1
|
Guan D, Chen Z, Zhang Y, Sun W, Li L, Huang X. Dual Role of Natural Killer Cells in Early Pregnancy: Immunopathological Implications and Therapeutic Potential in Recurrent Spontaneous Abortion and Recurrent Implantation Failure. Cell Prolif 2025:e70037. [PMID: 40325291 DOI: 10.1111/cpr.70037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2025] [Revised: 03/10/2025] [Accepted: 03/24/2025] [Indexed: 05/07/2025] Open
Abstract
Natural killer (NK) cells are critical regulators of immune processes during early pregnancy, playing a key role in maintaining maternal-foetal immune tolerance and supporting successful implantation. In particular, uterine NK cells, a specialised subset of NK cells, facilitate trophoblast invasion, spiral artery remodelling and placental establishment. Dysregulation of NK cell activity, however, has been implicated in pregnancy complications, notably recurrent spontaneous abortion (RSA) and recurrent implantation failure (RIF). Aberrant NK cell functions, such as heightened cytotoxicity or defective immune signalling, can disrupt the balance between immune tolerance and response, leading to impaired placental development, reduced trophoblast activity and compromised uteroplacental blood flow. This review examines the role of NK cells in early pregnancy, emphasising their contributions to immune modulation and placentation. It also investigates the mechanisms by which NK cell dysfunction contributes to RSA and RIF, and explores therapeutic strategies aimed at restoring NK cell balance to improve pregnancy outcomes. A deeper understanding of NK cell interactions during early pregnancy may provide critical insights into the pathogenesis of pregnancy failure and facilitate targeted immunotherapeutic approaches.
Collapse
Affiliation(s)
- Defeng Guan
- The First Clinical Medical College, Lanzhou University, Lanzhou, Gansu, China
- The First Hospital of Lanzhou University, Lanzhou, Gansu, China
| | - Zhou Chen
- Gansu Provincial Hospital, Lanzhou, Gansu, China
- The Third Clinical Medical College, Lanzhou University, Lanzhou, Gansu, China
| | - Yuhua Zhang
- The First Clinical Medical College, Lanzhou University, Lanzhou, Gansu, China
- The First Hospital of Lanzhou University, Lanzhou, Gansu, China
| | - Wenjie Sun
- The First Clinical Medical College, Lanzhou University, Lanzhou, Gansu, China
- The First Hospital of Lanzhou University, Lanzhou, Gansu, China
| | - Lifei Li
- The First Clinical Medical College, Lanzhou University, Lanzhou, Gansu, China
- The First Hospital of Lanzhou University, Lanzhou, Gansu, China
| | - Xia Huang
- Gansu Provincial Hospital, Lanzhou, Gansu, China
- The Third Clinical Medical College, Lanzhou University, Lanzhou, Gansu, China
| |
Collapse
|
2
|
Yin Y, Liao L, Xu Q, Xie S, Yuan L, Zhou R. Insight into the post-translational modifications in pregnancy and related complications†. Biol Reprod 2025; 112:204-224. [PMID: 39499652 DOI: 10.1093/biolre/ioae149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 09/19/2024] [Indexed: 11/07/2024] Open
Abstract
Successful pregnancy is dependent on a number of essential events, including embryo implantation, decidualization, and placentation. Failure of the above process may lead to pregnancy-related complications, including preeclampsia, gestational diabetes mellitus, preterm birth, and fetal growth restriction, may affect 15% of pregnancies, and lead to increased mortality and morbidity of pregnant women and perinatal infants, as well as the occurrence of short-term and long-term diseases. These complications have distinct etiology and pathogenesis, and the present comprehension is still lacking. Post-translational modifications are important events in epigenetics, altering the properties of proteins through protein hydrolysis or the addition of modification groups to one or more amino acids, with different modification states regulating subcellular localization, protein degradation, protein-protein interaction, signal transduction, and gene transcription. In this review, we focus on the impact of various post-translational modifications on the progress of embryo and placenta development and pregnancy-related complications, which will provide important experimental bases for exploring new insights into the physiology of pregnancy and pathogenesis associated with pregnancy complications.
Collapse
Affiliation(s)
- Yangxue Yin
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University) of Ministry of Education, Chengdu, China
- National Health Commission Key Laboratory of Chronobiology, Sichuan University, Chengdu, China
| | - Lingyun Liao
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University) of Ministry of Education, Chengdu, China
- National Health Commission Key Laboratory of Chronobiology, Sichuan University, Chengdu, China
| | - Qin Xu
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University) of Ministry of Education, Chengdu, China
- National Health Commission Key Laboratory of Chronobiology, Sichuan University, Chengdu, China
| | - Shuangshuang Xie
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University) of Ministry of Education, Chengdu, China
- National Health Commission Key Laboratory of Chronobiology, Sichuan University, Chengdu, China
| | - Liming Yuan
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University) of Ministry of Education, Chengdu, China
- National Health Commission Key Laboratory of Chronobiology, Sichuan University, Chengdu, China
| | - Rong Zhou
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University) of Ministry of Education, Chengdu, China
- National Health Commission Key Laboratory of Chronobiology, Sichuan University, Chengdu, China
| |
Collapse
|
3
|
Ibrahim MA, Isah MB, Inim MD, Abdullahi AD, Adamu A. The connections of sialic acids and diabetes mellitus: therapeutic or diagnostic value? Glycobiology 2024; 34:cwae053. [PMID: 39041707 DOI: 10.1093/glycob/cwae053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 06/16/2024] [Accepted: 07/19/2024] [Indexed: 07/24/2024] Open
Abstract
Modulation of sialic acids is one of the important pathological consequences of both type 1 and type 2 diabetes mellitus with or without the micro- and macrovascular complications. However, the mechanistic, therapeutic and/or diagnostic implications of these observations are uncoordinated and possibly conflicting. This review critically analyses the scientific investigations connecting sialic acids with diabetes mellitus. Generally, variations in the levels and patterns of sialylation, fucosylation and galactosylation were predominant across various tissues and body systems of diabetic patients, but the immune system seemed to be most affected. These might be explored as a basis for differential diagnosis of various diabetic complications. Sialic acids are predominantly elevated in nearly all forms of diabetic conditions, particularly nephropathy and retinopathy, which suggests some diagnostic value but the mechanistic details were not unequivocal from the available data. The plausible mechanistic explanations for the elevated sialic acids are increased desialylation by sialidases, stimulation of hexosamine pathway and synthesis of acute phase proteins as well as oxidative stress. Additionally, sialic acids are also profoundly associated with glucose transport and insulin resistance in human-based studies while animal-based studies revealed that the increased desialylation of insulin receptors by sialidases, especially NEU1, might be the causal link. Interestingly, inhibition of the diabetes-associated NEU1 desialylation was beneficial in diabetes management and might be considered as a therapeutic target. It is hoped that the article will provide an informed basis for future research activities on the exploitation of sialic acids and glycobiology for therapeutic and/or diagnostic purposes against diabetes mellitus.
Collapse
Affiliation(s)
| | - Murtala Bindawa Isah
- Department of Biochemistry, Umaru Musa Yar'adua University, P.M.B. 2218, Katsina, Nigeria
| | - Mayen David Inim
- Department of Biochemistry, Ahmadu Bello University, Samaru, 80001, Zaria, Nigeria
| | | | - Auwal Adamu
- Department of Biochemistry, Ahmadu Bello University, Samaru, 80001, Zaria, Nigeria
| |
Collapse
|
4
|
Zhong J, Li J, Burton GJ, Koistinen H, Cheung KW, Ng EHY, Yao Y, Yeung WSB, Lee CL, Chiu PCN. The functional roles of protein glycosylation in human maternal-fetal crosstalk. Hum Reprod Update 2024; 30:81-108. [PMID: 37699855 DOI: 10.1093/humupd/dmad024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 07/20/2023] [Indexed: 09/14/2023] Open
Abstract
BACKGROUND The establishment of maternal-fetal crosstalk is vital to a successful pregnancy. Glycosylation is a post-translational modification in which glycans (monosaccharide chains) are attached to an organic molecule. Glycans are involved in many physiological and pathological processes. Human endometrial epithelium, endometrial gland secretions, decidual immune cells, and trophoblasts are highly enriched with glycoconjugates and glycan-binding molecules important for a healthy pregnancy. Aberrant glycosylation in the placenta and uterus has been linked to repeated implantation failure and various pregnancy complications, but there is no recent review summarizing the functional roles of glycosylation at the maternal-fetal interface and their associations with pathological processes. OBJECTIVE AND RATIONALE This review aims to summarize recent findings on glycosylation, glycosyltransferases, and glycan-binding receptors at the maternal-fetal interface, and their involvement in regulating the biology and pathological conditions associated with endometrial receptivity, placentation and maternal-fetal immunotolerance. Current knowledge limitations and future insights into the study of glycobiology in reproduction are discussed. SEARCH METHODS A comprehensive PubMed search was conducted using the following keywords: glycosylation, glycosyltransferases, glycan-binding proteins, endometrium, trophoblasts, maternal-fetal immunotolerance, siglec, selectin, galectin, repeated implantation failure, early pregnancy loss, recurrent pregnancy loss, preeclampsia, and fetal growth restriction. Relevant reports published between 1980 and 2023 and studies related to these reports were retrieved and reviewed. Only publications written in English were included. OUTCOMES The application of ultrasensitive mass spectrometry tools and lectin-based glycan profiling has enabled characterization of glycans present at the maternal-fetal interface and in maternal serum. The endometrial luminal epithelium is covered with highly glycosylated mucin that regulates blastocyst adhesion during implantation. In the placenta, fucose and sialic acid residues are abundantly presented on the villous membrane and are essential for proper placentation and establishment of maternal-fetal immunotolerance. Glycan-binding receptors, including selectins, sialic-acid-binding immunoglobulin-like lectins (siglecs) and galectins, also modulate implantation, trophoblast functions and maternal-fetal immunotolerance. Aberrant glycosylation is associated with repeated implantation failure, early pregnancy loss and various pregnancy complications. The current limitation in the field is that most glycobiological research relies on association studies, with few studies revealing the specific functions of glycans. Technological advancements in analytic, synthetic and functional glycobiology have laid the groundwork for further exploration of glycans in reproductive biology under both physiological and pathological conditions. WIDER IMPLICATIONS A deep understanding of the functions of glycan structures would provide insights into the molecular mechanisms underlying their involvement in the physiological and pathological regulation of early pregnancy. Glycans may also potentially serve as novel early predictive markers and therapeutic targets for repeated implantation failure, pregnancy loss, and other pregnancy complications.
Collapse
Affiliation(s)
- Jiangming Zhong
- Department of Obstetrics and Gynaecology, School of Clinical Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong S.A.R., China
- The University of Hong Kong Shenzhen Key Laboratory of Fertility Regulation, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
| | - Jianlin Li
- Department of Obstetrics and Gynaecology, School of Clinical Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong S.A.R., China
| | - Graham J Burton
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| | - Hannu Koistinen
- Department of Clinical Chemistry and Haematology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Ka Wang Cheung
- Department of Obstetrics and Gynaecology, School of Clinical Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong S.A.R., China
| | - Ernest H Y Ng
- Department of Obstetrics and Gynaecology, School of Clinical Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong S.A.R., China
- The University of Hong Kong Shenzhen Key Laboratory of Fertility Regulation, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
| | - Yuanqing Yao
- The University of Hong Kong Shenzhen Key Laboratory of Fertility Regulation, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
| | - William S B Yeung
- The University of Hong Kong Shenzhen Key Laboratory of Fertility Regulation, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
| | - Cheuk-Lun Lee
- Department of Obstetrics and Gynaecology, School of Clinical Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong S.A.R., China
- The University of Hong Kong Shenzhen Key Laboratory of Fertility Regulation, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
| | - Philip C N Chiu
- Department of Obstetrics and Gynaecology, School of Clinical Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong S.A.R., China
- The University of Hong Kong Shenzhen Key Laboratory of Fertility Regulation, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
| |
Collapse
|
5
|
Chieu RV, Hamilton K, Ryan PM, Copeland J, Wang PW, Retnakaran R, Guttman DS, Parkinson J, Hamilton JK. The impact of gestational diabetes on functional capacity of the infant gut microbiome is modest and transient. Gut Microbes 2024; 16:2356277. [PMID: 38798005 PMCID: PMC11135868 DOI: 10.1080/19490976.2024.2356277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 05/13/2024] [Indexed: 05/29/2024] Open
Abstract
Gestational diabetes mellitus (GDM) is a metabolic complication that manifests as hyperglycemia during the later stages of pregnancy. In high resource settings, careful management of GDM limits risk to the pregnancy, and hyperglycemia typically resolves after birth. At the same time, previous studies have revealed that the gut microbiome of infants born to mothers who experienced GDM exhibit reduced diversity and reduction in the abundance of several key taxa, including Lactobacillus. What is not known is what the functional consequences of these changes might be. In this case control study, we applied 16S rRNA sequence surveys and metatranscriptomics to profile the gut microbiome of 30 twelve-month-old infants - 16 from mothers with GDM, 14 from mothers without - to examine the impact of GDM during pregnancy. Relative to the mode of delivery and sex of the infant, maternal GDM status had a limited impact on the structure and function of the developing microbiome. While GDM samples were associated with a decrease in alpha diversity, we observed no effect on beta diversity and no differentially abundant taxa. Further, while the mode of delivery and sex of infant affected the expression of multiple bacterial pathways, much of the impact of GDM status on the function of the infant microbiome appears to be lost by twelve months of age. These data may indicate that, while mode of delivery appears to impact function and diversity for longer than anticipated, GDM may not have persistent effects on the function nor composition of the infant gut microbiome.
