1
|
Oxidative Stress-Induced Growth Inhibitor (OSGIN1), a Target of X-Box-Binding Protein 1, Protects Palmitic Acid-Induced Vascular Lipotoxicity through Maintaining Autophagy. Biomedicines 2022; 10:biomedicines10050992. [PMID: 35625730 PMCID: PMC9138516 DOI: 10.3390/biomedicines10050992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 04/18/2022] [Accepted: 04/19/2022] [Indexed: 11/16/2022] Open
Abstract
Saturated free fatty acids (FFAs) strongly correlate with metabolic syndromes and are well-known risk factors for cardiovascular diseases (CVDs). The mechanism of palmitic acid (PA)-induced vascular lipotoxicity under endoplasmic reticulum (ER) stress is unknown. In the present paper, we investigate the roles of spliced form of X-box-binding protein 1 (XBP1s) target gene oxidative stress-induced growth inhibitor 1 (OSGIN1) in PA-induced vascular dysfunction. PA inhibited the tube formation assay of primary human umbilical vein endothelial cells (HUVECs). Simultaneously, PA treatment induced the XBP1s expression in HUVECs. Attenuate the induction of XBP1s by silencing the XBP1s retarded cell migration and diminished endothelial nitric oxide synthase (eNOS) expression. OSGIN1 is a target gene of XBP1s under PA treatment. The silencing of OSGIN1 inhibits cell migration by decreasing phospho-eNOS expression. PA activated autophagy in endothelial cells, inhibiting autophagy by 3-methyladenine (3-MA) decreased endothelial cell migration. Silencing XBP1s and OSGIN1 would reduce the induction of LC3 II; therefore, OSGIN1 could maintain autophagy to preserve endothelial cell migration. In conclusion, PA treatment induced ER stress and activated the inositol-requiring enzyme 1 alpha–spliced XBP1 (IRE1α–XBP1s) pathway. OSGIN1, a target gene of XBP1s, could protect endothelial cells from vascular lipotoxicity by regulating autophagy.
Collapse
|
2
|
Xia H, Scholtes C, Dufour CR, Ouellet C, Ghahremani M, Giguère V. Insulin action and resistance are dependent on a GSK3β-FBXW7-ERRα transcriptional axis. Nat Commun 2022; 13:2105. [PMID: 35440636 PMCID: PMC9019090 DOI: 10.1038/s41467-022-29722-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 03/30/2022] [Indexed: 12/15/2022] Open
Abstract
Insulin resistance, a harbinger of the metabolic syndrome, is a state of compromised hormonal response resulting from the dysregulation of a wide range of insulin-controlled cellular processes. However, how insulin affects cellular energy metabolism via long-term transcriptional regulation and whether boosting mitochondrial function alleviates insulin resistance remains to be elucidated. Herein we reveal that insulin directly enhances the activity of the nuclear receptor ERRα via a GSK3β/FBXW7 signaling axis. Liver-specific deletion of GSK3β or FBXW7 and mice harboring mutations of ERRα phosphosites (ERRα3SA) co-targeted by GSK3β/FBXW7 result in accumulated ERRα proteins that no longer respond to fluctuating insulin levels. ERRα3SA mice display reprogrammed liver and muscle transcriptomes, resulting in compromised energy homeostasis and reduced insulin sensitivity despite improved mitochondrial function. This crossroad of insulin signaling and transcriptional control by a nuclear receptor offers a framework to better understand the complex cellular processes contributing to the development of insulin resistance.
Collapse
Affiliation(s)
- Hui Xia
- Rosalind and Morris Goodman Cancer Research Institute, McGill University, Montréal, QC, H3A 1A3, Canada
- Department of Biochemistry, Faculty of Medicine and Health Sciences, McGill University, Montréal, QC, H3G 1Y6, Canada
| | - Charlotte Scholtes
- Rosalind and Morris Goodman Cancer Research Institute, McGill University, Montréal, QC, H3A 1A3, Canada
| | - Catherine R Dufour
- Rosalind and Morris Goodman Cancer Research Institute, McGill University, Montréal, QC, H3A 1A3, Canada
| | - Carlo Ouellet
- Rosalind and Morris Goodman Cancer Research Institute, McGill University, Montréal, QC, H3A 1A3, Canada
| | - Majid Ghahremani
- Rosalind and Morris Goodman Cancer Research Institute, McGill University, Montréal, QC, H3A 1A3, Canada
| | - Vincent Giguère
- Rosalind and Morris Goodman Cancer Research Institute, McGill University, Montréal, QC, H3A 1A3, Canada.
- Department of Biochemistry, Faculty of Medicine and Health Sciences, McGill University, Montréal, QC, H3G 1Y6, Canada.
| |
Collapse
|
3
|
Williams IM, Wasserman DH. Capillary Endothelial Insulin Transport: The Rate-limiting Step for Insulin-stimulated Glucose Uptake. Endocrinology 2022; 163:6462374. [PMID: 34908124 PMCID: PMC8758342 DOI: 10.1210/endocr/bqab252] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Indexed: 11/19/2022]
Abstract
The rate-limiting step for skeletal muscle glucose uptake is transport from microcirculation to muscle interstitium. Capillary endothelium poses a barrier that delays the onset of muscle insulin action. Defining physiological barriers that control insulin access to interstitial space is difficult because of technical challenges that confront study of microscopic events in an integrated physiological system. Two physiological variables determine muscle insulin access. These are the number of perfused capillaries and the permeability of capillary walls to insulin. Disease states associated with capillary rarefaction are closely linked to insulin resistance. Insulin permeability through highly resistant capillary walls of muscle poses a significant barrier to insulin access. Insulin may traverse the endothelium through narrow intercellular junctions or vesicular trafficking across the endothelial cell. Insulin is large compared with intercellular junctions, making this an unlikely route. Transport by endothelial vesicular trafficking is likely the primary route of transit. Studies in vivo show movement of insulin is not insulin receptor dependent. This aligns with single-cell transcriptomics that show the insulin receptor is not expressed in muscle capillaries. Work in cultured endothelial cell lines suggest that insulin receptor activation is necessary for endothelial insulin transit. Controversies remain in the understanding of transendothelial insulin transit to muscle. These controversies closely align with experimental approaches. Control of circulating insulin accessibility to skeletal muscle is an area that remains ripe for discovery. Factors that impede insulin access to muscle may contribute to disease and factors that accelerate access may be of therapeutic value for insulin resistance.
