune pathogenesis and development. Through the use of various experimental approaches and agents to influence CD26/DPPIV expression and activity, such as anti-CD26 antibodies, CD26/DPPIV chemical inhibitors, siRNAs to inhibit CD26 expression, overexpressing CD26 transfectants, soluble CD26 molecules and proteomic approach, we have shown that CD26 interacts with structures with essential cellular functions in T cell responses. We will review emerging data that suggest CD26 may be an appropriate therapeutic target for the treatment of selected immune disorders.
Collapse
Affiliation(s)
- Kei Ohnuma
- Division of Rheumatology and Allergy, Research Hospital, Institute of Medical Science, University of Tokyo, Shirokanedai, Minato-ku, Tokyo, Japan
| | | | | | | |
Collapse
|
41
|
Lee JG, Kang DG, Yu JR, Kim Y, Kim J, Koh G, Lee D. Changes in Adenosine Deaminase Activity in Patients with Type 2 Diabetes Mellitus and Effect of DPP-4 Inhibitor Treatment on ADA Activity. Diabetes Metab J 2011; 35:149-58. [PMID: 21738897 PMCID: PMC3122899 DOI: 10.4093/dmj.2011.35.2.149] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2010] [Accepted: 11/08/2010] [Indexed: 02/03/2023] Open
Abstract
BACKGROUND Dipeptidyl peptidase 4 (DPP-4, also known as CD26) binds with adenosine deaminase (ADA) to activate T lymphocytes. Here, we investigated whether ADA activity is specifically affected by treatment with DPP-4 inhibitor (DPP4I) compared with other anti-diabetic agents. METHODS Fasting ADA activity, in addition to various metabolic and biochemical parameters, were measured in 262 type 2 diabetes mellitus (T2DM) patients taking various anti-diabetic agents and in 46 non-diabetic control subjects. RESULTS ADA activity was increased in T2DM patients compared with that in non-diabetic control subjects (mean±standard error, 23.1±0.6 U/L vs. 18.6±0.8 U/L; P<0.05). ADA activity was correlated with fasting plasma glucose (r=0.258, P<0.05), HbA1c (r=0.208, P<0.05), aspartate aminotransferase (r=0.325, P<0.05), and alanine aminotransferase (r=0.248, P<0.05). Compared with the well-controlled T2DM patients (HbA1c<7%), the poorly controlled group (HbA1c>9%) showed significantly increased ADA activity (21.1±0.8 U/L vs. 25.4±1.6 U/L; P<0.05). The effect of DPP4I on ADA activity in T2DM patients did not differ from those of other oral anti-diabetic agents or insulin. T2DM patients on metformin monotherapy showed a lower ADA activity (20.9±1.0 U/L vs. 28.1±2.8 U/L; P<0.05) compared with that of those on sulfonylurea monotherapy. CONCLUSION Our results show that ADA activity is increased in T2DM patients compared to that in non-diabetic patients, is positively correlated with blood glucose level, and that DPP4I has no additional specific effect on ADA activity, except for a glycemic control- or HbA1c-dependent effect.
Collapse
Affiliation(s)
- Jae-Geun Lee
- Department of Internal Medicine, Jeju National University Hospital, Jeju National University School of Medicine, Jeju, Korea
| | - Dong Gu Kang
- Department of Internal Medicine, Jeju National University Hospital, Jeju National University School of Medicine, Jeju, Korea
| | - Jung Re Yu
- Department of Internal Medicine, Jeju National University Hospital, Jeju National University School of Medicine, Jeju, Korea
| | - Youngree Kim
- Department of Laboratory Medicine, Jeju National University Hospital, Jeju National University School of Medicine, Jeju, Korea
| | - Jinsoek Kim
- Department of Internal Medicine, Jeju National University Hospital, Jeju National University School of Medicine, Jeju, Korea
| | - Gwanpyo Koh
- Department of Internal Medicine, Jeju National University Hospital, Jeju National University School of Medicine, Jeju, Korea
| | - Daeho Lee
- Department of Internal Medicine, Jeju National University Hospital, Jeju National University School of Medicine, Jeju, Korea
| |
Collapse
|
42
|
Suarez-Pinzon WL, Rabinovitch A. Combination therapy with a dipeptidyl peptidase-4 inhibitor and a proton pump inhibitor induces β-cell neogenesis from adult human pancreatic duct cells implanted in immunodeficient mice. Cell Transplant 2011; 20:1343-9. [PMID: 21396168 DOI: 10.3727/096368910x557263] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Combination therapy with a dipeptidyl peptidase-4 inhibitor (DPP-4i) and a proton pump inhibitor (PPI) raises endogenous levels of GLP-1 and gastrin, respectively, and restores pancreatic β-cell mass and normoglycemia in nonobese diabetic (NOD) mice with autoimmune diabetes. The aim of this study was to determine whether a DPP-4i and PPI combination could increase β-cell mass in the adult human pancreas. Pancreatic cells from adult human pancreas donors were implanted in NOD-severe combined immunodeficient (NOD-scid) mice and the mice were treated with a DPP-4i and a PPI for 16 weeks. Human grafts were examined for insulin content and insulin-stained cells. Graft β-cell function was assessed by intravenous glucose tolerance tests (IVGTT) and by glucose control in human cell-engrafted mice treated with streptozotocin (STZ) to delete mouse pancreatic β-cells. Plasma GLP-1 and gastrin levels were raised to two- to threefold in DPP-4i- and PPI-treated mice. Insulin content and insulin-stained cells in human pancreatic cell grafts were increased 9- to 13-fold in DPP-4i and PPI-treated mice and insulin-stained cells were colocalized with pancreatic exocrine duct cells. Plasma human C-peptide responses to IVGTT were significantly higher and STZ-induced hyperglycemia was more completely prevented in DPP-4i- and PPI-treated mice with grafts than in vehicle-treated mice with grafts. In conclusion, DPP-4i and PPI combination therapy raises endogenous levels of GLP-1 and gastrin and greatly expands the functional β-cell mass in adult human pancreatic cells implanted in immunodeficient mice, largely from pancreatic duct cells. This suggests that a DPP-4i and PPI combination treatment may provide a pharmacologic therapy to correct the β-cell deficit in type 1 diabetes.
