1
|
Wang X, Zhao J, Xu J, Li B, Liu X, Xie G, Duan X, Liu D. Noncaloric monosaccharides induce excessive sprouting angiogenesis in zebrafish via foxo1a-marcksl1a signal. eLife 2024; 13:RP95427. [PMID: 39365738 PMCID: PMC11452176 DOI: 10.7554/elife.95427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/06/2024] Open
Abstract
Artificially sweetened beverages containing noncaloric monosaccharides were suggested as healthier alternatives to sugar-sweetened beverages. Nevertheless, the potential detrimental effects of these noncaloric monosaccharides on blood vessel function remain inadequately understood. We have established a zebrafish model that exhibits significant excessive angiogenesis induced by high glucose, resembling the hyperangiogenic characteristics observed in proliferative diabetic retinopathy (PDR). Utilizing this model, we observed that glucose and noncaloric monosaccharides could induce excessive formation of blood vessels, especially intersegmental vessels (ISVs). The excessively branched vessels were observed to be formed by ectopic activation of quiescent endothelial cells (ECs) into tip cells. Single-cell transcriptomic sequencing analysis of the ECs in the embryos exposed to high glucose revealed an augmented ratio of capillary ECs, proliferating ECs, and a series of upregulated proangiogenic genes. Further analysis and experiments validated that reduced foxo1a mediated the excessive angiogenesis induced by monosaccharides via upregulating the expression of marcksl1a. This study has provided new evidence showing the negative effects of noncaloric monosaccharides on the vascular system and the underlying mechanisms.
Collapse
Affiliation(s)
- Xiaoning Wang
- Affiliated Hospital of Nantong University, Nantong Laboratory of Development and Diseases, School of Life Science; Co-innovation Center of Neuroregeneration, Nantong UniversityNantongChina
| | - Jinxiang Zhao
- Affiliated Hospital of Nantong University, Nantong Laboratory of Development and Diseases, School of Life Science; Co-innovation Center of Neuroregeneration, Nantong UniversityNantongChina
- Suqian First HospitalSuqianChina
| | - Jiehuan Xu
- Affiliated Hospital of Nantong University, Nantong Laboratory of Development and Diseases, School of Life Science; Co-innovation Center of Neuroregeneration, Nantong UniversityNantongChina
| | - Bowen Li
- Medical School, Nantong UniversityNantongChina
| | - Xia Liu
- Affiliated Hospital of Nantong University, Nantong Laboratory of Development and Diseases, School of Life Science; Co-innovation Center of Neuroregeneration, Nantong UniversityNantongChina
| | - Gangcai Xie
- Medical School, Nantong UniversityNantongChina
| | - Xuchu Duan
- Affiliated Hospital of Nantong University, Nantong Laboratory of Development and Diseases, School of Life Science; Co-innovation Center of Neuroregeneration, Nantong UniversityNantongChina
| | - Dong Liu
- Affiliated Hospital of Nantong University, Nantong Laboratory of Development and Diseases, School of Life Science; Co-innovation Center of Neuroregeneration, Nantong UniversityNantongChina
| |
Collapse
|
2
|
Ott H, Bennewitz K, Zhang X, Prianichnikova M, Sticht C, Poschet G, Kroll J. Sodium thiosulfate treatment rescues hyperglycaemia-induced pronephros damage in zebrafish by upregulating nitric oxide signalling. J Physiol 2024. [PMID: 39264236 DOI: 10.1113/jp286398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 08/16/2024] [Indexed: 09/13/2024] Open
Abstract
Sodium thiosulfate (STS) is gaining increasing attention in research for its potential therapeutic applications across a spectrum of disease processes beyond its current uses. However, the precise mechanisms of action remain incompletely understood. We investigated the efficacy of STS in treating hyperglycaemia-induced pronephros damage in zebrafish to gain further insight into the underlying mechanisms. Hyperglycaemia was induced in zebrafish by suppressing the pdx1 transcription factor, which plays a crucial role in maintaining physiological pancreatic function. STS was administered by introducing it into the medium of zebrafish larvae. The pronephros structure was analysed at 48 h post-fertilization. Metabolomic profiling and RNA sequencing were conducted on groups exposed to various experimental conditions. Our findings reveal a downregulation of nitric oxide (NO) signalling in zebrafish with a knocked-down pdx1 gene, both metabolomically and transcriptionally. Notably, treatment with STS led to a compensatory upregulation of the NO signalling, ultimately resulting in the rescue of the pronephros structure. Our study provides compelling evidence that targeting NO metabolism by the administration of STS offers a promising strategy for addressing hyperglycaemia-induced organ damage. These findings underscore the potential of STS as a promising therapeutic agent for diabetic complications and warrant further investigation of its clinical applications. KEY POINTS: Sodium thiosulfate (STS) is increasingly drawing attention in research for its potential therapeutic applications across a spectrum of disease processes. Here, we demonstrate that STS treatment rescues hyperglycaemia-induced pronephros damage in zebrafish. We identified upregulation of nitric oxide signalling as the major driver behind STS-mediated rescue. Our data suggest that STS offers a promising strategy for addressing hyperglycaemia-induced organ damage, including diabetic nephropathy.
Collapse
Affiliation(s)
- Hannes Ott
- Department of Vascular Biology and Tumor Angiogenesis, European Center for Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Katrin Bennewitz
- Department of Vascular Biology and Tumor Angiogenesis, European Center for Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Xin Zhang
- Department of Vascular Biology and Tumor Angiogenesis, European Center for Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Mariia Prianichnikova
- Department of Vascular Biology and Tumor Angiogenesis, European Center for Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Carsten Sticht
- NGS Core Facility, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Gernot Poschet
- Metabolomics Core Technology Platform, Centre for Organismal Studies, Heidelberg University, Heidelberg, Germany
| | - Jens Kroll
- Department of Vascular Biology and Tumor Angiogenesis, European Center for Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| |
Collapse
|
3
|
Wan YX, Qi XW, Lian YY, Liu ZY, Wang H, Qiu YQ, Zhang CG, Li WN, Jiang HL, Yang DH, Zhao W, Chen ZS, Huang JC. Electroacupuncture facilitates vascular normalization by inhibiting Glyoxalase1 in endothelial cells to attenuate glycolysis and angiogenesis in triple-negative breast cancer. Cancer Lett 2024; 598:217094. [PMID: 38945204 DOI: 10.1016/j.canlet.2024.217094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 06/13/2024] [Accepted: 06/27/2024] [Indexed: 07/02/2024]
Abstract
Recent therapeutic strategies for the treatment of triple-negative breast cancer (TNBC) have shifted the focus from vascular growth factors to endothelial cell metabolism. This study highlights the underexplored therapeutic potential of peri-tumoral electroacupuncture, a globally accepted non-pharmacological intervention for TNBC, and molecular mechanisms. Our study showed that peri-tumoral electroacupuncture effectively reduced the density of microvasculature and enhanced vascular functionality in 4T1 breast cancer xenografts, with optimal effects on day 3 post-acupuncture. The timely integration of peri-tumoral electroacupuncture amplified the anti-tumor efficacy of paclitaxel. Multi-omics analysis revealed Glyoxalase 1 (Glo1) and the associated methylglyoxal-glycolytic pathway as key mediators of electroacupuncture-induced vascular normalization. Peri-tumoral electroacupuncture notably reduced Glo1 expression in the endothelial cells of 4T1 xenografts. Using an in vivo matrigel plug angiogenesis assay, we demonstrated that either Glo1 knockdown or electroacupuncture inhibited angiogenesis. In contrast, Glo1 overexpression increased blood vessel formation. In vitro pharmacological inhibition and genetic knockdown of Glo1 in human umbilical vein endothelial cells inhibited proliferation and promoted apoptosis via downregulating the methylglyoxal-glycolytic pathway. The study using the Glo1-silenced zebrafish model further supported the role of Glo1 in vascular development. This study underscores the pivotal role of Glo1 in peri-tumoral electroacupuncture, spotlighting a promising avenue for enhancing vascular normalization and improving TNBC treatment outcomes.
Collapse
Affiliation(s)
- Yu-Xiang Wan
- The Third Affiliated Hospital, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Xue-Wei Qi
- Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, 100029, China
| | - Yan-Yan Lian
- The Third Affiliated Hospital, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Ze-Yu Liu
- Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Hui Wang
- The Third Affiliated Hospital, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Yu-Qin Qiu
- The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Chun-Guang Zhang
- The Third Affiliated Hospital, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Wen-Na Li
- The Third Affiliated Hospital, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Hong-Lin Jiang
- The Third Affiliated Hospital, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Dong-Hua Yang
- New York College of Traditional Chinese Medicine, Mineola, NY, 11501, USA
| | - Wei Zhao
- Guanganmen Hospital, Chinese Academy of Traditional Chinese Medicine, Beijing, 100029, China
| | - Zhe-Sheng Chen
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY, 11439, USA.
| | - Jin-Chang Huang
- The Third Affiliated Hospital, Beijing University of Chinese Medicine, Beijing, 100029, China.
| |
Collapse
|
4
|
Seeler D, Grdseloff N, Rödel CJ, Kloft C, Abdelilah-Seyfried S, Huisinga W. Novel mathematical approach to accurately quantify 3D endothelial cell morphology and vessel geometry based on fluorescently marked endothelial cell contours: Application to the dorsal aorta of wild-type and Endoglin-deficient zebrafish embryos. PLoS Comput Biol 2024; 20:e1011924. [PMID: 39213451 PMCID: PMC11392406 DOI: 10.1371/journal.pcbi.1011924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 09/12/2024] [Accepted: 07/10/2024] [Indexed: 09/04/2024] Open
Abstract
Endothelial cells, which line the lumen of blood vessels, locally sense and respond to blood flow. In response to altered blood flow dynamics during early embryonic development, these cells undergo shape changes that directly affect vessel geometry: In the dorsal aorta of zebrafish embryos, elongation of endothelial cells in the direction of flow between 48 and 72 hours post fertilization (hpf) reduces the vessel's diameter. This remodeling process requires Endoglin; excessive endothelial cell growth in the protein's absence results in vessel diameter increases. To understand how these changes in vessel geometry emerge from morphological changes of individual endothelial cells, we developed a novel mathematical approach that allows 3D reconstruction and quantification of both dorsal aorta geometry and endothelial cell surface morphology. Based on fluorescently marked endothelial cell contours, we inferred cross-sections of the dorsal aorta that accounted for dorsal flattening of the vessel. By projection of endothelial cell contours onto the estimated cross-sections and subsequent triangulation, we finally reconstructed 3D surfaces of the individual cells. By simultaneously reconstructing vessel cross-sections and cell surfaces, we found in an exploratory analysis that morphology varied between endothelial cells located in different sectors of the dorsal aorta in both wild-type and Endoglin-deficient zebrafish embryos: In wild-types, ventral endothelial cells were smaller and more elongated in flow direction than dorsal endothelial cells at both 48 hpf and 72 hpf. Although dorsal and ventral endothelial cells in Endoglin-deficient embryos had similar sizes at 48 hpf, dorsal endothelial cells were much larger at 72 hpf. In Endoglin-deficient embryos, elongation in flow direction increased between 48 hpf and 72 hpf in ventral endothelial cells but hardly changed in dorsal endothelial cells. Hereby, we provide evidence that dorsal endothelial cells contribute most to the disparate changes in dorsal aorta diameter in wild-type and Endoglin-deficient embryos between 48 hpf and 72 hpf.
Collapse
Affiliation(s)
- Daniel Seeler
- Faculty of Science, Institute of Mathematics, University of Potsdam, Potsdam, Germany
- Faculty of Science, Institute of Biochemistry and Biology, University of Potsdam, Potsdam, Germany
- PharMetrX Graduate Research Training Program: Pharmacometrics & Computational Disease Modelling, Berlin/Potsdam, Germany
| | - Nastasja Grdseloff
- Faculty of Science, Institute of Biochemistry and Biology, University of Potsdam, Potsdam, Germany
| | - Claudia Jasmin Rödel
- Faculty of Science, Institute of Biochemistry and Biology, University of Potsdam, Potsdam, Germany
| | - Charlotte Kloft
- Department of Biology, Chemistry, and Pharmacy, Institute of Pharmacy, Freie Universität Berlin, Berlin, Germany
| | - Salim Abdelilah-Seyfried
- Faculty of Science, Institute of Biochemistry and Biology, University of Potsdam, Potsdam, Germany
| | - Wilhelm Huisinga
- Faculty of Science, Institute of Mathematics, University of Potsdam, Potsdam, Germany
- Faculty of Science, Institute of Biochemistry and Biology, University of Potsdam, Potsdam, Germany
| |
Collapse
|
5
|
Titialii-Torres KF, Morris AC. Embryonic hyperglycemia perturbs the development of specific retinal cell types, including photoreceptors. J Cell Sci 2022; 135:jcs259187. [PMID: 34851372 PMCID: PMC8767273 DOI: 10.1242/jcs.259187] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 11/18/2021] [Indexed: 01/12/2023] Open
Abstract
Diabetes is linked to various long-term complications in adults, such as neuropathy, nephropathy and diabetic retinopathy. Diabetes poses additional risks for pregnant women, because glucose passes across the placenta, and excess maternal glucose can result in diabetic embryopathy. While many studies have examined the teratogenic effects of maternal diabetes on fetal heart development, little is known about the consequences of maternal hyperglycemia on the development of the embryonic retina. To address this question, we investigated retinal development in two models of embryonic hyperglycemia in zebrafish. Strikingly, we found that hyperglycemic larvae displayed a significant reduction in photoreceptors and horizontal cells, whereas other retinal neurons were not affected. We also observed reactive gliosis and abnormal optokinetic responses in hyperglycemic larvae. Further analysis revealed delayed retinal cell differentiation in hyperglycemic embryos that coincided with increased reactive oxygen species (ROS). Our results suggest that embryonic hyperglycemia causes abnormal retinal development via altered timing of cell differentiation and ROS production, which is accompanied by visual defects. Further studies using zebrafish models of hyperglycemia will allow us to understand the molecular mechanisms underlying these effects.