Collapse
Affiliation(s)
- Ian M Williams
- Department of Molecular Physiology and Biophysics and Vanderbilt Mouse Metabolic Phenotyping Center, Vanderbilt University, Nashville, TN 37232-0615, USA
| | - David H Wasserman
- Department of Molecular Physiology and Biophysics and Vanderbilt Mouse Metabolic Phenotyping Center, Vanderbilt University, Nashville, TN 37232-0615, USA
- Correspondence: David H. Wasserman, PhD, Light Hall Rm. 702, Vanderbilt University, Nashville, TN 37232-0615, USA.
| |
Collapse
|
4
|
Glucose Metabolism in Burns-What Happens? Int J Mol Sci 2021; 22:ijms22105159. [PMID: 34068151 PMCID: PMC8153015 DOI: 10.3390/ijms22105159] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 05/07/2021] [Accepted: 05/10/2021] [Indexed: 11/16/2022] Open
Abstract
Severe burns represent an important challenge for patients and medical teams. They lead to profound metabolic alterations, trigger a systemic inflammatory response, crush the immune defense, impair the function of the heart, lungs, kidneys, liver, etc. The metabolism is shifted towards a hypermetabolic state, and this situation might persist for years after the burn, having deleterious consequences for the patient's health. Severely burned patients lack energy substrates and react in order to produce and maintain augmented levels of glucose, which is the fuel "ready to use" by cells. In this paper, we discuss biological substances that induce a hyperglycemic response, concur to insulin resistance, and determine cell disturbance after a severe burn. We also focus on the most effective agents that provide pharmacological modulations of the changes in glucose metabolism.
Collapse
|
5
|
Phielix E, Begovatz P, Gancheva S, Bierwagen A, Kornips E, Schaart G, Hesselink MKC, Schrauwen P, Roden M. Athletes feature greater rates of muscle glucose transport and glycogen synthesis during lipid infusion. JCI Insight 2019; 4:127928. [PMID: 31672941 DOI: 10.1172/jci.insight.127928] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Accepted: 10/02/2019] [Indexed: 01/13/2023] Open
Abstract
BACKGROUNDInsulin resistance results from impaired skeletal muscle glucose transport/phosphorylation, linked to augmented lipid availability. Despite greater intramuscular lipids, athletes are highly insulin sensitive, which could result from higher rates of insulin-stimulated glycogen synthesis or glucose transport/phosphorylation and oxidation. Thus, we examined the time course of muscle glycogen and glucose-6-phosphate concentrations during low and high systemic lipid availability.METHODSEight endurance-trained and 9 sedentary humans (VO2 peak: 56 ± 2 vs. 33 ± 2 mL/kg/min, P < 0.05) underwent 6-hour hyperinsulinemic-isoglycemic clamp tests with infusions of triglycerides or saline in a randomized crossover design. Glycogen and glucose-6-phosphate concentrations were monitored in vastus lateralis muscles using 13C/31P magnetic resonance spectroscopy.RESULTSAthletes displayed a 25% greater (P < 0.05) insulin-stimulated glucose disposal rate (Rd) than sedentary participants. During Intralipid infusion, insulin sensitivity remained higher in the athletes (ΔRd: 25 ± 3 vs. 17 ± 3 μmol/kg/min, P < 0.05), supported by higher glucose transporter type 4 protein expression than in sedentary humans. Compared to saline infusion, AUC of glucose-6-phosphate remained unchanged during Intralipid infusion in athletes (1.6 ± 0.2 mmol/L vs. 1.4 ± 0.2 [mmol/L] × h, P = n.s.) but tended to decrease by 36% in sedentary humans (1.7 ± 0.4 vs. 1.1 ± 0.1 [mmol/L] × h, P < 0.059). This drop was accompanied by a 72% higher rate of net glycogen synthesis in the athletes upon Intralipid infusion (47 ± 9 vs. 13 ± 3 μmol/kg/min, P < 0.05).CONCLUSIONAthletes feature higher skeletal muscle glucose disposal and glycogen synthesis during increased lipid availability, which primarily results from maintained insulin-stimulated glucose transport with increased myocellular glucose-6-phosphate levels for subsequent glycogen synthesis.TRIAL REGISTRATIONClinicalTrials.gov NCT01229059.FUNDINGGerman Federal Ministry of Health (BMG).
Collapse
Affiliation(s)
- Esther Phielix
- Institute for Clinical Diabetology, German Diabetes Center, Düsseldorf, Germany.,German Center for Diabetes Research, München-Neuherberg, Germany.,Department of Nutrition and Movement Sciences, School for Nutrition and Translational Research in Metabolism, Maastricht University Medical Center, Maastricht, Netherlands
| | - Paul Begovatz
- Institute for Clinical Diabetology, German Diabetes Center, Düsseldorf, Germany.,German Center for Diabetes Research, München-Neuherberg, Germany
| | - Sofiya Gancheva
- Institute for Clinical Diabetology, German Diabetes Center, Düsseldorf, Germany.,German Center for Diabetes Research, München-Neuherberg, Germany.,Division of Endocrinology and Diabetology, Medical Faculty, Heinrich-Heine University, Düsseldorf, Germany
| | - Alessandra Bierwagen
- Institute for Clinical Diabetology, German Diabetes Center, Düsseldorf, Germany.,German Center for Diabetes Research, München-Neuherberg, Germany
| | - Esther Kornips
- Department of Nutrition and Movement Sciences, School for Nutrition and Translational Research in Metabolism, Maastricht University Medical Center, Maastricht, Netherlands
| | - Gert Schaart
- Department of Nutrition and Movement Sciences, School for Nutrition and Translational Research in Metabolism, Maastricht University Medical Center, Maastricht, Netherlands
| | - Matthijs K C Hesselink
- Department of Nutrition and Movement Sciences, School for Nutrition and Translational Research in Metabolism, Maastricht University Medical Center, Maastricht, Netherlands
| | - Patrick Schrauwen
- Department of Nutrition and Movement Sciences, School for Nutrition and Translational Research in Metabolism, Maastricht University Medical Center, Maastricht, Netherlands
| | - Michael Roden
