1
|
El-Kassas S, Abo-Al-Ela HG, Abdulraouf E, Helal MA, Sakr AM, Abdo SE. Detection of two SNPs of the LIPE gene in Holstein-Friesian cows with divergent milk production. J DAIRY RES 2023; 90:244-251. [PMID: 37615121 DOI: 10.1017/s002202992300050x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/25/2023]
Abstract
The LIPE gene (lipase E, hormone-sensitive type), also known as hormone-sensitive lipase, acts as a primary regulator of lipid metabolism during lactation in cows. We studied a total of two hundred Holstein-Friesian cows and performed sequencing analysis that revealed two synonymous nucleotide changes within the LIPE gene: a transition change, c.276 T > C in exon 2 (g.50631651 T > C; position 351 of GenBank: ON638900) and a transversion change, c.219C > A in exon 6 (g.50635369C > A; position 1070 of GenBank: ON638901). The observed genotypes were TC and CC for the c.276 T > C SNP and CC and CA for the c.219C > A SNP. Notably, the heterozygous TC genotype of the T351C SNP exhibited a significant association with high milk yield. Furthermore, the T351C SNP displayed significant associations with various milk parameters, including temperature, freezing point, density and the percentages of fat, protein, lactose, solids and solids-not-fat, with the homozygous CC genotype showing higher values. The c.219C > A SNP also demonstrated a significant association with milk composition, with heterozygous genotypes (CA) exhibiting higher percentages of fat, protein, and lactose compared to homozygous genotypes (CC). This effect was consistent among both high and low milk producers for fat and lactose percentages, while high milk producers exhibited a higher protein percentage than low milk producers. These findings highlight the importance of considering the detected SNPs in marker-assisted selection and breeding programs for the identification of high milk-producing Holstein-Friesian cows and potentially other breeds. Moreover, this study strongly supports the fundamental role of the LIPE gene in milk production and composition in lactating animals.
Collapse
Affiliation(s)
- Seham El-Kassas
- Animal, Poultry and Fish Breeding and Production, Department of Animal Wealth Development, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafrelsheikh, 33516, Egypt
| | - Haitham G Abo-Al-Ela
- Genetics and Biotechnology, Department of Aquaculture, Faculty of Fish Resources, Suez University, Suez, 43518, Egypt
| | - Esraa Abdulraouf
- Department of Animal Wealth Development, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafrelsheikh, 33516, Egypt
| | - Mohamed Atef Helal
- Department of Animal Wealth Development, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafrelsheikh, 33516, Egypt
| | - A M Sakr
- Animal Production Research Institute, Agricultural Research Center, Dokki, Giza, Egypt
| | - Safaa E Abdo
- Genetics and Genetic Engineering, Department of Animal Wealth Development, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafrelsheikh, 33516, Egypt
| |
Collapse
|
2
|
Abstract
Caveolae are specialised and dynamic plasma membrane subdomains, involved in many cellular functions including endocytosis, signal transduction, mechanosensing and lipid storage, trafficking, and metabolism. Two protein families are indispensable for caveola formation and function, namely caveolins and cavins. Mutations of genes encoding these caveolar proteins cause serious pathological conditions such as cardiomyopathies, skeletal muscle diseases, and lipodystrophies. Deregulation of caveola-forming protein expression is associated with many types of cancers including prostate cancer. The distinct function of secretion of the prostatic fluid, and the unique metabolic phenotype of prostate cells relying on lipid metabolism as a main bioenergetic pathway further suggest a significant role of caveolae and caveolar proteins in prostate malignancy. Accumulating in vitro, in vivo, and clinical evidence showed the association of caveolin-1 with prostate cancer grade, stage, metastasis, and drug resistance. In contrast, cavin-1 was found to exhibit tumour suppressive roles. Studies on prostate cancer were the first to show the distinct function of the caveolar proteins depending on their localisation within the caveolar compartment or as cytoplasmic or secreted proteins. In this review, we summarise the roles of caveola-forming proteins in prostate cancer and the potential of exploiting them as therapeutic targets or biological markers.
Collapse
|
3
|
Lessons from cavin-1 deficiency. Biochem Soc Trans 2020; 48:147-154. [PMID: 31922193 DOI: 10.1042/bst20190380] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 12/12/2019] [Accepted: 12/18/2019] [Indexed: 01/19/2023]
Abstract
Caveolae have been implicated in a wide range of critical physiological functions. In the past decade, the dominant role of cavin-1 in caveolae formation has been established, and it has been recognized as another master regulator for caveolae biology. Human patients with cavin-1 mutations develop lipodystrophy and muscular dystrophy and have some major pathological dysfunctions in fat tissue, skeleton muscle, heart, lung and other organs. Cavin-1 deficiency animal models consistently show similar phenotypes. However, the underlying molecular mechanisms remain to be elucidated. Recent studies have suggested many possible pathways, including mechanosensing, stress response, signal transduction, exosome secretion, and potential functions in the nucleus. Many excellent and comprehensive review articles already exist on the topics of caveolae structure formation, caveolins, and their pathophysiological functions. We will focus on recent studies using cavin-1 deficiency models, to summarize the pathophysiological changes in adipose, muscle, and other organs, followed by a summary of mechanistic studies about the roles of cavin-1, which includes caveolae formation, ribosomal RNA transcription, mechanical sensing, stress response, and exosome secretion. Further studies may help to elucidate the exact underlying molecular mechanism to explain the pathological changes observed in cavin-1 deficient human patients and animal models, so potential new therapeutic strategies can be developed.
Collapse
|
4
|
Tang X, Li J, Zhao WG, Sun H, Guo Z, Jing L, She Z, Yuan T, Liu SN, Liu Q, Fu Y, Sun W. Comprehensive map and functional annotation of the mouse white adipose tissue proteome. PeerJ 2019; 7:e7352. [PMID: 31380149 PMCID: PMC6661141 DOI: 10.7717/peerj.7352] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2019] [Accepted: 06/25/2019] [Indexed: 12/26/2022] Open
Abstract
White adipose tissue (WAT) plays a significant role in energy metabolism and the obesity epidemic. In this study, we sought to (1) profile the mouse WAT proteome with advanced 2DLC/MS/MS approach, (2) provide insight into WAT function based on protein functional annotation, and (3) predict potentially secreted proteins. A label-free 2DLC/MS/MS proteomic approach was used to identify the WAT proteome from female mouse WAT. A total of 6,039 proteins in WAT were identified, among which 5,160 were quantified (spanning a magnitude of 106) using an intensity-based absolute quantification algorithm, and 3,117 proteins were reported by proteomics technology for the first time in WAT. To comprehensively analyze the function of WAT, the proteins were divided into three quantiles based on abundance and we found that proteins of different abundance performed different functions. High-abundance proteins (the top 90%, 1,219 proteins) were involved in energy metabolism; middle-abundance proteins (90–99%, 2,273 proteins) were involved in the regulation of protein synthesis; and low-abundance proteins (99–100%, 1,668 proteins) were associated with lipid metabolism and WAT beiging. Furthermore, 800 proteins were predicted by SignalP4.0 to have signal peptides, 265 proteins had never been reported, and five have been reported as adipokines. The above results provide a large dataset of the normal mouse WAT proteome, which might be useful for WAT function research.
Collapse
Affiliation(s)
- Xiaoyue Tang
- Core Facility of Instrument, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences/School of Basic Medicine, Peking Union Medical College, Beijing, China
| | - Juan Li
- Department of Endocrinology, Key Laboratory of Endocrinology of Ministry of Health, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Wei-Gang Zhao
- Department of Endocrinology, Key Laboratory of Endocrinology of Ministry of Health, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Haidan Sun
- Core Facility of Instrument, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences/School of Basic Medicine, Peking Union Medical College, Beijing, China
| | - Zhengguang Guo
- Core Facility of Instrument, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences/School of Basic Medicine, Peking Union Medical College, Beijing, China
| | - Li Jing
- Core Facility of Instrument, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences/School of Basic Medicine, Peking Union Medical College, Beijing, China
| | - Zhufang She
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Diabetes Research Center of Chinese Academy of Medical Sciences, Beijing, China
| | - Tao Yuan
- Department of Endocrinology, Key Laboratory of Endocrinology of Ministry of Health, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Shuai-Nan Liu
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Diabetes Research Center of Chinese Academy of Medical Sciences, Beijing, China
| | - Quan Liu
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Diabetes Research Center of Chinese Academy of Medical Sciences, Beijing, China
| | - Yong Fu
- Department of Endocrinology, Key Laboratory of Endocrinology of Ministry of Health, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Wei Sun
- Core Facility of Instrument, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences/School of Basic Medicine, Peking Union Medical College, Beijing, China
| |
Collapse
|
5
|
Abstract
The plasma membrane of eukaryotic cells is not a simple sheet of lipids and proteins but is differentiated into subdomains with crucial functions. Caveolae, small pits in the plasma membrane, are the most abundant surface subdomains of many mammalian cells. The cellular functions of caveolae have long remained obscure, but a new molecular understanding of caveola formation has led to insights into their workings. Caveolae are formed by the coordinated action of a number of lipid-interacting proteins to produce a microdomain with a specific structure and lipid composition. Caveolae can bud from the plasma membrane to form an endocytic vesicle or can flatten into the membrane to help cells withstand mechanical stress. The role of caveolae as mechanoprotective and signal transduction elements is reviewed in the context of disease conditions associated with caveola dysfunction.