Collapse
Affiliation(s)
- Kayla F. Titialii-Torres
- Department of Biology, University of Kentucky, Lexington, KY 40506-0225, USA
- Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD 21702, USA
| | - Ann C. Morris
- Department of Biology, University of Kentucky, Lexington, KY 40506-0225, USA
| |
Collapse
|
6
|
Al-Dahmani ZM, Li X, Wiggenhauser LM, Ott H, Kruithof PD, Lunev S, A Batista F, Luo Y, Dolga AM, Morton NM, Groves MR, Kroll J, van Goor H. Thiosulfate sulfurtransferase prevents hyperglycemic damage to the zebrafish pronephros in an experimental model for diabetes. Sci Rep 2022; 12:12077. [PMID: 35840638 PMCID: PMC9287301 DOI: 10.1038/s41598-022-16320-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 07/08/2022] [Indexed: 12/18/2022] Open
Abstract
Thiosulfate sulfurtransferase (TST, EC 2.8.1.1), also known as Rhodanese, was initially discovered as a cyanide detoxification enzyme. However, it was recently also found to be a genetic predictor of resistance to obesity-related type 2 diabetes. Diabetes type 2 is characterized by progressive loss of adequate β-cell insulin secretion and onset of insulin resistance with increased insulin demand, which contributes to the development of hyperglycemia. Diabetic complications have been replicated in adult hyperglycemic zebrafish, including retinopathy, nephropathy, impaired wound healing, metabolic memory, and sensory axonal degeneration. Pancreatic and duodenal homeobox 1 (Pdx1) is a key component in pancreas development and mature beta cell function and survival. Pdx1 knockdown or knockout in zebrafish induces hyperglycemia and is accompanied by organ alterations similar to clinical diabetic retinopathy and diabetic nephropathy. Here we show that pdx1-knockdown zebrafish embryos and larvae survived after incubation with thiosulfate and no obvious morphological alterations were observed. Importantly, incubation with hTST and thiosulfate rescued the hyperglycemic phenotype in pdx1-knockdown zebrafish pronephros. Activation of the mitochondrial TST pathway might be a promising option for therapeutic intervention in diabetes and its organ complications.
Collapse
Affiliation(s)
- Zayana M Al-Dahmani
- Department of Pharmacy and Drug Design, University of Groningen, Groningen, The Netherlands
| | - Xiaogang Li
- Department of Vascular Biology and Tumor Angiogenesis, European Center for Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University, 68167, Mannheim, Germany
| | - Lucas M Wiggenhauser
- Department of Vascular Biology and Tumor Angiogenesis, European Center for Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University, 68167, Mannheim, Germany.,Department of Pathology and Medical Biology, University Medical Center Groningen, Groningen, The Netherlands
| | - Hannes Ott
- Department of Vascular Biology and Tumor Angiogenesis, European Center for Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University, 68167, Mannheim, Germany
| | - Paul D Kruithof
- Department of Pharmacy and Drug Design, University of Groningen, Groningen, The Netherlands
| | - Sergey Lunev
- Department of Pharmacy and Drug Design, University of Groningen, Groningen, The Netherlands
| | - Fernando A Batista
- Department of Pharmacy and Drug Design, University of Groningen, Groningen, The Netherlands
| | - Yang Luo
- Department of Pharmacy, Molecular Pharmacology, University of Groningen, Groningen, The Netherlands
| | - Amalia M Dolga
- Department of Pharmacy, Molecular Pharmacology, University of Groningen, Groningen, The Netherlands
| | - Nicholas M Morton
- Centre for Cardiovascular Science, The Queen's Medical Research Institute, University of Edinburgh, Edinburgh, UK
| | - Matthew R Groves
- Department of Pharmacy and Drug Design, University of Groningen, Groningen, The Netherlands. .,XB20 Drug Design, Groningen Research Institute of Pharmacy, University of Groningen, 9700 AD, Groningen, The Netherlands.
| | - Jens Kroll
- Department of Vascular Biology and Tumor Angiogenesis, European Center for Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University, 68167, Mannheim, Germany
| | - Harry van Goor
- Department of Pathology and Medical Biology, University Medical Center Groningen, Groningen, The Netherlands. .,Department of Medical Microbiology and Infection Prevention, University of Groningen, University Medical Center Groningen, 9700 RB, Groningen, The Netherlands.
| |
Collapse
|
7
|
Qi H, Schmöhl F, Li X, Qian X, Tabler CT, Bennewitz K, Sticht C, Morgenstern J, Fleming T, Volk N, Hausser I, Heidenreich E, Hell R, Nawroth PP, Kroll J. Reduced Acrolein Detoxification in akr1a1a Zebrafish Mutants Causes Impaired Insulin Receptor Signaling and Microvascular Alterations. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:e2101281. [PMID: 34278746 PMCID: PMC8456208 DOI: 10.1002/advs.202101281] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 06/01/2021] [Indexed: 05/03/2023]
Abstract
Increased acrolein (ACR), a toxic metabolite derived from energy consumption, is associated with diabetes and its complications. However, the molecular mechanisms are mostly unknown, and a suitable animal model with internal increased ACR does not exist for in vivo studying so far. Several enzyme systems are responsible for acrolein detoxification, such as Aldehyde Dehydrogenase (ALDH), Aldo-Keto Reductase (AKR), and Glutathione S-Transferase (GST). To evaluate the function of ACR in glucose homeostasis and diabetes, akr1a1a-/- zebrafish mutants are generated using CRISPR/Cas9 technology. Accumulated endogenous acrolein is confirmed in akr1a1a-/- larvae and livers of adults. Moreover, a series of experiments are performed regarding organic alterations, the glucose homeostasis, transcriptome, and metabolomics in Tg(fli1:EGFP) zebrafish. Akr1a1a-/- larvae display impaired glucose homeostasis and angiogenic retina hyaloid vasculature, which are caused by reduced acrolein detoxification ability and increased internal ACR concentration. The effects of acrolein on hyaloid vasculature can be reversed by acrolein-scavenger l-carnosine treatment. In adult akr1a1a-/- mutants, impaired glucose tolerance accompanied by angiogenic retina vessels and glomerular basement membrane thickening, consistent with an early pathological appearance in diabetic retinopathy and nephropathy, are observed. Thus, the data strongly suggest impaired ACR detoxification and elevated ACR concentration as biomarkers and inducers for diabetes and diabetic complications.
Collapse
Affiliation(s)
- Haozhe Qi
- Department of Vascular Biology and Tumor AngiogenesisEuropean Center for Angioscience (ECAS)Medical Faculty MannheimHeidelberg UniversityMannheim68167Germany
- Department of Vascular SurgeryRenji HospitalSchool of MedicineShanghai Jiaotong UniversityShanghai200127China
| | - Felix Schmöhl
- Department of Vascular Biology and Tumor AngiogenesisEuropean Center for Angioscience (ECAS)Medical Faculty MannheimHeidelberg UniversityMannheim68167Germany
| | - Xiaogang Li
- Department of Vascular Biology and Tumor AngiogenesisEuropean Center for Angioscience (ECAS)Medical Faculty MannheimHeidelberg UniversityMannheim68167Germany
| | - Xin Qian
- Department of Vascular Biology and Tumor AngiogenesisEuropean Center for Angioscience (ECAS)Medical Faculty MannheimHeidelberg UniversityMannheim68167Germany
| | - Christoph T. Tabler
- Department of Vascular Biology and Tumor AngiogenesisEuropean Center for Angioscience (ECAS)Medical Faculty MannheimHeidelberg UniversityMannheim68167Germany
| | - Katrin Bennewitz
- Department of Vascular Biology and Tumor AngiogenesisEuropean Center for Angioscience (ECAS)Medical Faculty MannheimHeidelberg UniversityMannheim68167Germany
| | - Carsten Sticht
- NGS Core FacilityMedical Faculty MannheimHeidelberg UniversityMannheim68167Germany
| | - Jakob Morgenstern
- Department of Internal Medicine I and Clinical ChemistryHeidelberg University HospitalHeidelberg69120Germany
- German Center for Diabetes Research (DZD)Neuherberg85764Germany
| | - Thomas Fleming
- Department of Internal Medicine I and Clinical ChemistryHeidelberg University HospitalHeidelberg69120Germany
- German Center for Diabetes Research (DZD)Neuherberg85764Germany
| | - Nadine Volk
- Tissue Bank of the National Center for Tumor Diseases (NCT) HeidelbergHeidelberg UniversityHeidelberg69120Germany
| | - Ingrid Hausser
- Institute of Pathology IPHEM LabHeidelberg University HospitalHeidelberg69120Germany
| | - Elena Heidenreich
- Metabolomics Core Technology PlatformCentre for Organismal StudiesHeidelberg UniversityHeidelberg69120Germany
| | - Rüdiger Hell
- Metabolomics Core Technology PlatformCentre for Organismal StudiesHeidelberg UniversityHeidelberg69120Germany
| | - Peter Paul Nawroth
- Department of Internal Medicine I and Clinical ChemistryHeidelberg University HospitalHeidelberg69120Germany
- German Center for Diabetes Research (DZD)Neuherberg85764Germany
- Joint Heidelberg‐IDC Translational Diabetes ProgramHelmholtz‐ZentrumNeuherberg85764Germany
| | - Jens Kroll
- Department of Vascular Biology and Tumor AngiogenesisEuropean Center for Angioscience (ECAS)Medical Faculty MannheimHeidelberg UniversityMannheim68167Germany
| |
Collapse
|
8
|
Soengas JL. Integration of Nutrient Sensing in Fish Hypothalamus. Front Neurosci 2021; 15:653928. [PMID: 33716662 PMCID: PMC7953060 DOI: 10.3389/fnins.2021.653928] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 01/26/2021] [Indexed: 12/13/2022] Open
Abstract
The knowledge regarding hypothalamic integration of metabolic and endocrine signaling resulting in regulation of food intake is scarce in fish. Available studies pointed to a network in which the activation of the nutrient-sensing (glucose, fatty acid, and amino acid) systems would result in AMP-activated protein kinase (AMPK) inhibition and activation of protein kinase B (Akt) and mechanistic target of rapamycin (mTOR). Changes in these signaling pathways would control phosphorylation of transcription factors cAMP response-element binding protein (CREB), forkhead box01 (FoxO1), and brain homeobox transcription factor (BSX) leading to food intake inhibition through changes in the expression of neuropeptide Y (NPY), agouti-related peptide (AgRP), pro-opio melanocortin (POMC), and cocaine and amphetamine-related transcript (CART). The present mini-review summarizes information on the topic and identifies gaps for future research.
Collapse
Affiliation(s)
- José L Soengas
- Laboratorio de Fisioloxía Animal, Departamento de Bioloxía Funcional e Ciencias da Saúde, Facultade de Bioloxía and Centro de Investigación Mariña, Universidade de Vigo, Vigo, Spain
| |
Collapse
|
9
|
Li Y, Wang Y, Yu X, Yu T, Zheng X, Chu Q. Radix Tetrastigma Inhibits the Non-Small Cell Lung Cancer via Bax/Bcl-2/Caspase-9/Caspase-3 Pathway. Nutr Cancer 2021; 74:320-332. [PMID: 33586527 DOI: 10.1080/01635581.2021.1881569] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Lung cancer with high mortality is regarded as a challenging global problem with unsatisfied curative effects. Clinically, the chemotherapy drugs are often faced with side-effects and tumor resistance. Radix Tetrastigma (RT) is a traditional Chinese herb and now regarded as a kind of functional food. In this study, A549-bearing nude mice control was adopted to evaluate the anti-tumor capacity of RT. Results demonstrated that RT showed excellent anti-tumor ability with no side-effect on mice compared to chemotherapy drug (5-Fu).Further studies proved that RT down-regulated the proliferation-related proteins (PCNA, Ki67) and vascular endothelial growth factor (VEGF). Additionally, RT up-regulated the ratio of Bax/Bcl-2, which caused the over-expression of Caspase-9, leading to the activation of downstream protein caspase-3, eventually resulting in apoptosis of A549 in solid tumor. These results together suggest that RT inhibits the non-small cell lung cancer (NSCLC) via Bax/Bcl2/Caspase-9/Caspase-3 pathway. Furthermore, the anti-A549 abilities of the main flavonoid components from RT were compared, and kaempferol-3-O-rutinoside would play a role in RT's outstanding anti-NSCLC ability.