- Institute for Clinical Diabetology, German Diabetes Center, Düsseldorf, Germany.,German Center for Diabetes Research, München-Neuherberg, Germany.,Division of Endocrinology and Diabetology, Medical Faculty, Heinrich-Heine University, Düsseldorf, Germany
| |
Collapse
|
6
|
Rosenbaum M, Hall KD, Guo J, Ravussin E, Mayer LS, Reitman ML, Smith SR, Walsh BT, Leibel RL. Glucose and Lipid Homeostasis and Inflammation in Humans Following an Isocaloric Ketogenic Diet. Obesity (Silver Spring) 2019; 27:971-981. [PMID: 31067015 PMCID: PMC6922028 DOI: 10.1002/oby.22468] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Accepted: 02/22/2019] [Indexed: 12/19/2022]
Abstract
OBJECTIVE The objective of this study was to measure changes in glucose, lipid, and inflammation parameters after transitioning from a baseline diet (BD) to an isocaloric ketogenic diet (KD). METHODS Glucose homeostasis, lipid homeostasis, and inflammation were studied in 17 men (BMI: 25-35 kg/m2 ) during 4 weeks of a BD (15% protein, 50% carbohydrate, 35% fat) followed by 4 weeks of an isocaloric KD (15% protein, 5% carbohydrate, 80% fat). Postprandial responses were assessed following mixed-meal tests matched to compositions of the BD (control meal [CM]) and KD (ketogenic meal). RESULTS Fasting ketones, glycerol, free fatty acids, glucagon, adiponectin, gastric inhibitory peptide, total and low-density lipoprotein cholesterol, and C-reactive protein were significantly increased on the KD. Fasting insulin, C-peptides, triglycerides, and fibroblast growth factor 21 were significantly decreased. During the KD, the glucose area under the curve was significantly higher with both test meals, and the insulin area under the curve was significantly higher only for the CM. Analyses of glucose homeostasis suggested that the KD insulin sensitivity decreased during the CM but increased during the ketogenic meal. Insulin-mediated antilipolysis was decreased on the KD regardless of meal type. CONCLUSIONS Switching to the KD was associated with increased cholesterol and inflammatory markers, decreased triglycerides, and decreased insulin-mediated antilipolysis. Glucose homeostasis parameters were diet dependent and test meal dependent.
Collapse
Affiliation(s)
- Michael Rosenbaum
- Departments of Pediatrics and Medicine, Division of Molecular Genetics, Columbia University Irving Medical Center, New York, New York, USA
| | - Kevin D Hall
- National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Juen Guo
- National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Eric Ravussin
- Pennington Biomedical Research Center, Baton Rouge, Louisiana, USA
| | - Laurel S Mayer
- Department of Psychiatry, New York State Psychiatric Institute, Columbia University Irving Medical Center, New York, New York, USA
| | - Marc L Reitman
- National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Steven R Smith
- The Translational Research Institute for Metabolism and Diabetes, Orlando, Florida, USA
| | - B Timothy Walsh
- Department of Psychiatry, New York State Psychiatric Institute, Columbia University Irving Medical Center, New York, New York, USA
| | - Rudolph L Leibel
- Departments of Pediatrics and Medicine, Division of Molecular Genetics, Columbia University Irving Medical Center, New York, New York, USA
| |
Collapse
|
7
|
Royes LFF, Gomez-Pinilla F. Making sense of gut feelings in the traumatic brain injury pathogenesis. Neurosci Biobehav Rev 2019; 102:345-361. [PMID: 31102601 DOI: 10.1016/j.neubiorev.2019.05.012] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 05/13/2019] [Accepted: 05/14/2019] [Indexed: 02/06/2023]
Abstract
Traumatic brain injury (TBI) is a devastating condition which often initiates a sequel of neurological disorders that can last throughout lifespan. From metabolic perspective, TBI also compromises systemic physiology including the function of body organs with subsequent malfunctions in metabolism. The emerging panorama is that the effects of TBI on the periphery strike back on the brain and exacerbate the overall TBI pathogenesis. An increasing number of clinical reports are alarming to show that metabolic dysfunction is associated with incidence of long-term neurological and psychiatric disorders. The autonomic nervous system, associated hypothalamic-pituitary axis, and the immune system are at the center of the interface between brain and body and are central to the regulation of overall homeostasis and disease. We review the strong association between mechanisms that regulate cell metabolism and inflammation which has important clinical implications for the communication between body and brain. We also discuss the integrative actions of lifestyle interventions such as diet and exercise on promoting brain and body health and cognition after TBI.
Collapse
Affiliation(s)
- Luiz Fernando Freire Royes
- Exercise Biochemistry Laboratory, Center of Physical Education and Sports, Federal University of Santa Maria - UFSM, Santa Maria, RS, Brazil
| | - Fernando Gomez-Pinilla
- Departments of Neurosurgery, and Integrative and Biology and Physiology, UCLA Brain Injury Research Center, University of California, Los Angeles, USA.
| |
Collapse
|
8
|
Song J, Yang R, Yang J, Zhou L. Mitochondrial Dysfunction-Associated Arrhythmogenic Substrates in Diabetes Mellitus. Front Physiol 2018; 9:1670. [PMID: 30574091 PMCID: PMC6291470 DOI: 10.3389/fphys.2018.01670] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Accepted: 11/07/2018] [Indexed: 12/15/2022] Open
Abstract
There is increasing evidence that diabetic cardiomyopathy increases the risk of cardiac arrhythmia and sudden cardiac death. While the detailed mechanisms remain incompletely understood, the loss of mitochondrial function, which is often observed in the heart of patients with diabetes, has emerged as a key contributor to the arrhythmogenic substrates. In this mini review, the pathophysiology of mitochondrial dysfunction in diabetes mellitus is explored in detail, followed by descriptions of several mechanisms potentially linking mitochondria to arrhythmogenesis in the context of diabetic cardiomyopathy.