Collapse
Affiliation(s)
- Robert G. Parton
- Institute for Molecular Bioscience and Centre for Microscopy and Microanalysis, University of Queensland, Brisbane, Queensland 4060, Australia
| |
Collapse
|
6
|
Ni Y, Hao J, Hou X, Du W, Yu Y, Chen T, Wei Z, Li Y, Zhu F, Wang S, Liang R, Li D, Lu Y, Liao K, Li B, Shi G. Dephosphorylated Polymerase I and Transcript Release Factor Prevents Allergic Asthma Exacerbations by Limiting IL-33 Release. Front Immunol 2018; 9:1422. [PMID: 29977243 PMCID: PMC6021487 DOI: 10.3389/fimmu.2018.01422] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Accepted: 06/07/2018] [Indexed: 01/12/2023] Open
Abstract
Background Asthma is a chronic inflammatory disease characterized by airway inflammation and airway hyperresponsiveness (AHR). IL-33 is considered as one of the most critical molecules in asthma pathogenesis. IL-33 is stored in nucleus and passively released during necrosis. But little is known about whether living cells can release IL-33 and how this process is regulated. Objective We sought to investigate the role of polymerase I and transcript release factor (PTRF) in IL-33 release and asthma pathogenesis. Methods Ovalbumin (OVA)-induced asthma model in PTRF+/- mice were employed to dissect the role of PTRF in vivo. Then, further in vitro experiments were carried out to unwind the potential mechanism involved. Results In OVA asthma model with challenge phase, PTRF+/- mice showed a greater airway hyper-reaction, with an intense airway inflammation and more eosinophils in bronchoalveolar lavage fluid (BALF). Consistently, more acute type 2 immune response in lung and a higher IL-33 level in BALF were found in PTRF+/- mice. In OVA asthma model without challenge phase, airway inflammation and local type 2 immune responses were comparable between control mice and PTRF+/- mice. Knockdown of PTRF in 16HBE led to a significantly increased level of IL-33 in cell culture supernatants in response to LPS or HDM. Immunoprecipitation assay clarified Y158 as the major phosphorylation site of PTRF, which was also critical for the interaction of IL-33 and PTRF. Overexpression of dephosphorylated mutant Y158F of PTRF sequestered IL-33 in nucleus together with PTRF and limited IL-33 extracellular secretion. Conclusion Partial loss of PTRF led to a greater AHR and potent type 2 immune responses during challenge phase of asthma model, without influencing the sensitization phase. PTRF phosphorylation status determined subcellular location of PTRF and, therefore, regulated IL-33 release.
Collapse
Affiliation(s)
- Yingmeng Ni
- Department of Pulmonary and Critical Care Medicine, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Institute of Respiratory Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jimin Hao
- Department of Pulmonary and Critical Care Medicine, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Institute of Respiratory Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaoxia Hou
- Department of Pulmonary and Critical Care Medicine, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Institute of Respiratory Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wei Du
- Department of Pulmonary and Critical Care Medicine, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Institute of Respiratory Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Youchao Yu
- Department of Pulmonary and Critical Care Medicine, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Institute of Respiratory Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Tiantian Chen
- Department of Pulmonary and Critical Care Medicine, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Institute of Respiratory Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhuang Wei
- Laboratory of Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Yangyang Li
- Department of Immunology and Microbiology, Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Fuxiang Zhu
- Department of Immunology and Microbiology, Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Shuaiwei Wang
- Department of Immunology and Microbiology, Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Rui Liang
- Department of Immunology and Microbiology, Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Dan Li
- Department of Immunology and Microbiology, Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yue Lu
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Kan Liao
- Laboratory of Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Bin Li
- Department of Immunology and Microbiology, Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Guochao Shi
- Department of Pulmonary and Critical Care Medicine, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Institute of Respiratory Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
7
|
Perez-Diaz S, Garcia-Sobreviela MP, Gonzalez-Irazabal Y, Garcia-Rodriguez B, Espina S, Arenaz I, Arbones-Mainar JM. PTRF acts as an adipokine contributing to adipocyte dysfunctionality and ectopic lipid deposition. J Physiol Biochem 2018; 74:613-622. [PMID: 29869069 DOI: 10.1007/s13105-018-0638-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Accepted: 05/14/2018] [Indexed: 12/31/2022]
Abstract
Adipose tissue (AT) expands under obesogenic conditions. Yet, when the growth exceeds a certain limit, AT becomes dysfunctional and surplus lipids start depositing ectopically. Polymerase I and transcription release factor (PTRF) has been proposed as a mechanism leading to a dysfunctional AT by decreasing the adipogenic potential of human adipocyte precursors. However, whether or not PTRF can be secreted by the adipocytes into the bloodstream is not yet known. For this work, PTRF presence was investigated in plasma. We also produced a recombinant PTRF (rPTRF) and examined its impact on the functional interactions between the adipocyte and the hepatocyte in vitro. We demonstrated that PTRF can be found in human plasma, and is at least in part, carried by exosomes. In vitro treatment with rPTRF increased the hypertrophy and senescence of 3T3-L1 adipocytes. In turn, those rPTRF-treated adipocytes increased lipid accumulation in hepatocytes. Lastly, we found a positive correlation between circulating PTRF and the concentration of PTRF in the visceral fat depot. All these findings point toward the presence of an enlarged and dysfunctional visceral adipose tissue which secretes PTRF. This circulating PTRF behaves as an adipokine and may partially contribute to the well-known detrimental effects of visceral fat accumulation.
Collapse
Affiliation(s)
- Sergio Perez-Diaz
- Adipocyte and Fat Biology Laboratory (AdipoFat), Unidad de Investigación Traslacional, Instituto Aragonés de Ciencias de la Salud (IACS), Instituto de Investigación Sanitaria (IIS) Aragón, Hospital Universitario Miguel Servet, Isabel la Católica, 1-3, 50009, Zaragoza, Spain
| | - Maria P Garcia-Sobreviela
- Adipocyte and Fat Biology Laboratory (AdipoFat), Unidad de Investigación Traslacional, Instituto Aragonés de Ciencias de la Salud (IACS), Instituto de Investigación Sanitaria (IIS) Aragón, Hospital Universitario Miguel Servet, Isabel la Católica, 1-3, 50009, Zaragoza, Spain
| | | | | | - Silvia Espina
- Adipocyte and Fat Biology Laboratory (AdipoFat), Unidad de Investigación Traslacional, Instituto Aragonés de Ciencias de la Salud (IACS), Instituto de Investigación Sanitaria (IIS) Aragón, Hospital Universitario Miguel Servet, Isabel la Católica, 1-3, 50009, Zaragoza, Spain.,Servicio de Aparato Digestivo, Hospital Universitario Miguel Servet, Zaragoza, Spain
| | - Izaskun Arenaz
- Biobanco del Sistema de Salud de Aragón, Instituto Aragonés de Ciencias de la Salud (IACS), Zaragoza, Spain
| | - Jose M Arbones-Mainar
- Adipocyte and Fat Biology Laboratory (AdipoFat), Unidad de Investigación Traslacional, Instituto Aragonés de Ciencias de la Salud (IACS), Instituto de Investigación Sanitaria (IIS) Aragón, Hospital Universitario Miguel Servet, Isabel la Católica, 1-3, 50009, Zaragoza, Spain. .,CIBER Fisiopatología Obesidad y Nutrición (CIBERObn), Instituto Salud Carlos III, Madrid, Spain.
| |
Collapse
|
8
|
Li Q, Bai L, Shi G, Zhang L, Dai Y, Liu P, Cong YS, Wang M. Ptrf
transgenic mice exhibit obesity and fatty liver. Clin Exp Pharmacol Physiol 2018; 45:704-710. [DOI: 10.1111/1440-1681.12920] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Revised: 01/16/2018] [Accepted: 01/18/2018] [Indexed: 12/16/2022]
Affiliation(s)
- Qian Li
- Institute of Aging Research; Hangzhou Normal University School of Medicine; Hangzhou China
| | - Lin Bai
- Key Laboratory of Human Disease Comparative Medicine of the Ministry of Health; Institute of Laboratory Animal Science; Chinese Academy of Medical Sciences and Comparative Medical Center; Peking Union Medical College; Beijing China
| | - Guiying Shi
- Key Laboratory of Human Disease Comparative Medicine of the Ministry of Health; Institute of Laboratory Animal Science; Chinese Academy of Medical Sciences and Comparative Medical Center; Peking Union Medical College; Beijing China
| | - Lianfeng Zhang
- Key Laboratory of Human Disease Comparative Medicine of the Ministry of Health; Institute of Laboratory Animal Science; Chinese Academy of Medical Sciences and Comparative Medical Center; Peking Union Medical College; Beijing China
| | - Yifan Dai
- Center of Metabolic Disease Research; Nanjing Medical University; Nanjing China
| | - Pingsheng Liu
- National Laboratory of Biomacromolecules; Institute of Biophysics; Chinese Academy of Sciences; Beijing China
| | - Yu-Sheng Cong
- Institute of Aging Research; Hangzhou Normal University School of Medicine; Hangzhou China
| | - Miao Wang
- Institute of Aging Research; Hangzhou Normal University School of Medicine; Hangzhou China
| |
Collapse
|
9
|
Cavin-2 is a specific marker for detection of well-differentiated liposarcoma. Biochem Biophys Res Commun 2017; 493:660-665. [PMID: 28865960 DOI: 10.1016/j.bbrc.2017.08.135] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Accepted: 08/29/2017] [Indexed: 12/16/2022]
Abstract
Caveolae are cholesterol enriched invaginations of the plasma membrane involved in a variety of processes, including glucose and fatty acids absorption, cell transduction and mechanoprotection. The biogenesis and function of caveolae depend on the activity of Caveolin (Cav-1, -2 and -3) and Cavin (Cavin-1, -2, -3 and -4) protein families. Since the membrane Cavin-2 protein was reported to play a key role in caveolae formation of adipocytes, in this work we have used a multidisciplinary approach to investigate its expression in liposarcoma (LPS), an adipocytic soft tissue sarcoma affecting adults. Data obtained through an in silico and immunohistochemical analysis suggest that Cavin-2, along with Cavin-1, Cav-1 and Cav-2, is mostly expressed in the least aggressive LPS subtype, namely well-differentiated LPS, while is almost undetectable in the more aggressive myxoid, pleomorphic and dedifferentiated LPS tumors. Accordingly, in vitro analysis confirmed that Cavin-2 expression increases in LPS tumor cell lines during differentiation as compared to proliferation, as detected by immunoblotting and immunofluorescence analysis. Overall, these data suggest that Cavin-2 represents a useful marker for discriminating the degree of differentiation in LPS tumors.