Collapse
Affiliation(s)
- Ryan V. Chieu
- Program in Molecular Medicine, Hospital for Sick Children Research Institute, Toronto, ON, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Katharine Hamilton
- Division of Endocrinology, The Hospital for Sick Children, Toronto, ON, Canada
| | - Paul M. Ryan
- Division of Endocrinology, The Hospital for Sick Children, Toronto, ON, Canada
- Department of Pediatrics, University of Toronto, Toronto, ON, Canada
| | - Julia Copeland
- Centre for the Analysis of Genome Evolution & Function, University of Toronto, Toronto, ON, Canada
| | - Pauline W. Wang
- Centre for the Analysis of Genome Evolution & Function, University of Toronto, Toronto, ON, Canada
- Department of Cell & Systems Biology, University of Toronto, Toronto, ON, Canada
| | - Ravi Retnakaran
- Leadership Sinai Centre for Diabetes, Mount Sinai Hospital, Toronto, ON, Canada
| | - David S. Guttman
- Centre for the Analysis of Genome Evolution & Function, University of Toronto, Toronto, ON, Canada
- Department of Cell & Systems Biology, University of Toronto, Toronto, ON, Canada
| | - John Parkinson
- Program in Molecular Medicine, Hospital for Sick Children Research Institute, Toronto, ON, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
- Department of Biochemistry, University of Toronto, Toronto, ON, Canada
| | - Jill K. Hamilton
- Division of Endocrinology, The Hospital for Sick Children, Toronto, ON, Canada
- Department of Pediatrics, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
6
|
Radojičić O, Pažitná L, Dobrijević Z, Kundalia P, Kianičková K, Katrlík J, Marković VM, Miković Ž, Nedić O, Robajac D. Serum Glycome as a Diagnostic and Prognostic Factor in Gestational Diabetes Mellitus. BIOCHEMISTRY. BIOKHIMIIA 2024; 89:148-158. [PMID: 38467551 DOI: 10.1134/s0006297924010097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 11/23/2023] [Accepted: 11/29/2023] [Indexed: 03/13/2024]
Abstract
Gestational diabetes mellitus (GDM) is a risk factor for both mother and fetus/neonate during and after the pregnancy. Inconsistent protocols and cumbersome screening procedures warrant the search for new and easily accessible biomarkers. We investigated a potential of serum N-glycome to differentiate between healthy pregnant women (n = 49) and women with GDM (n = 53) using a lectin-based microarray and studied the correlation between the obtained data and parameters of glucose and lipid metabolism. Four out of 15 lectins used were able to detect the differences between the control and GDM groups in fucosylation, terminal galactose/N-acetylglucosamine (Gal/GlcNAc), presence of Galα1,4Galβ1,4Glc (Gb3 antigen), and terminal α2,3-sialylation with AUC values above 60%. An increase in the Gb3 antigen and α2,3-sialylation correlated positively with GDM, whereas the amount of fucosylated glycans correlated negatively with the content of terminal Gal/GlcNAc. The content of GlcNAc oligomers correlated with the highest number of blood analytes, indices, and demographic characteristics, but failed to discriminate between the groups. The presence of terminal Gal residues correlated positively with the glucose levels and negatively with the LDL levels in the non-GDM group only. The results suggest fucosylation, terminal galactosylation, and the presence of Gb3 antigen as prediction markers of GDM.
Collapse
Affiliation(s)
- Ognjen Radojičić
- Department of High-Risk Pregnancies, University Clinic for Gynecology and Obstetrics "Narodni Front", Belgrade, Serbia.
| | - Lucia Pažitná
- Institute of Chemistry, Slovak Academy of Sciences, Bratislava, Slovakia.
| | - Zorana Dobrijević
- Department for Metabolism, Institute for the Application of Nuclear Energy, University of Belgrade, Belgrade, Serbia.
| | - Paras Kundalia
- Institute of Chemistry, Slovak Academy of Sciences, Bratislava, Slovakia.
| | | | - Jaroslav Katrlík
- Institute of Chemistry, Slovak Academy of Sciences, Bratislava, Slovakia.
| | - Vesna Mandić Marković
- Department of High-Risk Pregnancies, University Clinic for Gynecology and Obstetrics "Narodni Front", Belgrade, Serbia.
- Medical School, University of Belgrade, Belgrade, Serbia
| | - Željko Miković
- Department of High-Risk Pregnancies, University Clinic for Gynecology and Obstetrics "Narodni Front", Belgrade, Serbia.
- Medical School, University of Belgrade, Belgrade, Serbia
| | - Olgica Nedić
- Department for Metabolism, Institute for the Application of Nuclear Energy, University of Belgrade, Belgrade, Serbia.
| | - Dragana Robajac
- Department for Metabolism, Institute for the Application of Nuclear Energy, University of Belgrade, Belgrade, Serbia.
| |
Collapse
|
7
|
Bueno-Sánchez JC, Gómez-Gutiérrez AM, Maldonado-Estrada JG, Quintana-Castillo JC. Expression of placental glycans and its role in regulating peripheral blood NK cells during preeclampsia: a perspective. Front Endocrinol (Lausanne) 2023; 14:1087845. [PMID: 37206444 PMCID: PMC10190602 DOI: 10.3389/fendo.2023.1087845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 03/03/2023] [Indexed: 05/21/2023] Open
Abstract
Preeclampsia is a pregnancy-related multisystem disorder characterized by altered trophoblast invasion, oxidative stress, exacerbation of systemic inflammatory response, and endothelial damage. The pathogenesis includes hypertension and mild-to-severe microangiopathy in the kidney, liver, placenta, and brain. The main mechanisms involved in its pathogenesis have been proposed to limit trophoblast invasion and increase the release of extracellular vesicles from the syncytiotrophoblast into the maternal circulation, exacerbating the systemic inflammatory response. The placenta expresses glycans as part of its development and maternal immune tolerance during gestation. The expression profile of glycans at the maternal-fetal interface may play a fundamental role in physiological pregnancy changes and disorders such as preeclampsia. It is unclear whether glycans and their lectin-like receptors are involved in the mechanisms of maternal-fetal recognition by immune cells during pregnancy homeostasis. The expression profile of glycans appears to be altered in hypertensive disorders of pregnancy, which could lead to alterations in the placental microenvironment and vascular endothelium in pregnancy conditions such as preeclampsia. Glycans with immunomodulatory properties at the maternal-fetal interface are altered in early-onset severe preeclampsia, implying that innate immune system components, such as NK cells, exacerbate the systemic inflammatory response observed in preeclampsia. In this article, we discuss the evidence for the role of glycans in gestational physiology and the perspective of glycobiology on the pathophysiology of hypertensive disorders in gestation.
Collapse
Affiliation(s)
- Julio C. Bueno-Sánchez
- Reproduction Group, Department of Physiology and Biochemistry, School of Medicine, Universidad de Antioquia, Medellín, Colombia
- Department of Obstetrics and Gynecology, School of Medicine, Universidad de Antioquia, Medellín, Colombia
- Red Iberoamericana de Alteraciones Vasculares en Trastornos del Embarazo (RIVATREM), Chillan, Chile
| | - Alejandra M. Gómez-Gutiérrez
- Reproduction Group, Department of Physiology and Biochemistry, School of Medicine, Universidad de Antioquia, Medellín, Colombia
| | - Juan G. Maldonado-Estrada
- One Health and Veterinary Innovative Research & Development (OHVRI) Research Group, Escuela de Medicina Veterinaria, Universidad de Antioquia, Medellín, Colombia
| | | |
Collapse
|
8
|
Burton GJ, Jauniaux E. The human placenta: new perspectives on its formation and function during early pregnancy. Proc Biol Sci 2023; 290:20230191. [PMID: 37072047 PMCID: PMC10113033 DOI: 10.1098/rspb.2023.0191] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/20/2023] Open
Abstract
The placenta has evolved to support the development of the embryo and fetus during the different intrauterine periods of life. By necessity, its development must precede that of the embryo. There is now evidence that during embryogenesis and organogenesis, the development of the human placenta is supported by histotrophic nutrition secreted from endometrial glands rather than maternal blood. These secretions provide a plentiful supply of glucose, lipids, glycoproteins and growth factors that stimulate rapid proliferation and differentiation of the villous trophoblast. Furthermore, evidence from endometrial gland organoids indicates that expression and secretion of these products are upregulated following sequential exposure to oestrogen, progesterone and trophoblastic and decidual hormones, in particular prolactin. Hence, a feed-forward signalling dialogue is proposed among the trophoblast, decidua and glands that enables the placenta to stimulate its own development, independent of that of the embryo. Many common complications of pregnancy represent a spectrum of disorders associated with deficient trophoblast proliferation. Increasing evidence suggests that this spectrum is mirrored by one of impaired decidualization, potentially compromising histotroph secretion through diminished prolactin secretion and reduced gland function. Optimizing endometrial wellbeing prior to conception may therefore help to prevent common pregnancy complications, such as miscarriage, growth restriction and pre-eclampsia.
Collapse
Affiliation(s)
- Graham J Burton
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| | - Eric Jauniaux
- EGA Institute for Women's Health, Faculty of Population Health Sciences, University College London, London, UK
| |
Collapse
|
9
|
Yue Z, Yu Y, Gao B, Wang D, Sun H, Feng Y, Ma Z, Xie X. Advances in protein glycosylation and its role in tissue repair and regeneration. Glycoconj J 2023; 40:355-373. [PMID: 37097318 DOI: 10.1007/s10719-023-10117-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 04/10/2023] [Accepted: 04/16/2023] [Indexed: 04/26/2023]
Abstract
After tissue damage, a series of molecular and cellular events are initiated to promote tissue repair and regeneration to restore its original structure and function. These events include inter-cell communication, cell proliferation, cell migration, extracellular matrix differentiation, and other critical biological processes. Glycosylation is the crucial conservative and universal post-translational modification in all eukaryotic cells [1], with influential roles in intercellular recognition, regulation, signaling, immune response, cellular transformation, and disease development. Studies have shown that abnormally glycosylation of proteins is a well-recognized feature of cancer cells, and specific glycan structures are considered markers of tumor development. There are many studies on gene expression and regulation during tissue repair and regeneration. Still, there needs to be more knowledge of complex carbohydrates' effects on tissue repair and regeneration, such as glycosylation. Here, we present a review of studies investigating protein glycosylation in the tissue repair and regeneration process.
Collapse
Affiliation(s)
- Zhongyu Yue
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Science, Northwest University, Xi'an, China
| | - Yajie Yu
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Science, Northwest University, Xi'an, China
| | - Boyuan Gao
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Science, Northwest University, Xi'an, China
| | - Du Wang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Science, Northwest University, Xi'an, China
| | - Hongxiao Sun
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Science, Northwest University, Xi'an, China
| | - Yue Feng
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Science, Northwest University, Xi'an, China
| | - Zihan Ma
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Science, Northwest University, Xi'an, China
| | - Xin Xie
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Science, Northwest University, Xi'an, China.
- GeWu Medical Research Institute (GMRI), Xi'an, China.
| |
Collapse
|
10
|
Dou Y, Luo Y, Xing Y, Liu H, Chen B, Zhu L, Ma D, Zhu J. Human Milk Oligosaccharides Variation in Gestational Diabetes Mellitus Mothers. Nutrients 2023; 15:nu15061441. [PMID: 36986171 PMCID: PMC10059845 DOI: 10.3390/nu15061441] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 03/08/2023] [Accepted: 03/14/2023] [Indexed: 03/19/2023] Open
Abstract
Gestational diabetes mellitus (GDM) is a common disease of pregnancy, but with very limited knowledge of its impact on human milk oligosaccharides (HMOs) in breast milk. This study aimed to explore the lactational changes in the concentration of HMOs in exclusively breastfeeding GDM mothers and the differences between GDM and healthy mothers. A total of 22 mothers (11 GDM mothers vs. 11 healthy mothers) and their offspring were enrolled in the study and the levels of 14 HMOs were measured in colostrum, transitional milk, and mature milk. Most of the HMOs showed a significant temporal trend with decreasing levels over lactation; however, there were some exceptions for 2′-Fucosyllactose (2′-FL), 3-Fucosyllactose (3-FL), Lacto-N-fucopentaose II (LNFP-II), and Lacto-N-fucopentaose III (LNFP-III). Lacto-N-neotetraose (LNnT) was significantly higher in GDM mothers in all time points and its concentrations in colostrum and transitional milk were correlated positively with the infant’s weight-for-age Z-score at six months postnatal in the GDM group. Significant group differences were also found in LNFP-II, 3′-Sialyllactose (3′-SL), and Disialyllacto-N-tetraose (DSLNT) but not in all lactational periods. The role of differently expressed HMOs in GDM needs to be further explored by follow-up studies.
Collapse
Affiliation(s)
- Yuqi Dou
- Department of Social Medicine and Health Education, School of Public Health, Peking University Health Science Center, Beijing 100191, China; (Y.D.)
| | - Yuanli Luo
- School of Public Health, Sichuan University, Chengdu 610041, China
| | - Yan Xing
- Department of Pediatrics, Peking University Third Hospital, Beijing 100191, China
| | - Hui Liu
- Department of Pediatrics, Peking University Third Hospital, Beijing 100191, China
| | - Botian Chen
- Department of Social Medicine and Health Education, School of Public Health, Peking University Health Science Center, Beijing 100191, China; (Y.D.)
| | - Liye Zhu
- Obstetrics Department, Maternal and Child Hospital of Haidian District, Beijing 100080, China
| | - Defu Ma
- Department of Social Medicine and Health Education, School of Public Health, Peking University Health Science Center, Beijing 100191, China; (Y.D.)
- Correspondence: (D.M.); (J.Z.)
| | - Jing Zhu
- Institute of Biotechnology and Health, Beijing Academy of Science and Technology, Beijing 100089, China
- Correspondence: (D.M.); (J.Z.)
| |
Collapse
|
11
|
Roles of N-linked glycosylation and glycan-binding proteins in placentation: trophoblast infiltration, immunomodulation, angiogenesis, and pathophysiology. Biochem Soc Trans 2023; 51:639-653. [PMID: 36929183 DOI: 10.1042/bst20221406] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 02/19/2023] [Accepted: 02/22/2023] [Indexed: 03/18/2023]
Abstract
Protein N-linked glycosylation is a structurally diverse post-translational modification that stores biological information in a larger order of magnitude than other post-translational modifications such as phosphorylation, ubiquitination and acetylation. This gives N-glycosylated proteins a diverse range of properties and allows glyco-codes (glycan-related information) to be deciphered by glycan-binding proteins (GBPs). The intervillous space of the placenta is richly populated with membrane-bound and secreted glycoproteins. Evidence exists to suggest that altering the structural nature of their N-glycans can impact several trophoblast functions, which include those related to interactions with decidual cells. This review summarizes trophoblast-related activities influenced by N-glycan-GBP recognition, exploring how different subtypes of trophoblasts actively adapt to characteristics of the decidualized endometrium through cell-specific expression of N-glycosylated proteins, and how these cells receive decidua-derived signals via N-glycan-GBP interactions. We highlight work on how changes in N-glycosylation relates to the success of trophoblast infiltration, interactions of immunomodulators, and uterine angiogenesis. We also discuss studies that suggest aberrant N-glycosylation of trophoblasts may contribute to the pathogenesis of pregnancy complications (e.g. pre-eclampsia, early spontaneous miscarriages and hydatidiform mole). We propose that a more in-depth understanding of how N-glycosylation shapes trophoblast phenotype during early pregnancy has the potential to improve our approach to predicting, diagnosing and alleviating poor maternal/fetal outcomes associated with placental dysfunction.