Collapse
Affiliation(s)
- Yonglu Li
- Department of Food Science and Nutrition, Zhejiang University, Hangzhou, People's Republic of China.,Zhejiang Key Laboratory for Agro-food Processing, Zhejiang University, Hangzhou, People's Republic of China.,Fuli Institute of Food Science, Zhejiang University, Hangzhou, People's Republic of China
| | - Yaxuan Wang
- Department of Food Science and Nutrition, Zhejiang University, Hangzhou, People's Republic of China.,Zhejiang Key Laboratory for Agro-food Processing, Zhejiang University, Hangzhou, People's Republic of China.,Fuli Institute of Food Science, Zhejiang University, Hangzhou, People's Republic of China
| | - Xin Yu
- Department of Food Science and Nutrition, Zhejiang University, Hangzhou, People's Republic of China.,Zhejiang Key Laboratory for Agro-food Processing, Zhejiang University, Hangzhou, People's Republic of China.,Fuli Institute of Food Science, Zhejiang University, Hangzhou, People's Republic of China
| | - Ting Yu
- Department of Food Science and Nutrition, Zhejiang University, Hangzhou, People's Republic of China.,Zhejiang Key Laboratory for Agro-food Processing, Zhejiang University, Hangzhou, People's Republic of China.,Fuli Institute of Food Science, Zhejiang University, Hangzhou, People's Republic of China
| | - Xiaodong Zheng
- Department of Food Science and Nutrition, Zhejiang University, Hangzhou, People's Republic of China.,Zhejiang Key Laboratory for Agro-food Processing, Zhejiang University, Hangzhou, People's Republic of China.,Fuli Institute of Food Science, Zhejiang University, Hangzhou, People's Republic of China
| | - Qiang Chu
- State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou, People's Republic of China
| |
Collapse
|
10
|
Li X, Schmöhl F, Qi H, Bennewitz K, Tabler CT, Poschet G, Hell R, Volk N, Poth T, Hausser I, Morgenstern J, Fleming T, Nawroth PP, Kroll J. Regulation of Gluconeogenesis by Aldo-keto-reductase 1a1b in Zebrafish. iScience 2020; 23:101763. [PMID: 33251496 PMCID: PMC7683270 DOI: 10.1016/j.isci.2020.101763] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 10/08/2020] [Accepted: 10/30/2020] [Indexed: 12/17/2022] Open
Abstract
Regulation of glucose homeostasis is a fundamental process to maintain blood glucose at a physiological level, and its dysregulation is associated with the development of several metabolic diseases. Here, we report on a zebrafish mutant for Aldo-keto-reductase 1a1b (akr1a1b) as a regulator of gluconeogenesis. Adult akr1a1b−/− mutant zebrafish developed fasting hypoglycemia, which was caused by inhibiting phosphoenolpyruvate carboxykinase (PEPCK) expression as rate-limiting enzyme of gluconeogenesis. Subsequently, glucogenic amino acid glutamate as substrate for gluconeogenesis accumulated in the kidneys, but not in livers, and induced structural and functional pronephros alterations in 48-hpf akr1a1b−/− embryos. Akr1a1b−/− mutants displayed increased nitrosative stress as indicated by increased nitrotyrosine, and increased protein-S-nitrosylation. Inhibition of nitrosative stress using the NO synthase inhibitor L-NAME prevented kidney damage and normalized PEPCK expression in akr1a1b−/− mutants. Thus, the data have identified Akr1a1b as a regulator of gluconeogenesis in zebrafish and thereby controlling glucose homeostasis. Adult akr1a1b−/− mutant zebrafish develop fasting hypoglycemia Loss of Akr1a1b inhibits renal phosphoenolpyruvate carboxykinase (PEPCK) expression Accumulation of glucogenic amino acid glutamate alters the kidney in akr1a1b mutants Akr1a1b regulates gluconeogenesis via protein-S-nitrosylation
Collapse
Affiliation(s)
- Xiaogang Li
- Department of Vascular Biology and Tumor Angiogenesis, European Center for Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University, Mannheim 68167, Germany
| | - Felix Schmöhl
- Department of Vascular Biology and Tumor Angiogenesis, European Center for Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University, Mannheim 68167, Germany
| | - Haozhe Qi
- Department of Vascular Biology and Tumor Angiogenesis, European Center for Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University, Mannheim 68167, Germany
| | - Katrin Bennewitz
- Department of Vascular Biology and Tumor Angiogenesis, European Center for Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University, Mannheim 68167, Germany
| | - Christoph T Tabler
- Department of Vascular Biology and Tumor Angiogenesis, European Center for Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University, Mannheim 68167, Germany
| | - Gernot Poschet
- Metabolomics Core Technology Platform, Centre for Organismal Studies, Heidelberg University, Heidelberg 69120, Germany
| | - Rüdiger Hell
- Metabolomics Core Technology Platform, Centre for Organismal Studies, Heidelberg University, Heidelberg 69120, Germany
| | - Nadine Volk
- Tissue Bank of the National Center for Tumor Diseases (NCT), Heidelberg 69120, Germany
| | - Tanja Poth
- CMCP - Center for Model System and Comparative Pathology, Institute of Pathology, University Hospital Heidelberg, Heidelberg 69120, Germany
| | - Ingrid Hausser
- Electron Microscopy Lab, Institute of Pathology, University Hospital Heidelberg, Heidelberg 69120, Germany
| | - Jakob Morgenstern
- Department of Internal Medicine I and Clinical Chemistry, Heidelberg University Hospital, Heidelberg 69120, Germany
| | - Thomas Fleming
- Department of Internal Medicine I and Clinical Chemistry, Heidelberg University Hospital, Heidelberg 69120, Germany
| | - Peter Paul Nawroth
- Department of Internal Medicine I and Clinical Chemistry, Heidelberg University Hospital, Heidelberg 69120, Germany.,German Center for Diabetes Research (DZD), München-Neuherberg 85764, Germany.,Joint Heidelberg-IDC Translational Diabetes Program, Helmholtz-Zentrum, München, Heidelberg 69120, Germany
| | - Jens Kroll
- Department of Vascular Biology and Tumor Angiogenesis, European Center for Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University, Mannheim 68167, Germany
| |
Collapse
|
11
|
Rodrigues T, Borges P, Mar L, Marques D, Albano M, Eickhoff H, Carrêlo C, Almeida B, Pires S, Abrantes M, Martins B, Uriarte C, Botelho F, Gomes P, Silva S, Seiça R, Matafome P. GLP-1 improves adipose tissue glyoxalase activity and capillarization improving insulin sensitivity in type 2 diabetes. Pharmacol Res 2020; 161:105198. [PMID: 32942016 DOI: 10.1016/j.phrs.2020.105198] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 08/24/2020] [Accepted: 09/09/2020] [Indexed: 12/15/2022]
|
12
|
Morgenstern J, Campos Campos M, Nawroth P, Fleming T. The Glyoxalase System-New Insights into an Ancient Metabolism. Antioxidants (Basel) 2020; 9:antiox9100939. [PMID: 33019494 PMCID: PMC7600140 DOI: 10.3390/antiox9100939] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 09/24/2020] [Accepted: 09/28/2020] [Indexed: 02/07/2023] Open
Abstract
The glyoxalase system was discovered over a hundred years ago and since then it has been claimed to provide the role of an indispensable enzyme system in order to protect cells from a toxic byproduct of glycolysis. This review gives a broad overview of what has been postulated in the last 30 years of glyoxalase research, but within this context it also challenges the concept that the glyoxalase system is an exclusive tool of detoxification and that its substrate, methylglyoxal, is solely a detrimental burden for every living cell due to its toxicity. An overview of consequences of a complete loss of the glyoxalase system in various model organisms is presented with an emphasis on the role of alternative detoxification pathways of methylglyoxal. Furthermore, this review focuses on the overlooked posttranslational modification of Glyoxalase 1 and its possible implications for cellular maintenance under various (patho-)physiological conditions. As a final note, an intriguing point of view for the substrate methylglyoxal is offered, the concept of methylglyoxal (MG)-mediated hormesis.
Collapse
Affiliation(s)
- Jakob Morgenstern
- Department of Internal Medicine I and Clinical Chemistry, University Hospital Heidelberg, 69120 Heidelberg, Germany; (M.C.C.); (P.N.); (T.F.)
- Correspondence:
| | - Marta Campos Campos
- Department of Internal Medicine I and Clinical Chemistry, University Hospital Heidelberg, 69120 Heidelberg, Germany; (M.C.C.); (P.N.); (T.F.)
| | - Peter Nawroth
- Department of Internal Medicine I and Clinical Chemistry, University Hospital Heidelberg, 69120 Heidelberg, Germany; (M.C.C.); (P.N.); (T.F.)
- German Center for Diabetes Research (DZD), 85764 Neuherberg, Germany
- Institute for Diabetes and Cancer at Helmholtz Zentrum Munich, 85764 Neuherberg, Germany
| | - Thomas Fleming
- Department of Internal Medicine I and Clinical Chemistry, University Hospital Heidelberg, 69120 Heidelberg, Germany; (M.C.C.); (P.N.); (T.F.)
- German Center for Diabetes Research (DZD), 85764 Neuherberg, Germany
| |
Collapse
|
13
|
Lou B, Boger M, Bennewitz K, Sticht C, Kopf S, Morgenstern J, Fleming T, Hell R, Yuan Z, Nawroth PP, Kroll J. Elevated 4-hydroxynonenal induces hyperglycaemia via Aldh3a1 loss in zebrafish and associates with diabetes progression in humans. Redox Biol 2020; 37:101723. [PMID: 32980661 PMCID: PMC7519378 DOI: 10.1016/j.redox.2020.101723] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 08/31/2020] [Accepted: 09/11/2020] [Indexed: 12/12/2022] Open
Abstract
Increased methylglyoxal (MG) formation is associated with diabetes and its complications. In zebrafish, knockout of the main MG detoxifying system Glyoxalase 1, led to limited MG elevation but significantly elevated aldehyde dehydrogenases (ALDH) activity and aldh3a1 expression, suggesting the compensatory role of Aldh3a1 in diabetes. To evaluate the function of Aldh3a1 in glucose homeostasis and diabetes, aldh3a1−/− zebrafish mutants were generated using CRISPR-Cas9. Vasculature and pancreas morphology were analysed by zebrafish transgenic reporter lines. Corresponding reactive carbonyl species (RCS), glucose, transcriptome and metabolomics screenings were performed and ALDH activity was measured for further verification. Aldh3a1−/− zebrafish larvae displayed retinal vasodilatory alterations, impaired glucose homeostasis, which can be aggravated via pdx1 silencing induced hyperglycaemia. Unexpectedly, MG was not altered, but 4-hydroxynonenal (4-HNE), another prominent lipid peroxidation RCS exhibited high affinity with Aldh3a1, was increased in aldh3a1 mutants. 4-HNE was responsible for the retinal phenotype via pancreas disruption induced hyperglycaemia and can be rescued via l-Carnosine treatment. Furthermore, in type 2 diabetic patients, serum 4-HNE was increased and correlated with disease progression. Thus, our data suggest impaired 4-HNE detoxification and elevated 4-HNE concentration as biomarkers but also the possible inducers for diabetes, from genetic susceptibility to the pathological progression. Aldh3a1 mutant was generated using CRISPR/Cas9 and displayed impaired glucose homeostasis. Elevated 4-Hydroxynonenal (4-HNE) was responsible for hyperglycaemia in aldh3a1 mutants and was rescued by Carnosine. Patient serum 4-HNE level was correlated with HbA1c and fasting glucose. Impaired 4-HNE detoxification acts as possible inducers for diabetes, from genetic susceptibility to pathological progress.
Collapse
Affiliation(s)
- Bowen Lou
- Department of Vascular Biology and Tumor Angiogenesis, European Center for Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany; Cardiovascular Department, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710048, China
| | - Mike Boger
- Department of Vascular Biology and Tumor Angiogenesis, European Center for Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Katrin Bennewitz
- Department of Vascular Biology and Tumor Angiogenesis, European Center for Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Carsten Sticht
- Center for Medical Research (ZMF), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Stefan Kopf
- Department of Internal Medicine I and Clinical Chemistry, Heidelberg University Hospital, Heidelberg, Germany; German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Jakob Morgenstern
- Department of Internal Medicine I and Clinical Chemistry, Heidelberg University Hospital, Heidelberg, Germany; German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Thomas Fleming
- Department of Internal Medicine I and Clinical Chemistry, Heidelberg University Hospital, Heidelberg, Germany; German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Rüdiger Hell
- Metabolomics Core Technology Platform, Centre for Organismal Studies, Heidelberg University, Heidelberg, Germany
| | - Zuyi Yuan
- Cardiovascular Department, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710048, China
| | - Peter Paul Nawroth
- Department of Internal Medicine I and Clinical Chemistry, Heidelberg University Hospital, Heidelberg, Germany; German Center for Diabetes Research (DZD), Neuherberg, Germany; Joint Heidelberg-IDC Translational Diabetes Program, Helmholtz-Zentrum, München, Heidelberg, Germany
| | - Jens Kroll
- Department of Vascular Biology and Tumor Angiogenesis, European Center for Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany.
| |
Collapse
|
14
|
Wiggenhauser LM, Kroll J. Vascular Damage in Obesity and Diabetes: Highlighting Links Between Endothelial Dysfunction and Metabolic Disease in Zebrafish and Man. Curr Vasc Pharmacol 2020; 17:476-490. [PMID: 30378499 DOI: 10.2174/1570161116666181031101413] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Revised: 09/11/2018] [Accepted: 09/25/2018] [Indexed: 02/08/2023]
Abstract
Endothelial dysfunction is an initial pathophysiological mechanism of vascular damage and is further recognized as an independent predictor of negative prognosis in diabetes-induced micro- and macrovascular complications. Insight into the capability of zebrafish to model metabolic disease like obesity and type II diabetes has increased and new evidence on the induction of vascular pathologies in zebrafish through metabolic disease is available. Here, we raise the question, if zebrafish can be utilized to study the initial impairments of vascular complications in metabolic disorders. In this review, we focus on the advances made to develop models of obesity and type II diabetes in zebrafish, discuss the key points and characteristics of these models, while highlighting the available information linked to the development of endothelial dysfunction in zebrafish and man. We show that larval and adult zebrafish develop metabolic dysregulation in the settings of obesity and diabetes, exhibiting pathophysiological mechanisms, which mimic the human condition. The most important genes related to endothelial dysfunction are present in zebrafish and further display similar functions as in mammals. Several suggested contributors to endothelial dysfunction found in these models, namely hyperinsulinaemia, hyperglycaemia, hyperlipidaemia and hyperleptinaemia are highlighted and the available data from zebrafish are summarised. Many underlying processes of endothelial dysfunction in obesity and diabetes are fundamentally present in zebrafish and provide ground for the assumption, that zebrafish can develop endothelial dysfunction. Conservation of basic biological mechanisms is established for zebrafish, but focused investigation on the subject is now needed as validation and particularly more research is necessary to understand the differences between zebrafish and man. The available data demonstrate the relevance of zebrafish as a model for metabolic disease and their ability to become a proponent for the investigation of vascular damage in the settings of obesity and diabetes.