Collapse
|
10
|
Castillo JJ, Jelinek D, Wei H, Gannon NP, Vaughan RA, Horwood LJ, Meaney FJ, Garcia-Smith R, Trujillo KA, Heidenreich RA, Meyre D, Orlando RA, LeBoeuf RC, Garver WS. The Niemann-Pick C1 gene interacts with a high-fat diet to promote weight gain through differential regulation of central energy metabolism pathways. Am J Physiol Endocrinol Metab 2017; 313:E183-E194. [PMID: 28487438 PMCID: PMC5582887 DOI: 10.1152/ajpendo.00369.2016] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Revised: 05/04/2017] [Accepted: 05/04/2017] [Indexed: 12/20/2022]
Abstract
A genome-wide association study (GWAS) reported that common variation in the human Niemann-Pick C1 gene (NPC1) is associated with morbid adult obesity. This study was confirmed using our BALB/cJ Npc1 mouse model, whereby heterozygous mice (Npc1+/- ) with decreased gene dosage were susceptible to weight gain when fed a high-fat diet (HFD) compared with homozygous normal mice (Npc1+/+ ) fed the same diet. The objective for our current study was to validate this Npc1 gene-diet interaction using statistical modeling with fitted growth trajectories, conduct body weight analyses for different measures, and define the physiological basis responsible for weight gain. Metabolic phenotype analysis indicated no significant difference between Npc1+/+ and Npc1+/- mice fed a HFD for food and water intake, oxygen consumption, carbon dioxide production, locomotor activity, adaptive thermogenesis, and intestinal lipid absorption. However, the livers from Npc1+/- mice had significantly increased amounts of mature sterol regulatory element-binding protein-1 (SREBP-1) and increased expression of SREBP-1 target genes that regulate glycolysis and lipogenesis with an accumulation of triacylglycerol and cholesterol. Moreover, white adipose tissue from Npc1+/- mice had significantly decreased amounts of phosphorylated hormone-sensitive lipase with decreased triacylglycerol lipolysis. Consistent with these results, cellular energy metabolism studies indicated that Npc1+/- fibroblasts had significantly increased glycolysis and lipogenesis, in addition to significantly decreased substrate (glucose and endogenous fatty acid) oxidative metabolism with an accumulation of triacylglycerol and cholesterol. In conclusion, these studies demonstrate that the Npc1 gene interacts with a HFD to promote weight gain through differential regulation of central energy metabolism pathways.
Collapse
Affiliation(s)
- Joseph J Castillo
- Department of Biochemistry and Molecular Biology, University of New Mexico Health Sciences Center, Albuquerque, New Mexico
| | - David Jelinek
- Department of Biochemistry and Molecular Biology, University of New Mexico Health Sciences Center, Albuquerque, New Mexico
| | - Hao Wei
- Department of Medicine, University of Washington Health Sciences Center, Seattle, Washington
| | - Nicholas P Gannon
- Department of Biochemistry and Molecular Biology, University of New Mexico Health Sciences Center, Albuquerque, New Mexico
| | - Roger A Vaughan
- Department of Exercise Science, High Point University, High Point, North Carolina
| | - L John Horwood
- Department of Psychological Medicine, University of Otago, Christchurch, New Zealand
| | - F John Meaney
- Department of Pediatrics, University of Arizona Health Sciences Center, Tucson, Arizona
| | - Randi Garcia-Smith
- Department of Cell Biology and Physiology, University of New Mexico Health Sciences Center, Albuquerque, New Mexico
| | - Kristina A Trujillo
- Department of Cell Biology and Physiology, University of New Mexico Health Sciences Center, Albuquerque, New Mexico
| | - Randall A Heidenreich
- Department of Pediatrics, University of New Mexico Health Sciences Center, Albuquerque, New Mexico; and
| | - David Meyre
- Department of Clinical Epidemiology and Biostatistics, and Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario
| | - Robert A Orlando
- Department of Biochemistry and Molecular Biology, University of New Mexico Health Sciences Center, Albuquerque, New Mexico
| | - Renee C LeBoeuf
- Department of Medicine, University of Washington Health Sciences Center, Seattle, Washington
| | - William S Garver
- Department of Biochemistry and Molecular Biology, University of New Mexico Health Sciences Center, Albuquerque, New Mexico;
| |
Collapse
|
11
|
Acetylation of Cavin-1 Promotes Lipolysis in White Adipose Tissue. Mol Cell Biol 2017; 37:MCB.00058-17. [PMID: 28559430 DOI: 10.1128/mcb.00058-17] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Accepted: 05/19/2017] [Indexed: 01/14/2023] Open
Abstract
White adipose tissue (WAT) serves as a reversible energy storage depot in the form of lipids in response to nutritional status. Cavin-1, an essential component in the biogenesis of caveolae, is a positive regulator of lipolysis in adipocytes. However, molecular mechanisms of cavin-1 in the modulation of lipolysis remain poorly understood. Here, we showed that cavin-1 was acetylated at lysines 291, 293, and 298 (3K), which were under nutritional regulation in WAT. We further identified GCN5 as the acetyltransferase and Sirt1 as the deacetylase of cavin-1. Acetylation-mimetic 3Q mutants of cavin-1 augmented fat mobilization in 3T3-L1 adipocytes and zebrafish. Mechanistically, acetylated cavin-1 preferentially interacted with hormone-sensitive lipase and recruited it to the caveolae, thereby promoting lipolysis. Our findings shed light on the essential role of cavin-1 in regulating lipolysis in an acetylation-dependent manner in WAT.
Collapse
|
12
|
Kaakinen M, Reichelt ME, Ma Z, Ferguson C, Martel N, Porrello ER, Hudson JE, Thomas WG, Parton RG, Headrick JP. Cavin-1 deficiency modifies myocardial and coronary function, stretch responses and ischaemic tolerance: roles of NOS over-activity. Basic Res Cardiol 2017; 112:24. [PMID: 28343262 DOI: 10.1007/s00395-017-0613-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Revised: 02/09/2017] [Accepted: 03/09/2017] [Indexed: 02/07/2023]
Abstract
Caveolae and associated cavin and caveolins may govern myocardial function, together with responses to mechanical and ischaemic stresses. Abnormalities in these proteins are also implicated in different cardiovascular disorders. However, specific roles of the cavin-1 protein in cardiac and coronary responses to mechanical/metabolic perturbation remain unclear. We characterised cardiovascular impacts of cavin-1 deficiency, comparing myocardial and coronary phenotypes and responses to stretch and ischaemia-reperfusion in hearts from cavin-1 +/+ and cavin-1 -/- mice. Caveolae and caveolins 1 and 3 were depleted in cavin-1 -/- hearts. Cardiac ejection properties in situ were modestly reduced in cavin-1 -/- mice. While peak contractile performance in ex vivo myocardium from cavin-1 -/- and cavin-1 +/+ mice was comparable, intrinsic beating rate, diastolic stiffness and Frank-Starling behaviour (stretch-dependent diastolic and systolic forces) were exaggerated in cavin-1 -/- hearts. Increases in stretch-dependent forces were countered by NOS inhibition (100 µM L-NAME), which exposed negative inotropy in cavin-1 -/- hearts, and were mimicked by 100 µM nitroprusside. In contrast, chronotropic differences appeared largely NOS-independent. Cavin-1 deletion also induced NOS-dependent coronary dilatation, ≥3-fold prolongation of reactive hyperaemic responses, and exaggerated pressure-dependence of coronary flow. Stretch-dependent efflux of lactate dehydrogenase and cardiac troponin I was increased and induction of brain natriuretic peptide and c-Fos inhibited in cavin-1 -/- hearts, while ERK1/2 phospho-activation was preserved. Post-ischaemic dysfunction and damage was also exaggerated in cavin-1 -/- hearts. Diverse effects of cavin-1 deletion reveal important roles in both NOS-dependent and -independent control of cardiac and coronary functions, together with governing sarcolemmal fragility and myocardial responses to stretch and ischaemia.