Collapse
|
12
|
Duca M, Malagolini N, Dall'Olio F. The story of the Sd a antigen and of its cognate enzyme B4GALNT2: What is new? Glycoconj J 2023; 40:123-133. [PMID: 36287346 DOI: 10.1007/s10719-022-10089-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 10/14/2022] [Accepted: 10/18/2022] [Indexed: 11/25/2022]
Abstract
The structure Siaα2,3(GalNAcβ1,4)Gal- is the epitope of the Sda antigen, which is expressed on the erythrocytes and secretions of the vast majority of Caucasians, carried by N- and O-linked chains of glycoproteins, as well as by glycolipids. Sda is very similar, but not identical, to ganglioside GM2 [Siaα2,3(GalNAcβ1,4)Galβ1,4Glc-Cer]. The Sda synthase β1,4 N-acetylgalactosaminyl transferase 2 (B4GALNT2) exists in a short and a long form, diverging in the aminoterminal domain. The latter has a very long cytoplasmic tail and displays a Golgi- as well as a post-Golgi localization. The biosynthesis of Sda is mutually exclusive with that of the cancer-associated sialyl Lewis antigens, whose structure is Siaα2,3Galβ1,3/4(Fucα1,4/3)GlcNAc-. B4GALNT2 is down-regulated in colon cancer but patients with higher expression survive longer. In experimental systems, B4GALNT2 inhibits colon cancer progression,not only through inhibition of sialyl Lewis antigen biosynthesis. By contrast, in breast cancer B4GALNT2 is associated with malignancy. In colon cancer, the B4GALNT2 gene is regulated by multiple mechanisms, which include miRNA and transcription factor expression, as well as CpG methylation. In addition, Sda/B4GALNT2 regulates the susceptibility to infectious agents, the protection from muscle dystrophy, the activity of immune system in pregnancy and the immune rejection in xenotransplantation.
Collapse
Affiliation(s)
- Martina Duca
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), General Pathology Building, University of Bologna, Via San Giacomo 14, 40126, Bologna, Italy
| | - Nadia Malagolini
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), General Pathology Building, University of Bologna, Via San Giacomo 14, 40126, Bologna, Italy
| | - Fabio Dall'Olio
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), General Pathology Building, University of Bologna, Via San Giacomo 14, 40126, Bologna, Italy.
| |
Collapse
|
13
|
Sharma S, Banerjee S, Krueger PM, Blois SM. Immunobiology of Gestational Diabetes Mellitus in Post-Medawar Era. Front Immunol 2022; 12:758267. [PMID: 35046934 PMCID: PMC8761800 DOI: 10.3389/fimmu.2021.758267] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 12/07/2021] [Indexed: 12/16/2022] Open
Abstract
Although the concepts related to fetal immune tolerance proposed by Sir Peter Medawar in the 1950s have not withstood the test of time, they revolutionized our current understanding of the immunity at the maternal-fetal interface. An important extension of the original Medawar paradigm is the investigation into the underlying mechanisms for adverse pregnancy outcomes, including recurrent spontaneous abortion, preterm birth, preeclampsia and gestational diabetes mellitus (GDM). Although a common pregnancy complication with systemic symptoms, GDM still lacks understanding of immunological perturbations associated with the pathological processes, particularly at the maternal-fetal interface. GDM has been characterized by low grade systemic inflammation that exacerbates maternal immune responses. In this regard, GDM may also entail mild autoimmune pathology by dysregulating circulating and uterine regulatory T cells (Tregs). The aim of this review article is to focus on maternal-fetal immunological tolerance phenomenon and discuss how local or systemic inflammation has been programmed in GDM. Specifically, this review addresses the following questions: Does the inflammatory or exhausted Treg population affecting the Th17:Treg ratio lead to the propensity of a pro-inflammatory environment? Do glycans and glycan-binding proteins (mainly galectins) contribute to the biology of immune responses in GDM? Our understanding of these important questions is still elementary as there are no well-defined animal models that mimic all the features of GDM or can be used to better understand the mechanistic underpinnings associated with this common pregnancy complication. In this review, we will leverage our preliminary studies and the literature to provide a conceptualized discussion on the immunobiology of GDM.
Collapse
Affiliation(s)
- Surendra Sharma
- Department of Pediatrics, Women and Infants Hospital-Warren Alpert Medical School of Brown University, Providence, RI, United States
| | - Sayani Banerjee
- Department of Pediatrics, Women and Infants Hospital-Warren Alpert Medical School of Brown University, Providence, RI, United States
| | - Paula M Krueger
- Department of Pediatrics, Women and Infants Hospital-Warren Alpert Medical School of Brown University, Providence, RI, United States
| | - Sandra M Blois
- Department of Obstetrics and Fetal Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
14
|
Tabang DN, Ford M, Li L. Recent Advances in Mass Spectrometry-Based Glycomic and Glycoproteomic Studies of Pancreatic Diseases. Front Chem 2021; 9:707387. [PMID: 34368082 PMCID: PMC8342852 DOI: 10.3389/fchem.2021.707387] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 07/12/2021] [Indexed: 12/14/2022] Open
Abstract
Modification of proteins by glycans plays a crucial role in mediating biological functions in both healthy and diseased states. Mass spectrometry (MS) has emerged as the most powerful tool for glycomic and glycoproteomic analyses advancing knowledge of many diseases. Such diseases include those of the pancreas which affect millions of people each year. In this review, recent advances in pancreatic disease research facilitated by MS-based glycomic and glycoproteomic studies will be examined with a focus on diabetes and pancreatic cancer. The last decade, and especially the last five years, has witnessed developments in both discovering new glycan or glycoprotein biomarkers and analyzing the links between glycans and disease pathology through MS-based studies. The strength of MS lies in the specificity and sensitivity of liquid chromatography-electrospray ionization MS for measuring a wide range of biomolecules from limited sample amounts from many sample types, greatly enhancing and accelerating the biomarker discovery process. Furthermore, imaging MS of glycans enabled by matrix-assisted laser desorption/ionization has proven useful in complementing histology and immunohistochemistry to monitor pancreatic disease progression. Advances in biological understanding and analytical techniques, as well as challenges and future directions for the field, will be discussed.
Collapse
Affiliation(s)
- Dylan Nicholas Tabang
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, United States
| | - Megan Ford
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, WI, United States
| | - Lingjun Li
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, United States.,School of Pharmacy, University of Wisconsin-Madison, Madison, WI, United States
| |
Collapse
|
15
|
Wang Y, Zhao W, Mei S, Chen P, Leung TY, Lee CL, Yeung WSB, Ou JP, Liang X, Chiu PCN. Identification of Sialyl-Lewis(x)-Interacting Protein on Human Spermatozoa. Front Cell Dev Biol 2021; 9:700396. [PMID: 34354992 PMCID: PMC8329450 DOI: 10.3389/fcell.2021.700396] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 06/28/2021] [Indexed: 01/12/2023] Open
Abstract
Capacitated spermatozoa initiate fertilization by binding to the zona pellucida (ZP). Defective spermatozoa-ZP binding causes infertility. The sialyl-Lewis(x) (SLeX) sequence is the most abundant terminal sequence on the glycans of human ZP glycoproteins involving in spermatozoa-ZP binding. This study aimed to identify and characterize the SLeX-binding proteins on human spermatozoa. By using affinity chromatography followed by mass spectrometric analysis, chromosome 1 open reading frame 56 (C1orf56) was identified to be a SLeX-binding protein of capacitated spermatozoa. The acrosomal region of spermatozoa possessed C1orf56 immunoreactive signals with intensities that increased after capacitation indicating translocation of C1orf56 to the cell surface during capacitation. Treatment with antibody against C1orf56 inhibited spermatozoa-ZP binding and ZP-induced acrosome reaction. Purified C1orf56 from capacitated spermatozoa bound to human ZP. A pilot clinical study was conducted and found no association between the percentage of capacitated spermatozoa with C1orf56 expression and in vitro fertilization (IVF) rate in assisted reproduction treatment. However, the percentage of C1orf56 positive spermatozoa in the acrosome-reacted population was significantly (P < 0.05) lower in cycles with a fertilization rate < 60% when compared to those with a higher fertilization rate, suggesting that C1orf56 may have functions after ZP-binding and acrosome reaction. A larger clinical trial is needed to determine the possible use of sperm C1orf56 content for the prediction of fertilization potential of sperm samples.
Collapse
Affiliation(s)
- Ying Wang
- Department of Obstetrics and Gynecology, Queen Mary Hospital, The University of Hong Kong, Hong Kong, Hong Kong.,Department of Obstetrics and Gynecology, Center of Reproductive Medicine, Peking University Third Hospital, Beijing, China
| | - Weie Zhao
- Department of Obstetrics and Gynecology, Queen Mary Hospital, The University of Hong Kong, Hong Kong, Hong Kong.,The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Si Mei
- Department of Obstetrics and Gynecology, Queen Mary Hospital, The University of Hong Kong, Hong Kong, Hong Kong.,Department of Physiology, Medical College, Hunan University of Chinese Medicine, Changsha, China
| | - Panyu Chen
- The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Tsz-Ying Leung
- Department of Obstetrics and Gynecology, Queen Mary Hospital, The University of Hong Kong, Hong Kong, Hong Kong.,Shenzhen Key Laboratory of Fertility Regulation, Department of Obstetrics and Gynecology, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
| | - Cheuk-Lun Lee
- Department of Obstetrics and Gynecology, Queen Mary Hospital, The University of Hong Kong, Hong Kong, Hong Kong.,Shenzhen Key Laboratory of Fertility Regulation, Department of Obstetrics and Gynecology, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
| | - William S B Yeung
- Department of Obstetrics and Gynecology, Queen Mary Hospital, The University of Hong Kong, Hong Kong, Hong Kong.,Shenzhen Key Laboratory of Fertility Regulation, Department of Obstetrics and Gynecology, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
| | - Jian-Ping Ou
- Department of Obstetrics and Gynecology, Queen Mary Hospital, The University of Hong Kong, Hong Kong, Hong Kong.,Center for Reproductive Medicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Xiaoyan Liang
- The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Philip C N Chiu
- Department of Obstetrics and Gynecology, Queen Mary Hospital, The University of Hong Kong, Hong Kong, Hong Kong.,Shenzhen Key Laboratory of Fertility Regulation, Department of Obstetrics and Gynecology, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
| |
Collapse
|
16
|
Luddi A, Pavone V, Governini L, Capaldo A, Landi C, Ietta F, Paccagnini E, Morgante G, De Leo V, Piomboni P. Emerging role of embryo secretome in the paracrine communication at the implantation site: a proof of concept. Fertil Steril 2021; 115:1054-1062. [PMID: 33500140 DOI: 10.1016/j.fertnstert.2020.10.058] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 09/22/2020] [Accepted: 10/20/2020] [Indexed: 12/27/2022]
Abstract
OBJECTIVE To assess the role of embryo secretome in modifying the molecular profile of glycodelin A (GdA) in endometrial organoids (ORG) mimicking the implantation window. To verify whether the use of embryo-conditioned culture medium at the time of the embryo transfer may increase in vitro fertilization outcome. DESIGN Molecular study with human endometrial ORG and embryo-conditioned culture medium. Retrospective study using prospectively recorded data. SETTING University hospital. PATIENT(S) For isolation and culture of endometrial glandular ORG, endometrial biopsy specimens from five white women of proven fertility undergoing laparoscopy for tubal sterilization. A total of 75 women undergoing intracytoplasmic sperm injection for tubal and/or male infertility factor. INTERVENTIONS(S) In vitro fertilization. MAIN OUTCOME MEASURE(S) Pinopodes presence in human endometrial ORG. Glycodelin A expression profile by means of two-dimensional electrophoresis. In vitro fertilization outcome. RESULT(S) This in vitro study demonstrated that the treatment of endometrial ORG with the secretome of medium conditioned by the growing embryo increased the GdA relative abundance and induced a different glycoform pattern. Biochemical and clinical pregnancy rate significantly increased when the spent medium was loaded during the transfer (17.5% vs. 36.6% and 16.5% vs. 35.1%, respectively). CONCLUSION(S) This study demonstrated that the secretome of implanting embryos is able to induce the expression as well as to determine the relative abundance and the glycosilation profile of endometrial GdA, a protein having a key role in the embryo-endometrial cross talk. Moreover, a significant increase in pregnancy rate was observed when the embryo transfer was performed by using the culture medium conditioned by the growing embryo.
Collapse
Affiliation(s)
- Alice Luddi
- Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy
| | - Valentina Pavone
- Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy
| | - Laura Governini
- Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy
| | - Angela Capaldo
- Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy
| | - Claudia Landi
- Department of Life Sciences, University of Siena, Siena, Italy
| | - Francesca Ietta
- Department of Life Sciences, University of Siena, Siena, Italy
| | | | - Giuseppe Morgante
- Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy
| | - Vincenzo De Leo
- Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy
| | - Paola Piomboni
- Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy.
| |
Collapse
|
17
|
Štambuk T, Gornik O. Protein Glycosylation in Diabetes. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1325:285-305. [PMID: 34495541 DOI: 10.1007/978-3-030-70115-4_14] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Diabetes mellitus is a group of metabolic disorders characterized by the presence of hyperglycaemia. Due to its high prevalence and substantial heterogeneity, many studies have been investigating markers that could identify predisposition for the disease development, differentiate between the various subtypes, establish early diagnosis, predict complications or represent novel therapeutic targets. N-glycans, complex oligosaccharide molecules covalently linked to proteins, emerged as potential markers and functional effectors of various diabetes subtypes, appearing to have the capacity to meet these requirements. For instance, it has been shown that N-glycome changes in patients with type 2 diabetes and that N-glycans can even identify individuals with an increased risk for its development. Moreover, genome-wide association studies identified glycosyltransferase genes as candidate causal genes for both type 1 and type 2 diabetes. N-glycans have also been suggested to have a major role in preventing the impairment of glucose-stimulated insulin secretion by modulating cell surface expression of glucose transporters. In this chapter we aimed to describe four major diabetes subtypes: type 1, type 2, gestational and monogenic diabetes, giving an overview of suggested role for N-glycosylation in their development, diagnosis and management.