Collapse
Affiliation(s)
- Lucas Moritz Wiggenhauser
- Department of Vascular Biology and Tumor Angiogenesis, European Center for Angioscience, Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany
| | - Jens Kroll
- Department of Vascular Biology and Tumor Angiogenesis, European Center for Angioscience, Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany
| |
Collapse
|
15
|
Delveaux J, Turpin C, Veeren B, Diotel N, Bravo SB, Begue F, Álvarez E, Meilhac O, Bourdon E, Rondeau P. Antirhea borbonica Aqueous Extract Protects Albumin and Erythrocytes from Glycoxidative Damages. Antioxidants (Basel) 2020; 9:antiox9050415. [PMID: 32408712 PMCID: PMC7278591 DOI: 10.3390/antiox9050415] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 05/08/2020] [Accepted: 05/09/2020] [Indexed: 12/11/2022] Open
Abstract
Diabetes constitutes a major health problem associated with severe complications. In hyperglycemic conditions, chronically increased oxidation and glycation of circulating components lead to advanced glycation end-products (AGEs) formation, a key contributor in diabetes complication progression. In line with literature documenting the beneficial properties of herbal teas, this study evaluates the antioxidant/glycant properties of Antirhea borbonica (Ab). Ab aqueous extract effects were tested on human albumin or erythrocytes submitted to methyl glyoxal-mediated glycoxidative damages. By using mass spectrometry, Ab aqueous extracts revealed to be rich in polyphenols. All tested biomarkers of oxidation and glycation, such as AGE, ketoamine, oxidized thiol groups, were decreased in albumin when glycated in the presence of Ab aqueous extract. Ab extract preserve erythrocyte from methylglyoxal (MGO)-induced damages in terms of restored membrane deformability, reduced oxidative stress and eryptosis phenomenon. Antioxidant capacities of Ab extract on erythrocytes were retrieved in vivo in zebrafish previously infused with MGO. These results bring new evidences on the deleterious impacts of glycation on albumin and erythrocyte in diabetes. Furthermore, it reveals antioxidant and antiglycant properties of Ab that could be used for the dietary modulation of oxidative stress and glycation in hyperglycemic situations.
Collapse
Affiliation(s)
- Jade Delveaux
- Université de La Réunion, INSERM, UMR 1188 Diabète athérothombose Thérapies Réunion Océan Indien (DéTROI), 97400 Saint-Denis de La Réunion, France; (J.D.); (C.T.); (B.V.); (N.D.); (F.B.); (O.M.)
| | - Chloé Turpin
- Université de La Réunion, INSERM, UMR 1188 Diabète athérothombose Thérapies Réunion Océan Indien (DéTROI), 97400 Saint-Denis de La Réunion, France; (J.D.); (C.T.); (B.V.); (N.D.); (F.B.); (O.M.)
| | - Bryan Veeren
- Université de La Réunion, INSERM, UMR 1188 Diabète athérothombose Thérapies Réunion Océan Indien (DéTROI), 97400 Saint-Denis de La Réunion, France; (J.D.); (C.T.); (B.V.); (N.D.); (F.B.); (O.M.)
| | - Nicolas Diotel
- Université de La Réunion, INSERM, UMR 1188 Diabète athérothombose Thérapies Réunion Océan Indien (DéTROI), 97400 Saint-Denis de La Réunion, France; (J.D.); (C.T.); (B.V.); (N.D.); (F.B.); (O.M.)
| | - Susana B. Bravo
- Proteomic Unit and Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), Complexo Hospitalario Universitario de Santiago de Compostela (CHUS), SERGAS, 15706 Santiago de Compostela, Spain; (S.B.B.); (E.Á.)
| | - Floran Begue
- Université de La Réunion, INSERM, UMR 1188 Diabète athérothombose Thérapies Réunion Océan Indien (DéTROI), 97400 Saint-Denis de La Réunion, France; (J.D.); (C.T.); (B.V.); (N.D.); (F.B.); (O.M.)
| | - Ezequiel Álvarez
- Proteomic Unit and Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), Complexo Hospitalario Universitario de Santiago de Compostela (CHUS), SERGAS, 15706 Santiago de Compostela, Spain; (S.B.B.); (E.Á.)
- CIBERCV, 28029 Madrid, Spain
| | - Olivier Meilhac
- Université de La Réunion, INSERM, UMR 1188 Diabète athérothombose Thérapies Réunion Océan Indien (DéTROI), 97400 Saint-Denis de La Réunion, France; (J.D.); (C.T.); (B.V.); (N.D.); (F.B.); (O.M.)
- Centre hospitalier universitaire de La Réunion, 97400 Saint Denis, France
| | - Emmanuel Bourdon
- Université de La Réunion, INSERM, UMR 1188 Diabète athérothombose Thérapies Réunion Océan Indien (DéTROI), 97400 Saint-Denis de La Réunion, France; (J.D.); (C.T.); (B.V.); (N.D.); (F.B.); (O.M.)
- Correspondence: (E.B.); (P.R.); Tel.: +262(0)-2-62-93-88-43 (P.R.); Fax: +262(0)-2-62-93-88-01 (P.R.)
| | - Philippe Rondeau
- Université de La Réunion, INSERM, UMR 1188 Diabète athérothombose Thérapies Réunion Océan Indien (DéTROI), 97400 Saint-Denis de La Réunion, France; (J.D.); (C.T.); (B.V.); (N.D.); (F.B.); (O.M.)
- Correspondence: (E.B.); (P.R.); Tel.: +262(0)-2-62-93-88-43 (P.R.); Fax: +262(0)-2-62-93-88-01 (P.R.)
| |
Collapse
|
16
|
Wiggenhauser LM, Qi H, Stoll SJ, Metzger L, Bennewitz K, Poschet G, Krenning G, Hillebrands JL, Hammes HP, Kroll J. Activation of Retinal Angiogenesis in Hyperglycemic pdx1 -/- Zebrafish Mutants. Diabetes 2020; 69:1020-1031. [PMID: 32139597 DOI: 10.2337/db19-0873] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2019] [Accepted: 02/26/2020] [Indexed: 11/13/2022]
Abstract
Progression from the initial vascular response upon hyperglycemia to a proliferative stage with neovacularizations is the hallmark of proliferative diabetic retinopathy. Here, we report on the novel diabetic pdx1 -/- zebrafish mutant as a model for diabetic retinopathy that lacks the transcription factor pdx1 through CRISPR-Cas9-mediated gene knockout leading to disturbed pancreatic development and hyperglycemia. Larval pdx1 -/- mutants prominently show vasodilation of blood vessels through increased vascular thickness in the hyaloid network as direct developmental precursor of the adult retinal vasculature in zebrafish. In adult pdx1 -/- mutants, impaired glucose homeostasis induces increased hyperbranching and hypersprouting with new vessel formation in the retina and aggravation of the vascular alterations from the larval to the adult stage. Both vascular aspects respond to antiangiogenic and antihyperglycemic pharmacological interventions in the larval stage and are accompanied by alterations in the nitric oxide metabolism. Thus, the pdx1 -/- mutant represents a novel model to study mechanisms of hyperglycemia-induced retinopathy wherein extensive proangiogenic alterations in blood vessel morphology and metabolic alterations underlie the vascular phenotype.
Collapse
Affiliation(s)
- Lucas M Wiggenhauser
- Department of Vascular Biology and Tumor Angiogenesis, European Center for Angioscience, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Haozhe Qi
- Department of Vascular Biology and Tumor Angiogenesis, European Center for Angioscience, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Sandra J Stoll
- Department of Vascular Biology and Tumor Angiogenesis, European Center for Angioscience, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Lena Metzger
- Department of Vascular Biology and Tumor Angiogenesis, European Center for Angioscience, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Katrin Bennewitz
- Department of Vascular Biology and Tumor Angiogenesis, European Center for Angioscience, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Gernot Poschet
- Metabolomics Core Technology Platform, Centre for Organismal Studies, Heidelberg University, Heidelberg, Germany
| | - Guido Krenning
- Laboratory for Cardiovascular Regenerative Medicine, Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Jan-Luuk Hillebrands
- Pathology Section, Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Hans-Peter Hammes
- Fifth Medical Department and European Center for Angioscience, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Jens Kroll
- Department of Vascular Biology and Tumor Angiogenesis, European Center for Angioscience, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| |
Collapse
|
17
|
Dicarbonyl Stress and S-Glutathionylation in Cerebrovascular Diseases: A Focus on Cerebral Cavernous Malformations. Antioxidants (Basel) 2020; 9:antiox9020124. [PMID: 32024152 PMCID: PMC7071005 DOI: 10.3390/antiox9020124] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 01/25/2020] [Accepted: 01/29/2020] [Indexed: 02/07/2023] Open
Abstract
Dicarbonyl stress is a dysfunctional state consisting in the abnormal accumulation of reactive α-oxaldehydes leading to increased protein modification. In cells, post-translational changes can also occur through S-glutathionylation, a highly conserved oxidative post-translational modification consisting of the formation of a mixed disulfide between glutathione and a protein cysteine residue. This review recapitulates the main findings supporting a role for dicarbonyl stress and S-glutathionylation in the pathogenesis of cerebrovascular diseases, with specific emphasis on cerebral cavernous malformations (CCM), a vascular disease of proven genetic origin that may give rise to various clinical signs and symptoms at any age, including recurrent headaches, seizures, focal neurological deficits, and intracerebral hemorrhage. A possible interplay between dicarbonyl stress and S-glutathionylation in CCM is also discussed.
Collapse
|
18
|
Schalkwijk CG, Stehouwer CDA. Methylglyoxal, a Highly Reactive Dicarbonyl Compound, in Diabetes, Its Vascular Complications, and Other Age-Related Diseases. Physiol Rev 2020; 100:407-461. [DOI: 10.1152/physrev.00001.2019] [Citation(s) in RCA: 176] [Impact Index Per Article: 35.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The formation and accumulation of methylglyoxal (MGO), a highly reactive dicarbonyl compound, has been implicated in the pathogenesis of type 2 diabetes, vascular complications of diabetes, and several other age-related chronic inflammatory diseases such as cardiovascular disease, cancer, and disorders of the central nervous system. MGO is mainly formed as a byproduct of glycolysis and, under physiological circumstances, detoxified by the glyoxalase system. MGO is the major precursor of nonenzymatic glycation of proteins and DNA, subsequently leading to the formation of advanced glycation end products (AGEs). MGO and MGO-derived AGEs can impact on organs and tissues affecting their functions and structure. In this review we summarize the formation of MGO, the detoxification of MGO by the glyoxalase system, and the biochemical pathways through which MGO is linked to the development of diabetes, vascular complications of diabetes, and other age-related diseases. Although interventions to treat MGO-associated complications are not yet available in the clinical setting, several strategies to lower MGO have been developed over the years. We will summarize several new directions to target MGO stress including glyoxalase inducers and MGO scavengers. Targeting MGO burden may provide new therapeutic applications to mitigate diseases in which MGO plays a crucial role.
Collapse
Affiliation(s)
- C. G. Schalkwijk
- CARIM School for Cardiovascular Diseases, Maastricht University Medical Centre, Maastricht, The Netherlands; and Department of Internal Medicine, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - C. D. A. Stehouwer
- CARIM School for Cardiovascular Diseases, Maastricht University Medical Centre, Maastricht, The Netherlands; and Department of Internal Medicine, Maastricht University Medical Centre, Maastricht, The Netherlands
| |
Collapse
|
19
|
Schmöhl F, Peters V, Schmitt CP, Poschet G, Büttner M, Li X, Weigand T, Poth T, Volk N, Morgenstern J, Fleming T, Nawroth PP, Kroll J. CNDP1 knockout in zebrafish alters the amino acid metabolism, restrains weight gain, but does not protect from diabetic complications. Cell Mol Life Sci 2019; 76:4551-4568. [PMID: 31073745 PMCID: PMC11105213 DOI: 10.1007/s00018-019-03127-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 04/22/2019] [Accepted: 04/30/2019] [Indexed: 12/12/2022]
Abstract
The gene CNDP1 was associated with the development of diabetic nephropathy. Its enzyme carnosinase 1 (CN1) primarily hydrolyzes the histidine-containing dipeptide carnosine but other organ and metabolic functions are mainly unknown. In our study we generated CNDP1 knockout zebrafish, which showed strongly decreased CN1 activity and increased intracellular carnosine levels. Vasculature and kidneys of CNDP1-/- zebrafish were not affected, except for a transient glomerular alteration. Amino acid profiling showed a decrease of certain amino acids in CNDP1-/- zebrafish, suggesting a specific function for CN1 in the amino acid metabolisms. Indeed, we identified a CN1 activity for Ala-His and Ser-His. Under diabetic conditions increased carnosine levels in CNDP1-/- embryos could not protect from respective organ alterations. Although, weight gain through overfeeding was restrained by CNDP1 loss. Together, zebrafish exhibits CN1 functions, while CNDP1 knockout alters the amino acid metabolism, attenuates weight gain but cannot protect organs from diabetic complications.