Collapse
Affiliation(s)
- Jiajia Song
- Division of Cardiovascular Disease, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Ruilin Yang
- Division of Cardiovascular Disease, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States.,Key Laboratory of Mechanism Theory and Equipment Design of Ministry of Education, Tianjin University, Tianjin, China
| | - Jing Yang
- Division of Cardiovascular Disease, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Lufang Zhou
- Division of Cardiovascular Disease, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| |
Collapse
|
9
|
Johnston LW, Harris SB, Retnakaran R, Giacca A, Liu Z, Bazinet RP, Hanley AJ. Association of NEFA composition with insulin sensitivity and beta cell function in the Prospective Metabolism and Islet Cell Evaluation (PROMISE) cohort. Diabetologia 2018; 61:821-830. [PMID: 29275428 DOI: 10.1007/s00125-017-4534-6] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Accepted: 11/14/2017] [Indexed: 02/07/2023]
Abstract
AIMS/HYPOTHESIS Our aim was to determine the longitudinal associations of individual NEFA with the pathogenesis of diabetes, specifically with differences in insulin sensitivity and beta cell function over 6 years in a cohort of individuals who are at risk for diabetes. METHODS In the Prospective Metabolism and Islet Cell Evaluation (PROMISE) longitudinal cohort, 477 participants had serum NEFA measured at the baseline visit and completed an OGTT at three time points over 6 years. Outcome variables were calculated using the OGTT values. At each visit, insulin sensitivity was assessed using the HOMA2 of insulin sensitivity (HOMA2-%S) and the Matsuda index, while beta cell function was assessed using the insulinogenic index over HOMA-IR (IGI/IR) and the insulin secretion-sensitivity index-2 (ISSI-2). Generalised estimating equations were used, adjusting for time, waist, sex, ethnicity, baseline age, alanine aminotransferase (ALT) and physical activity. NEFA were analysed as both concentrations (nmol/ml) and proportions (mol%) of the total fraction. RESULTS Participants' (73% female, 70% with European ancestry) insulin sensitivity and beta cell function declined by 14-21% over 6 years of follow-up. In unadjusted models, several NEFA (e.g. 18:1 n-7, 22:4 n-6) were associated with lower insulin sensitivity, however, nearly all of these associations were attenuated in fully adjusted models. In adjusted models, total NEFA, 16:0, 18:1 n-9 and 18:2 n-6 (as concentrations) were associated with 3.7-8.0% lower IGI/IR and ISSI-2, while only 20:5 n-3 (as mol%) was associated with 7.7% higher HOMA2-%S. CONCLUSIONS/INTERPRETATION Total NEFA concentration was a strong predictor of lower beta cell function over 6 years. Our results suggest that the association with beta cell function is due to the absolute size of the serum NEFA fraction, rather than the specific fatty acid composition.
Collapse
Affiliation(s)
- Luke W Johnston
- Department of Nutritional Sciences, Faculty of Medicine, University of Toronto, FitzGerald Building, 150 College Street, Toronto, ON, M5S 3E2, Canada
| | - Stewart B Harris
- Centre for Studies in Family Medicine, University of Western Ontario, London, ON, Canada
| | - Ravi Retnakaran
- Division of Endocrinology, University of Toronto, Toronto, ON, Canada
- Lunenfeld Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, Canada
| | - Adria Giacca
- Department of Physiology, University of Toronto, Toronto, ON, Canada
| | - Zhen Liu
- Department of Nutritional Sciences, Faculty of Medicine, University of Toronto, FitzGerald Building, 150 College Street, Toronto, ON, M5S 3E2, Canada
| | - Richard P Bazinet
- Department of Nutritional Sciences, Faculty of Medicine, University of Toronto, FitzGerald Building, 150 College Street, Toronto, ON, M5S 3E2, Canada
| | - Anthony J Hanley
- Department of Nutritional Sciences, Faculty of Medicine, University of Toronto, FitzGerald Building, 150 College Street, Toronto, ON, M5S 3E2, Canada.
- Division of Endocrinology, University of Toronto, Toronto, ON, Canada.
- Dalla Lana School of Public Health, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
10
|
Grandl G, Wolfrum C. Hemostasis, endothelial stress, inflammation, and the metabolic syndrome. Semin Immunopathol 2018; 40:215-224. [PMID: 29209827 PMCID: PMC5809518 DOI: 10.1007/s00281-017-0666-5] [Citation(s) in RCA: 202] [Impact Index Per Article: 28.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Accepted: 11/14/2017] [Indexed: 12/23/2022]
Abstract
Obesity and the metabolic syndrome (MS) are two of the pressing healthcare problems of our time. The MS is defined as increased abdominal obesity in concert with elevated fasting glucose levels, insulin resistance, elevated blood pressure, and plasma lipids. It is a key risk factor for type 2 diabetes mellitus (T2DM) and for cardiovascular complications and mortality. Here, we review work demonstrating that various aspects of coagulation and hemostasis, as well as vascular reactivity and function, become impaired progressively during chronic ingestion of a western diet, but also acutely after meals. We outline that both T2DM and cardiovascular disease should be viewed as inflammatory diseases and describe that chronic overload of free fatty acids and glucose can trigger inflammatory pathways directly or via increased production of ROS. We propose that since endothelial stress and increases in platelet activity precede inflammation and overt symptoms of the MS, they are likely the first hit. This suggests that endothelial activation and insulin resistance are probably causative in the observed chronic low-level metabolic inflammation, and thus both metabolic and cardiovascular complications linked to consumption of a western diet.
Collapse
Affiliation(s)
- Gerald Grandl
- Institute of Food, Nutrition and Health, ETH Zurich, Schwerzenbach, Switzerland.
- Institute for Diabetes and Obesity, Helmholtz Zentrum München, Parkring 13, D-85748, Garching, Germany.
| | - Christian Wolfrum
- Institute of Food, Nutrition and Health, ETH Zurich, Schwerzenbach, Switzerland
| |
Collapse
|
11
|
Microbial Regulation of Glucose Metabolism and Insulin Resistance. Genes (Basel) 2017; 9:genes9010010. [PMID: 29286343 PMCID: PMC5793163 DOI: 10.3390/genes9010010] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Revised: 12/21/2017] [Accepted: 12/21/2017] [Indexed: 12/12/2022] Open
Abstract
Type 2 diabetes is a combined disease, resulting from a hyperglycemia and peripheral and hepatic insulin resistance. Recent data suggest that the gut microbiota is involved in diabetes development, altering metabolic processes including glucose and fatty acid metabolism. Thus, type 2 diabetes patients show a microbial dysbiosis, with reduced butyrate-producing bacteria and elevated potential pathogens compared to metabolically healthy individuals. Furthermore, probiotics are a known tool to modulate the microbiota, having a therapeutic potential. Current literature will be discussed to elucidate the complex interaction of gut microbiota, intestinal permeability and inflammation leading to peripheral and hepatic insulin resistance. Therefore, this review aims to generate a deeper understanding of the underlying mechanism of potential microbial strains, which can be used as probiotics.