Collapse
Affiliation(s)
- Mika Kaakinen
- Oulu Center for Cell-Matrix Research, Faculty of Biochemistry and Molecular Medicine, Biocenter Oulu, University of Oulu, Oulu, Finland.,Institute for Molecular Biosciences, The University of Queensland, St Lucia, QLD, 4072, Australia
| | - Melissa E Reichelt
- School of Biomedical Sciences, The University of Queensland, Brisbane, Australia
| | - Zhibin Ma
- School of Biomedical Sciences, The University of Queensland, Brisbane, Australia
| | - Charles Ferguson
- Institute for Molecular Biosciences, The University of Queensland, St Lucia, QLD, 4072, Australia
| | - Nick Martel
- Institute for Molecular Biosciences, The University of Queensland, St Lucia, QLD, 4072, Australia
| | - Enzo R Porrello
- School of Biomedical Sciences, The University of Queensland, Brisbane, Australia
| | - James E Hudson
- School of Biomedical Sciences, The University of Queensland, Brisbane, Australia
| | - Walter G Thomas
- School of Biomedical Sciences, The University of Queensland, Brisbane, Australia
| | - Robert G Parton
- Institute for Molecular Biosciences, The University of Queensland, St Lucia, QLD, 4072, Australia.
| | - John P Headrick
- School of Medical Science, Griffith University, Southport, QLD, 4217, Australia.
| |
Collapse
|
13
|
Codenotti S, Vezzoli M, Monti E, Fanzani A. Focus on the role of Caveolin and Cavin protein families in liposarcoma. Differentiation 2017; 94:21-26. [DOI: 10.1016/j.diff.2016.11.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2016] [Revised: 11/15/2016] [Accepted: 11/22/2016] [Indexed: 01/06/2023]
|
14
|
Perez-Diaz S, Garcia-Rodriguez B, Gonzalez-Irazabal Y, Valero M, Lagos-Lizan J, Arbones-Mainar JM. Knockdown of PTRF ameliorates adipocyte differentiation and functionality of human mesenchymal stem cells. Am J Physiol Cell Physiol 2016; 312:C83-C91. [PMID: 27856429 DOI: 10.1152/ajpcell.00246.2016] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Revised: 11/09/2016] [Accepted: 11/09/2016] [Indexed: 01/09/2023]
Abstract
Healthy expansion of human adipose tissue requires mesenchymal stem cells (hMSC) able to proliferate and differentiate into mature adipocytes. Hence, characterization of those factors that coordinate hMSC-to-adipocyte transition is of paramount importance to modulate the adipose tissue expansion. It has been previously reported that the adipogenic program of hMSC can be disrupted by upregulating caveolar proteins, and polymerase I and transcript release factor (PTRF) is an integral component of caveolae, highly expressed in adipose tissue. Here, we hypothesized that the role of PTRF in adipocyte functionality might stem from an effect on hMSC. To test this hypothesis, we isolated hMSC from the subcutaneous fat depot. We found an upregulated expression of the PTRF associated with decreased adipogenic potential of hMSC, likely due to the existence of senescent adipocyte precursors. Employing short hairpin RNA-based constructs to stably reduce PTRF, we were able to restore insulin sensitivity and reduced basal lipolysis and leptin levels in human adipocytes with high levels of PTRF. Additionally, we pinpointed the detrimental effect caused by PTRF on the adipose tissue to the existence of senescent adipocyte precursors unable to proliferate and differentiate into adipocytes. This study provides evidence that impaired adipocyte functionality can be corrected, at least partially, by PTRF downregulation and warrants further in vivo research in patients with dysfunctional adipose tissue to prevent metabolic complications.
Collapse
Affiliation(s)
- Sergio Perez-Diaz
- Adipocyte and Fat Biology Laboratory (AdipoFat), Unidad de Investigación Traslacional, Hospital Universitario Miguel Servet, Instituto Aragonés de Ciencias de la Salud (IACS), Instituto de Investigación Sanitaria (IIS) Aragón, Zaragoza, Spain
| | | | | | - Monica Valero
- Unidad de Cirugía, Hospital Royo Villanova, Zaragoza, Spain; and
| | | | - Jose M Arbones-Mainar
- Adipocyte and Fat Biology Laboratory (AdipoFat), Unidad de Investigación Traslacional, Hospital Universitario Miguel Servet, Instituto Aragonés de Ciencias de la Salud (IACS), Instituto de Investigación Sanitaria (IIS) Aragón, Zaragoza, Spain; .,CIBER Fisiopatología Obesidad y Nutrición (CIBERObn), Instituto Salud Carlos III, Madrid, Spain
| |
Collapse
|
15
|
Liu L, Pilch PF. PTRF/Cavin-1 promotes efficient ribosomal RNA transcription in response to metabolic challenges. eLife 2016; 5:e17508. [PMID: 27528195 DOI: 10.7554/elife.17508.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Accepted: 07/18/2016] [Indexed: 01/03/2025] Open
Abstract
Ribosomal RNA transcription mediated by RNA polymerase I represents the rate-limiting step in ribosome biogenesis. In eukaryotic cells, nutrients and growth factors regulate ribosomal RNA transcription through various key factors coupled to cell growth. We show here in mature adipocytes, ribosomal transcription can be acutely regulated in response to metabolic challenges. This acute response is mediated by PTRF (polymerase I transcription and release factor, also known as cavin-1), which has previously been shown to play a critical role in caveolae formation. The caveolae-independent rDNA transcriptional role of PTRF not only explains the lipodystrophy phenotype observed in PTRF deficient mice and humans, but also highlights its crucial physiological role in maintaining adipocyte allostasis. Multiple post-translational modifications of PTRF provide mechanistic bases for its regulation. The role of PTRF in ribosomal transcriptional efficiency is likely relevant to many additional physiological situations of cell growth and organismal metabolism.
Collapse
Affiliation(s)
- Libin Liu
- Department of Biochemistry, Boston University School of Medicine, Boston, United States
| | - Paul F Pilch
- Department of Biochemistry, Boston University School of Medicine, Boston, United States
- Department of Medicine, Boston University School of Medicine, Boston, United States
| |
Collapse
|
16
|
Liu L, Pilch PF. PTRF/Cavin-1 promotes efficient ribosomal RNA transcription in response to metabolic challenges. eLife 2016; 5. [PMID: 27528195 PMCID: PMC4987143 DOI: 10.7554/elife.17508] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Accepted: 07/18/2016] [Indexed: 01/25/2023] Open
Abstract
Ribosomal RNA transcription mediated by RNA polymerase I represents the rate-limiting step in ribosome biogenesis. In eukaryotic cells, nutrients and growth factors regulate ribosomal RNA transcription through various key factors coupled to cell growth. We show here in mature adipocytes, ribosomal transcription can be acutely regulated in response to metabolic challenges. This acute response is mediated by PTRF (polymerase I transcription and release factor, also known as cavin-1), which has previously been shown to play a critical role in caveolae formation. The caveolae–independent rDNA transcriptional role of PTRF not only explains the lipodystrophy phenotype observed in PTRF deficient mice and humans, but also highlights its crucial physiological role in maintaining adipocyte allostasis. Multiple post-translational modifications of PTRF provide mechanistic bases for its regulation. The role of PTRF in ribosomal transcriptional efficiency is likely relevant to many additional physiological situations of cell growth and organismal metabolism. DOI:http://dx.doi.org/10.7554/eLife.17508.001 Obesity can cause several other health conditions to develop. Type 2 diabetes is one such condition, which arises in part because fat cells become unable to store excess fats. This makes certain tissues in the body less sensitive to the hormone insulin, and so the individual is less able to adapt to changing nutrient levels. Without treatment or a change in lifestyle, this insulin resistance may develop into diabetes. However, “healthy obese” individuals also exist, who can accommodate an overabundance of fat without developing insulin resistance and diabetes. Some forms of rare genetic disorders called lipodystrophies, which result in an almost complete lack of body fat, can also lead to type 2 diabetes. This raises the question of whether lipodystrophy and obesity share some common mechanisms that cause fat cells to trigger insulin resistance. One possible player in such mechanisms is a protein called PTRF. In rare cases, individuals with lipodystrophy lack this protein, and mice that have been engineered to lack PTRF also largely lack body fat and develop insulin resistance. Fat cells can respond rapidly to changes in nutrients during feeding or fasting, and to do so, they must produce new proteins. Structures called ribosomes, which are made up of proteins and ribosomal RNA, build proteins; thus when the cell needs to make new proteins, it also has to produce more ribosomes. PTRF is thought to play a role in ribosome production, but it is not clear how it does so. Liu and Pilch analyzed normal mice as well as those that lacked the PTRF protein. This revealed that in response to cycles of fasting and feeding, PTRF increases the production of ribosomal RNA in fat cells, enabling the cells to produce more proteins. By contrast, the fat cells of mice that lack PTRF have much lower levels of ribosomal RNA and proteins. Liu and Pilch then examined mouse fat cells that were grown in the laboratory. Exposing these cells to insulin caused phosphate groups to be attached to the PTRF proteins inside the cells. This modification caused PTRF to move into the cell’s nucleus, where it increased the production of ribosomal RNA. Overall, the results show that fat cells that lack PTRF are unable to produce the proteins that they need to deal with changing nutrient levels, leading to an increased likelihood of diabetes. The next steps are to investigate the mechanism by which PTRF is modified, and to see whether the mechanisms uncovered in this study also apply to humans. DOI:http://dx.doi.org/10.7554/eLife.17508.002
Collapse
Affiliation(s)
- Libin Liu
- Department of Biochemistry, Boston University School of Medicine, Boston, United States
| | - Paul F Pilch
- Department of Biochemistry, Boston University School of Medicine, Boston, United States.,Department of Medicine, Boston University School of Medicine, Boston, United States
| |
Collapse
|
17
|
Scaffolding protein IQGAP1: an insulin-dependent link between caveolae and the cytoskeleton in primary human adipocytes? Biochem J 2016; 473:3177-88. [PMID: 27458251 DOI: 10.1042/bcj20160581] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Accepted: 07/25/2016] [Indexed: 12/15/2022]
Abstract
The ubiquitously expressed IQ motif-containing GTPase activating protein-1 (IQGAP1) is a scaffolding protein implicated in an array of cellular functions, in particular by binding to cytoskeletal elements and signaling proteins. A role of IQGAP1 in adipocytes has not been reported. We therefore investigated the cellular IQGAP1 interactome in primary human adipocytes. Immunoprecipitation and quantitative mass spectrometry identified caveolae and caveolae-associated proteins as the major IQGAP1 interactors alongside cytoskeletal proteins. We confirmed co-localization of IQGAP1 with the defining caveolar marker protein caveolin-1 by confocal microscopy and proximity ligation assay. Most interestingly, insulin enhanced the number of IQGAP1 interactions with caveolin-1 by five-fold. Moreover, we found a significantly reduced abundance of IQGAP1 in adipocytes from patients with type 2 diabetes compared with cells from nondiabetic control subjects. Both the abundance of IQGAP1 protein and mRNA were reduced, indicating a transcriptional defect in diabetes. Our findings suggest a novel role of IQGAP1 in insulin-regulated interaction between caveolae and cytoskeletal elements of the adipocyte, and that this is quelled in the diabetic state.