Collapse
Affiliation(s)
- Felix Schmöhl
- European Center for Angioscience (ECAS), Department of Vascular Biology and Tumor Angiogenesis, Medical Faculty Mannheim, Heidelberg University, Ludolf-Krehl-Str. 13-17, 68167, Mannheim, Germany
| | - Verena Peters
- Center for Paediatric and Adolescent Medicine, University of Heidelberg, Im Neuenheimer Feld 669, 69120, Heidelberg, Germany
| | - Claus Peter Schmitt
- Center for Paediatric and Adolescent Medicine, University of Heidelberg, Im Neuenheimer Feld 669, 69120, Heidelberg, Germany
| | - Gernot Poschet
- Center for Organismal Studies (COS), University of Heidelberg, Im Neuenheimer Feld 360, 69120, Heidelberg, Germany
| | - Michael Büttner
- Center for Organismal Studies (COS), University of Heidelberg, Im Neuenheimer Feld 360, 69120, Heidelberg, Germany
| | - Xiaogang Li
- European Center for Angioscience (ECAS), Department of Vascular Biology and Tumor Angiogenesis, Medical Faculty Mannheim, Heidelberg University, Ludolf-Krehl-Str. 13-17, 68167, Mannheim, Germany
| | - Tim Weigand
- Center for Paediatric and Adolescent Medicine, University of Heidelberg, Im Neuenheimer Feld 669, 69120, Heidelberg, Germany
| | - Tanja Poth
- CMCP-Center for Model System and Comparative Pathology, Institute of Pathology, University Hospital Heidelberg, Im Neuenheimer Feld 224, 69120, Heidelberg, Germany
| | - Nadine Volk
- Tissue Bank of the National Center for Tumor Diseases (NCT), Im Neuenheimer Feld 224, 69120, Heidelberg, Germany
| | - Jakob Morgenstern
- Department of Internal Medicine I and Clinical Chemistry, Heidelberg University Hospital, Im Neuenheimer Feld 410, 69120, Heidelberg, Germany
| | - Thomas Fleming
- Department of Internal Medicine I and Clinical Chemistry, Heidelberg University Hospital, Im Neuenheimer Feld 410, 69120, Heidelberg, Germany
| | - Peter P Nawroth
- Department of Internal Medicine I and Clinical Chemistry, Heidelberg University Hospital, Im Neuenheimer Feld 410, 69120, Heidelberg, Germany
- German Center for Diabetes Research (DZD), 85764, München-Neuherberg, Germany
- Joint Heidelberg-IDC Translational Diabetes Program, Helmholtz-Zentrum, München, Im Neuenheimer Feld 410, F02 Room 02.414-02.434, 69120, Heidelberg, Germany
| | - Jens Kroll
- European Center for Angioscience (ECAS), Department of Vascular Biology and Tumor Angiogenesis, Medical Faculty Mannheim, Heidelberg University, Ludolf-Krehl-Str. 13-17, 68167, Mannheim, Germany.
| |
Collapse
|
20
|
Dicarbonyl Stress at the Crossroads of Healthy and Unhealthy Aging. Cells 2019; 8:cells8070749. [PMID: 31331077 PMCID: PMC6678343 DOI: 10.3390/cells8070749] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 07/16/2019] [Accepted: 07/17/2019] [Indexed: 02/07/2023] Open
Abstract
Dicarbonyl stress occurs when dicarbonyl metabolites (i.e., methylglyoxal, glyoxal and 3-deoxyglucosone) accumulate as a consequence of their increased production and/or decreased detoxification. This toxic condition has been associated with metabolic and age-related diseases, both of which are characterized by a pro-inflammatory and pro-oxidant state. Methylglyoxal (MGO) is the most reactive dicarbonyl and the one with the highest endogenous flux. It is the precursor of the major quantitative advanced glycated products (AGEs) in physiological systems, arginine-derived hydroimidazolones, which accumulate in aging and dysfunctional tissues. The aging process is characterized by a decline in the functional properties of cells, tissues and whole organs, starting from the perturbation of crucial cellular processes, including mitochondrial function, proteostasis and stress-scavenging systems. Increasing studies are corroborating the causal relationship between MGO-derived AGEs and age-related tissue dysfunction, unveiling a previously underestimated role of dicarbonyl stress in determining healthy or unhealthy aging. This review summarizes the latest evidence supporting a causal role of dicarbonyl stress in age-related diseases, including diabetes mellitus, cardiovascular disease and neurodegeneration.
Collapse
|
21
|
Lodd E, Wiggenhauser LM, Morgenstern J, Fleming TH, Poschet G, Büttner M, Tabler CT, Wohlfart DP, Nawroth PP, Kroll J. The combination of loss of glyoxalase1 and obesity results in hyperglycemia. JCI Insight 2019; 4:126154. [PMID: 31217350 DOI: 10.1172/jci.insight.126154] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Accepted: 05/16/2019] [Indexed: 12/31/2022] Open
Abstract
The increased formation of methylglyoxal (MG) under hyperglycemia is associated with the development of microvascular complications in patients with diabetes mellitus; however, the effects of elevated MG levels in vivo are poorly understood. In zebrafish, a transient knockdown of glyoxalase 1, the main MG detoxifying system, led to the elevation of endogenous MG levels and blood vessel alterations. To evaluate effects of a permanent knockout of glyoxalase 1 in vivo, glo1-/- zebrafish mutants were generated using CRISPR/Cas9. In addition, a diet-induced-obesity zebrafish model was used to analyze glo1-/- zebrafish under high nutrient intake. Glo1-/- zebrafish survived until adulthood without growth deficit and showed increased tissue MG concentrations. Impaired glucose tolerance developed in adult glo1-/- zebrafish and was indicated by increased postprandial blood glucose levels and postprandial S6 kinase activation. Challenged by an overfeeding period, fasting blood glucose levels in glo1-/- zebrafish were increased which translated into retinal blood vessel alterations. Thus, the data have identified a defective MG detoxification as a metabolic prerequisite and glyoxalase 1 alterations as a genetic susceptibility to the development of type 2 diabetes mellitus under high nutrition intake.
Collapse
Affiliation(s)
- Elisabeth Lodd
- Department of Vascular Biology and Tumor Angiogenesis, European Center for Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Lucas M Wiggenhauser
- Department of Vascular Biology and Tumor Angiogenesis, European Center for Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Jakob Morgenstern
- Department of Internal Medicine I and Clinical Chemistry, Heidelberg University Hospital, Heidelberg, Germany
| | - Thomas H Fleming
- Department of Internal Medicine I and Clinical Chemistry, Heidelberg University Hospital, Heidelberg, Germany
| | - Gernot Poschet
- Metabolomics Core Technology Platform, Centre for Organismal Studies, Heidelberg University, Heidelberg, Germany
| | - Michael Büttner
- Metabolomics Core Technology Platform, Centre for Organismal Studies, Heidelberg University, Heidelberg, Germany
| | - Christoph T Tabler
- Department of Vascular Biology and Tumor Angiogenesis, European Center for Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - David P Wohlfart
- Department of Vascular Biology and Tumor Angiogenesis, European Center for Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Peter P Nawroth
- Department of Internal Medicine I and Clinical Chemistry, Heidelberg University Hospital, Heidelberg, Germany.,German Center for Diabetes Research (DZD), München-Neuherberg, Germany.,Joint Heidelberg-IDC Translational Diabetes Program, Helmholtz-Zentrum, München, Heidelberg, Germany
| | - Jens Kroll
- Department of Vascular Biology and Tumor Angiogenesis, European Center for Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| |
Collapse
|
22
|
Budi EH, Mamai O, Hoffman S, Akhurst RJ, Derynck R. Enhanced TGF-β Signaling Contributes to the Insulin-Induced Angiogenic Responses of Endothelial Cells. iScience 2019; 11:474-491. [PMID: 30684493 PMCID: PMC6348203 DOI: 10.1016/j.isci.2018.12.038] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Revised: 11/12/2018] [Accepted: 12/28/2018] [Indexed: 12/17/2022] Open
Abstract
Angiogenesis, the development of new blood vessels, is a key process in disease. We reported that insulin promotes translocation of transforming growth factor β (TGF-β) receptors to the plasma membrane of epithelial and fibroblast cells, thus enhancing TGF-β responsiveness. Since insulin promotes angiogenesis, we addressed whether increased autocrine TGF-β signaling participates in endothelial cell responses to insulin. We show that insulin enhances TGF-β responsiveness and autocrine TGF-β signaling in primary human endothelial cells, by inducing a rapid increase in cell surface TGF-β receptor levels. Autocrine TGF-β/Smad signaling contributed substantially to insulin-induced gene expression associated with angiogenesis, including TGF-β target genes encoding angiogenic mediators; was essential for endothelial cell migration; and participated in endothelial cell invasion and network formation. Blocking TGF-β signaling impaired insulin-induced microvessel outgrowth from neonatal aortic rings and modified insulin-stimulated blood vessel formation in zebrafish. We conclude that enhanced autocrine TGF-β signaling is integral to endothelial cell and angiogenic responses to insulin.
Collapse
Affiliation(s)
- Erine H Budi
- Department of Cell and Tissue Biology, University of California at San Francisco Broad Center, Room RMB-1027, 35 Medical Center Way, San Francisco, CA 94143-0669, USA; Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California at San Francisco, San Francisco, CA 94143, USA
| | - Ons Mamai
- Helen Diller Family Comprehensive Cancer Center, University of California at San Francisco, San Francisco, CA 94143, USA
| | - Steven Hoffman
- Department of Cell and Tissue Biology, University of California at San Francisco Broad Center, Room RMB-1027, 35 Medical Center Way, San Francisco, CA 94143-0669, USA; Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California at San Francisco, San Francisco, CA 94143, USA
| | - Rosemary J Akhurst
- Department of Anatomy, University of California at San Francisco, San Francisco, CA 94143, USA; Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California at San Francisco, San Francisco, CA 94143, USA; Helen Diller Family Comprehensive Cancer Center, University of California at San Francisco, San Francisco, CA 94143, USA
| | - Rik Derynck
- Department of Cell and Tissue Biology, University of California at San Francisco Broad Center, Room RMB-1027, 35 Medical Center Way, San Francisco, CA 94143-0669, USA; Department of Anatomy, University of California at San Francisco, San Francisco, CA 94143, USA; Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California at San Francisco, San Francisco, CA 94143, USA; Helen Diller Family Comprehensive Cancer Center, University of California at San Francisco, San Francisco, CA 94143, USA.
| |
Collapse
|
23
|
Sachdeva R, Fleming T, Schumacher D, Homberg S, Stilz K, Mohr F, Wagner AH, Tsvilovskyy V, Mathar I, Freichel M. Methylglyoxal evokes acute Ca 2+ transients in distinct cell types and increases agonist-evoked Ca 2+ entry in endothelial cells via CRAC channels. Cell Calcium 2019; 78:66-75. [PMID: 30658323 DOI: 10.1016/j.ceca.2019.01.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Revised: 01/08/2019] [Accepted: 01/08/2019] [Indexed: 12/21/2022]
Abstract
Methylglyoxal (MG) is a by-product of glucose metabolism and its accumulation has been linked to the development of diabetic complications such as retinopathy and nephropathy by affecting multiple signalling pathways. However, its influence on the intracellular Ca2+ homeostasis and particularly Ca2+ entry, which has been reported to be mediated via TRPA1 channels in DRG neurons, has not been studied in much detail in other cell types. In this study, we report the consequences of acute and long-term MG application on intracellular Ca2+ levels in endothelial cells. We showed that acute MG application doesn't evoke any instantaneous changes in the intracellular Ca2+ concentration in immortalized mouse cardiac endothelial cells (MCECs) and murine microvascular endothelial cells (muMECs). In contrast, an MG-induced rise in intracellular Ca2+ level was observed in primary mouse mesangial cells within 30 s, indicating that the modulation of Ca2+ homeostasis by MG is strictly cell type specific. The formation of the MG-derived advanced glycation end product (AGE) MG-H1 was found to be time and concentration-dependent in MCECs. Likewise, MG pre-incubation for 6 h increased the angiotensin II-evoked Ca2+ entry in MCECs and muMECs which was abrogated by inhibition of Calcium release activated calcium (CRAC) channels with GSK-7975A, but unaffected by an inhibitor specific to TRPA1 channels. Quantitative PCR analysis revealed that MG pre-treatment did not affect expression of the genes encoding the angiotensin receptors AT1R (Agtr 1a & Agtr 1b), Trpa1 nor Orai1, Orai2, Orai3, Stim1, Stim2 and Saraf which operate as constituents or regulators of CRAC channels and store-operated Ca2+ entry (SOCE) in other cell types. Together, our results show that long-term MG stimulation leads to the formation of glycation end products, which facilitates the agonist-evoked Ca2+ entry in endothelial cells, and this could be a new pathway that might lead to MG-evoked vasoregression observed in diabetic vasculopathies.