Collapse
|
12
|
Abstract
Mitochondrial autophagy (mitophagy) is a mitochondrial quality control mechanism that selectively removes damaged mitochondria via autophagic degradation. Autophagic adaptor/receptor proteins contribute to the selective degradation of damaged mitochondria by autophagy. A part of them containing both ubiquitin binding domains and Atg8 interacting motif (AIM)/LC3 interacting region (LIR) motifs, which bind to the autophagy-related protein 8 (Atg8) family (LC3 and GABARAP family), lead ubiquitylated (damaged) mitochondria to selective removal. On the other hand, some specific outer mitochondrial membrane-anchored proteins containing AIM/LIR motif function as another type of autophagy adaptor/receptor proteins. Here I briefly summarize mechanisms of mitophagy and its related proteins.
Collapse
|
13
|
Lee WL, Klip A. Endothelial Transcytosis of Insulin: Does It Contribute to Insulin Resistance? Physiology (Bethesda) 2017; 31:336-45. [PMID: 27511460 DOI: 10.1152/physiol.00010.2016] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Most research on insulin resistance has focused on impaired signaling at the level of target tissues like skeletal muscle. Insulin delivery is also important and includes recruitment and perfusion of capillaries bearing insulin, but also the transit of insulin across the capillary endothelium. The mechanisms of this second stage (insulin transcytosis) and whether it contributes to insulin resistance remain uncertain.
Collapse
Affiliation(s)
- Warren L Lee
- Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Toronto, Canada; Department of Medicine, University of Toronto, Toronto, Canada; Department of Biochemistry, University of Toronto, Toronto, Canada; Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada; and
| | - Amira Klip
- Cell Biology Program, The Hospital for Sick Children, Toronto, Canada; Department of Biochemistry, University of Toronto, Toronto, Canada; Paediatrics, and Physiology, University of Toronto, Toronto, Canada
| |
Collapse
|
14
|
Hernández EÁ, Kahl S, Seelig A, Begovatz P, Irmler M, Kupriyanova Y, Nowotny B, Nowotny P, Herder C, Barosa C, Carvalho F, Rozman J, Neschen S, Jones JG, Beckers J, de Angelis MH, Roden M. Acute dietary fat intake initiates alterations in energy metabolism and insulin resistance. J Clin Invest 2017; 127:695-708. [PMID: 28112681 DOI: 10.1172/jci89444] [Citation(s) in RCA: 146] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Accepted: 11/10/2016] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Dietary intake of saturated fat is a likely contributor to nonalcoholic fatty liver disease (NAFLD) and insulin resistance, but the mechanisms that initiate these abnormalities in humans remain unclear. We examined the effects of a single oral saturated fat load on insulin sensitivity, hepatic glucose metabolism, and lipid metabolism in humans. Similarly, initiating mechanisms were examined after an equivalent challenge in mice. METHODS Fourteen lean, healthy individuals randomly received either palm oil (PO) or vehicle (VCL). Hepatic metabolism was analyzed using in vivo 13C/31P/1H and ex vivo 2H magnetic resonance spectroscopy before and during hyperinsulinemic-euglycemic clamps with isotope dilution. Mice underwent identical clamp procedures and hepatic transcriptome analyses. RESULTS PO administration decreased whole-body, hepatic, and adipose tissue insulin sensitivity by 25%, 15%, and 34%, respectively. Hepatic triglyceride and ATP content rose by 35% and 16%, respectively. Hepatic gluconeogenesis increased by 70%, and net glycogenolysis declined by 20%. Mouse transcriptomics revealed that PO differentially regulates predicted upstream regulators and pathways, including LPS, members of the TLR and PPAR families, NF-κB, and TNF-related weak inducer of apoptosis (TWEAK). CONCLUSION Saturated fat ingestion rapidly increases hepatic lipid storage, energy metabolism, and insulin resistance. This is accompanied by regulation of hepatic gene expression and signaling that may contribute to development of NAFLD.REGISTRATION. ClinicalTrials.gov NCT01736202. FUNDING Germany: Ministry of Innovation, Science, and Research North Rhine-Westfalia, German Federal Ministry of Health, Federal Ministry of Education and Research, German Center for Diabetes Research, German Research Foundation, and German Diabetes Association. Portugal: Portuguese Foundation for Science and Technology, FEDER - European Regional Development Fund, Portuguese Foundation for Science and Technology, and Rede Nacional de Ressonância Magnética Nuclear.
Collapse
|
15
|
Lane-Cordova AD, Witmer JR, Dubishar K, DuBose LE, Chenard CA, Siefers KJ, Myers JE, Points LJ, Pierce GL. High trans but not saturated fat beverage causes an acute reduction in postprandial vascular endothelial function but not arterial stiffness in humans. Vasc Med 2016; 21:429-436. [PMID: 27558396 DOI: 10.1177/1358863x16656063] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
A diet high in trans-fatty acids (TFAs) is associated with a higher risk of cardiovascular disease (CVD) than a diet high in saturated fatty acids (SFAs), but the mechanisms remain unclear. We hypothesized that a beverage high in TFAs would cause a larger reduction in postprandial endothelial function and an increase in arterial stiffness, in part from greater reductions in insulin sensitivity, compared with a beverage high in SFAs. Eleven healthy adults (aged 47±5 years) ingested a warm test beverage (520 kcal, 56 g total fat, 5 g carbohydrate, 1 g protein) high in either TFAs or SFAs in a randomized cross-over study. Ingestion of the beverage high in TFAs (p<0.01) but not high in SFAs (p=0.49) decreased endothelial function (brachial artery flow-mediated dilation, mmΔ) at 3-4 hours (p<0.01 for time; p=0.034 for interaction), but did not alter aortic stiffness or carotid β-stiffness. The homeostasis model of insulin resistance (interaction p=0.062) tended to decrease after SFAs but not TFAs. A beverage high in TFAs but not SFAs results in a postprandial reduction in endothelial function and a trend for decreased insulin sensitivity, potentially explaining the higher risk of CVD with a diet high in TFAs.