Collapse
Affiliation(s)
- Tamara Štambuk
- Genos, Glycoscience Research Laboratory, Zagreb, Croatia.
| | - Olga Gornik
- University of Zagreb Faculty of Pharmacy and Biochemistry, Zagreb, Croatia
| |
Collapse
|
18
|
Yu H, Wang J, Tang Z, Li X, Yin M, Zhang F, Shu J, Chen W, Yang S, Li Z. Integrated glycomics strategy for the evaluation of glycosylation alterations in salivary proteins associated with type 2 diabetes mellitus. RSC Adv 2020; 10:39739-39752. [PMID: 35515389 PMCID: PMC9057417 DOI: 10.1039/d0ra05466f] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 10/10/2020] [Indexed: 12/25/2022] Open
Abstract
Glycosylation is involved in several biological processes, and its alterations can reflect the process of certain diseases. Type 2 diabetes mellitus (T2DM) has attained the status of a global pandemic; however, the difference in salivary protein glycosylation between healthy subjects and patients with T2DM has not been fully understood. In the present study, salivary specimens from patients with T2DM (n = 72) and healthy volunteers (HVs, n = 80) were enrolled and divided into discovery and validation cohorts. A method combining the lectin microarray and lectin blotting was employed to investigate and confirm the altered glycopatterns in salivary glycoproteins. Then, lectin-mediated affinity capture of glycoproteins and MALDI-TOF/TOF-MS were performed to obtain the precise structural information of the altered glycans. As a result, the glycopatterns recognized by 5 lectins (LEL, VVA, Jacalin, RCA120 and DSA) showed significant alteration in the saliva of T2DM patients. Notably, the glycopattern of Galβ-1,4GlcNAc (LacNAc) recognized by LEL exhibited a significant increase in T2DM patients compared to HVs in both discovery and validation cohorts. The MALDI-TOF/TOF-MS results indicated that there were 10 and 7 LacNAc-containing N/O-glycans (e.g. m/z 1647.586, 11 688.613 and 1562.470) that were identified only in T2DM patients. Besides, the relative abundance of 3 LacNAc-containing N-glycans and 10 LacNAc-containing O-glycans showed an increase in the glycopattern in T2DM patients. These results indicated that the glycopattern of LacNAc is increased in salivary glycoproteins from T2DM patients, and an increase in LacNAc-containing N/O-glycans may contribute to this alteration. Our findings provide useful information to understand the complex physiological changes in the T2DM patients.
Collapse
Affiliation(s)
- Hanjie Yu
- Laboratory for Functional Glycomics, College of Life Sciences, Northwest University No. 229 Taibai Beilu Xi'an 710069 China
| | - Junhong Wang
- Department of Endocrinology, Second Affiliated Hospital of Xi'an Jiaotong University Xi'an 710004 China
| | - Zhen Tang
- Laboratory for Functional Glycomics, College of Life Sciences, Northwest University No. 229 Taibai Beilu Xi'an 710069 China
| | - Xia Li
- Laboratory for Functional Glycomics, College of Life Sciences, Northwest University No. 229 Taibai Beilu Xi'an 710069 China
| | - Mengqi Yin
- Laboratory for Functional Glycomics, College of Life Sciences, Northwest University No. 229 Taibai Beilu Xi'an 710069 China
| | - Fan Zhang
- Laboratory for Functional Glycomics, College of Life Sciences, Northwest University No. 229 Taibai Beilu Xi'an 710069 China
| | - Jian Shu
- Laboratory for Functional Glycomics, College of Life Sciences, Northwest University No. 229 Taibai Beilu Xi'an 710069 China
| | - Wentian Chen
- Laboratory for Functional Glycomics, College of Life Sciences, Northwest University No. 229 Taibai Beilu Xi'an 710069 China
| | - Shuang Yang
- Department of Pharmaceutical Analysis, School of Pharmaceutical Sciences, Soochow University Suzhou Jiangsu China
| | - Zheng Li
- Laboratory for Functional Glycomics, College of Life Sciences, Northwest University No. 229 Taibai Beilu Xi'an 710069 China
| |
Collapse
|
19
|
Lee CL, Vijayan M, Wang X, Lam KKW, Koistinen H, Seppala M, Li RHW, Ng EHY, Yeung WSB, Chiu PCN. Glycodelin-A stimulates the conversion of human peripheral blood CD16-CD56bright NK cell to a decidual NK cell-like phenotype. Hum Reprod 2020; 34:689-701. [PMID: 30597092 DOI: 10.1093/humrep/dey378] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Revised: 10/25/2018] [Accepted: 12/03/2018] [Indexed: 12/22/2022] Open
Abstract
STUDY QUESTION Does glycodelin-A (GdA) induce conversion of human peripheral blood CD16-CD56bright natural killer (NK) cells to decidual NK (dNK) cells to facilitate placentation? SUMMARY ANSWER GdA binds to blood CD16-CD56bright NK cells via its sialylated glycans and converts them to a dNK-like cells, which in turn regulate endothelial cell angiogenesis and trophoblast invasion via vascular endothelial growth factor (VEGF) and insulin-like growth factor-binding protein 1 (IGFBP-1) secretion, respectively. WHAT IS KNOWN ALREADY dNK cells are the most abundant leucocyte population in the decidua. These cells express CD16-CD56bright phenotype. Peripheral blood CD16-CD56bright NK cells and hematopoietic precursors have been suggested to be capable of differentiating towards dNK cells upon exposure to the decidual microenvironment. These cells regulate trophoblast invasion during spiral arteries remodelling and mediate homoeostasis and functions of the endothelial cells. GdA is an abundant glycoprotein in the human decidua with peak expression between the 6th and 12th week of gestation, suggesting a role in early pregnancy. Indeed, GdA interacts with and modulates functions and differentiation of trophoblast and immune cells in the human feto-maternal interface. Aberrant GdA expression during pregnancy is associated with unexplained infertility, pregnancy loss and pre-eclampsia. STUDY DESIGN, SIZE, DURATION CD16+CD56dim, CD16-CD56bright and dNK cells were isolated from human peripheral blood and decidua tissue, respectively, by immuno-magnetic beads or fluorescence-activated cell sorting. Human extravillous trophoblasts were isolated from first trimester placental tissue after termination of pregnancy. Biological activities of the cells were studied after treatment with GdA at a physiological dose of 5 μg/mL. GdA was purified from human amniotic fluid by immuno-affinity chromatography. PARTICIPANTS/MATERIALS, SETTING, METHODS Expression of VEGF, CD9, CD49a, CD151 and CD158a in the cells were determined by flow cytometry. Angiogenic proteins in the spent media of NK cells were determined by cytokine array and ELISA. Blocking antibodies were used to study the functions of the identified angiogenic proteins. Endothelial cell angiogenesis was determined by tube formation and trans-well migration assays. Cell invasion and migration were determined by trans-well invasion/migration assay. Binding of normal and de-sialylated GdA, and expression of L-selectin and siglec-7 on the NK cells were analysed by flow cytometry. The association between GdA and L-selectin on NK cells was confirmed by immunoprecipitation. Extracellular signal-regulated protein kinases (ERK) activation was determined by Western blotting and functional assays. MAIN RESULTS AND THE ROLE OF CHANCE GdA treatment enhanced the expression of dNK cell markers CD9 and CD49a and the production of the functional dNK secretory product VEGF in the peripheral blood CD16-CD56bright NK cells. The spent media of GdA-treated CD16-CD56bright NK cells promoted tube formation of human umbilical vein endothelial cells and invasiveness of trophoblasts. These stimulatory effects were mediated by the stimulatory activities of GdA on an ERK-activation dependent production of VEGF and IGFBP-1 by the NK cells. GdA had a stronger binding affinity to the CD16-CD56bright NK cells as compared to the CD16+CD56dim NK cells. This GdA-NK cell interaction was reduced by de-sialylation. GdA interacted with L-selectin, expressed only in the CD16-CD56bright NK cells, but not in the CD16+CD56dim NK cells. Anti-L-selectin functional blocking antibody suppressed the binding and biological activities of GdA on the NK cells. LARGE SCALE DATA N/A. LIMITATIONS, REASONS FOR CAUTION Some of the above findings are based on a small sample size of peripheral blood CD16-CD56bright NK cells. These results need to be confirmed with human primary dNK cells. WIDER IMPLICATIONS OF THE FINDINGS This is the first study on the biological role of GdA on conversion of CD16-CD56bright NK cells to dNK-like cells. Further investigation on the glycosylation and functions of GdA will enhance our understanding on human placentation and placenta-associated complications with altered NK cell biology. STUDY FUNDING/COMPETING INTEREST(S) This work was supported by the Hong Kong Research Grant Council Grant 17122415, Sanming Project of Medicine in Shenzhen, the Finnish Cancer Foundation, Sigrid Jusélius Foundation and the Finnish Society of Clinical Chemistry. The authors have no competing interests to declare.
Collapse
Affiliation(s)
- Cheuk-Lun Lee
- Department of Obstetrics and Gynaecology, LKS Faculty of Medicine, The University of Hong Kong, 7/F, Laboratory Block, 21 Sassoon Road, Pokfulam, Hong Kong.,Shenzhen Key Laboratory of Fertility Regulation, Department of Obstetrics and Gynecology, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
| | - Madhavi Vijayan
- Department of Obstetrics and Gynaecology, LKS Faculty of Medicine, The University of Hong Kong, 7/F, Laboratory Block, 21 Sassoon Road, Pokfulam, Hong Kong
| | - Xia Wang
- Department of Obstetrics and Gynaecology, LKS Faculty of Medicine, The University of Hong Kong, 7/F, Laboratory Block, 21 Sassoon Road, Pokfulam, Hong Kong
| | - Kevin K W Lam
- Department of Obstetrics and Gynaecology, LKS Faculty of Medicine, The University of Hong Kong, 7/F, Laboratory Block, 21 Sassoon Road, Pokfulam, Hong Kong.,Shenzhen Key Laboratory of Fertility Regulation, Department of Obstetrics and Gynecology, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
| | - Hannu Koistinen
- Department of Clinical Chemistry and Obstetrics and Gynecology, University of Helsinki and Helsinki University Central Hospital, HUS Helsinki, Finland
| | - Markku Seppala
- Department of Clinical Chemistry and Obstetrics and Gynecology, University of Helsinki and Helsinki University Central Hospital, HUS Helsinki, Finland
| | - Raymond H W Li
- Department of Obstetrics and Gynaecology, LKS Faculty of Medicine, The University of Hong Kong, 7/F, Laboratory Block, 21 Sassoon Road, Pokfulam, Hong Kong.,Shenzhen Key Laboratory of Fertility Regulation, Department of Obstetrics and Gynecology, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
| | - Ernest H Y Ng
- Department of Obstetrics and Gynaecology, LKS Faculty of Medicine, The University of Hong Kong, 7/F, Laboratory Block, 21 Sassoon Road, Pokfulam, Hong Kong.,Shenzhen Key Laboratory of Fertility Regulation, Department of Obstetrics and Gynecology, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
| | - William S B Yeung
- Department of Obstetrics and Gynaecology, LKS Faculty of Medicine, The University of Hong Kong, 7/F, Laboratory Block, 21 Sassoon Road, Pokfulam, Hong Kong.,Shenzhen Key Laboratory of Fertility Regulation, Department of Obstetrics and Gynecology, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
| | - Philip C N Chiu
- Department of Obstetrics and Gynaecology, LKS Faculty of Medicine, The University of Hong Kong, 7/F, Laboratory Block, 21 Sassoon Road, Pokfulam, Hong Kong.,Shenzhen Key Laboratory of Fertility Regulation, Department of Obstetrics and Gynecology, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
| |
Collapse
|
20
|
Blois SM, Verlohren S, Wu G, Clark G, Dell A, Haslam SM, Barrientos G. Role of galectin-glycan circuits in reproduction: from healthy pregnancy to preterm birth (PTB). Semin Immunopathol 2020; 42:469-486. [PMID: 32601855 PMCID: PMC7508936 DOI: 10.1007/s00281-020-00801-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Accepted: 05/20/2020] [Indexed: 02/08/2023]
Abstract
Growing evidence suggests that galectins, an evolutionarily conserved family of glycan-binding proteins, fulfill key roles in pregnancy including blastocyst implantation, maternal-fetal immune tolerance, placental development, and maternal vascular expansion, thereby establishing a healthy environment for the growing fetus. In this review, we comprehensively present the function of galectins in shaping cellular circuits that characterize a healthy pregnancy. We describe the current understanding of galectins in term and preterm labor and discuss how the galectin-glycan circuits contribute to key immunological pathways sustaining maternal tolerance and preventing microbial infections. A deeper understanding of the glycoimmune pathways regulating early events in preterm birth could offer the broader translational potential for the treatment of this devastating syndrome.
Collapse
Affiliation(s)
- Sandra M Blois
- Experimental and Clinical Research Center, A Cooperation Between the Max Delbrück Center for Molecular Medicine in the Helmholtz Association and the Charité-Universitätsmedizin Berlin, AG GlycoImmunology, Berlin, Germany. .,Institute for Medical Immunology, Charité-Universitätsmedizin Berlin, Berlin, Germany. .,Department of Obstetrics and Fetal Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
| | - Stefan Verlohren
- Department of Obstetrics, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Gang Wu
- Department of Life Sciences, Imperial College London, London, UK
| | - Gary Clark
- Department of Obstetrics, Gynaecology and Women's Health, University of Missouri, Columbia, Missouri, USA
| | - Anne Dell
- Department of Life Sciences, Imperial College London, London, UK
| | - Stuart M Haslam
- Department of Life Sciences, Imperial College London, London, UK
| | - Gabriela Barrientos
- Laboratory of Experimental Medicine, Hospital Alemán, School of Medicine, University of Buenos Aires, CONICET, Buenos Aires, Argentina
| |
Collapse
|
21
|
Kang T, Boland BB, Jensen P, Alarcon C, Nawrocki A, Grimsby JS, Rhodes CJ, Larsen MR. Characterization of Signaling Pathways Associated with Pancreatic β-cell Adaptive Flexibility in Compensation of Obesity-linked Diabetes in db/db Mice. Mol Cell Proteomics 2020; 19:971-993. [PMID: 32265294 PMCID: PMC7261816 DOI: 10.1074/mcp.ra119.001882] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 03/03/2020] [Indexed: 12/20/2022] Open
Abstract
The onset of obesity-linked type 2 diabetes (T2D) is marked by an eventual failure in pancreatic β-cell function and mass that is no longer able to compensate for the inherent insulin resistance and increased metabolic load intrinsic to obesity. However, in a commonly used model of T2D, the db/db mouse, β-cells have an inbuilt adaptive flexibility enabling them to effectively adjust insulin production rates relative to the metabolic demand. Pancreatic β-cells from these animals have markedly reduced intracellular insulin stores, yet high rates of (pro)insulin secretion, together with a substantial increase in proinsulin biosynthesis highlighted by expanded rough endoplasmic reticulum and Golgi apparatus. However, when the metabolic overload and/or hyperglycemia is normalized, β-cells from db/db mice quickly restore their insulin stores and normalize secretory function. This demonstrates the β-cell's adaptive flexibility and indicates that therapeutic approaches applied to encourage β-cell rest are capable of restoring endogenous β-cell function. However, mechanisms that regulate β-cell adaptive flexibility are essentially unknown. To gain deeper mechanistic insight into the molecular events underlying β-cell adaptive flexibility in db/db β-cells, we conducted a combined proteomic and post-translational modification specific proteomic (PTMomics) approach on islets from db/db mice and wild-type controls (WT) with or without prior exposure to normal glucose levels. We identified differential modifications of proteins involved in redox homeostasis, protein refolding, K48-linked deubiquitination, mRNA/protein export, focal adhesion, ERK1/2 signaling, and renin-angiotensin-aldosterone signaling, as well as sialyltransferase activity, associated with β-cell adaptive flexibility. These proteins are all related to proinsulin biosynthesis and processing, maturation of insulin secretory granules, and vesicular trafficking-core pathways involved in the adaptation of insulin production to meet metabolic demand. Collectively, this study outlines a novel and comprehensive global PTMome signaling map that highlights important molecular mechanisms related to the adaptive flexibility of β-cell function, providing improved insight into disease pathogenesis of T2D.