Collapse
Affiliation(s)
- Robin Sachdeva
- Institute of Pharmacology, Heidelberg University, Im Neuenheimer Feld 366, 69120 Heidelberg, Germany
| | - Thomas Fleming
- Department of Medicine I and Clinical Chemistry, Heidelberg University Hospital, Germany; German Center for Diabetes Research (DZD), Germany
| | - Dagmar Schumacher
- Institute of Pharmacology, Heidelberg University, Im Neuenheimer Feld 366, 69120 Heidelberg, Germany
| | - Sarah Homberg
- Institute of Pharmacology, Heidelberg University, Im Neuenheimer Feld 366, 69120 Heidelberg, Germany
| | - Kathrin Stilz
- Institute of Pharmacology, Heidelberg University, Im Neuenheimer Feld 366, 69120 Heidelberg, Germany
| | - Franziska Mohr
- Institute of Physiology and Pathophysiology, Division of Cardiovascular Physiology, Im Neuenheimer Feld 326, 69120 Heidelberg, Germany
| | - Andreas H Wagner
- Institute of Physiology and Pathophysiology, Division of Cardiovascular Physiology, Im Neuenheimer Feld 326, 69120 Heidelberg, Germany
| | - Volodymyr Tsvilovskyy
- Institute of Pharmacology, Heidelberg University, Im Neuenheimer Feld 366, 69120 Heidelberg, Germany
| | - Ilka Mathar
- Institute of Pharmacology, Heidelberg University, Im Neuenheimer Feld 366, 69120 Heidelberg, Germany
| | - Marc Freichel
- Institute of Pharmacology, Heidelberg University, Im Neuenheimer Feld 366, 69120 Heidelberg, Germany.
| |
Collapse
|
24
|
Li Y, Zhao Y, Sang S, Leung T. Methylglyoxal-Induced Retinal Angiogenesis in Zebrafish Embryo: A Potential Animal Model of Neovascular Retinopathy. J Ophthalmol 2019; 2019:2746735. [PMID: 31143470 PMCID: PMC6501125 DOI: 10.1155/2019/2746735] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Revised: 01/24/2019] [Accepted: 03/18/2019] [Indexed: 02/07/2023] Open
Abstract
Methylglyoxal (MG) is an intermediate of glucose metabolism and the precursor of advanced glycation end products (AGEs) found in high levels in blood or tissue of diabetic patients. MG and AGEs are thought to play a major role in the pathogenesis of diabetic retinopathy. In order to determine if zebrafish is valuable to help us understand more about retinopathy, we evaluate if MG induces abnormal vascular change and angiogenesis in zebrafish in a short incubation period. We also used an inhibitor of VEGFR (PTK787) to explore the mechanistic role of VEGF in MG-induced pathogenesis. A transgenic Tg(flk1:GFP) zebrafish line was used, and the embryos were incubated with MG solution and in combination with glucose (to mimic hyperglycemia). Retinal vascular structure visible with fluorescence signal was imaged using fluorescence microscopy. The percentage of vascular area was calculated and found elevated in the MG treatment groups than that in the control group (p < 0.01) which indicated increased angiogenesis induced by MG treatment. PTK787 blocked the proangiogenic effects of MG treatment. This study suggests that MG has a potential proangiogenic effect via VEGF signaling in the retina of zebrafish embryos. Therefore, this zebrafish model may be used to study neovascular retinopathy.
Collapse
Affiliation(s)
- Ying Li
- Department of Geriatrics, Qi-Lu Hospital of Shandong University, Jinan, Shandong Province 250012, China
- Julius L. Chambers Biomedical/Biotechnology Research Institute, North Carolina Central University, Kannapolis, NC 28081, USA
| | - Yantao Zhao
- Laboratory for Functional Foods and Human Health, Center for Excellence in Post-Harvest Technologies, North Carolina A&T State University, Kannapolis, NC 28081, USA
| | - Shengmin Sang
- Laboratory for Functional Foods and Human Health, Center for Excellence in Post-Harvest Technologies, North Carolina A&T State University, Kannapolis, NC 28081, USA
| | - TinChung Leung
- Julius L. Chambers Biomedical/Biotechnology Research Institute, North Carolina Central University, Kannapolis, NC 28081, USA
- Department of Biological & Biomedical Sciences, North Carolina Central University, Durham, NC 27707, USA
| |
Collapse
|
25
|
Dorenkamp M, Müller JP, Shanmuganathan KS, Schulten H, Müller N, Löffler I, Müller UA, Wolf G, Böhmer FD, Godfrey R, Waltenberger J. Hyperglycaemia-induced methylglyoxal accumulation potentiates VEGF resistance of diabetic monocytes through the aberrant activation of tyrosine phosphatase SHP-2/SRC kinase signalling axis. Sci Rep 2018; 8:14684. [PMID: 30279491 PMCID: PMC6168515 DOI: 10.1038/s41598-018-33014-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Accepted: 09/19/2018] [Indexed: 12/30/2022] Open
Abstract
Diabetes mellitus (DM) is a major cardiovascular risk factor contributing to cardiovascular complications by inducing vascular cell dysfunction. Monocyte dysfunction could contribute to impaired arteriogenesis response in DM patients. DM monocytes show blunted chemotactic responses to arteriogenic stimuli, a condition termed as vascular endothelial growth factor (VEGF) resistance. We hypothesize that methylglyoxal (MG), a glucose metabolite, induces monocyte dysfunction and aimed to elucidate the underlying molecular mechanisms. Human monocytes exposed to MG or monocytes from DM patients or mice (db/db) showed VEGF-resistance secondary to a pro-migratory phenotype. Mechanistically, DM conditions or MG exposure resulted in the upregulation of the expression of SHP-2 phosphatase. This led to the enhanced activity of SHP-2 and aided an interaction with SRC kinase. SHP-2 dephosphorylated the inhibitory phosphorylation site of SRC leading to its abnormal activation and phosphorylation of cytoskeletal protein, paxillin. We demonstrated that MG-induced molecular changes could be reversed by pharmacological inhibitors of SHP-2 and SRC and by genetic depletion of SHP-2. Finally, a SHP-2 inhibitor completely reversed the dysfunction of monocytes isolated from DM patients and db/db mice. In conclusion, we identified SHP-2 as a hitherto unknown target for improving monocyte function in diabetes. This opens novel perspectives for treating diabetic complications associated with impaired monocyte function.
Collapse
Affiliation(s)
- Marc Dorenkamp
- Experimental and Molecular Cardiology, Department of Cardiovascular Medicine, University Hospital Münster, Münster, Germany.,Cells-in-Motion Cluster of Excellence (EXC 1003-CiM), University of Münster, Münster, Germany
| | - Jörg P Müller
- Institute of Molecular Cell Biology, Centre for Molecular Biomedicine, University Hospital Jena, Jena, Germany
| | - Kallipatti Sanjith Shanmuganathan
- Experimental and Molecular Cardiology, Department of Cardiovascular Medicine, University Hospital Münster, Münster, Germany.,Cells-in-Motion Cluster of Excellence (EXC 1003-CiM), University of Münster, Münster, Germany
| | - Henny Schulten
- Experimental and Molecular Cardiology, Department of Cardiovascular Medicine, University Hospital Münster, Münster, Germany.,Department of Physiology, Cardiovascular Research Institute Maastricht (CARIM), Maastricht, The Netherlands
| | - Nicolle Müller
- Department of Internal Medicine III, University Hospital Jena, Jena, Germany
| | - Ivonne Löffler
- Department of Internal Medicine III, University Hospital Jena, Jena, Germany
| | - Ulrich A Müller
- Department of Internal Medicine III, University Hospital Jena, Jena, Germany
| | - Gunter Wolf
- Department of Internal Medicine III, University Hospital Jena, Jena, Germany
| | - Frank-D Böhmer
- Institute of Molecular Cell Biology, Centre for Molecular Biomedicine, University Hospital Jena, Jena, Germany
| | - Rinesh Godfrey
- Experimental and Molecular Cardiology, Department of Cardiovascular Medicine, University Hospital Münster, Münster, Germany. .,Department of Physiology, Cardiovascular Research Institute Maastricht (CARIM), Maastricht, The Netherlands. .,Cells-in-Motion Cluster of Excellence (EXC 1003-CiM), University of Münster, Münster, Germany.
| | - Johannes Waltenberger
- Experimental and Molecular Cardiology, Department of Cardiovascular Medicine, University Hospital Münster, Münster, Germany. .,Cells-in-Motion Cluster of Excellence (EXC 1003-CiM), University of Münster, Münster, Germany.
| |
Collapse
|
26
|
Water extract of Brazilian green propolis attenuates high glucose-induced vascular morphological abnormality in zebrafish. J Funct Foods 2018. [DOI: 10.1016/j.jff.2018.08.028] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
27
|
Lin JA, Wu CH, Yen GC. Methylglyoxal displays colorectal cancer-promoting properties in the murine models of azoxymethane and CT26 isografts. Free Radic Biol Med 2018; 115:436-446. [PMID: 29269310 DOI: 10.1016/j.freeradbiomed.2017.12.020] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2017] [Revised: 12/04/2017] [Accepted: 12/15/2017] [Indexed: 12/18/2022]
Abstract
Methylglyoxal (MG), a highly reactive carbonyl species (RCS) with pro-oxidant and proinflammatory properties, may be a colon tumor-promoting factor in food and biological systems. In the present study, we found that consumption of MG significantly deteriorated azoxymethane (AOM)-induced colonic preneoplastic lesions in ICR mice, in which biomarkers of oxidative stress and inflammation within the body and feces induced by MG-fueled carbonyl stress may have played important roles. Interestingly, exposure to MG also led to increases in the serum low-density lipoprotein (LDL)/high-density lipoprotein (HDL) ratio and fecal bile acid levels in mice, which may be critical factors involved in MG-induced colonic lesions. Additionally, MG treatment (50mg/kg body weight (BW); intraperitoneally) promoted tumor growth of CT26 isografts in mice partly by carbonyl stress-evoked protumorigenic responses, including low-grade inflammation and oxidative stress. Furthermore, primary tumor cells isolated from mice with MG-induced CT26 isografts had greater proliferative and migratory activities as well as stem-like properties compared to those isolated from the vehicle controls. Excitingly, enhanced expression or activation of proteins that modulate cell survival, proliferation, or migration/invasion was also observed in those cells. In conclusion, it is conceivable that MG-induced carbonyl stress may be the pivotal promoter involved in colon cancer progression.
Collapse
Affiliation(s)
- Jer-An Lin
- Department of Food Science and Biotechnology, National Chung Hsing University, 145 Xingda Road, Taichung 40227, Taiwan, ROC
| | - Chi-Hao Wu
- Department of Human Development and Family Studies, National Taiwan Normal University, 162, Section 1, Heping E. Rd., Taipei City 106, Taiwan, ROC
| | - Gow-Chin Yen
- Department of Food Science and Biotechnology, National Chung Hsing University, 145 Xingda Road, Taichung 40227, Taiwan, ROC; Graduate Institute of Food Safety, National Chung Hsing University, 145 Xingda Road, Taichung 40227, Taiwan, ROC.
| |
Collapse
|
28
|
Hammes HP. Diabetic retinopathy: hyperglycaemia, oxidative stress and beyond. Diabetologia 2018; 61:29-38. [PMID: 28942458 DOI: 10.1007/s00125-017-4435-8] [Citation(s) in RCA: 235] [Impact Index Per Article: 33.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Accepted: 07/04/2017] [Indexed: 12/15/2022]
Abstract
Diabetic retinopathy remains a relevant clinical problem. In parallel with diagnostic and therapeutic improvements, the role of glycaemia and reactive metabolites causing cell stress and biochemical abnormalities as treatment targets needs continuous re-evaluation. Furthermore, the basic mechanisms of physiological angiogenesis, remodelling and pruning give important clues about the origins of vasoregression during the very early stages of diabetic retinopathy and can be modelled in animals. This review summarises evidence supporting a role for the neurovascular unit-composed of neuronal, glial and vascular cells-as a responder to the biochemical changes imposed by reactive metabolites and high glucose. Normoglycaemic animal models developing retinal degeneration, provide valuable information about common pathways downstream of progressive neuronal damage that induce vasoregression, as in diabetic models. These models can serve to assess novel treatments addressing the entire neurovascular unit for the benefit of early diabetic retinopathy.
Collapse
Affiliation(s)
- Hans-Peter Hammes
- 5. Med. Department, Medical Faculty Mannheim, Heidelberg University, Theodor-Kutzer-Ufer 1-3, D-68167, Mannheim, Germany.
| |
Collapse
|
29
|
Wiggenhauser LM, Kohl K, Dietrich N, Hammes HP, Kroll J. Studying Diabetes Through the Eyes of a Fish: Microdissection, Visualization, and Analysis of the Adult tg(fli:EGFP) Zebrafish Retinal Vasculature. J Vis Exp 2017. [PMID: 29364210 PMCID: PMC5908402 DOI: 10.3791/56674] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Diabetic retinopathy is the leading cause of blindness among middle-aged adults. The rising prevalence of diabetes worldwide will make the prevention of diabetic microvascular complications one of the key research fields of the next decades. Specialized, targeted therapy and novel therapeutic drugs are needed to manage the increasing number of patients at risk of vision-loss. The zebrafish is an established animal model for developmental research questions with increasing relevance for modeling metabolic multifactorial disease processes. The advantages of the species allow for optimal visualization and high throughput drug screening approaches, combined with the strong ability to knock out genes of interest. Here, we describe a protocol which will allow easy analysis of the adult tg(fli:EGFP) zebrafish retinal vasculature as a fast read-out in settings of long-term vascular pathologies linked to neoangiogenesis or vessel damage. This is achieved via dissection of the zebrafish retina and whole-mounting of the tissue. Visualization of the exposed vessels is then achieved via confocal microscopy of the green EGFP reporter expressed in the adult retinal vasculature. Correct handling of the tissue will lead to better outcomes and less internal vessel breakage to assure the visualization of the unaltered vascular structure. The method can be utilized in zebrafish models of retinal vasculopathy linked to changes in the vessel architecture as well as neoangiogenesis.