Collapse
|
18
|
Kovtun O, Tillu VA, Ariotti N, Parton RG, Collins BM. Cavin family proteins and the assembly of caveolae. J Cell Sci 2016; 128:1269-78. [PMID: 25829513 DOI: 10.1242/jcs.167866] [Citation(s) in RCA: 154] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Caveolae are an abundant feature of the plasma membrane in many cells. Until recently, they were generally considered to be membrane invaginations whose formation primarily driven by integral membrane proteins called caveolins. However, the past decade has seen the emergence of the cavin family of peripheral membrane proteins as essential coat components and regulators of caveola biogenesis. In this Commentary, we summarise recent data on the role of cavins in caveola formation, highlighting structural studies that provide new insights into cavin coat assembly. In mammals, there are four cavin family members that associate through homo- and hetero-oligomerisation to form distinct subcomplexes on caveolae, which can be released into the cell in response to stimuli. Studies from several labs have provided a better understanding of cavin stoichiometry and the molecular basis for their oligomerisation, as well as identifying interactions with membrane phospholipids that may be important for caveola function. We propose a model in which coincident, low-affinity electrostatically controlled protein-protein and protein-lipid interactions allow the formation of caveolae, generating a meta-stable structure that can respond to plasma membrane stress by release of cavins.
Collapse
Affiliation(s)
- Oleksiy Kovtun
- The University of Queensland, Institute for Molecular Bioscience, Brisbane St Lucia, QLD, 4072, Australia
| | - Vikas A Tillu
- The University of Queensland, Institute for Molecular Bioscience, Brisbane St Lucia, QLD, 4072, Australia
| | - Nicholas Ariotti
- The University of Queensland, Institute for Molecular Bioscience, Brisbane St Lucia, QLD, 4072, Australia
| | - Robert G Parton
- The University of Queensland, Institute for Molecular Bioscience, Brisbane St Lucia, QLD, 4072, Australia Centre for Microscopy and Microanalysis, St. Lucia, QLD, 4072, Australia
| | - Brett M Collins
- The University of Queensland, Institute for Molecular Bioscience, Brisbane St Lucia, QLD, 4072, Australia
| |
Collapse
|
19
|
Xu X, Yang J, Ning Z, Zhang X. Proteomic analysis of intestinal tissues from mice fed with Lentinula edodes-derived polysaccharides. Food Funct 2016; 7:250-61. [DOI: 10.1039/c5fo00904a] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Lentinula edodes-derived polysaccharides induce the differential proteins in abundance in mouse colon and small intestine.
Collapse
Affiliation(s)
- Xiaofei Xu
- College of Light Industry and Food Sciences
- South China University of Technology
- Guangzhou
- China
- Treerly Women's Nutrition and Health Institute
| | - Jiguo Yang
- College of Light Industry and Food Sciences
- South China University of Technology
- Guangzhou
- China
| | - Zhengxiang Ning
- College of Light Industry and Food Sciences
- South China University of Technology
- Guangzhou
- China
| | - Xuewu Zhang
- College of Light Industry and Food Sciences
- South China University of Technology
- Guangzhou
- China
| |
Collapse
|
20
|
Golkowski M, Shimizu-Albergine M, Suh HW, Beavo JA, Ong SE. Studying mechanisms of cAMP and cyclic nucleotide phosphodiesterase signaling in Leydig cell function with phosphoproteomics. Cell Signal 2015; 28:764-78. [PMID: 26643407 DOI: 10.1016/j.cellsig.2015.11.014] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2015] [Accepted: 11/26/2015] [Indexed: 12/21/2022]
Abstract
Many cellular processes are modulated by cyclic AMP and nucleotide phosphodiesterases (PDEs) regulate this second messenger by catalyzing its breakdown. The major unique function of testicular Leydig cells is to produce testosterone in response to luteinizing hormone (LH). Treatment of Leydig cells with PDE inhibitors increases cAMP levels and the activity of its downstream effector, cAMP-dependent protein kinase (PKA), leading to a series of kinase-dependent signaling and transcription events that ultimately increase testosterone release. We have recently shown that PDE4B and PDE4C as well as PDE8A and PDE8B are expressed in rodent Leydig cells and that combined inhibition of PDE4 and PDE8 leads to dramatically increased steroid biosynthesis. Here we investigated the effect of PDE4 and PDE8 inhibition on the molecular mechanisms of cAMP actions in a mouse MA10 Leydig cell line model with SILAC mass spectrometry-based phosphoproteomics. We treated MA10 cells either with PDE4 family specific inhibitor (Rolipram) and PDE8 family specific inhibitor (PF-04957325) alone or in combination and quantified the resulting phosphorylation changes at five different time points between 0 and 180min. We identified 28,336 phosphosites from 4837 proteins and observed significant regulation of 749 sites in response to PDE4 and PDE8 inhibitor treatment. Of these, 132 phosphosites were consensus PKA sites. Our data strongly suggest that PDE4 and PDE8 inhibitors synergistically regulate phosphorylation of proteins required for many different cellular processes, including cell cycle progression, lipid and glucose metabolism, transcription, endocytosis and vesicle transport. Our data suggests that cAMP, PDE4 and PDE8 coordinate steroidogenesis by acting on not one rate-limiting step but rather multiple pathways. Moreover, the pools of cAMP controlled by these PDEs also coordinate many other metabolic processes that may be regulated to assure timely and sufficient testosterone secretion in response to LH.
Collapse
Affiliation(s)
- Martin Golkowski
- Department of Pharmacology, School of Medicine, University of Washington, USA
| | | | - Hyong Won Suh
- Department of Pharmacology, School of Medicine, University of Washington, USA
| | - Joseph A Beavo
- Department of Pharmacology, School of Medicine, University of Washington, USA.
| | - Shao-En Ong
- Department of Pharmacology, School of Medicine, University of Washington, USA.
| |
Collapse
|
21
|
Tillu VA, Kovtun O, McMahon KA, Collins BM, Parton RG. A phosphoinositide-binding cluster in cavin1 acts as a molecular sensor for cavin1 degradation. Mol Biol Cell 2015; 26:3561-9. [PMID: 26269585 PMCID: PMC4603927 DOI: 10.1091/mbc.e15-06-0359] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Accepted: 08/06/2015] [Indexed: 11/30/2022] Open
Abstract
Cavin1 degradation is primarily mediated by the ubiquitin proteasome system. The phosphoinositide-binding region in cavin1 acts as a molecular switch for cavin1 degradation upon release of cavins in cytosol. This mechanism may help to maintain low levels of free cytosolic cavins at steady state. Caveolae are abundant surface organelles implicated in a range of cellular processes. Two classes of proteins work together to generate caveolae: integral membrane proteins termed caveolins and cytoplasmic coat proteins called cavins. Caveolae respond to membrane stress by releasing cavins into the cytosol. A crucial aspect of this model is tight regulation of cytosolic pools of cavin under resting conditions. We now show that a recently identified region of cavin1 that can bind phosphoinositide (PI) lipids is also a major site of ubiquitylation. Ubiquitylation of lysines within this site leads to rapid proteasomal degradation. In cells that lack caveolins and caveolae, cavin1 is cytosolic and rapidly degraded as compared with cells in which cavin1 is associated with caveolae. Membrane stretching causes caveolar disassembly, release of cavin complexes into the cytosol, and increased proteasomal degradation of wild-type cavin1 but not mutant cavin1 lacking the major ubiquitylation site. Release of cavin1 from caveolae thus leads to exposure of key lysine residues in the PI-binding region, acting as a trigger for cavin1 ubiquitylation and down-regulation. This mutually exclusive PI-binding/ubiquitylation mechanism may help maintain low levels of cytosolic cavin1 in resting cells, a prerequisite for cavins acting as signaling modules following release from caveolae.
Collapse
Affiliation(s)
- Vikas A Tillu
- Institute for Molecular Bioscience, University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Oleksiy Kovtun
- Institute for Molecular Bioscience, University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Kerrie-Ann McMahon
- Institute for Molecular Bioscience, University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Brett M Collins
- Institute for Molecular Bioscience, University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Robert G Parton
- Institute for Molecular Bioscience, University of Queensland, St. Lucia, Queensland 4072, Australia Centre for Microscopy and Microanalysis, University of Queensland, St. Lucia, Queensland 4072, Australia
| |
Collapse
|
22
|
Cavin-1: caveolae-dependent signalling and cardiovascular disease. Biochem Soc Trans 2015; 42:284-8. [PMID: 24646232 DOI: 10.1042/bst20130270] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Caveolae are curved lipid raft regions rich in cholesterol and sphingolipids found abundantly in vascular endothelial cells, adipocytes, smooth muscle cells and fibroblasts. They are multifunctional organelles with roles in clathrin-independent endocytosis, cholesterol transport, mechanosensing and signal transduction. Caveolae provide an environment where multiple receptor signalling components are sequestered, clustered and compartmentalized for efficient signal transduction. Many of these receptors, including cytokine signal transducer gp130 (glycoprotein 130), are mediators of chronic inflammation during atherogenesis. Subsequently, disruption of these organelles is associated with a broad range of disease states including cardiovascular disease and cancer. Cavin-1 is an essential peripheral component of caveolae that stabilizes caveolin-1, the main structural/integral membrane protein of caveolae. Caveolin-1 is an essential regulator of eNOS (endothelial nitric oxide synthase) and its disruption leads to endothelial dysfunction which initiates a range of cardiovascular and pulmonary disorders. Although dysfunctional cytokine signalling is also a hallmark of cardiovascular disease, knowledge of caveolae-dependent cytokine signalling is lacking as is the role of cavin-1 independent of caveolae. The present review introduces caveolae, their structural components, the caveolins and cavins, their regulation by cAMP, and their potential role in cardiovascular disease.