Collapse
Affiliation(s)
- Taewook Kang
- Protein research group, Department of Biochemistry and Molecular Biology, University of Southern Denmark, DK-5230 Odense M, Denmark; The Danish Diabetes Academy, Odense, Denmark
| | - Brandon B Boland
- The Kovler Diabetes Center, Department of Medicine Section of Endocrinology, Diabetes & Metabolism, University of Chicago, Chicago, Illinois 60637; Cardiovascular, Renal and Metabolic Disease, BioPharmaceuticals Research and Development, AstraZeneca Gaithersburg, Maryland 20878
| | - Pia Jensen
- Protein research group, Department of Biochemistry and Molecular Biology, University of Southern Denmark, DK-5230 Odense M, Denmark
| | - Cristina Alarcon
- The Kovler Diabetes Center, Department of Medicine Section of Endocrinology, Diabetes & Metabolism, University of Chicago, Chicago, Illinois 60637
| | - Arkadiusz Nawrocki
- Protein research group, Department of Biochemistry and Molecular Biology, University of Southern Denmark, DK-5230 Odense M, Denmark
| | - Joseph S Grimsby
- Cardiovascular, Renal and Metabolic Disease, BioPharmaceuticals Research and Development, AstraZeneca Gaithersburg, Maryland 20878
| | - Christopher J Rhodes
- The Kovler Diabetes Center, Department of Medicine Section of Endocrinology, Diabetes & Metabolism, University of Chicago, Chicago, Illinois 60637; Cardiovascular, Renal and Metabolic Disease, BioPharmaceuticals Research and Development, AstraZeneca Gaithersburg, Maryland 20878
| | - Martin R Larsen
- Protein research group, Department of Biochemistry and Molecular Biology, University of Southern Denmark, DK-5230 Odense M, Denmark.
| |
Collapse
|
22
|
Mendoza M, Lu D, Ballesteros A, Blois SM, Abernathy K, Feng C, Dimitroff CJ, Zmuda J, Panico M, Dell A, Vasta GR, Haslam SM, Dveksler G. Glycan characterization of pregnancy-specific glycoprotein 1 and its identification as a novel Galectin-1 ligand. Glycobiology 2020; 30:895-909. [PMID: 32280962 DOI: 10.1093/glycob/cwaa034] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 03/23/2020] [Accepted: 04/08/2020] [Indexed: 12/13/2022] Open
Abstract
Pregnancy-specific beta 1 glycoprotein (PSG1) is secreted from trophoblast cells of the human placenta in increasing concentrations as pregnancy progresses, becoming one of the most abundant proteins in maternal serum in the third trimester. PSG1 has seven potential N-linked glycosylation sites across its four domains. We carried out glycomic and glycoproteomic studies to characterize the glycan composition of PSG1 purified from serum of pregnant women and identified the presence of complex N-glycans containing poly LacNAc epitopes with α2,3 sialyation at four sites. Using different techniques, we explored whether PSG1 can bind to galectin-1 (Gal-1) as these two proteins were previously shown to participate in processes required for a successful pregnancy. We confirmed that PSG1 binds to Gal-1 in a carbohydrate-dependent manner with an affinity of the interaction of 0.13 μM. In addition, we determined that out of the three N-glycosylation-carrying domains, only the N and A2 domains of recombinant PSG1 interact with Gal-1. Lastly, we observed that the interaction between PSG1 and Gal-1 protects this lectin from oxidative inactivation and that PSG1 competes the ability of Gal-1 to bind to some but not all of its glycoprotein ligands.
Collapse
Affiliation(s)
- Mirian Mendoza
- Department of Pathology, Uniformed Services University, 4301 Jones Bridge Rd, Bethesda, MD 20814, USA
| | - Dongli Lu
- Department of Life Sciences, Imperial College London, South Kensington, London SW7 2BU, UK
| | - Angela Ballesteros
- Molecular Physiology and Biophysics Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Sandra M Blois
- Experimental and Clinical Research Center, Charité Campus Buch, Lindenberger Weg 80, 13125 Berlin, Germany.,Charité- Universitätsmedizin Berlin, Institute for Medical Immunology, Augustenburger Platz 1, 13353 Berlin, Germany
| | - Kelsey Abernathy
- Department of Microbiology and Immunology, Institute of Marine and Environmental Technology, University of Maryland School of Medicine, 655 W Baltimore St S, Baltimore, MD 21201, USA
| | - Chiguang Feng
- Department of Microbiology and Immunology, Institute of Marine and Environmental Technology, University of Maryland School of Medicine, 655 W Baltimore St S, Baltimore, MD 21201, USA
| | - Charles J Dimitroff
- Translational Medicine, Translational Glycobiology Institute, FIU, Herbert Wertheim College of Medicine, Florida International University, 11200 SW 8th St, Miami, FL 33199, USA
| | - Jonathan Zmuda
- Biosciences Division, Thermo Fisher Scientific, 7335 Executive Way, Frederick MD 21704, USA
| | - Maria Panico
- Department of Life Sciences, Imperial College London, South Kensington, London SW7 2BU, UK
| | - Anne Dell
- Department of Life Sciences, Imperial College London, South Kensington, London SW7 2BU, UK
| | - Gerardo R Vasta
- Department of Microbiology and Immunology, Institute of Marine and Environmental Technology, University of Maryland School of Medicine, 655 W Baltimore St S, Baltimore, MD 21201, USA
| | - Stuart M Haslam
- Department of Life Sciences, Imperial College London, South Kensington, London SW7 2BU, UK
| | - Gabriela Dveksler
- Department of Pathology, Uniformed Services University, 4301 Jones Bridge Rd, Bethesda, MD 20814, USA
| |
Collapse
|
23
|
Shathili AM, Handler DCL, Packer NH. Glyco-scope into the Role of Protein Glycosylation in the Female Reproductive Tract. TRENDS GLYCOSCI GLYC 2020. [DOI: 10.4052/tigg.1820.1e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Affiliation(s)
- Abdulrahman M. Shathili
- Department of Molecular Sciences and ARC Centre of Nanoscale Biophotonics, Macquarie University
| | - David C. L. Handler
- Department of Molecular Sciences and ARC Centre of Nanoscale Biophotonics, Macquarie University
| | - Nicolle H. Packer
- Department of Molecular Sciences and ARC Centre of Nanoscale Biophotonics, Macquarie University
- Institute for Glycomics, Griffith University
| |
Collapse
|
24
|
Glycodelin is internalized by peripheral monocytes. J Reprod Immunol 2020; 138:103102. [PMID: 32120159 DOI: 10.1016/j.jri.2020.103102] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 01/31/2020] [Accepted: 02/13/2020] [Indexed: 01/21/2023]
Abstract
Glycodelin is produced by the endometrial cells during the luteal phase and first trimester of pregnancy and plays a role in the regulation of the endometrial immunology. However, the molecular connection between glycodelin and the maternal immune system is not clear. To better understand the possible physiological interaction between the endometrium and the maternal immune system, we investigated (1) whether glycodelin binds to mainly peripheral monocytes, and in case (2) whether the binding to the membrane only depends on the protein backbone or a carbohydrate structure is needed, and in case (3) whether glycodelin is internalized after binding to the membrane. We demonstrated that glycodelin - with or without the carbohydrate structure - was preferentially bound and internalized to peripheral monocytes. Surprisingly, we found signals in the nucleus of the monocytes indicating a potential regulating effect of glycodelin may be exerted through the nucleus. However, further studies should be performed to confirm this finding.
Collapse
|
25
|
Ibeto L, Antonopoulos A, Grassi P, Pang PC, Panico M, Bobdiwala S, Al-Memar M, Davis P, Davis M, Norman Taylor J, Almeida P, Johnson MR, Harvey R, Bourne T, Seckl M, Clark G, Haslam SM, Dell A. Insights into the hyperglycosylation of human chorionic gonadotropin revealed by glycomics analysis. PLoS One 2020; 15:e0228507. [PMID: 32045434 PMCID: PMC7012436 DOI: 10.1371/journal.pone.0228507] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Accepted: 01/16/2020] [Indexed: 12/13/2022] Open
Abstract
Human chorionic gonadotropin (hCG) is a glycoprotein hormone that is essential for the maintenance of pregnancy. Glycosylation of hCG is known to be essential for its biological activity. "Hyperglycosylated" variants secreted during early pregnancy have been proposed to be involved in initial implantation of the embryo and as a potential diagnostic marker for gestational diseases. However, what constitutes "hyperglycosylation" is not yet fully understood. In this study, we perform comparative N-glycomic analysis of hCG expressed in the same individuals during early and late pregnancy to help provide new insights into hCG function, reveal new targets for diagnostics and clarify the identity of hyperglycosylated hCG. hCG was isolated in urine collected from women at 7 weeks and 20 weeks' gestation. hCG was also isolated in urine from women diagnosed with gestational trophoblastic disease (GTD). We used glycomics methodologies including matrix assisted laser desorption/ionisation-time of flight (MALDI-TOF) mass spectrometry (MS) and MS/MS methods to characterise the N-glycans associated with hCG purified from the individual samples. The structures identified on the early pregnancy (EP-hCG) and late pregnancy (LP-hCG) samples corresponded to mono-, bi-, tri-, and tetra-antennary N-glycans. A novel finding was the presence of substantial amounts of bisected type N-glycans in pregnancy hCG samples, which were present at much lower levels in GTD samples. A second novel observation was the presence of abundant LewisX antigens on the bisected N-glycans. GTD-hCG had fewer glycoforms which constituted a subset of those found in normal pregnancy. When compared to EP-hCG, GTD-hCG samples had decreased signals for tri- and tetra-antennary N-glycans. In terms of terminal epitopes, GTD-hCG had increased signals for sialylated structures, while LewisX antigens were of very minor abundance. hCG carries the same N-glycans throughout pregnancy but in different proportions. The N-glycan repertoire is more diverse than previously reported. Bisected and LewisX structures are potential targets for diagnostics. hCG isolated from pregnancy urine inhibits NK cell cytotoxicity in vitro at nanomolar levels and bisected type glycans have previously been implicated in the suppression of NK cell cytotoxicity, suggesting that hCG-related bisected type N-glycans may directly suppress NK cell cytotoxicity.
Collapse
Affiliation(s)
- Linda Ibeto
- Department of Life Sciences, Imperial College London, London, United Kingdom
- Academic Department of Obstetrics and Gynaecology, Chelsea and Westminster Hospital, London, United Kingdom
| | | | - Paola Grassi
- Department of Life Sciences, Imperial College London, London, United Kingdom
| | - Poh-Choo Pang
- Department of Life Sciences, Imperial College London, London, United Kingdom
| | - Maria Panico
- Department of Life Sciences, Imperial College London, London, United Kingdom
| | - Shabnam Bobdiwala
- Tommys' National Centre for Miscarriage Research, Queen Charlottes' & Chelsea Hospital, Imperial College, London, United Kingdom
| | - Maya Al-Memar
- Tommys' National Centre for Miscarriage Research, Queen Charlottes' & Chelsea Hospital, Imperial College, London, United Kingdom
| | - Paul Davis
- Mologic LTD, Bedford Technology Park, Bedfordshire, United Kingdom
| | - Mark Davis
- Mologic LTD, Bedford Technology Park, Bedfordshire, United Kingdom
| | - Julian Norman Taylor
- Academic Department of Obstetrics and Gynaecology, Chelsea and Westminster Hospital, London, United Kingdom
| | - Paula Almeida
- Academic Department of Obstetrics and Gynaecology, Chelsea and Westminster Hospital, London, United Kingdom
| | - Mark R. Johnson
- Academic Department of Obstetrics and Gynaecology, Chelsea and Westminster Hospital, London, United Kingdom
| | - Richard Harvey
- Division of Cancer, Department of Surgery and Cancer, Imperial College London, London, United Kingdom
| | - Tom Bourne
- Tommys' National Centre for Miscarriage Research, Queen Charlottes' & Chelsea Hospital, Imperial College, London, United Kingdom
| | - Michael Seckl
- Division of Cancer, Department of Surgery and Cancer, Imperial College London, London, United Kingdom
| | - Gary Clark
- Department of Obstetrics, Gynaecology and Women's Health, University of Missouri, Columbia, Missouri, United States of America
| | - Stuart M. Haslam
- Department of Life Sciences, Imperial College London, London, United Kingdom
| | - Anne Dell
- Department of Life Sciences, Imperial College London, London, United Kingdom
- * E-mail:
| |
Collapse
|
26
|
Altered glycosylation of glycodelin in endometrial carcinoma. J Transl Med 2020; 100:1014-1025. [PMID: 32205858 PMCID: PMC7312397 DOI: 10.1038/s41374-020-0411-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 02/18/2020] [Accepted: 02/18/2020] [Indexed: 01/14/2023] Open
Abstract
Glycodelin is a major glycoprotein expressed in reproductive tissues, like secretory and decidualized endometrium. It has several reproduction related functions that are dependent on specific glycosylation, but it has also been found to drive differentiation of endometrial carcinoma cells toward a less malignant phenotype. Here we aimed to elucidate whether the glycosylation and function of glycodelin is altered in endometrial carcinoma as compared with a normal endometrium. We carried out glycan structure analysis of glycodelin expressed in HEC-1B human endometrial carcinoma cells (HEC-1B Gd) by mass spectrometry glycomics strategies. Glycans of HEC-1B Gd were found to comprise a typical mixture of high-mannose, hybrid, and complex-type N-glycans, often containing undecorated LacNAc (Galβ1-4GlcNAc) antennae. However, several differences, as compared with previously reported glycan structures of normal human decidualized endometrium-derived glycodelin isoform, glycodelin-A (GdA), were also found. These included a lower level of sialylation and more abundant poly-LacNAc antennae, some of which are fucosylated. This allowed us to select lectins that showed different binding to these classes of glycodelin. Despite the differences in glycosylation between HEC-1B Gd and GdA, both showed similar inhibitory activity on trophoblast cell invasion and peripheral blood mononuclear cell proliferation. For the detection of cancer associated glycodelin, we established a novel in situ proximity-ligation based histochemical staining method using a specific glycodelin antibody and UEAI lectin. We found that the UEAI reactive glycodelin was abundant in endometrial carcinoma, but virtually absent in normal endometrial tissue even when glycodelin was strongly expressed. In conclusion, we established a histochemical staining method for the detection of endometrial carcinoma-associated glycodelin and showed that this specific glycodelin is exclusively expressed in cancer, not in normal endometrium. Similar methods can be used for studies of other glycoproteins.