Collapse
Affiliation(s)
- Lucas Moritz Wiggenhauser
- Department of Vascular Biology and Tumorangiogenesis, Center for Biomedicine and Medical Technology Mannheim (CBTM), Medical Faculty Mannheim, Heidelberg University
| | - Katharina Kohl
- V. Medical Clinic, Medical Faculty Mannheim, Heidelberg University
| | - Nadine Dietrich
- V. Medical Clinic, Medical Faculty Mannheim, Heidelberg University
| | | | - Jens Kroll
- Department of Vascular Biology and Tumorangiogenesis, Center for Biomedicine and Medical Technology Mannheim (CBTM), Medical Faculty Mannheim, Heidelberg University;
| |
Collapse
|
30
|
Zebrafish as a Model for the Study of Microvascular Complications of Diabetes and Their Mechanisms. Int J Mol Sci 2017; 18:ijms18092002. [PMID: 28925940 PMCID: PMC5618651 DOI: 10.3390/ijms18092002] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Revised: 08/31/2017] [Accepted: 09/14/2017] [Indexed: 12/21/2022] Open
Abstract
Diabetes mellitus (DM) is a crucial metabolic disease that leads to severe disorders. These include macrovascular complications such as myocardial infarction, stroke, and peripheral artery disease and microvascular complications including diabetic nephropathy, neuropathy, and retinopathy. Diabetes mellitus, along with its associated organ pathologies, is one of the key problems in today's medicine. Zebrafish is an upcoming disease model organism in diabetes research. Its glucose metabolism and the pathways of reactive metabolite formation are very similar to those of humans. Moreover, several physiological and pathophysiological pathways that also exist in humans and other mammals have been identified in this species or are currently under intense investigation. Zebrafish offer sophisticated imaging techniques and allow simple and fast genetic and pharmacological approaches with a high throughput. In this review, we highlight achievements and mechanisms concerning microvascular complications discovered in zebrafish, and we discuss the advantages and disadvantages of zebrafish as a model for studying diabetic complications.
Collapse
|
31
|
Rodrigues T, Matafome P, Sereno J, Almeida J, Castelhano J, Gamas L, Neves C, Gonçalves S, Carvalho C, Arslanagic A, Wilcken E, Fonseca R, Simões I, Conde SV, Castelo-Branco M, Seiça R. Methylglyoxal-induced glycation changes adipose tissue vascular architecture, flow and expansion, leading to insulin resistance. Sci Rep 2017; 7:1698. [PMID: 28490763 PMCID: PMC5431896 DOI: 10.1038/s41598-017-01730-3] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Accepted: 03/23/2017] [Indexed: 01/04/2023] Open
Abstract
Microvascular dysfunction has been suggested to trigger adipose tissue dysfunction in obesity. This study investigates the hypothesis that glycation impairs microvascular architecture and expandability with an impact on insulin signalling. Animal models supplemented with methylglyoxal (MG), maintained with a high-fat diet (HFD) or both (HFDMG) were studied for periepididymal adipose (pEAT) tissue hypoxia and local and systemic insulin resistance. Dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) was used to quantify blood flow in vivo, showing MG-induced reduction of pEAT blood flow. Increased adipocyte size and leptin secretion were observed only in rats feeding the high-fat diet, without the development of hypoxia. In turn, hypoxia was only observed when MG was combined (HFDMG group), being associated with impaired activation of the insulin receptor (Tyr1163), glucose intolerance and systemic and muscle insulin resistance. Accordingly, the adipose tissue angiogenic assay has shown decreased capillarization after dose-dependent MG exposure and glyoxalase-1 inhibition. Thus, glycation impairs adipose tissue capillarization and blood flow, hampering its expandability during a high-fat diet challenge and leading to hypoxia and insulin resistance. Such events have systemic repercussions in glucose metabolism and may lead to the onset of unhealthy obesity and progression to type 2 diabetes.
Collapse
Affiliation(s)
- Tiago Rodrigues
- Laboratory of Physiology, CNC.IBILI and Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Paulo Matafome
- Laboratory of Physiology, CNC.IBILI and Faculty of Medicine, University of Coimbra, Coimbra, Portugal. .,Instituto Politécnico de Coimbra, Coimbra Health School (ESTeSC), Department of Complementary Sciences, Coimbra, Portugal.
| | - José Sereno
- Institute of Nuclear Sciences Applied to Health (CIBIT-ICNAS), University of Coimbra, Coimbra, Portugal
| | - José Almeida
- Laboratory of Physiology, CNC.IBILI and Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - João Castelhano
- Institute of Nuclear Sciences Applied to Health (CIBIT-ICNAS), University of Coimbra, Coimbra, Portugal
| | - Luís Gamas
- Laboratory of Physiology, CNC.IBILI and Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Christian Neves
- Laboratory of Physiology, CNC.IBILI and Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Sónia Gonçalves
- Institute of Nuclear Sciences Applied to Health (CIBIT-ICNAS), University of Coimbra, Coimbra, Portugal
| | - Catarina Carvalho
- Laboratory of Physiology, CNC.IBILI and Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Amina Arslanagic
- Laboratory of Physiology, CNC.IBILI and Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Elinor Wilcken
- Laboratory of Physiology, CNC.IBILI and Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Rita Fonseca
- Laboratory of Physiology, CNC.IBILI and Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Ilda Simões
- Serviço de Anatomia Patológica, University Hospital Center of Coimbra, Coimbra, Portugal
| | - Silvia Vilares Conde
- CEDOC, NOVA Medical School - Faculty of Medical Sciences, New University of Lisbon, Lisbon, Portugal
| | - Miguel Castelo-Branco
- Institute of Nuclear Sciences Applied to Health (CIBIT-ICNAS), University of Coimbra, Coimbra, Portugal.,Laboratory of Visual Neuroscience, CNC.IBILI and Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Raquel Seiça
- Laboratory of Physiology, CNC.IBILI and Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| |
Collapse
|
32
|
Matafome P, Rodrigues T, Sena C, Seiça R. Methylglyoxal in Metabolic Disorders: Facts, Myths, and Promises. Med Res Rev 2017; 37:368-403. [PMID: 27636890 DOI: 10.1002/med.21410] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Revised: 08/07/2016] [Accepted: 08/12/2016] [Indexed: 08/26/2024]
Abstract
Glucose and fructose metabolism originates the highly reactive byproduct methylglyoxal (MG), which is a strong precursor of advanced glycation end products (AGE). The MG has been implicated in classical diabetic complications such as retinopathy, nephropathy, and neuropathy, but has also been recently associated with cardiovascular diseases and central nervous system disorders such as cerebrovascular diseases and dementia. Recent studies even suggested its involvement in insulin resistance and beta-cell dysfunction, contributing to the early development of type 2 diabetes and creating a vicious circle between glycation and hyperglycemia. Despite several drugs and natural compounds have been identified in the last years in order to scavenge MG and inhibit AGE formation, we are still far from having an effective strategy to prevent MG-induced mechanisms. This review summarizes the endogenous and exogenous sources of MG, also addressing the current controversy about the importance of exogenous MG sources. The mechanisms by which MG changes cell behavior and its involvement in type 2 diabetes development and complications and the pathophysiological implication are also summarized. Particular emphasis will be given to pathophysiological relevance of studies using higher MG doses, which may have produced biased results. Finally, we also overview the current knowledge about detoxification strategies, including modulation of endogenous enzymatic systems and exogenous compounds able to inhibit MG effects on biological systems.
Collapse
Affiliation(s)
- Paulo Matafome
- Laboratory of Physiology, Institute of Biomedical Imaging and Life Sciences (IBILI), Faculty of Medicine, University of Coimbra, 3000-548, Coimbra, Portugal
- Department of Complementary Sciences, Coimbra Health School (ESTeSC), Instituto Politécnico de Coimbra, 3045-601, Coimbra, Portugal
| | - Tiago Rodrigues
- Laboratory of Physiology, Institute of Biomedical Imaging and Life Sciences (IBILI), Faculty of Medicine, University of Coimbra, 3000-548, Coimbra, Portugal
| | - Cristina Sena
- Laboratory of Physiology, Institute of Biomedical Imaging and Life Sciences (IBILI), Faculty of Medicine, University of Coimbra, 3000-548, Coimbra, Portugal
| | - Raquel Seiça
- Laboratory of Physiology, Institute of Biomedical Imaging and Life Sciences (IBILI), Faculty of Medicine, University of Coimbra, 3000-548, Coimbra, Portugal
| |
Collapse
|
33
|
Otero-Rodiño C, Velasco C, Álvarez-Otero R, López-Patiño MA, Míguez JM, Soengas JL. Changes in the levels and phosphorylation status of Akt, AMPK, CREB, and FoxO1 in hypothalamus of rainbow trout under conditions of enhanced glucosensing activity. J Exp Biol 2017; 220:4410-4417. [DOI: 10.1242/jeb.165159] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Accepted: 09/26/2017] [Indexed: 12/13/2022]
Abstract
There is no available information in fish about mechanisms linking glucosensing activation and changes in the expression of brain neuropeptides controlling food intake. Therefore, we assessed in rainbow trout hypothalamus the effects of raised levels of glucose on the levels and phosphorylation status of two transcription factors, FoxO1 and CREB, possibly involved in linking those processes. Moreover, we also aimed to assess the changes in the levels and phosphorylation status of two proteins possibly involved in the modulation of these transcription factors such as Akt and AMPK. Therefore, we evaluated in pools of hypothalamus incubated for 3h and 6h at 15 °C in modified Hanks’ medium containing 2, 4, or 8 mM D-glucose the response of parameters related to glucosensing mechanisms, neuropeptide expression, and levels and phosphorylation status of proteins of interest. The activation of hypothalamic glucosensing systems and the concomitant enhanced anorectic potential occurred in parallel with activation of Akt and inhibition of AMPK. The changes in these proteins would relate to neuropeptide expression through changes in the levels and phosphorylation status of transcription factors under their control, such as CREB and FoxO1, which displayed inhibitory (CREB) or activatory (FoxO1) responses to increased glucose.
Collapse
Affiliation(s)
- Cristina Otero-Rodiño
- Laboratorio de Fisioloxía Animal, Departamento de Bioloxía Funcional e Ciencias da Saúde, Facultade de Bioloxía and Centro Singular de Investigación Mariña-ECIMAT, Universidade de Vigo, Spain
| | - Cristina Velasco
- Laboratorio de Fisioloxía Animal, Departamento de Bioloxía Funcional e Ciencias da Saúde, Facultade de Bioloxía and Centro Singular de Investigación Mariña-ECIMAT, Universidade de Vigo, Spain
| | - Rosa Álvarez-Otero
- Laboratorio de Fisioloxía Animal, Departamento de Bioloxía Funcional e Ciencias da Saúde, Facultade de Bioloxía and Centro Singular de Investigación Mariña-ECIMAT, Universidade de Vigo, Spain
| | - Marcos A. López-Patiño
- Laboratorio de Fisioloxía Animal, Departamento de Bioloxía Funcional e Ciencias da Saúde, Facultade de Bioloxía and Centro Singular de Investigación Mariña-ECIMAT, Universidade de Vigo, Spain
| | - Jesús M. Míguez
- Laboratorio de Fisioloxía Animal, Departamento de Bioloxía Funcional e Ciencias da Saúde, Facultade de Bioloxía and Centro Singular de Investigación Mariña-ECIMAT, Universidade de Vigo, Spain
| | - José L. Soengas
- Laboratorio de Fisioloxía Animal, Departamento de Bioloxía Funcional e Ciencias da Saúde, Facultade de Bioloxía and Centro Singular de Investigación Mariña-ECIMAT, Universidade de Vigo, Spain
| |
Collapse
|
34
|
Gasca-Lozano LE, Lucano-Landeros S, Ruiz-Mercado H, Salazar-Montes A, Sandoval-Rodríguez A, Garcia-Bañuelos J, Santos-Garcia A, Davila-Rodriguez JR, Navarro-Partida J, Bojórquez-Sepúlveda H, Castañeda-Gomez J, Domínguez-Rosales J, Ruiz-Arcos MA, Sánchez-Parada MG, Armendariz-Borunda J. Pirfenidone Accelerates Wound Healing in Chronic Diabetic Foot Ulcers: A Randomized, Double-Blind Controlled Trial. J Diabetes Res 2017; 2017:3159798. [PMID: 29675430 PMCID: PMC5840678 DOI: 10.1155/2017/3159798] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Revised: 11/16/2017] [Accepted: 12/03/2017] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Diabetic foot ulcers are one disabling complication of diabetes mellitus. Pirfenidone (PFD) is a potent modulator of extracellular matrix. Modified diallyl disulfide oxide (M-DDO) is an antimicrobial and antiseptic agent. AIM To evaluate efficacy of topical PFD + M-DDO in a randomized, double-blind trial versus ketanserin in the treatment of noninfected chronic DFU. METHODS Patients received PFD + M-DDO or ketanserin for 6 months. Relative ulcer volume (RUV) was measured every month; biopsies were taken at baseline and months 1 and 2 for histopathology and gene expression analysis for COL-1α, COL-4, KGF, VEGF, ACTA2 (α-SMA), elastin, fibronectin, TGF-β1, TGF-β3, HIF-1α, and HIF-1β. RESULTS Reduction of median RUV in the PFD + M-DDO group was 62%, 89.8%, and 99.7% at months 1-3 and 100% from months 4 to 6. Ketanserin reduced RUV in 38.4%, 56%, 60.8%, 94%, 94.8%, and 100% from the first to the sixth month, respectively. Healing score improved 4.5 points with PFD + M-DDO and 1.5 points with ketanserin compared to basal value. Histology analysis revealed few inflammatory cells and organized/ordered collagen fiber bundles in PFD + M-DDO. Expression of most genes was increased with PFD + M-DDO; 43.8% of ulcers were resolved using PFD + M-DDO and 23.5% with ketanserin. CONCLUSION PFD + M-DDO was more effective than ketanserin in RUV reduction.