Collapse
|
23
|
Cavin-1 and Caveolin-1 are both required to support cell proliferation, migration and anchorage-independent cell growth in rhabdomyosarcoma. J Transl Med 2015; 95:585-602. [PMID: 25822667 DOI: 10.1038/labinvest.2015.45] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Revised: 01/26/2015] [Accepted: 02/27/2015] [Indexed: 12/17/2022] Open
Abstract
Rhabdomyosarcoma (RMS) is a childhood soft tissue tumor with broad expression of markers that are typically found in skeletal muscle. Cavin-1 is a recently discovered protein actively cooperating with Caveolin-1 (Cav-1) in the morphogenesis of caveolae and whose role in cancer is drawing increasing attention. Using a combined in silico and in vitro analysis here we show that Cavin-1 is expressed in myogenic RMS tumors as well as in human and primary mouse RMS cultures, exhibiting a broad subcellular localization, ranging from nuclei and cytosol to plasma membrane. In particular, the coexpression and plasma membrane interaction between Cavin-1 and Cav-1 characterized the proliferation of human and mouse RMS cell cultures, while a downregulation of their expression levels was observed during the myogenic differentiation. Knockdown of Cavin-1 or Cav-1 in the human RD and RH30 cells led to impairment of cell proliferation and migration. Moreover, loss of Cavin-1 in RD cells impaired the anchorage-independent cell growth in soft agar. While the loss of Cavin-1 did not affect the Cav-1 protein levels in RMS cells, Cav-1 overexpression and knockdown triggered a rise or depletion of Cavin-1 protein levels in RD cells, respectively, in turn reflecting on increased or decreased cell proliferation, migration and anchorage-independent cell growth. Collectively, these data indicate that the interaction between Cavin-1 and Cav-1 underlies the cell growth and migration in myogenic tumors.
Collapse
|
24
|
Jelani M, Ahmed S, Almramhi MM, Mohamoud HSA, Bakur K, Anshasi W, Wang J, Al-Aama JY. Novel nonsense mutation in the PTRF gene underlies congenital generalized lipodystrophy in a consanguineous Saudi family. Eur J Med Genet 2015; 58:216-21. [DOI: 10.1016/j.ejmg.2015.02.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2014] [Accepted: 02/12/2015] [Indexed: 01/09/2023]
|
25
|
|
26
|
Briand N, Prado C, Mabilleau G, Lasnier F, Le Lièpvre X, Covington JD, Ravussin E, Le Lay S, Dugail I. Caveolin-1 expression and cavin stability regulate caveolae dynamics in adipocyte lipid store fluctuation. Diabetes 2014; 63:4032-44. [PMID: 24969108 PMCID: PMC4238006 DOI: 10.2337/db13-1961] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Adipocytes specialized in the storage of energy as fat are among the most caveolae-enriched cell types. Loss of caveolae produces lipodystrophic diabetes in humans, which cannot be reversed by endothelial rescue of caveolin expression in mice, indicating major importance of adipocyte caveolae. However, how caveolae participate in fat cell functions is poorly understood. We investigated dynamic conditions of lipid store fluctuations and demonstrate reciprocal regulation of caveolae density and fat cell lipid droplet storage. We identified caveolin-1 expression as a crucial step in adipose cell lines and in mice to raise the density of caveolae, to increase adipocyte ability to accommodate larger lipid droplets, and to promote cell expansion by increased glucose utilization. In human subjects enrolled in a trial of 8 weeks of overfeeding to promote fattening, adipocyte expansion response correlated with initial caveolin-1 expression. Conversely, lipid mobilization in cultured adipocytes to induce lipid droplet shrinkage led to biphasic response of cavin-1 with ultimate loss of expression of cavin-1 and -3 and EHD2 by protein degradation, coincident with caveolae disassembly. We have identified the key steps in cavin/caveolin interplay regulating adipocyte caveolae dynamics. Our data establish that caveolae participate in a unique cell response connected to lipid store fluctuation, suggesting lipid-induced mechanotension in adipocytes.
Collapse
Affiliation(s)
| | | | - Guillaume Mabilleau
- Service Commun d'Imageries et d'Analyses Microscopiques, Université d'Angers, Angers, France
| | | | | | | | - Eric Ravussin
- Pennington Biomedical Research Center, Baton Rouge, LA
| | - Soazig Le Lay
- INSERM, UMR1063, Université d'Angers, Angers, France
| | | |
Collapse
|
27
|
Gerarduzzi C, He Q, Antoniou J, Di Battista JA. Quantitative phosphoproteomic analysis of signaling downstream of the prostaglandin e2/g-protein coupled receptor in human synovial fibroblasts: potential antifibrotic networks. J Proteome Res 2014; 13:5262-80. [PMID: 25223752 DOI: 10.1021/pr500495s] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The Prostaglandin E2 (PGE2) signaling mechanism within fibroblasts is of growing interest as it has been shown to prevent numerous fibrotic features of fibroblast activation with limited evidence of downstream pathways. To understand the mechanisms of fibroblasts producing tremendous amounts of PGE2 with autocrine effects, we apply a strategy of combining a wide-screening of PGE2-induced kinases with quantitative phosphoproteomics. Our large-scale proteomic approach identified a PKA signal transmitted through phosphorylation of its substrates harboring the R(R/X)X(S*/T*) motif. We documented 115 substrates, of which 72 had 89 sites with a 2.5-fold phosphorylation difference in PGE2-treated cells than in untreated cells, where approximately half of such sites were defined as being novel. They were compiled by networking software to focus on highlighted activities and to associate them with a functional readout of fibroblasts. The substrates were associated with a variety of cellular functions including cytoskeletal structures (migration/motility), regulators of G-protein coupled receptor function, protein kinases, and transcriptional/translational regulators. For the first time, we extended the PGE2 pathway into an elaborate network of interconnecting phosphoproteins, providing vital information to a once restricted signalosome. These data provide new insights into eicosanoid-initiated cell signaling with regards to the regulation of fibroblast activation and the identification of new targets for evidenced-based pharmacotherapy against fibrosis.
Collapse
Affiliation(s)
- Casimiro Gerarduzzi
- Department of Experimental Medicine, McGill University , 687 Pine Avenue West, Montreal, Quebec H3A 1A1, Canada
| | | | | | | |
Collapse
|
28
|
Emerging role of polymerase-1 and transcript release factor (PTRF/ Cavin-1) in health and disease. Cell Tissue Res 2014; 357:505-13. [PMID: 25107607 DOI: 10.1007/s00441-014-1964-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2014] [Accepted: 07/04/2014] [Indexed: 01/06/2023]
Abstract
Polymerase-1 and release transcript factor (PTRF) was initially reported to be involved in the termination of the transcription process. More recently, it has been implicated in the formation of caveolae, cave-like structures in the plasma membrane. The effects of PTRF related to caveolae suggest that this protein may play important roles in health and disease. PTRF is highly expressed in various cells, including adipocytes, osteoblasts and muscle (cardiac, skeletal and smooth) cells. The role of PTRF in prostate cancer has been recently reviewed but there is growing evidence that PTRF is involved in other physiological processes such as cell repair and the regulation of glucose and lipid metabolism and, furthermore, altered expression of PTRF may be associated with disease. This review discusses the emerging role of PTRF in health and disease.
Collapse
|
29
|
Schleinitz D, Böttcher Y, Blüher M, Kovacs P. The genetics of fat distribution. Diabetologia 2014; 57:1276-86. [PMID: 24632736 DOI: 10.1007/s00125-014-3214-z] [Citation(s) in RCA: 93] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2013] [Accepted: 02/18/2014] [Indexed: 12/22/2022]
Abstract
Fat stored in visceral depots makes obese individuals more prone to complications than subcutaneous fat. There is good evidence that body fat distribution (FD) is controlled by genetic factors. WHR, a surrogate measure of FD, shows significant heritability of up to ∼60%, even after adjusting for BMI. Genetic variants have been linked to various forms of altered FD such as lipodystrophies; however, the polygenic background of visceral obesity has only been sparsely investigated in the past. Recent genome-wide association studies (GWAS) for measures of FD revealed numerous loci harbouring genes potentially regulating FD. In addition, genes with fat depot-specific expression patterns (in particular subcutaneous vs visceral adipose tissue) provide plausible candidate genes involved in the regulation of FD. Many of these genes are differentially expressed in various fat compartments and correlate with obesity-related traits, thus further supporting their role as potential mediators of metabolic alterations associated with a distinct FD. Finally, developmental genes may at a very early stage determine specific FD in later life. Indeed, genes such as TBX15 not only manifest differential expression in various fat depots, but also correlate with obesity and related traits. Moreover, recent GWAS identified several polymorphisms in developmental genes (including TBX15, HOXC13, RSPO3 and CPEB4) strongly associated with FD. More accurate methods, including cardiometabolic imaging, for assessment of FD are needed to promote our understanding in this field, where the main focus is now to unravel the yet unknown biological function of these novel 'fat distribution genes'.