Collapse
|
27
|
Shathili AM, Brown HM, Everest-Dass AV, Tan TCY, Parker LM, Thompson JG, Packer NH. The effect of streptozotocin-induced hyperglycemia on N-and O-linked protein glycosylation in mouse ovary. Glycobiology 2019; 28:832-840. [PMID: 30169672 DOI: 10.1093/glycob/cwy075] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Accepted: 08/28/2018] [Indexed: 12/13/2022] Open
Abstract
Post-translational modification of proteins namely glycosylation influences cellular behavior, structural properties and interactions including during ovarian follicle development and atresia. However, little is known about protein glycosylation changes occurring in diabetes mellitus in ovarian tissues despite the well-known influence of diabetes on the outcome of successful embryo implantation. In our study, the use of PGC chromatography-ESI mass spectrometry in negative ion mode enabled the identification of 138 N-glycans and 6 O-glycans on the proteins of Streptozotocin-induced (STZ) diabetic mouse ovarian tissues (n = 3). Diabetic mouse ovaries exhibited a relative decrease in sialylation, fucosylation and, to a lesser extent, branched N-linked glycan structures, as well as an increase in oligomannose structures on their proteins, compared with nondiabetic mouse ovaries. Changes in N-glycans occurred in the diabetic liver tissue but were more evident in diabetic ovarian tissue of the same mouse, suggesting an organ-specific effect of diabetes mellitus on protein glycosylation. Although at a very low amount, O-GalNAc glycans of mice ovaries were present as core type 1 and core type 2 glycans; with a relative increase in the NeuGc:NeuAc ratio as the most significant difference between control and diabetic ovarian tissues. STZ-treated mice also showed a trend towards an increase in TNF-α and IL1-B inflammatory cytokines, which have previously been shown to influence protein glycosylation.
Collapse
Affiliation(s)
- Abdulrahman M Shathili
- Department of Molecular Sciences, Macquarie University, North Ryde, Sydney, NSW, Australia.,ARC Centre of Nanoscale Biophotonics, Macquarie University, North Ryde, Sydney, NSW, Australia
| | - Hannah M Brown
- Adelaide Medical School, University of Adelaide, Adelaide, SA, Australia.,ARC Centre of Nanoscale Biophotonics, University of Adelaide, Adelaide, SA, Australia
| | - Arun V Everest-Dass
- Department of Molecular Sciences, Macquarie University, North Ryde, Sydney, NSW, Australia.,ARC Centre of Nanoscale Biophotonics, Macquarie University, North Ryde, Sydney, NSW, Australia.,Institute for Glycomics, Griffith University, Southport, Queensland, Australia
| | - Tiffany C Y Tan
- Adelaide Medical School, University of Adelaide, Adelaide, SA, Australia.,ARC Centre of Nanoscale Biophotonics, University of Adelaide, Adelaide, SA, Australia
| | - Lindsay M Parker
- Department of Molecular Sciences, Macquarie University, North Ryde, Sydney, NSW, Australia.,ARC Centre of Nanoscale Biophotonics, Macquarie University, North Ryde, Sydney, NSW, Australia
| | - Jeremy G Thompson
- Adelaide Medical School, University of Adelaide, Adelaide, SA, Australia.,ARC Centre of Nanoscale Biophotonics, University of Adelaide, Adelaide, SA, Australia
| | - Nicolle H Packer
- Department of Molecular Sciences, Macquarie University, North Ryde, Sydney, NSW, Australia.,ARC Centre of Nanoscale Biophotonics, Macquarie University, North Ryde, Sydney, NSW, Australia.,Institute for Glycomics, Griffith University, Southport, Queensland, Australia
| |
Collapse
|
28
|
The John Hughes Memorial Lecture: Stimulation of Early Placental Development Through a Trophoblast-Endometrial Dialog. J Equine Vet Sci 2018. [DOI: 10.1016/j.jevs.2018.03.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
29
|
Everest-Dass AV, Moh ESX, Ashwood C, Shathili AMM, Packer NH. Human disease glycomics: technology advances enabling protein glycosylation analysis - part 2. Expert Rev Proteomics 2018. [PMID: 29521143 DOI: 10.1080/14789450.2018.1448710] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
INTRODUCTION The changes in glycan structures have been attributed to disease states for several decades. The surface glycosylation pattern is a signature of physiological state of a cell. In this review we provide a link between observed substructural glycan changes and a range of diseases. Areas covered: We highlight biologically relevant glycan substructure expression in cancer, inflammation, neuronal diseases and diabetes. Furthermore, the alterations in antibody glycosylation in a disease context are described. Expert commentary: Advances in technologies, as described in Part 1 of this review have now enabled the characterization of specific glycan structural markers of a range of disease states. The requirement of including glycomics in cross-disciplinary omics studies, such as genomics, proteomics, epigenomics, transcriptomics and metabolomics towards a systems glycobiology approach to understanding disease mechanisms and management are highlighted.
Collapse
Affiliation(s)
- Arun V Everest-Dass
- a Faculty of Science and Engineering, Biomolecular Discovery and Design Research Centre , Macquarie University , Sydney , Australia.,b ARC Centre for Nanoscale BioPhotonics , Macquarie University , Sydney , Australia.,c Institute for Glycomics , Griffith University , Gold Coast , Australia
| | - Edward S X Moh
- a Faculty of Science and Engineering, Biomolecular Discovery and Design Research Centre , Macquarie University , Sydney , Australia.,b ARC Centre for Nanoscale BioPhotonics , Macquarie University , Sydney , Australia
| | - Christopher Ashwood
- a Faculty of Science and Engineering, Biomolecular Discovery and Design Research Centre , Macquarie University , Sydney , Australia.,b ARC Centre for Nanoscale BioPhotonics , Macquarie University , Sydney , Australia
| | - Abdulrahman M M Shathili
- a Faculty of Science and Engineering, Biomolecular Discovery and Design Research Centre , Macquarie University , Sydney , Australia.,b ARC Centre for Nanoscale BioPhotonics , Macquarie University , Sydney , Australia
| | - Nicolle H Packer
- a Faculty of Science and Engineering, Biomolecular Discovery and Design Research Centre , Macquarie University , Sydney , Australia.,b ARC Centre for Nanoscale BioPhotonics , Macquarie University , Sydney , Australia.,c Institute for Glycomics , Griffith University , Gold Coast , Australia
| |
Collapse
|
30
|
Yang XL, Yu HJ, Zhu HY, Zheng Y, Han QX, Cai GY, Chen XM. Potential Value of Datura stramonium Agglutinin-recognized Glycopatterns in Urinary Protein on Differential Diagnosis of Diabetic Nephropathy and Nondiabetic Renal Disease. Chin Med J (Engl) 2018; 131:180-187. [PMID: 29336366 PMCID: PMC5776848 DOI: 10.4103/0366-6999.222328] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND Diabetic nephropathy (DN) is the most common and serious microvascular complication of diabetes. To date, the gold standard for identifying DN and nondiabetic renal disease (NDRD) is a renal biopsy; however, there is currently no reliable diagnostic marker to identify DN and NDRD in a noninvasive manner. This study aimed to investigate the different glycopatterns in urine specimens of DN patients and NDRD patients for a differential diagnosis. METHODS In total, 19 DN patients and 18 NDRD patients who underwent renal biopsies between March 2015 and March 2016 at the Chinese People's Liberation Army General Hospital were enrolled in this study. A lectin microarray was used to investigate the glycopatterns in the urinary protein of the 37 patients. Ratio analysis and one-way analysis of variance were used to screen altered glycopatterns. Then, the altered glycopatterns between the DN and NDRD groups were verified by a urinary protein microarray among another 32 patients (15 with DN and 17 with NDRD), and receiver operating characteristic (ROC) curve analysis was used to determine the diagnostic value of the altered glycopatterns in differentiating DN and NDRD. Finally, lectin blotting was used to evaluate the altered glycosylation in protein level. RESULTS The result of lectin microarrays revealed that the relative abundance of the (β-1,4)-linked N-acetyl-D-glucosamine (GlcNAc) recognized by lectin Datura stramonium agglutinin (DSA) was significantly higher in urinary protein in DN patients than that in NDRD patients (fold change >1.50, P < 0.001). Subsequently, the results of urinary protein microarrays were consistent with lectin microarrays (P < 0.05). Furthermore, the ROC curve showed that glycopatterns could effectively distinguish DN from NDRD patients (area under the ROC curve = 0.94, P < 0.001). DSA lectin blotting showed that glycoproteins, with a molecular weight of approximately 50,000, demonstrated a difference in urine samples between DN patients and NDRD patients. CONCLUSIONS The relative abundance of (β-1,4)-linked GlcNAc recognized by lectin DSA and urinary glycoprotein with a molecular weight of approximately 50,000 are significantly different between DN and NDRD patients, indicating that the glycopatterns could be used as potential biomarkers for a differential diagnosis.
Collapse
Affiliation(s)
- Xiao-Li Yang
- Department of Nephrology, Chinese People's Liberation Army General Hospital, Chinese People's Liberation Army Institute of Nephrology, State Key Laboratory of Kidney Diseases (2011DAV00088), National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Diseases, Beijing 100853, China
| | - Han-Jie Yu
- Laboratory for Functional Glycomics, College of Life Sciences, Northwest University, Xiߣan, Shaanxi 710069, China
| | - Han-Yu Zhu
- Department of Nephrology, Chinese People's Liberation Army General Hospital, Chinese People's Liberation Army Institute of Nephrology, State Key Laboratory of Kidney Diseases (2011DAV00088), National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Diseases, Beijing 100853, China
- Address for correspondence: Dr. Han-Yu Zhu, Department of Nephrology, Chinese People's Liberation Army General Hospital, Chinese People's Liberation Army Institute of Nephrology, State Key Laboratory of Kidney Diseases (2011DAV00088), National Clinical Research Center for Kidney Diseases, Beijing 100853, China E-Mail:
| | - Ying Zheng
- Department of Nephrology, Chinese People's Liberation Army General Hospital, Chinese People's Liberation Army Institute of Nephrology, State Key Laboratory of Kidney Diseases (2011DAV00088), National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Diseases, Beijing 100853, China
| | - Qiu-Xia Han
- Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Guang-Yan Cai
- Department of Nephrology, Chinese People's Liberation Army General Hospital, Chinese People's Liberation Army Institute of Nephrology, State Key Laboratory of Kidney Diseases (2011DAV00088), National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Diseases, Beijing 100853, China
| | - Xiang-Mei Chen
- Department of Nephrology, Chinese People's Liberation Army General Hospital, Chinese People's Liberation Army Institute of Nephrology, State Key Laboratory of Kidney Diseases (2011DAV00088), National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Diseases, Beijing 100853, China
| |
Collapse
|
31
|
Focarelli R, Luddi A, De Leo V, Capaldo A, Stendardi A, Pavone V, Benincasa L, Belmonte G, Petraglia F, Piomboni P. Dysregulation of GdA Expression in Endometrium of Women With Endometriosis: Implication for Endometrial Receptivity. Reprod Sci 2017; 25:579-586. [DOI: 10.1177/1933719117718276] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
| | - Alice Luddi
- Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy
- Centre for Diagnosis and Treatment of Couple Sterility, S. Maria alle Scotte Hospital, Siena, Italy
| | - Vincenzo De Leo
- Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy
- Centre for Diagnosis and Treatment of Couple Sterility, S. Maria alle Scotte Hospital, Siena, Italy
| | - Angela Capaldo
- Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy
- Centre for Diagnosis and Treatment of Couple Sterility, S. Maria alle Scotte Hospital, Siena, Italy
| | - Anita Stendardi
- Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy
| | | | - Linda Benincasa
- Department of Life Science, University of Siena, Siena, Italy
| | - Giuseppe Belmonte
- Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy
| | - Felice Petraglia
- Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy
- Centre for Diagnosis and Treatment of Couple Sterility, S. Maria alle Scotte Hospital, Siena, Italy
| | - Paola Piomboni
- Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy
- Centre for Diagnosis and Treatment of Couple Sterility, S. Maria alle Scotte Hospital, Siena, Italy
| |
Collapse
|
32
|
Harvey DJ. Analysis of carbohydrates and glycoconjugates by matrix-assisted laser desorption/ionization mass spectrometry: An update for 2011-2012. MASS SPECTROMETRY REVIEWS 2017; 36:255-422. [PMID: 26270629 DOI: 10.1002/mas.21471] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2014] [Accepted: 01/15/2015] [Indexed: 06/04/2023]
Abstract
This review is the seventh update of the original article published in 1999 on the application of MALDI mass spectrometry to the analysis of carbohydrates and glycoconjugates and brings coverage of the literature to the end of 2012. General aspects such as theory of the MALDI process, matrices, derivatization, MALDI imaging, and fragmentation are covered in the first part of the review and applications to various structural types constitute the remainder. The main groups of compound are oligo- and poly-saccharides, glycoproteins, glycolipids, glycosides, and biopharmaceuticals. Much of this material is presented in tabular form. Also discussed are medical and industrial applications of the technique, studies of enzyme reactions, and applications to chemical synthesis. © 2015 Wiley Periodicals, Inc. Mass Spec Rev 36:255-422, 2017.