Collapse
Affiliation(s)
- Abbi D Lane-Cordova
- Department of Health and Human Physiology, The University of Iowa, Iowa City, IA, USA
| | - Jordan R Witmer
- Department of Health and Human Physiology, The University of Iowa, Iowa City, IA, USA
| | - Kaitlyn Dubishar
- Department of Health and Human Physiology, The University of Iowa, Iowa City, IA, USA
| | - Lyndsey E DuBose
- Department of Health and Human Physiology, The University of Iowa, Iowa City, IA, USA
| | - Catherine A Chenard
- Department of Health and Human Physiology, The University of Iowa, Iowa City, IA, USA
| | - Kyle J Siefers
- Department of Health and Human Physiology, The University of Iowa, Iowa City, IA, USA
| | - Janie E Myers
- Department of Health and Human Physiology, The University of Iowa, Iowa City, IA, USA
| | - Lauren J Points
- Department of Health and Human Physiology, The University of Iowa, Iowa City, IA, USA
| | - Gary L Pierce
- Department of Health and Human Physiology, The University of Iowa, Iowa City, IA, USA .,Fraternal Order of Eagles Diabetes Research Center, The University of Iowa, Iowa City, IA, USA.,Center for Hypertension Research, The University of Iowa, Iowa City, IA, USA.,Abboud Cardiovascular Research Center, The University of Iowa, Iowa City, IA, USA
| |
Collapse
|
16
|
Hafizi Abu Bakar M, Kian Kai C, Wan Hassan WN, Sarmidi MR, Yaakob H, Zaman Huri H. Mitochondrial dysfunction as a central event for mechanisms underlying insulin resistance: the roles of long chain fatty acids. Diabetes Metab Res Rev 2015; 31:453-75. [PMID: 25139820 DOI: 10.1002/dmrr.2601] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2013] [Revised: 04/19/2014] [Accepted: 07/23/2014] [Indexed: 12/25/2022]
Abstract
Insulin resistance is characterized by hyperglycaemia, dyslipidaemia and oxidative stress prior to the development of type 2 diabetes mellitus. To date, a number of mechanisms have been proposed to link these syndromes together, but it remains unclear what the unifying condition that triggered these events in the progression of this metabolic disease. There have been a steady accumulation of data in numerous experimental studies showing the strong correlations between mitochondrial dysfunction, oxidative stress and insulin resistance. In addition, a growing number of studies suggest that the raised plasma free fatty acid level induced insulin resistance with the significant alteration of oxidative metabolism in various target tissues such as skeletal muscle, liver and adipose tissue. In this review, we herein propose the idea of long chain fatty acid-induced mitochondrial dysfunctions as one of the key events in the pathophysiological development of insulin resistance and type 2 diabetes. The accumulation of reactive oxygen species, lipotoxicity, inflammation-induced endoplasmic reticulum stress and alterations of mitochondrial gene subset expressions are the most detrimental that lead to the developments of aberrant intracellular insulin signalling activity in a number of peripheral tissues, thereby leading to insulin resistance and type 2 diabetes.
Collapse
Affiliation(s)
- Mohamad Hafizi Abu Bakar
- Department of Bioprocess Engineering, Faculty of Chemical Engineering, Universiti Teknologi Malaysia, Skudai, Johor, Malaysia
| | - Cheng Kian Kai
- Department of Bioprocess Engineering, Faculty of Chemical Engineering, Universiti Teknologi Malaysia, Skudai, Johor, Malaysia
| | - Wan Najihah Wan Hassan
- Department of Bioprocess Engineering, Faculty of Chemical Engineering, Universiti Teknologi Malaysia, Skudai, Johor, Malaysia
| | - Mohamad Roji Sarmidi
- Institute of Bioproduct Development, Universiti Teknologi Malaysia, Skudai, Johor, Malaysia
| | - Harisun Yaakob
- Institute of Bioproduct Development, Universiti Teknologi Malaysia, Skudai, Johor, Malaysia
| | - Hasniza Zaman Huri
- Department of Pharmacy, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
- Clinical Investigation Centre, 13th Floor Main Tower, University Malaya Medical Centre, Lembah Pantai, Kuala Lumpur, Malaysia
| |
Collapse
|
17
|
Kolka CM, Richey JM, Castro AVB, Broussard JL, Ionut V, Bergman RN. Lipid-induced insulin resistance does not impair insulin access to skeletal muscle. Am J Physiol Endocrinol Metab 2015; 308:E1001-9. [PMID: 25852002 PMCID: PMC4451289 DOI: 10.1152/ajpendo.00015.2015] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2015] [Accepted: 04/03/2015] [Indexed: 11/22/2022]
Abstract
Elevated plasma free fatty acids (FFA) induce insulin resistance in skeletal muscle. Previously, we have shown that experimental insulin resistance induced by lipid infusion prevents the dispersion of insulin through the muscle, and we hypothesized that this would lead to an impairment of insulin moving from the plasma to the muscle interstitium. Thus, we infused lipid into our anesthetized canine model and measured the appearance of insulin in the lymph as a means to sample muscle interstitium under hyperinsulinemic euglycemic clamp conditions. Although lipid infusion lowered the glucose infusion rate and induced both peripheral and hepatic insulin resistance, we were unable to detect an impairment of insulin access to the lymph. Interestingly, despite a significant, 10-fold increase in plasma FFA, we detected little to no increase in free fatty acids or triglycerides in the lymph after lipid infusion. Thus, we conclude that experimental insulin resistance induced by lipid infusion does not reduce insulin access to skeletal muscle under clamp conditions. This would suggest that the peripheral insulin resistance is likely due to reduced cellular sensitivity to insulin in this model, and yet we did not detect a change in the tissue microenvironment that could contribute to cellular insulin resistance.