Collapse
Affiliation(s)
- Dorit Schleinitz
- Integrated Research and Treatment Center (IFB) AdiposityDiseases, University of Leipzig, Liebigstr. 21, 04103, Leipzig, Germany
| | | | | | | |
Collapse
|
30
|
Perez-Diaz S, Johnson LA, DeKroon RM, Moreno-Navarrete JM, Alzate O, Fernandez-Real JM, Maeda N, Arbones-Mainar JM. Polymerase I and transcript release factor (PTRF) regulates adipocyte differentiation and determines adipose tissue expandability. FASEB J 2014; 28:3769-79. [PMID: 24812087 DOI: 10.1096/fj.14-251165] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Impaired adipogenesis renders an adipose tissue unable to expand, leading to lipotoxicity and conditions such as diabetes and cardiovascular disease. While factors important for adipogenesis have been studied extensively, those that set the limits of adipose tissue expansion remain undetermined. Feeding a Western-type diet to apolipoprotein E2 knock-in mice, a model of metabolic syndrome, produced 3 groups of equally obese mice: mice with normal glucose tolerance, hyperinsulinemic yet glucose-tolerant mice, and prediabetic mice with impaired glucose tolerance and reduced circulating insulin. Using proteomics, we compared subcutaneous adipose tissues from mice in these groups and found that the expression of PTRF (polymerase I and transcript release factor) associated selectively with their glucose tolerance status. Lentiviral and pharmacologically overexpressed PTRF, whose function is critical for caveola formation, compromised adipocyte differentiation of cultured 3T3-L1cells. In human adipose tissue, PTRF mRNA levels positively correlated with markers of lipolysis and cellular senescence. Furthermore, a negative relationship between telomere length and PTRF mRNA levels was observed in human subcutaneous fat. PTRF is associated with limited adipose tissue expansion underpinning the key role of caveolae in adipocyte regulation. Furthermore, PTRF may be a suitable adipocyte marker for predicting pathological obesity and inform clinical management.
Collapse
Affiliation(s)
- Sergio Perez-Diaz
- Adipocyte and Fat Biology Laboratory (AdipoFat), Unidad de Investigación Traslacional, Instituto Aragonés de Ciencias de la Salud (IACS), Hospital Universitario Miguel Servet, Zaragoza, Spain
| | | | - Robert M DeKroon
- University of North Carolina Systems-Proteomics Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Jose M Moreno-Navarrete
- Department of Diabetes, Endocrinology, and Nutrition, Institut d'Investigació Biomèdica de Girona (IdlBGi) Hospital Dr. Josep Trueta, Girona, Spain; and Centro de Investigación Biomédica en Red Fisiopatología Obesidad y Nutrición (CIBERObn), Instituto Salud Carlos III, Madrid, Spain
| | - Oscar Alzate
- University of North Carolina Systems-Proteomics Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Jose M Fernandez-Real
- Department of Diabetes, Endocrinology, and Nutrition, Institut d'Investigació Biomèdica de Girona (IdlBGi) Hospital Dr. Josep Trueta, Girona, Spain; and Centro de Investigación Biomédica en Red Fisiopatología Obesidad y Nutrición (CIBERObn), Instituto Salud Carlos III, Madrid, Spain
| | - Nobuyo Maeda
- Department of Pathology and Laboratory Medicine and
| | - Jose M Arbones-Mainar
- Adipocyte and Fat Biology Laboratory (AdipoFat), Unidad de Investigación Traslacional, Instituto Aragonés de Ciencias de la Salud (IACS), Hospital Universitario Miguel Servet, Zaragoza, Spain; Centro de Investigación Biomédica en Red Fisiopatología Obesidad y Nutrición (CIBERObn), Instituto Salud Carlos III, Madrid, Spain
| |
Collapse
|
31
|
Johansson HM, Newman DR, Sannes PL. Whole-genome analysis of temporal gene expression during early transdifferentiation of human lung alveolar epithelial type 2 cells in vitro. PLoS One 2014; 9:e93413. [PMID: 24690998 PMCID: PMC3972118 DOI: 10.1371/journal.pone.0093413] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2013] [Accepted: 03/05/2014] [Indexed: 12/21/2022] Open
Abstract
It is generally accepted that the surfactant-producing pulmonary alveolar epithelial type II (AT2) cell acts as the progenitor of the type I (AT1) cell, but the regulatory mechanisms involved in this relationship remain the subject of active investigation. While previous studies have established a number of specific markers that are expressed during transdifferentiation from AT2 to AT1 cells, we hypothesized that additional, previously unrecognized, signaling pathways and relevant cellular functions are transcriptionally regulated at early stages of AT2 transition. In this study, a discovery-based gene expression profile analysis was undertaken of freshly isolated human AT2 (hAT2) cells grown on extracellular matrix (ECM) substrata known to either support (type I collagen) or retard (Matrigel) the early transdifferentiation process into hAT1-like cells over the first three days. Cell type-specific expression patterns analyzed by Illumina Human HT-12 BeadChip yielded over 300 genes that were up- or down-regulated. Candidate genes significantly induced or down-regulated during hAT2 transition to hAT1-like cells compared to non-transitioning hAT2 cells were identified. Major functional groups were also recognized, including those of signaling and cytoskeletal proteins as well as genes of unknown function. Expression of established signatures of hAT2 and hAT1 cells, such as surfactant proteins, caveolin-1, and channels and transporters, was confirmed. Selected novel genes further validated by qRT-PCR, protein expression analysis, and/or cellular localization included SPOCK2, PLEKHO1, SPRED1, RAB11FIP1, PTRF/CAVIN-1 and RAP1GAP. These results further demonstrate the utility of genome-wide analysis to identify relevant, novel cell type-specific signatures of early ECM-regulated alveolar epithelial transdifferentiation processes in vitro.
Collapse
Affiliation(s)
- Helena Morales Johansson
- Department of Molecular Biomedical Sciences, Center for Comparative Medicine and Translational Research, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina, United States of America
| | - Donna R. Newman
- Department of Molecular Biomedical Sciences, Center for Comparative Medicine and Translational Research, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina, United States of America
| | - Philip L. Sannes
- Department of Molecular Biomedical Sciences, Center for Comparative Medicine and Translational Research, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina, United States of America
- * E-mail:
| |
Collapse
|
32
|
Ding SY, Lee MJ, Summer R, Liu L, Fried SK, Pilch PF. Pleiotropic effects of cavin-1 deficiency on lipid metabolism. J Biol Chem 2014; 289:8473-83. [PMID: 24509860 DOI: 10.1074/jbc.m113.546242] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Mice and humans lacking caveolae due to gene knock-out or inactivating mutations of cavin-1/PTRF have numerous pathologies including markedly aberrant fuel metabolism, lipodystrophy, and muscular dystrophy. We characterized the physiologic/metabolic profile of cavin-1 knock-out mice and determined that they were lean because of reduced white adipose depots. The knock-out mice were resistant to diet-induced obesity and had abnormal lipid metabolism in the major metabolic organs of white and brown fat and liver. Epididymal white fat cells from cavin-1-null mice were small and insensitive to insulin and β-adrenergic agonists resulting in reduced adipocyte lipid storage and impaired lipid tolerance. At the molecular level, the lipolytic defects in white fat were caused by impaired perilipin phosphorylation, and the reduced triglyceride accumulation was caused by decreased fatty acid uptake and incorporation as well as the virtual absence of insulin-stimulated glucose transport. The livers of cavin-1-null mice were mildly steatotic and did not accumulate more lipid after high-fat feeding. The brown adipose tissues of cavin-1-null mice exhibited decreased mitochondria protein expression, which was restored upon high fat feeding. Taken together, these data suggest that dysfunction in fat, muscle, and liver metabolism in cavin-1-null mice causes a pleiotropic phenotype, one apparently identical to that of humans lacking caveolae in all tissues.
Collapse
|
33
|
Nassar ZD, Hill MM, Parton RG, Parat MO. Caveola-forming proteins caveolin-1 and PTRF in prostate cancer. Nat Rev Urol 2013; 10:529-36. [PMID: 23938946 DOI: 10.1038/nrurol.2013.168] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The expression of caveola-forming proteins is dysregulated in prostate cancer. Caveolae are flask-shaped invaginations of the plasma membrane that have roles in membrane trafficking and cell signalling. Members of two families of proteins--caveolins and cavins--are known to be required for the formation and functions of caveolae. Caveolin-1, the major structural protein of caveolae, is overexpresssed in prostate cancer and has been demonstrated to be involved in prostate cancer angiogenesis, growth and metastasis. Polymerase I and transcript release factor (PTRF) is the only cavin family member necessary for caveola formation. When exogenously expressed in prostate cancer cells, PTRF reduces aggressive potential, probably via both caveola-mediated and caveola-independent mechanisms. In addition, stromal PTRF expression decreases with progression of the disease. Evaluation of caveolin-1 antibodies in the clinical setting is underway and it is hoped that future studies will reveal the mechanisms of PTRF action, allowing its targeting for therapeutic purposes.