Collapse
|
43
|
Dobrian AD, Ma Q, Lindsay JW, Leone KA, Ma K, Coben J, Galkina EV, Nadler JL. Dipeptidyl peptidase IV inhibitor sitagliptin reduces local inflammation in adipose tissue and in pancreatic islets of obese mice. Am J Physiol Endocrinol Metab 2011; 300:E410-21. [PMID: 21081706 PMCID: PMC3043624 DOI: 10.1152/ajpendo.00463.2010] [Citation(s) in RCA: 128] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Adipose tissue inflammation and reduced pancreatic β-cell function are key issues in the development of cardiovascular disease and progressive metabolic dysfunction in type 2 diabetes mellitus. The aim of this study was to determine the effect of the DPP IV inhibitor sitagliptin on adipose tissue and pancreatic islet inflammation in a diet-induced obesity model. C57Bl/6J mice were placed on a high-fat (60% kcal fat) diet for 12 wk, with or without sitagliptin (4 g/kg) as a food admix. Sitagliptin significantly reduced fasting blood glucose by 21% as well as insulin by ∼25%. Sitagliptin treatment reduced body weight without changes in overall body mass index or in the epididymal and retroperitoneal fat mass. However, sitagliptin treatment led to triple the number of small adipocytes despite reducing the number of the very large adipocytes. Sitagliptin significantly reduced inflammation in the adipose tissue and pancreatic islet. Macrophage infiltration in adipose tissue evaluated by immunostaining for Mac2 was reduced by sitagliptin (P < 0.01), as was the percentage of CD11b+/F4/80+ cells in the stromal vascular fraction (P < 0.02). Sitagliptin also reduced adipocyte mRNA expression of inflammatory genes, including IL-6, TNFα, IL-12(p35), and IL-12(p40), 2.5- to fivefold as well as 12-lipoxygenase protein expression. Pancreatic islets were isolated from animals after treatments. Sitagliptin significantly reduced mRNA expression of the following inflammatory cytokines: MCP-1 (3.3-fold), IL-6 (2-fold), IL-12(p40) (2.2-fold), IL-12(p35) (5-fold, P < 0.01), and IP-10 (2-fold). Collectively, the results indicate that sitagliptin has anti-inflammatory effects in adipose tissue and in pancreatic islets that accompany the insulinotropic effect.
Collapse
Affiliation(s)
- A D Dobrian
- Dept. of Physiological Sciences, Eastern Virginia Medical School, Norfolk, USA.
| | | | | | | | | | | | | | | |
Collapse
|
44
|
McIntosh CHS, Widenmaier S, Kim SJ. Pleiotropic actions of the incretin hormones. VITAMINS AND HORMONES 2010; 84:21-79. [PMID: 21094896 DOI: 10.1016/b978-0-12-381517-0.00002-3] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The insulin secretory response to a meal results largely from glucose stimulation of the pancreatic islets and both direct and indirect (autonomic) glucose-dependent stimulation by incretin hormones released from the gastrointestinal tract. Two incretins, Glucose-dependent insulinotropic polypeptide (GIP) and glucagon-like peptide-1 (GLP-1), have so far been identified. Localization of the cognate G protein-coupled receptors for GIP and GLP-1 revealed that they are present in numerous tissues in addition to the endocrine pancreas, including the gastrointestinal, cardiovascular, central nervous and autonomic nervous systems (ANSs), adipose tissue, and bone. At these sites, the incretin hormones exert a range of pleiotropic effects, many of which contribute to the integration of processes involved in the regulation of food intake, and nutrient and mineral processing and storage. From detailed studies at the cellular and molecular level, it is also evident that both incretin hormones act via multiple signal transduction pathways that regulate both acute and long-term cell function. Here, we provide an overview of current knowledge relating to the physiological roles of GIP and GLP-1, with specific emphasis on their modes of action on islet hormone secretion, β-cell proliferation and survival, central and autonomic neuronal function, gastrointestinal motility, and glucose and lipid metabolism. However, it is emphasized that despite intensive research on the various body systems, in many cases there is uncertainty as to the pathways by which the incretins mediate their pleiotropic effects and only a rudimentary understanding of the underlying cellular mechanisms involved, and these are challenges for the future.
Collapse
Affiliation(s)
- Christopher H S McIntosh
- Department of Cellular & Physiological Sciences and the Diabetes Research Group, Life Sciences Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | | | | |
Collapse
|