Collapse
Affiliation(s)
- Cathryn M Kolka
- Department of Physiology and Biophysics, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Joyce M Richey
- Department of Physiology and Biophysics, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Ana Valeria B Castro
- Department of Physiology and Biophysics, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Josiane L Broussard
- Department of Physiology and Biophysics, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Viorica Ionut
- Department of Physiology and Biophysics, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Richard N Bergman
- Department of Physiology and Biophysics, Keck School of Medicine, University of Southern California, Los Angeles, California
| |
Collapse
|
18
|
Osborne NN, Núñez-Álvarez C, del Olmo-Aguado S. The effect of visual blue light on mitochondrial function associated with retinal ganglions cells. Exp Eye Res 2014; 128:8-14. [DOI: 10.1016/j.exer.2014.08.012] [Citation(s) in RCA: 305] [Impact Index Per Article: 27.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2014] [Revised: 08/18/2014] [Accepted: 08/20/2014] [Indexed: 11/16/2022]
|
19
|
Kahl S, Straßburger K, Nowotny B, Livingstone R, Klüppelholz B, Keßel K, Hwang JH, Giani G, Hoffmann B, Pacini G, Gastaldelli A, Roden M. Comparison of liver fat indices for the diagnosis of hepatic steatosis and insulin resistance. PLoS One 2014; 9:e94059. [PMID: 24732091 PMCID: PMC3986069 DOI: 10.1371/journal.pone.0094059] [Citation(s) in RCA: 123] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2013] [Accepted: 03/11/2014] [Indexed: 12/20/2022] Open
Abstract
Context Hepatic steatosis, defined as increased hepatocellular lipid content (HCL), associates with visceral obesity and glucose intolerance. As exact HCL quantification by 1H-magnetic resonance spectroscopy (1H-MRS) is not generally available, various clinical indices are increasingly used to predict steatosis. Objective The purpose of this study was to test the accuracy of NAFLD liver fat score (NAFLD-LFS), hepatic steatosis index (HSI) and fatty liver index (FLI) against 1H-MRS and their relationships with insulin sensitivity and secretion. Design, Setting and Participants Ninety-two non-diabetic, predominantly non-obese humans underwent clinical examination, 1H-MRS and an oral glucose tolerance test (OGTT) to calculate insulin sensitivity and β-cell function. Accuracy of indices was assessed from the area under the receiver operating characteristic curve (AROC). Results Median HCL was 2.49% (0.62;4.23) and correlated with parameters of glycemia across all subjects. NAFLD-LFS, FLI and HSI yielded AROCs of 0.70, 0.72, and 0.79, respectively, and related positively to HCL, insulin resistance, fasting and post-load β-cell function normalized for insulin resistance. Upon adjustment for age, sex and HCL, regression analysis revealed that NAFLD-LFS, FLI and HSI still independently associated with both insulin sensitivity and β-cell function. Conclusion The tested indices offer modest efficacy to detect steatosis and cannot substitute for fat quantification by 1H-MRS. However, all indices might serve as surrogate parameters for liver fat content and also as rough clinical estimates of abnormal insulin sensitivity and secretion. Further validation in larger collectives such as epidemiological studies is needed.
Collapse
Affiliation(s)
- Sabine Kahl
- Institute for Clinical Diabetology, German Diabetes Center at Heinrich-Heine University, Düsseldorf, Germany
- Department of Endocrinology and Diabetology, Heinrich-Heine University Düsseldorf, Düsseldorf, Germany
| | - Klaus Straßburger
- Institute for Clinical Diabetology, German Diabetes Center at Heinrich-Heine University, Düsseldorf, Germany
| | - Bettina Nowotny
- Institute for Clinical Diabetology, German Diabetes Center at Heinrich-Heine University, Düsseldorf, Germany
- Department of Endocrinology and Diabetology, Heinrich-Heine University Düsseldorf, Düsseldorf, Germany
| | - Roshan Livingstone
- Institute for Clinical Diabetology, German Diabetes Center at Heinrich-Heine University, Düsseldorf, Germany
| | - Birgit Klüppelholz
- Institute for Biometrics and Epidemiology, German Diabetes Center at Heinrich-Heine University, Düsseldorf, Germany
| | - Kathrin Keßel
- Institute for Clinical Diabetology, German Diabetes Center at Heinrich-Heine University, Düsseldorf, Germany
| | - Jong-Hee Hwang
- Institute for Clinical Diabetology, German Diabetes Center at Heinrich-Heine University, Düsseldorf, Germany
| | - Guido Giani
- Institute for Biometrics and Epidemiology, German Diabetes Center at Heinrich-Heine University, Düsseldorf, Germany
| | - Barbara Hoffmann
- IUF – Leibniz Research Institute for Environmental Medicine, Düsseldorf, Germany
| | - Giovanni Pacini
- National Research Council, Institute of Biomedical Engineering, Metabolic Unit, Padova, Italy
| | - Amalia Gastaldelli
- National Research Council, Institute of Clinical Physiology, Pisa, Italy
| | - Michael Roden
- Institute for Clinical Diabetology, German Diabetes Center at Heinrich-Heine University, Düsseldorf, Germany
- Department of Endocrinology and Diabetology, Heinrich-Heine University Düsseldorf, Düsseldorf, Germany
- German Center for Diabetes Research, Partner Düsseldorf, Germany
- * E-mail:
| |
Collapse
|
20
|
Nowotny B, Zahiragic L, Krog D, Nowotny PJ, Herder C, Carstensen M, Yoshimura T, Szendroedi J, Phielix E, Schadewaldt P, Schloot NC, Shulman GI, Roden M. Mechanisms underlying the onset of oral lipid-induced skeletal muscle insulin resistance in humans. Diabetes 2013; 62:2240-8. [PMID: 23454694 PMCID: PMC3712035 DOI: 10.2337/db12-1179] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2012] [Accepted: 02/25/2013] [Indexed: 01/06/2023]
Abstract
Several mechanisms, such as innate immune responses via Toll-like receptor-4, accumulation of diacylglycerols (DAG)/ceramides, and activation of protein kinase C (PKC), are considered to underlie skeletal muscle insulin resistance. In this study, we examined initial events occurring during the onset of insulin resistance upon oral high-fat loading compared with lipid and low-dose endotoxin infusion. Sixteen lean insulin-sensitive volunteers received intravenous fat (iv fat), oral fat (po fat), intravenous endotoxin (lipopolysaccharide [LPS]), and intravenous glycerol as control. After 6 h, whole-body insulin sensitivity was reduced by iv fat, po fat, and LPS to 60, 67, and 48%, respectively (all P < 0.01), which was due to decreased nonoxidative glucose utilization, while hepatic insulin sensitivity was unaffected. Muscle PKCθ activation increased by 50% after iv and po fat, membrane Di-C18:2 DAG species doubled after iv fat and correlated with PKCθ activation after po fat, whereas ceramides were unchanged. Only after LPS, circulating inflammatory markers (tumor necrosis factor-α, interleukin-6, and interleukin-1 receptor antagonist), their mRNA expression in subcutaneous adipose tissue, and circulating cortisol were elevated. Po fat ingestion rapidly induces insulin resistance by reducing nonoxidative glucose disposal, which associates with PKCθ activation and a rise in distinct myocellular membrane DAG, while endotoxin-induced insulin resistance is exclusively associated with stimulation of inflammatory pathways.