Collapse
Affiliation(s)
- David J Harvey
- Department of Biochemistry, Oxford Glycobiology Institute, University of Oxford, Oxford, OX1 3QU, UK
| |
Collapse
|
33
|
The human fetoembryonic defense system hypothesis: Twenty years on. Mol Aspects Med 2016; 51:71-88. [PMID: 27349751 DOI: 10.1016/j.mam.2016.06.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Revised: 06/13/2016] [Accepted: 06/21/2016] [Indexed: 11/21/2022]
|
34
|
Lee CL, Lam KKW, Vijayan M, Koistinen H, Seppala M, Ng EHY, Yeung WSB, Chiu PCN. The Pleiotropic Effect of Glycodelin-A in Early Pregnancy. Am J Reprod Immunol 2016; 75:290-7. [DOI: 10.1111/aji.12471] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Accepted: 12/02/2015] [Indexed: 11/28/2022] Open
Affiliation(s)
- Cheuk-Lun Lee
- Department of Obstetrics and Gynaecology; LKS Faculty of Medicine; The University of Hong Kong; Hong Kong Hong Kong
- Centre for Reproduction, Development and Growth; LKS Faculty of Medicine; The University of Hong Kong; Hong Kong Hong Kong
- Shenzhen Key Laboratory of Fertility Regulation; Department of Obstetrics and Gynecology; The University of Hong Kong-Shenzhen Hospital; Hong Kong Hong Kong
| | - Kevin K. W. Lam
- Department of Obstetrics and Gynaecology; LKS Faculty of Medicine; The University of Hong Kong; Hong Kong Hong Kong
- Shenzhen Key Laboratory of Fertility Regulation; Department of Obstetrics and Gynecology; The University of Hong Kong-Shenzhen Hospital; Hong Kong Hong Kong
| | - Madhavi Vijayan
- Department of Obstetrics and Gynaecology; LKS Faculty of Medicine; The University of Hong Kong; Hong Kong Hong Kong
| | - Hannu Koistinen
- Department of Clinical Chemistry and Obstetrics and Gynecology; University of Helsinki and Helsinki University Central Hospital; Helsinki Finland
| | - Markku Seppala
- Department of Clinical Chemistry and Obstetrics and Gynecology; University of Helsinki and Helsinki University Central Hospital; Helsinki Finland
| | - Ernest H. Y. Ng
- Department of Obstetrics and Gynaecology; LKS Faculty of Medicine; The University of Hong Kong; Hong Kong Hong Kong
- Centre for Reproduction, Development and Growth; LKS Faculty of Medicine; The University of Hong Kong; Hong Kong Hong Kong
- Shenzhen Key Laboratory of Fertility Regulation; Department of Obstetrics and Gynecology; The University of Hong Kong-Shenzhen Hospital; Hong Kong Hong Kong
| | - William S. B. Yeung
- Department of Obstetrics and Gynaecology; LKS Faculty of Medicine; The University of Hong Kong; Hong Kong Hong Kong
- Centre for Reproduction, Development and Growth; LKS Faculty of Medicine; The University of Hong Kong; Hong Kong Hong Kong
- Shenzhen Key Laboratory of Fertility Regulation; Department of Obstetrics and Gynecology; The University of Hong Kong-Shenzhen Hospital; Hong Kong Hong Kong
| | - Philip C. N. Chiu
- Department of Obstetrics and Gynaecology; LKS Faculty of Medicine; The University of Hong Kong; Hong Kong Hong Kong
- Centre for Reproduction, Development and Growth; LKS Faculty of Medicine; The University of Hong Kong; Hong Kong Hong Kong
- Shenzhen Key Laboratory of Fertility Regulation; Department of Obstetrics and Gynecology; The University of Hong Kong-Shenzhen Hospital; Hong Kong Hong Kong
| |
Collapse
|
35
|
Zhang M, Wang M, Gao R, Liu X, Chen X, Geng Y, Ding Y, Wang Y, He J. Altered β1,6-GlcNAc and bisecting GlcNAc-branched N-glycan on integrin β1 are associated with early spontaneous miscarriage in humans. Hum Reprod 2015; 30:2064-75. [PMID: 26109616 DOI: 10.1093/humrep/dev153] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2014] [Accepted: 06/01/2015] [Indexed: 11/14/2022] Open
Abstract
STUDY QUESTION Do N-acetylglucosaminyltransferase (GnT-V) and N-acetylglucosaminyltransferase III (GnT-III) play an important role in early spontaneous miscarriage (ESM) in humans. SUMMARY ANSWER The dynamic balance between GnT-V and GnT-III expression in chorionic villi differed between early normal pregnancy and ESM and was associated with altered β1,6-N-acetylglucosamine (β1,6-GlcNAc) and bisecting N-acetylglucosamine (bis-GlcNAc) branched N-glycans on integrin β1. WHAT IS KNOWN ALREADY GnT-V contributes to metastasis, while GnT-III is recognized as a metastasis suppressor. It has been reported that GnT-V contributes to placentation in the early phase of pregnancy, possibly regulating trophoblast invasion. However, the expressions of GnT-V and GnT-III in ESM have not been reported. STUDY DESIGN, SIZE, DURATION Villous samples from 6 to 9 weeks of gestation were collected in the First Affiliated Hospital of Chongqing Medical University from May 2013 to September 2014 from 60 normal pregnant women undergoing elective termination of pregnancy and from 40 patients with a clinical diagnosis of ESM. PARTICIPANTS, MATERIALS, SETTING, METHODS Quantitative PCR and western blots were used to examine the GnT-V and GnT-III mRNA (Mgat5 and Mgat3) and protein expression, respectively, of chorionic villi in both the ESM group and the normal group from week 6 to week 9. We used immunofluorescence and immunohistochemistry to detect the location of GnT-V and GnT-III. Lectin fluorescence and histochemistry were used to test the location of β1,6-GlcNAc and bis-GlcNAc branching in the normal and ESM groups. To assess the functional capacity of GnT-V and GnT-III in the chorionic villi between the two groups, we used an enzyme-linked immunosorbent assay kit to measure the activity of these enzymes. Using co-precipitated integrin α5β1 followed by phytohaemagglutinin (PHA)-L and PHA-E blotting, we investigated whether GnT-V and GnT-III could modify the N-glycosylation profile in terms of the β1,6-GlcNAc and bis-GlcNAc structures in integrin α5β1 during the first trimester in both groups. MAIN RESULTS AND THE ROLE OF CHANCE In the normal group expression and activity of GnT-V and the concentration of its product, β1,6-GlcNAc were higher at week 9 than at weeks 6, 7 and 8 (P < 0.05). In contrast, the expression and activity of GnT-III and the concentration of its product, bis-GlcNAc were higher at week 6 than at weeks 7, 8 and 9 (P < 0.05). Compared with the normal group, the ESM group exhibited a lower expression of GnT-V and β1,6-GlcNAc (P < 0.05) and a higher expression of GnT-III and bis-GlcNAc (P < 0.05) with consistent changes in enzymatic activity. Immunofluorescence showed that GnT-V was located mainly in the cytoplasm of syncytiotrophoblasts (STBs) and chorionic villous cytotrophoblasts (CTBs), in both the ESM group and the normal group. β1,6-GlcNAc N-glycan was mainly located outside of the STB and CTB layer in normal villi and was expressed only rarely in the ESM villi. GnT-III was expressed primarily in the cytoplasm of STBs and expressed only very weakly in the CTBs of normal villi, whereas it was highly expressed in both the STBs and CTBs in the ESM group. bis-GlcNAc was primarily located outside of the STBs in the normal villi, whereas it was expressed much more abundantly outside of both the STBs and CTBs in the ESM group at each week of gestation. Moreover, decreased β1,6-GlcNAc-branched N-glycans and increased bis-GlcNAc-branched N-glycans on integrin β1 (P < 0.05) were observed in the ESM group. WIDER IMPLICATIONS OF THE FINDINGS Our findings provide a new insight for studying the mechanism of clinical ESM in humans and it might be valuable for the clinical diagnosis and treatment of ESM. LIMITATIONS, REASONS FOR CAUTION The study lacks experiments in vitro to disclose the precise mechanism by which GnT-V and GnT-III regulate ESM. In some cases, degradation of the tissues after the miscarriage event cannot be ruled out. STUDY FUNDING/COMPETING INTERESTS This study was supported by grants from the National Natural Science Foundation of China (31271546). The authors have no competing interests.
Collapse
Affiliation(s)
- Min Zhang
- Laboratory of Reproductive Biology, School of Public Health and Management, Chongqing Medical University, Box 197, No. 1 Yixueyuan Road, Yuzhong District, Chongqing 400016, PR China
| | - Meirong Wang
- Laboratory of Reproductive Biology, School of Public Health and Management, Chongqing Medical University, Box 197, No. 1 Yixueyuan Road, Yuzhong District, Chongqing 400016, PR China
| | - Rufei Gao
- Laboratory of Reproductive Biology, School of Public Health and Management, Chongqing Medical University, Box 197, No. 1 Yixueyuan Road, Yuzhong District, Chongqing 400016, PR China
| | - Xueqing Liu
- Laboratory of Reproductive Biology, School of Public Health and Management, Chongqing Medical University, Box 197, No. 1 Yixueyuan Road, Yuzhong District, Chongqing 400016, PR China
| | - Xuemei Chen
- Laboratory of Reproductive Biology, School of Public Health and Management, Chongqing Medical University, Box 197, No. 1 Yixueyuan Road, Yuzhong District, Chongqing 400016, PR China
| | - Yanqing Geng
- Laboratory of Reproductive Biology, School of Public Health and Management, Chongqing Medical University, Box 197, No. 1 Yixueyuan Road, Yuzhong District, Chongqing 400016, PR China
| | - Yubin Ding
- Laboratory of Reproductive Biology, School of Public Health and Management, Chongqing Medical University, Box 197, No. 1 Yixueyuan Road, Yuzhong District, Chongqing 400016, PR China
| | - Yingxiong Wang
- Laboratory of Reproductive Biology, School of Public Health and Management, Chongqing Medical University, Box 197, No. 1 Yixueyuan Road, Yuzhong District, Chongqing 400016, PR China
| | - Junlin He
- Laboratory of Reproductive Biology, School of Public Health and Management, Chongqing Medical University, Box 197, No. 1 Yixueyuan Road, Yuzhong District, Chongqing 400016, PR China
| |
Collapse
|
36
|
Sialic acids: biomarkers in endocrinal cancers. Glycoconj J 2015; 32:79-85. [PMID: 25777812 DOI: 10.1007/s10719-015-9577-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2015] [Revised: 02/11/2015] [Accepted: 02/18/2015] [Indexed: 12/20/2022]
Abstract
Sialylations are post translational modification of proteins and lipids that play important role in recognition, signaling, immunological response and cell-cell interaction. Improper sialylations due to altered sialyl transferases, sialidases, gene structure and expression, sialic acid metabolism however lead to diseases and thus sialic acids form an important biomarker in disease. In the endocrinal biology such improper sialylations including altered expression of sialylated moieties have been shown to be associated with disorders. Cancer still remains to be the major cause of global death and the cancer of the endocrine organs suffer from the dearth of appropriate markers for disease prediction at the early stage and monitoring. This review is aimed at evaluating the role of sialic acids as markers in endocrinal disorders with special reference to cancer of the endocrine organs. The current study is summarized under the following headings of altered sialylations in endocrinal cancer of the (i) ovary (ii) pancreas (iii) thyroid (iv) adrenal and (v) pituitary gland. Studies in expression of sialic acid in testis cancer are limited. The future scope of this review remains in the targeting of endocrinal cancer by targeting altered sialylation which is a common expression associated with endocrinal cancer.
Collapse
|
37
|
Rao PV, Laurie A, Bean ES, Roberts CT, Nagalla SR. Salivary protein glycosylation as a noninvasive biomarker for assessment of glycemia. J Diabetes Sci Technol 2015; 9:97-104. [PMID: 25305283 PMCID: PMC4495545 DOI: 10.1177/1932296814554414] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Assessment of short-term glycemic control can facilitate monitoring of diabetes development in at-risk individuals and monitoring response to lifestyle modification or medication. We evaluated salivary protein glycosylation levels as a novel, noninvasive, short-term glycemic index in comparison to hemoglobin A1c (HbA1c), fructosamine, 1,5-anhydroglucitol (1,5-AG), and continuous glucose monitoring (CGM). Ten subjects with type 2 diabetes were monitored by CGM and saliva and blood were collected at baseline and days 1, 7, 14, 21, and 28 for determination of salivary protein glycosylation, serum fructosamine, and serum 1,5-anhydroglucitol (1,5-AG) levels, as well as HbA1c (baseline and day 28). Weekly, 14-day, 21-day, and 28-day summary blood glucose measures from CGM were computed and matched to the time of each study visit. Salivary protein glycosylation exhibited a moderate correlation with fructosamine (r = .65) and 1,5-AG (r = -.48) at baseline, and weak correlation with HbA1c (r = .3). Salivary protein glycosylation exhibited a stronger correlation than fructosamine and 1,5-AG with 7-, 14-, and 21-day average BG (r = .84, .84, and .69, respectively, vs -.37, -.28, and .00 [fructosamine] and .00, -.21, and -.57 [1,5-AG]), maximum BG (r = .79, .76, and .53 vs -.09, -.21, and -.05 [fructosamine] and -.32, -.27, and -.52 [1,5-AG]), and percentage of time over 140 mg/dL (r = .87, .79, and .59 vs -.26, -.32, and .07 [fructosamine] and -.04, -.10, and -.50 [1,5-AG]). Salivary protein glycosylation represents a promising noninvasive technology for monitoring short-term glycemic control.
Collapse
Affiliation(s)
- Paturi V Rao
- Nizam's Institute of Medical Sciences, Hyderabad, India
| | | | | | | | | |
Collapse
|
38
|
Zhou H, Warren PG, Froehlich JW, Lee RS. Dual modifications strategy to quantify neutral and sialylated N-glycans simultaneously by MALDI-MS. Anal Chem 2014; 86:6277-84. [PMID: 24766348 PMCID: PMC4082391 DOI: 10.1021/ac500298a] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
![]()
Differences
in ionization efficiency among neutral and sialylated
glycans prevent direct quantitative comparison by their respective
mass spectrometric signals. To overcome this challenge, we developed
an integrated chemical strategy, Dual Reactions for Analytical Glycomics
(DRAG), to quantitatively compare neutral and sialylated glycans simultaneously
by MALDI-MS. Initially, two glycan samples to be compared undergo
reductive amination with 2-aminobenzoic acid and 2-13[C6]-aminobenzoic acid, respectively. The different isotope-incorporated
glycans are then combined and subjected to the methylamidation of
the sialic acid residues in one mixture, homogenizing the ionization
responses for all neutral and sialylated glycans. By this approach,
the expression change of relevant glycans between two samples is proportional
to the ratios of doublet signals with a static 6 Da mass difference
in MALDI-MS and the change in relative abundance of any glycan within
samples can also be determined. The strategy was chemically validated
using well-characterized N-glycans from bovine fetuin and IgG from
human serum. By comparing the N-glycomes from a first morning (AM)
versus an afternoon (PM) urine sample obtained from a single donor,
we further demonstrated the ability of DRAG strategy to measure subtle
quantitative differences in numerous urinary N-glycans.