Collapse
Affiliation(s)
- Luz E. Gasca-Lozano
- Institute for Molecular Biology and Gene Therapy, CUCS, University of Guadalajara, Guadalajara, JAL, Mexico
| | - Silvia Lucano-Landeros
- Institute for Molecular Biology and Gene Therapy, CUCS, University of Guadalajara, Guadalajara, JAL, Mexico
| | - Héctor Ruiz-Mercado
- Regional Hospital Dr. Valentín Gómez Farías ISSSTE, Guadalajara, JAL, Mexico
| | - Adriana Salazar-Montes
- Institute for Molecular Biology and Gene Therapy, CUCS, University of Guadalajara, Guadalajara, JAL, Mexico
| | - Ana Sandoval-Rodríguez
- Institute for Molecular Biology and Gene Therapy, CUCS, University of Guadalajara, Guadalajara, JAL, Mexico
| | - Jesus Garcia-Bañuelos
- Institute for Molecular Biology and Gene Therapy, CUCS, University of Guadalajara, Guadalajara, JAL, Mexico
| | | | | | | | | | | | - José Domínguez-Rosales
- Institute of Chronic-Degenerative Diseases, CUCS, University of Guadalajara, Guadalajara, JAL, Mexico
| | - Myriam A. Ruiz-Arcos
- Institute for Molecular Biology and Gene Therapy, CUCS, University of Guadalajara, Guadalajara, JAL, Mexico
| | | | - Juan Armendariz-Borunda
- Institute for Molecular Biology and Gene Therapy, CUCS, University of Guadalajara, Guadalajara, JAL, Mexico
- Tecnologico de Monterrey, Campus Guadalajara, Jalisco, Mexico
| |
Collapse
|
35
|
Sharma KR, Heckler K, Stoll SJ, Hillebrands JL, Kynast K, Herpel E, Porubsky S, Elger M, Hadaschik B, Bieback K, Hammes HP, Nawroth PP, Kroll J. ELMO1 protects renal structure and ultrafiltration in kidney development and under diabetic conditions. Sci Rep 2016; 6:37172. [PMID: 27849017 PMCID: PMC5111104 DOI: 10.1038/srep37172] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Accepted: 10/25/2016] [Indexed: 12/24/2022] Open
Abstract
Engulfment and cell motility 1 (ELMO1) functions as a guanine exchange factor for Rac1 and was recently found to protect endothelial cells from apoptosis. Genome wide association studies suggest that polymorphisms within human elmo1 act as a potential contributing factor for the development of diabetic nephropathy. Yet, the function of ELMO1 with respect to the glomerulus and how this protein contributes to renal pathology was unknown. Thus, this study aimed to identify the role played by ELMO1 in renal development in zebrafish, under hyperglycaemic conditions, and in diabetic nephropathy patients. In zebrafish, hyperglycaemia did not alter renal ELMO1 expression. However, hyperglycaemia leads to pathophysiological and functional alterations within the pronephros, which could be rescued via ELMO1 overexpression. Zebrafish ELMO1 crispants exhibited a renal pathophysiology due to increased apoptosis which could be rescued by the inhibition of apoptosis. In human samples, immunohistochemical staining of ELMO1 in nondiabetic, diabetic and polycystic kidneys localized ELMO1 in glomerular podocytes and in the tubules. However, ELMO1 was not specifically or distinctly regulated under either one of the disease conditions. Collectively, these results highlight ELMO1 as an important factor for glomerular protection and renal cell survival via decreasing apoptosis, especially under diabetic conditions.
Collapse
Affiliation(s)
- Krishna Rakesh Sharma
- Department of Vascular Biology and Tumor Angiogenesis, Center for Biomedicine and Medical Technology Mannheim (CBTM), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Karl Heckler
- Department of Vascular Biology and Tumor Angiogenesis, Center for Biomedicine and Medical Technology Mannheim (CBTM), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Sandra J Stoll
- Department of Vascular Biology and Tumor Angiogenesis, Center for Biomedicine and Medical Technology Mannheim (CBTM), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany.,Division of Vascular Oncology and Metastasis, German Cancer Research Center (DKFZ-ZMBH Alliance), Heidelberg, Germany
| | - Jan-Luuk Hillebrands
- Department of Pathology and Medical Biology, Division of Pathology, University Medical Center Groningen, Groningen, The Netherlands
| | - Katharina Kynast
- Institute of Pathology, Heidelberg University, Heidelberg, Germany
| | - Esther Herpel
- Institute of Pathology, Heidelberg University, Heidelberg, Germany.,Tissue Bank of the National Center for Tumor Diseases (NCT), Heidelberg, Germany
| | - Stefan Porubsky
- Institute of Pathology, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Marlies Elger
- Institue of Neuroanatomy, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Boris Hadaschik
- Department of Urology, Heidelberg University Hospital, Heidelberg, Germany
| | - Karen Bieback
- Institute of Transfusion Medicine and Immunology and FlowCore Manneim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Hans-Peter Hammes
- Fifth Medical Department, University Medical Centre Mannheim, Mannheim, Germany
| | - Peter P Nawroth
- Department of Medicine I and Clinical Chemistry, Heidelberg University, Heidelberg, Germany
| | - Jens Kroll
- Department of Vascular Biology and Tumor Angiogenesis, Center for Biomedicine and Medical Technology Mannheim (CBTM), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany.,Division of Vascular Oncology and Metastasis, German Cancer Research Center (DKFZ-ZMBH Alliance), Heidelberg, Germany
| |
Collapse
|
36
|
Yang S, Ott CJ, Rossmann MP, Superdock M, Zon LI, Zhou Y. Chromatin immunoprecipitation and an open chromatin assay in zebrafish erythrocytes. Methods Cell Biol 2016; 135:387-412. [PMID: 27443937 DOI: 10.1016/bs.mcb.2016.04.019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Zebrafish is an excellent genetic and developmental model for the study of vertebrate development and disease. Its ability to produce an abundance of transparent, externally developed embryos has facilitated large-scale genetic and chemical screens for the identification of critical genes and chemical factors that modulate developmental pathways. These studies can have profound implications for the diagnosis and treatment of a variety of human diseases. Recent advancements in molecular and genomic studies have provided valuable tools and resources for comprehensive and high-resolution analysis of epigenomes during cell specification and lineage differentiation throughout development. In this chapter, we describe two simple methods to evaluate protein-DNA interaction and chromatin architecture in erythrocytes from adult zebrafish. These are chromatin immunoprecipitation coupled with next-generation sequencing (ChIP-seq) and an assay for transposase-accessible chromatin with high-throughput sequencing (ATAC-seq). These techniques, together with gene expression profiling, are useful for analyzing epigenomic regulation of cell specification, differentiation, and function during zebrafish development in both normal and disease models.
Collapse
Affiliation(s)
- S Yang
- Boston Children's Hospital, Boston, MA, United States; Dana Farber Cancer Institute, Harvard Stem Cell Institute, Boston, MA, United States; Harvard Medical School and Howard Hughes Medical Institute, Boston, MA, United States
| | - C J Ott
- Dana Farber Cancer Institute, Harvard Stem Cell Institute, Boston, MA, United States
| | - M P Rossmann
- Harvard University, Harvard, Cambridge, MA, United States
| | - M Superdock
- Boston Children's Hospital, Boston, MA, United States; Dana Farber Cancer Institute, Harvard Stem Cell Institute, Boston, MA, United States; Harvard Medical School and Howard Hughes Medical Institute, Boston, MA, United States
| | - L I Zon
- Boston Children's Hospital, Boston, MA, United States; Dana Farber Cancer Institute, Harvard Stem Cell Institute, Boston, MA, United States; Harvard Medical School and Howard Hughes Medical Institute, Boston, MA, United States; Harvard University, Harvard, Cambridge, MA, United States
| | - Y Zhou
- Boston Children's Hospital, Boston, MA, United States; Dana Farber Cancer Institute, Harvard Stem Cell Institute, Boston, MA, United States; Harvard Medical School and Howard Hughes Medical Institute, Boston, MA, United States; Harvard University, Harvard, Cambridge, MA, United States
| |
Collapse
|
37
|
Lin JA, Wu CH, Lu CC, Hsia SM, Yen GC. Glycative stress from advanced glycation end products (AGEs) and dicarbonyls: An emerging biological factor in cancer onset and progression. Mol Nutr Food Res 2016; 60:1850-64. [DOI: 10.1002/mnfr.201500759] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Revised: 12/11/2015] [Accepted: 01/07/2016] [Indexed: 12/15/2022]
Affiliation(s)
- Jer-An Lin
- Department of Food Science and Biotechnology; National Chung Hsing University; Taichung Taiwan
| | - Chi-Hao Wu
- School of Nutrition and Health Sciences; Taipei Medical University; Taipei Taiwan
| | - Chi-Cheng Lu
- Department of Food Science and Biotechnology; National Chung Hsing University; Taichung Taiwan
- School of Nutrition and Health Sciences; Taipei Medical University; Taipei Taiwan
| | - Shih-Min Hsia
- School of Nutrition and Health Sciences; Taipei Medical University; Taipei Taiwan
| | - Gow-Chin Yen
- Department of Food Science and Biotechnology; National Chung Hsing University; Taichung Taiwan
- Agricultural Biotechnology Center; National Chung Hsing University; Taichung Taiwan
| |
Collapse
|
38
|
Kimmel RA, Dobler S, Schmitner N, Walsen T, Freudenblum J, Meyer D. Diabetic pdx1-mutant zebrafish show conserved responses to nutrient overload and anti-glycemic treatment. Sci Rep 2015; 5:14241. [PMID: 26384018 PMCID: PMC4585597 DOI: 10.1038/srep14241] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2015] [Accepted: 08/20/2015] [Indexed: 01/09/2023] Open
Abstract
Diabetes mellitus is characterized by disrupted glucose homeostasis due to loss or dysfunction of insulin-producing beta cells. In this work, we characterize pancreatic islet development and function in zebrafish mutant for pdx1, a gene which in humans is linked to genetic forms of diabetes and is associated with increased susceptibility to Type 2 diabetes. Pdx1 mutant zebrafish have the key diabetic features of reduced beta cells, decreased insulin and elevated glucose. The hyperglycemia responds to pharmacologic anti-diabetic treatment and, as often seen in mammalian diabetes models, beta cells of pdx1 mutants show sensitivity to nutrient overload. This unique genetic model of diabetes provides a new tool for elucidating the mechanisms behind hyperglycemic pathologies and will allow the testing of novel therapeutic interventions in a model organism that is amenable to high-throughput approaches.
Collapse
Affiliation(s)
- Robin A. Kimmel
- Institute of Molecular Biology/CMBI; Leopold-Francis University of Innsbruck, Technikerstrasse 25, A-6020 Innsbruck, Austria
| | - Stefan Dobler
- Institute of Molecular Biology/CMBI; Leopold-Francis University of Innsbruck, Technikerstrasse 25, A-6020 Innsbruck, Austria
| | - Nicole Schmitner
- Institute of Molecular Biology/CMBI; Leopold-Francis University of Innsbruck, Technikerstrasse 25, A-6020 Innsbruck, Austria
| | | | - Julia Freudenblum
- Institute of Molecular Biology/CMBI; Leopold-Francis University of Innsbruck, Technikerstrasse 25, A-6020 Innsbruck, Austria
| | - Dirk Meyer
- Institute of Molecular Biology/CMBI; Leopold-Francis University of Innsbruck, Technikerstrasse 25, A-6020 Innsbruck, Austria
| |
Collapse
|
39
|
RhoA/mDia-1/profilin-1 signaling targets microvascular endothelial dysfunction in diabetic retinopathy. Graefes Arch Clin Exp Ophthalmol 2015; 253:669-80. [PMID: 25791356 DOI: 10.1007/s00417-015-2985-3] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2014] [Revised: 02/21/2015] [Accepted: 03/02/2015] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Diabetic retinopathy (DR) is a major cause of blindness in the working-age populations of developed countries, and effective treatments and prevention measures have long been the foci of study. Patients with DR invariably demonstrate impairments of the retinal microvascular endothelium. Many observational and preclinical studies have shown that angiogenesis and apoptosis play crucial roles in the pathogenesis of DR. Increasing evidence suggests that in DR, the small guanosine-5'-triphosphate-binding protein RhoA activates its downstream targets mammalian Diaphanous homolog 1 (mDia-1) and profilin-1, thus affecting important cellular functions, including cell morphology, motility, secretion, proliferation, and gene expression. However, the specific underlying mechanism of disease remains unclear. CONCLUSION This review focuses on the RhoA/mDia-1/profilin-1 signaling pathway that specifically triggers endothelial dysfunction in diabetic patients. Recently, RhoA and profilin-1 signaling has attracted a great deal of attention in the context of diabetes-related research. However, the precise molecular mechanism by which the RhoA/mDia-1/profilin-1 pathway is involved in progression of microvascular endothelial dysfunction (MVED) during DR has not been determined. This review briefly describes each feature of the cascade before exploring the most recent findings on how the pathway may trigger endothelial dysfunction in DR. When the underlying mechanisms are understood, novel therapies seeking to restore the endothelial homeostasis comprised in DR will become possible.
Collapse
|