Collapse
Affiliation(s)
- Zeyad D Nassar
- School of Pharmacy, The University of Queensland, 20 Cornwall Street, Woolloongabba, QLD 4102, Australia
| | | | | | | |
Collapse
|
34
|
Hamoudane M, Maffioli S, Cordera R, Maggi D, Salani B. Caveolin-1 and polymerase I and transcript release factor: new players in insulin-like growth factor-I receptor signaling. J Endocrinol Invest 2013; 36:204-8. [PMID: 23404184 DOI: 10.3275/8848] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Caveolae are plasma membrane regions enriched in Caveolin proteins which regulate vesicular transport, endocytosis, and cell signaling. IGF-I receptor (IGF-IR) localizes in caveolae and tyrosine phosphorylates Caveolin-1 (Cav-1), the most represented caveolar protein. Cav-1 participates to IGF-IR internalization and signaling directly interacting with IGF-IR and its substrates. Recently, polymerase I and transcript release factor (PTRF) or Cavin-1, has been identified in the caveolar backbone. PTRF does not play a Cav-1 ancillary role and emerging data support a direct role of PTRF in IGF-IR signaling. PTRF and Cav-1 can bind IGF-IR and regulate IGF-IR internalization and plasma membrane replacement, mechanisms frequently deregulated in cancer cells. Although the exact roles of Cav-1 and IGF-IR in human cancer continue to be a matter of some debate, there is a strong evidence for an association between Cav-1 and IGF-IR in cancer development. With the discovery of IGF-IR interaction with PTRF in caveolae, new insight emerged to understand the growing functions of these domains in IGF-I action.
Collapse
Affiliation(s)
- M Hamoudane
- Department of Internal Medicine (DiMI) University of Genoa, Genoa, Italy
| | | | | | | | | |
Collapse
|
35
|
Caveolin-1 deficiency leads to increased susceptibility to cell death and fibrosis in white adipose tissue: characterization of a lipodystrophic model. PLoS One 2012. [PMID: 23049990 DOI: 10.1371/journal.pone0046242] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Caveolin-1 (CAV1) is an important regulator of adipose tissue homeostasis. In the present study we examined the impact of CAV1 deficiency on the properties of mouse adipose tissue both in vivo and in explant cultures during conditions of metabolic stress. In CAV1(-/-) mice fasting caused loss of adipose tissue mass despite a lack of hormone-sensitive lipase (HSL) phosphorylation. In addition, fasting resulted in increased macrophage infiltration, enhanced deposition of collagen, and a reduction in the level of the lipid droplet protein perilipin A (PLIN1a). Explant cultures of CAV1(-/-) adipose tissue also showed a loss of PLIN1a during culture, enhanced secretion of IL-6, increased release of lactate dehydrogenase, and demonstrated increased susceptibility to cell death upon collagenase treatment. Attenuated PKA-mediated signaling to HSL, loss of PLIN1a and increased secretion of IL-6 were also observed in adipose tissue explants of CAV1(+/+) mice with diet-induced obesity. Together these results suggest that while alterations in adipocyte lipid droplet biology support adipose tissue metabolism in the absence of PKA-mediated pro-lipolytic signaling in CAV1(-/-) mice, the tissue is intrinsically unstable resulting in increased susceptibility to cell death, which we suggest underlies the development of fibrosis and inflammation during periods of metabolic stress.
Collapse
|
36
|
Caveolin-1 deficiency leads to increased susceptibility to cell death and fibrosis in white adipose tissue: characterization of a lipodystrophic model. PLoS One 2012; 7:e46242. [PMID: 23049990 PMCID: PMC3458842 DOI: 10.1371/journal.pone.0046242] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2012] [Accepted: 08/28/2012] [Indexed: 12/31/2022] Open
Abstract
Caveolin-1 (CAV1) is an important regulator of adipose tissue homeostasis. In the present study we examined the impact of CAV1 deficiency on the properties of mouse adipose tissue both in vivo and in explant cultures during conditions of metabolic stress. In CAV1−/− mice fasting caused loss of adipose tissue mass despite a lack of hormone-sensitive lipase (HSL) phosphorylation. In addition, fasting resulted in increased macrophage infiltration, enhanced deposition of collagen, and a reduction in the level of the lipid droplet protein perilipin A (PLIN1a). Explant cultures of CAV1−/− adipose tissue also showed a loss of PLIN1a during culture, enhanced secretion of IL-6, increased release of lactate dehydrogenase, and demonstrated increased susceptibility to cell death upon collagenase treatment. Attenuated PKA-mediated signaling to HSL, loss of PLIN1a and increased secretion of IL-6 were also observed in adipose tissue explants of CAV1+/+ mice with diet-induced obesity. Together these results suggest that while alterations in adipocyte lipid droplet biology support adipose tissue metabolism in the absence of PKA-mediated pro-lipolytic signaling in CAV1−/− mice, the tissue is intrinsically unstable resulting in increased susceptibility to cell death, which we suggest underlies the development of fibrosis and inflammation during periods of metabolic stress.
Collapse
|
37
|
Pilch PF, Liu L. Fat caves: caveolae, lipid trafficking and lipid metabolism in adipocytes. Trends Endocrinol Metab 2011; 22:318-24. [PMID: 21592817 PMCID: PMC3149783 DOI: 10.1016/j.tem.2011.04.001] [Citation(s) in RCA: 98] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2011] [Revised: 03/30/2011] [Accepted: 04/01/2011] [Indexed: 01/08/2023]
Abstract
Caveolae are subdomains of the eukaryotic cell surface, so named because they resemble little caves, being small omega-shaped invaginations of the plasma membrane into the cytosol. They are present in many cell types, and are especially abundant in adipocytes, in which they have been implicated as playing a role in lipid metabolism. Thus, mice and humans lacking caveolae have small adipocytes and exhibit lipodystrophies along with other physiological abnormalities. In this review, we examine the evidence supporting the role of caveolae in adipocyte lipid metabolism in the context of the protein and lipid composition of these structures.
Collapse
Affiliation(s)
- Paul F Pilch
- Department of Biochemistry Boston University School of Medicine, 72 East Concord St., Boston, MA 02118, USA.
| | | |
Collapse
|
38
|
Meshulam T, Breen MR, Liu L, Parton RG, Pilch PF. Caveolins/caveolae protect adipocytes from fatty acid-mediated lipotoxicity. J Lipid Res 2011; 52:1526-32. [PMID: 21652731 DOI: 10.1194/jlr.m015628] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Mice and humans lacking functional caveolae are dyslipidemic and have reduced fat stores and smaller fat cells. To test the role of caveolins/caveolae in maintaining lipid stores and adipocyte integrity, we compared lipolysis in caveolin-1 (Cav1)-null fat cells to that in cells reconstituted for caveolae by caveolin-1 re-expression. We find that the Cav1-null cells have a modestly enhanced rate of lipolysis and reduced cellular integrity compared with reconstituted cells as determined by the release of lipid metabolites and lactic dehydrogenase, respectively, into the media. There are no apparent differences in the levels of lipolytic enzymes or hormonally stimulated phosphorylation events in the two cell lines. In addition, acute fasting, which dramatically raises circulating fatty acid levels in vivo, causes a significant upregulation of caveolar protein constituents. These results are consistent with the hypothesis that caveolae protect fat cells from the lipotoxic effects of elevated levels fatty acids, which are weak detergents at physiological pH, by virtue of the property of caveolae to form detergent-resistant membrane domains.
Collapse
Affiliation(s)
- Tova Meshulam
- Department of Biochemistry, Boston University School of Medicine, Boston, MA, USA
| | | | | | | | | |
Collapse
|
39
|
Lorente-Cebrián S, Kulyté A, Hedén P, Näslund E, Arner P, Rydén M. Relationship between site-specific HSL phosphorylation and adipocyte lipolysis in obese women. Obes Facts 2011; 4:365-71. [PMID: 22166756 PMCID: PMC6444582 DOI: 10.1159/000334036] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND/AIMS In fat cells of obese humans, basal lipolysis is increased but catecholamine-stimulated lipolysis is blunted. This is linked to decreased expression of hormone-sensitive lipase (HSL). Upon stimulation by cAMP, HSL is phosphorylated at several serine residues (P-Ser(552), P-Ser(649) and P-Ser(650)) leading to enzymatic activation. In contrast, P-Ser(554) prevents phosphorylation at Ser(552) and is thus considered an inactivating site. We hypothesized that differences in HSL phosphorylation could be linked to disturbed adipocyte lipolysis in obesity. METHODS Phosphorylation at Ser(552), Ser(554), Ser(650) as well as total HSL and adipose triglyceride lipase (ATGL) protein expression were assessed by Western blot in subcutaneous adipose tissue samples of 32 obese women. Basal and stimulated lipolysis in isolated fat cells were correlated to phosphorylation levels. RESULTS While there was no correlation between basal lipolysis and P-Ser(650) or P-Ser(554), there was a negative correlation with P-Ser(552) (r = 0.39; p < 0.05). In contrast, only P-Ser(554) was strongly and negatively correlated with noradrenaline- (r = -0.50; p < 0.01) and dibutyryl cAMP-stimulated (r = -0.45; p < 0.05) lipolysis. There were no significant correlations between any measure of lipolysis and total levels of HSL and ATGL. CONCLUSION In contrast to total HSL and ATGL levels, phosphorylation at Ser(554) and Ser(552), but not at Ser(650), may differentially predict adipocyte lipolysis in vitro. Posttranslational modifications of HSL may therefore constitute an important regulator of adipocyte lipolysis, at least in adipose tissue of obese women. Whether this is also relevant in lean individuals remains to be demonstrated.
Collapse
Affiliation(s)
- Silvia Lorente-Cebrián
- Department of Medicine Huddinge, Lipid Laboratory, Karolinska Institutet, NVS, Karolinska University Hospital, Stockholm, Sweden.
| | | | | | | | | | | |
Collapse
|