Collapse
Affiliation(s)
- Hui Zhou
- Department of Urology and The Proteomics Center, Boston Children's Hospital and Harvard Medical School , Boston, Massachusetts 02115, United States
| | | | | | | |
Collapse
|
39
|
Smilowitz JT, Lebrilla CB, Mills DA, German JB, Freeman SL. Breast milk oligosaccharides: structure-function relationships in the neonate. Annu Rev Nutr 2014; 34:143-69. [PMID: 24850388 DOI: 10.1146/annurev-nutr-071813-105721] [Citation(s) in RCA: 291] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
In addition to providing complete postnatal nutrition, breast milk is a complex biofluid that delivers bioactive components for the growth and development of the intestinal and immune systems. Lactation is a unique opportunity to understand the role of diet in shaping the intestinal environment including the infant microbiome. Of considerable interest is the diversity and abundance of milk glycans that are energetically costly for the mammary gland to produce yet indigestible by infants. Milk glycans comprise free oligosaccharides, glycoproteins, glycopeptides, and glycolipids. Emerging technological advances are enabling more comprehensive, sensitive, and rapid analyses of these different classes of milk glycans. Understanding the impact of inter- and intraindividual glycan diversity on function is an important step toward interventions aimed at improving health and preventing disease. This review discusses the state of technology for glycan analysis and how specific structure-function knowledge is enhancing our understanding of early nutrition in the neonate.
Collapse
|
40
|
Smilowitz JT, Totten SM, Huang J, Grapov D, Durham HA, Lammi-Keefe CJ, Lebrilla C, German JB. Human milk secretory immunoglobulin a and lactoferrin N-glycans are altered in women with gestational diabetes mellitus. J Nutr 2013; 143:1906-12. [PMID: 24047700 PMCID: PMC3827637 DOI: 10.3945/jn.113.180695] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2013] [Revised: 06/24/2013] [Accepted: 08/30/2013] [Indexed: 01/01/2023] Open
Abstract
Very little is known about the effects of gestational diabetes mellitus (GDM) on lactation and milk components. Recent reports suggested that hyperglycemia during pregnancy was associated with altered breast milk immune factors. Human milk oligosaccharides (HMOs) and N-glycans of milk immune-modulatory proteins are implicated in modulation of infant immunity. The objective of the current study was to evaluate the effect of GDM on HMO and protein-conjugated glycan profiles in breast milk. Milk was collected at 2 wk postpartum from women diagnosed with (n = 8) or without (n = 16) GDM at week 24-28 in pregnancy. Milk was analyzed for HMO abundances, protein concentrations, and N-glycan abundances of lactoferrin and secretory immunoglobulin A (sIgA). HMOs and N-glycans were analyzed by mass spectrometry and milk lactoferrin and sIgA concentrations were analyzed by the Bradford assay. The data were analyzed using multivariate modeling confirmed with univariate statistics to determine differences between milk of women with compared with women without GDM. There were no differences in HMOs between milk from women with vs. without GDM. Milk from women with GDM compared with those without GDM was 63.6% lower in sIgA protein (P < 0.05), 45% higher in lactoferrin total N-glycans (P < 0.0001), 36-72% higher in lactoferrin fucose and sialic acid N-glycans (P < 0.01), and 32-43% lower in sIgA total, mannose, fucose, and sialic acid N-glycans (P < 0.05). GDM did not alter breast milk free oligosaccharide abundances but decreased total protein and glycosylation of sIgA and increased glycosylation of lactoferrin in transitional milk. The results suggest that maternal glucose dysregulation during pregnancy has lasting consequences that may influence the innate immune protective functions of breast milk.
Collapse
Affiliation(s)
| | | | | | - Dmitry Grapov
- West Coast Metabolomics Center, University of California Davis, Davis, CA; and
| | - Holiday A. Durham
- Agricultural Center and Pennington Biomedical Research Center, Louisiana State University, Baton Rouge, LA
| | - Carol J. Lammi-Keefe
- Agricultural Center and Pennington Biomedical Research Center, Louisiana State University, Baton Rouge, LA
| | | | - J. Bruce German
- Department of Food Science and Technology
- Foods for Health Institute
| |
Collapse
|
41
|
Urinary fetuin-A is a novel marker for diabetic nephropathy in type 2 diabetes identified by lectin microarray. PLoS One 2013; 8:e77118. [PMID: 24143207 PMCID: PMC3797112 DOI: 10.1371/journal.pone.0077118] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2013] [Accepted: 08/30/2013] [Indexed: 12/30/2022] Open
Abstract
We analyzed the urine samples of patients with type 2 diabetes at various stages of diabetic nephropathy by lectin microarray to identify a biomarker to predict the progression of diabetic nephropathy. Japanese patients with type 2 diabetes at various stages of nephropathy were enrolled and we performed lectin microarray analyses (n = 17) and measured urinary excretion of fetuin-A (n = 85). The increased signals of urine samples were observed in Siaα2-6Gal/GalNAc-binding lectins (SNA, SSA, TJA-I) during the progression of diabetic nephropathy. We next isolated sialylated glycoproteins by using SSA-lectin affinity chromatography and identified fetuin-A by liquid chromatography–tandem mass spectrometer. Urinary excretion of fetuin-A significantly increased during the progression of albuminuria (A1, 0.40±0.43; A2, 0.60±0.53; A3 1.57±1.13 ng/gCr; p = 7.29×10−8) and of GFR stages (G1, 0.39±0.39; G2, 0.49±0.45; G3, 1.25±1.18; G4, 1.34±0.80 ng/gCr; p = 3.89×10−4). Multivariate logistic regression analysis was employed to assess fetuin-A as a risk for diabetic nephropathy with microalbuminuria or GFR<60 mL/min. Fetuin-A is demonstrated as a risk factor for both microalbuminuria and reduction of GFR in diabetic nephropathy with the odds ratio of 4.721 (1.881–11.844) and 3.739 (1.785–7.841), respectively. Collectively, the glycan profiling analysis is useful method to identify the urine biomarkers and fetuin-A is a candidate to predict the progression of diabetic nephropathy.
Collapse
|
42
|
Dall'Olio F, Malagolini N, Chiricolo M, Trinchera M, Harduin-Lepers A. The expanding roles of the Sd(a)/Cad carbohydrate antigen and its cognate glycosyltransferase B4GALNT2. Biochim Biophys Acta Gen Subj 2013; 1840:443-53. [PMID: 24112972 DOI: 10.1016/j.bbagen.2013.09.036] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2013] [Revised: 09/27/2013] [Accepted: 09/30/2013] [Indexed: 10/26/2022]
Abstract
BACKGROUND The histo-blood group antigens are carbohydrate structures present in tissues and body fluids, which contribute to the definition of the individual immunophenotype. One of these, the Sd(a) antigen, is expressed on the surface of erythrocytes and in secretions of the vast majority of the Caucasians and other ethnic groups. SCOPE OF REVIEW We describe the multiple and unsuspected aspects of the biology of the Sd(a) antigen and its biosynthetic enzyme β1,4-N-acetylgalactosaminyltransferase 2 (B4GALNT2) in various physiological and pathological settings. MAJOR CONCLUSIONS The immunodominant sugar of the Sd(a) antigen is a β1,4-linked N-acetylgalactosamine (GalNAc). Its cognate glycosyltransferase B4GALNT2 displays a restricted pattern of tissue expression, is regulated by unknown mechanisms - including promoter methylation, and encodes at least two different proteins, one of which with an unconventionally long cytoplasmic portion. In different settings, the Sd(a) antigen plays multiple and unsuspected roles. 1) In colon cancer, its dramatic down-regulation plays a potential role in the overexpression of sialyl Lewis antigens, increasing metastasis formation. 2) It is involved in the lytic function of murine cytotoxic T lymphocytes. 3) It prevents the development of muscular dystrophy in various dystrophic murine models, when overexpressed in muscular fibers. 4) It regulates the circulating half-life of the von Willebrand factor (vWf), determining the onset of a bleeding disorder in a murine model. GENERAL SIGNIFICANCE The expression of the Sd(a) antigen has a wide impact on the physiology and the pathology of different biological systems.
Collapse
Affiliation(s)
- Fabio Dall'Olio
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Bologna, Italy.
| | | | | | | | | |
Collapse
|
43
|
Glycosylated Fibronectin as a First-Trimester Biomarker for Prediction of Gestational Diabetes. Obstet Gynecol 2013; 122:586-94. [DOI: 10.1097/aog.0b013e3182a0c88b] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
44
|
Lee CL, Chiu PCN, Hautala L, Salo T, Yeung WSB, Stenman UH, Koistinen H. Human chorionic gonadotropin and its free β-subunit stimulate trophoblast invasion independent of LH/hCG receptor. Mol Cell Endocrinol 2013; 375:43-52. [PMID: 23684886 DOI: 10.1016/j.mce.2013.05.009] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2012] [Revised: 05/08/2013] [Accepted: 05/08/2013] [Indexed: 10/26/2022]
Abstract
Both paracrine and autocrine factors are involved in the regulation of trophoblast invasion. One of these factors is human chorionic gonadotropin (hCG), which stimulates trophoblast invasion. The stimulatory activity has especially been ascribed to a hyperglycosylated form of hCG (hCG-h) that is expressed in early pregnancy. We compared the stimulatory activities of different forms of hCG and its free β-subunit (hCGβ) on trophoblast invasion. hCG, hCG-h, hCGβ, and its hyperglycosylated form (hCGβ-h) stimulated the invasion of JEG-3 choriocarcinoma cells. The stimulatory effect of hCGβ was also confirmed with primary human trophoblasts. Down-regulation of the LH/hCG receptor by RNA-interference did not significantly reduce the effect of hCGβ and hCG on cell invasion. Increased invasion was associated with increased levels of MMP-2, MMP-9 and activity of uPA. Our findings suggest that hCG, hCGβ and their hyperglycosylated forms stimulate the invasion of trophoblast cells independent of the classical LH/hCG-receptor.
Collapse
Affiliation(s)
- Cheuk-Lun Lee
- Department of Obstetrics and Gynecology, The University of Hong Kong, Queen Mary Hospital, Pokfulam Road, Hong Kong, Hong Kong Special Administrative Region.
| | | | | | | | | | | | | |
Collapse
|
45
|
Chakraborty C, Bandyopadhyay S, Maulik U, Agoramoorthy G. Topology Mapping of Insulin-Regulated Glucose Transporter GLUT4 Using Computational Biology. Cell Biochem Biophys 2013; 67:1261-74. [DOI: 10.1007/s12013-013-9644-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
46
|
Lee CL, Lam EYF, Lam KKW, Koistinen H, Seppälä M, Ng EHY, Yeung WSB, Chiu PCN. Glycodelin-A stimulates interleukin-6 secretion by human monocytes and macrophages through L-selectin and the extracellular signal-regulated kinase pathway. J Biol Chem 2012; 287:36999-7009. [PMID: 22977256 DOI: 10.1074/jbc.m112.385336] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Macrophages represent the second major type of decidual leukocytes at the fetomaternal interface. Changes in macrophage number and activity are associated with fetal loss and pregnancy complications. Glycodelin-A (GdA) is an abundant glycoprotein in the first-trimester decidua. It is involved in fetomaternal defense and early placental development through its regulatory activities in various immune cells. The N-glycosylation of GdA mediates the binding and therefore the activities of the molecule. In this study, we studied the biological activities of GdA in the functions of human monocytes/macrophages. GdA was purified from amniotic fluid by affinity chromatography. GdA treatment did not affect the viability, cell death, or phagocytic activity of the monocytes/macrophages. GdA, but not recombinant glycodelin without glycosylation, induced IL-6 production as demonstrated by cytokine array, intracellular staining, and ELISA. GdA also induced phosphorylation of ERK in monocytes/macrophages. The involvement of ERKs in IL-6 induction was confirmed using pharmacological inhibitors. Co-immunoprecipitation showed that L-selectin on the monocytes/macrophages was the binding protein of GdA. Treatment with anti-L-selectin antibody reduced GdA binding and GdA-induced IL-6 production. GdA-treated macrophages suppressed IFN-γ expression by co-cultured T-helper cells in an IL-6-dependent manner. These results show that GdA interacts with L-selectin to induce IL-6 production in monocytes/macrophages by activating the ERK signaling pathway. In turn, the increased IL-6 production suppresses IFN-γ expression in T-helper cells, which may play an important role in inducing a Th-2-polarized cytokine environment that flavors the immunotolerance of the fetoplacental unit.
Collapse
Affiliation(s)
- Cheuk-Lun Lee
- Department of Obstetrics and Gynaecology, University of Hong Kong, Pokfulam Road, Hong Kong, China
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Haga Y, Ishii K, Suzuki T. N-glycosylation is critical for the stability and intracellular trafficking of glucose transporter GLUT4. J Biol Chem 2011; 286:31320-7. [PMID: 21757715 DOI: 10.1074/jbc.m111.253955] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
The facilitative glucose transporter GLUT4 plays a key role in regulating whole body glucose homeostasis. GLUT4 dramatically changes its distribution upon insulin stimulation, and insulin-resistant diabetes is often linked with compromised translocation of GLUT4 under insulin stimulation. To elucidate the functional significance of the sole N-glycan chain on GLUT4, wild-type GLUT4 and a GLUT4 glycosylation mutant conjugated with enhanced GFP were stably expressed in HeLa cells. The N-glycan contributed to the overall stability of newly synthesized GLUT4. Moreover, cell surface expression of wild-type GLUT4 in HeLa cells was elevated upon insulin treatment, whereas the glycosylation mutant lost the ability to respond to insulin. Subcellular distribution of the mutant was distinct from that of wild-type GLUT4, implying that the subcellular localization required for insulin-mediated translocation was impaired in the mutant protein. Interestingly, kifunensine-treated cells also lost sensitivity to insulin, suggesting the functional importance of the N-glycan structure for GLUT4 trafficking. The K(m) or turnover rates of wild-type and mutant GLUT4, however, were similar, suggesting that the N-glycan had little effect on transporter activity. These findings underscore the critical roles of the N-glycan chain in quality control as well as intracellular trafficking of GLUT4.
Collapse
Affiliation(s)
- Yoshimi Haga
- Glycometabolome Team, RIKEN Advanced Science Institute, Wako, Saitama 351-0198, Japan
| | | | | |
Collapse
|
48
|
Lee CL, Lam KK, Koistinen H, Seppala M, Kurpisz M, Fernandez N, Pang RT, Yeung WS, Chiu PC. Glycodelin-A as a paracrine regulator in early pregnancy. J Reprod Immunol 2011; 90:29-34. [DOI: 10.1016/j.jri.2011.04.007] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2011] [Revised: 04/01/2011] [Accepted: 04/04/2011] [Indexed: 01/07/2023]
|