Collapse
Affiliation(s)
- Bettina Nowotny
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Institute for Diabetes Research at Heinrich Heine University, Düsseldorf, Germany
| | - Lejla Zahiragic
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Institute for Diabetes Research at Heinrich Heine University, Düsseldorf, Germany
- University Clinics for Endocrinology and Diabetology, Heinrich Heine University, Düsseldorf, Germany
| | - Dorothea Krog
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Institute for Diabetes Research at Heinrich Heine University, Düsseldorf, Germany
| | - Peter J. Nowotny
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Institute for Diabetes Research at Heinrich Heine University, Düsseldorf, Germany
| | - Christian Herder
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Institute for Diabetes Research at Heinrich Heine University, Düsseldorf, Germany
| | - Maren Carstensen
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Institute for Diabetes Research at Heinrich Heine University, Düsseldorf, Germany
| | - Toru Yoshimura
- Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut
| | - Julia Szendroedi
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Institute for Diabetes Research at Heinrich Heine University, Düsseldorf, Germany
- University Clinics for Endocrinology and Diabetology, Heinrich Heine University, Düsseldorf, Germany
| | - Esther Phielix
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Institute for Diabetes Research at Heinrich Heine University, Düsseldorf, Germany
| | - Peter Schadewaldt
- Institute for Biochemistry and Pathobiochemistry, German Diabetes Center, Leibniz Institute for Diabetes Research at Heinrich Heine University, Düsseldorf, Germany
| | - Nanette C. Schloot
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Institute for Diabetes Research at Heinrich Heine University, Düsseldorf, Germany
- University Clinics for Endocrinology and Diabetology, Heinrich Heine University, Düsseldorf, Germany
| | - Gerald I. Shulman
- Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut
- Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, Connecticut
- Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, Connecticut
| | - Michael Roden
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Institute for Diabetes Research at Heinrich Heine University, Düsseldorf, Germany
- University Clinics for Endocrinology and Diabetology, Heinrich Heine University, Düsseldorf, Germany
| |
Collapse
|
21
|
Estadella D, da Penha Oller do Nascimento CM, Oyama LM, Ribeiro EB, Dâmaso AR, de Piano A. Lipotoxicity: effects of dietary saturated and transfatty acids. Mediators Inflamm 2013; 2013:137579. [PMID: 23509418 PMCID: PMC3572653 DOI: 10.1155/2013/137579] [Citation(s) in RCA: 128] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2012] [Revised: 12/19/2012] [Accepted: 12/19/2012] [Indexed: 01/18/2023] Open
Abstract
The ingestion of excessive amounts of saturated fatty acids (SFAs) and transfatty acids (TFAs) is considered to be a risk factor for cardiovascular diseases, insulin resistance, dyslipidemia, and obesity. The focus of this paper was to elucidate the influence of dietary SFA and TFA intake on the promotion of lipotoxicity to the liver and cardiovascular, endothelial, and gut microbiota systems, as well as on insulin resistance and endoplasmic reticulum stress. The saturated and transfatty acids favor a proinflammatory state leading to insulin resistance. These fatty acids can be involved in several inflammatory pathways, contributing to disease progression in chronic inflammation, autoimmunity, allergy, cancer, atherosclerosis, hypertension, and heart hypertrophy as well as other metabolic and degenerative diseases. As a consequence, lipotoxicity may occur in several target organs by direct effects, represented by inflammation pathways, and through indirect effects, including an important alteration in the gut microbiota associated with endotoxemia. Interactions between these pathways may perpetuate a feedback process that exacerbates an inflammatory state. The importance of lifestyle modification, including an improved diet, is recommended as a strategy for treatment of these diseases.
Collapse
Affiliation(s)
- Débora Estadella
- Programa de Pós-Graduação em Nutrição, Disciplina de Fisiologia da Nutrição, EPM, Universidade Federal de São Paulo (UNIFESP), Rua Botucatu, 862 Edifício de Ciências Biomédicas, 2 andar, Vila Clementino, 04023-060 São Paulo, SP, Brazil
| | - Claudia M. da Penha Oller do Nascimento
- Programa de Pós-Graduação em Nutrição, Disciplina de Fisiologia da Nutrição, EPM, Universidade Federal de São Paulo (UNIFESP), Rua Botucatu, 862 Edifício de Ciências Biomédicas, 2 andar, Vila Clementino, 04023-060 São Paulo, SP, Brazil
| | - Lila M. Oyama
- Programa de Pós-Graduação em Nutrição, Disciplina de Fisiologia da Nutrição, EPM, Universidade Federal de São Paulo (UNIFESP), Rua Botucatu, 862 Edifício de Ciências Biomédicas, 2 andar, Vila Clementino, 04023-060 São Paulo, SP, Brazil
| | - Eliane B. Ribeiro
- Programa de Pós-Graduação em Nutrição, Disciplina de Fisiologia da Nutrição, EPM, Universidade Federal de São Paulo (UNIFESP), Rua Botucatu, 862 Edifício de Ciências Biomédicas, 2 andar, Vila Clementino, 04023-060 São Paulo, SP, Brazil
| | - Ana R. Dâmaso
- Departamento de Biociências, UNIFESP, Campus Baixada Santista, 11060-001 Santos, SP, Brazil
| | - Aline de Piano
- Programa de Pós-Graduação em Nutrição, Disciplina de Fisiologia da Nutrição, EPM, Universidade Federal de São Paulo (UNIFESP), Rua Botucatu, 862 Edifício de Ciências Biomédicas, 2 andar, Vila Clementino, 04023-060 São Paulo, SP, Brazil
| |
Collapse
|
22
|
Affiliation(s)
- Eugene J Barrett
- Division of Endocrinology and Metabolism, Department of Internal Medicine, University of Virginia, Charlottesville, Virginia, USA.
| | | |
Collapse
|