1
|
Jiang L, He H, Tang Y, Li J, Reilly S, Xin H, Li Z, Cai H, Zhang X. Activation of BK channels prevents diabetes-induced osteopenia by regulating mitochondrial Ca 2+ and SLC25A5/ANT2-PINK1-PRKN-mediated mitophagy. Autophagy 2024; 20:2388-2404. [PMID: 38873928 PMCID: PMC11572260 DOI: 10.1080/15548627.2024.2367184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 05/23/2024] [Accepted: 06/08/2024] [Indexed: 06/15/2024] Open
Abstract
Osteopenia and osteoporosis are among the most common metabolic bone diseases and represent major public health problems, with sufferers having an increased fracture risk. Diabetes is one of the most common diseases contributing to osteopenia and osteoporosis. However, the mechanisms underlying diabetes-induced osteopenia and osteoporosis remain unclear. Bone reconstruction, including bone formation and absorption, is a dynamic process. Large-conductance Ca2+-activated K+ channels (BK channels) regulate the function of bone marrow-derived mesenchymal stem cells, osteoblasts, and osteoclasts. Our previous studies revealed the relationship between BK channels and the function of osteoblasts via various pathways under physiological conditions. In this study, we reported a decrease in the expression of BK channels in mice with diabetes-induced osteopenia. BK deficiency enhanced mitochondrial Ca2+ and activated classical PINK1 (PTEN induced putative kinase 1)-PRKN/Parkin (parkin RBR E3 ubiquitin protein ligase)-dependent mitophagy, whereas the upregulation of BK channels inhibited mitophagy in osteoblasts. Moreover, SLC25A5/ANT2 (solute carrier family 25 (mitochondrial carrier, adenine nucleotide translocator), member 5), a critical inner mitochondrial membrane protein participating in PINK1-PRKN-dependent mitophagy, was also regulated by BK channels. Overall, these data identified a novel role of BK channels in regulating mitophagy in osteoblasts, which might be a potential target for diabetes-induced bone diseases.Abbreviations: AGE, advanced glycation end products; Baf A1, bafilomycin A1; BK channels, big-conductance Ca2+-activated K+ channels; BMSCs, bone marrow-derived mesenchymal stem cells; BSA, bovine serum albumin; FBG, fasting blood glucose; IMM, inner mitochondrial membrane; ITPR1, inositol 1,4,5-trisphosphate receptor 1; MAM, mitochondria-associated ER membrane; OMM, outer mitochondrial membrane; PINK1, PTEN induced putative kinase 1; PPID/CyP-D, peptidylprolyl isomerase D (cyclophilin D); PRKN/PARK2, parkin RBR E3 ubiquitin protein ligase; ROS, reactive oxygen species; SLC25A5/ANT2, solute carrier family 25 (mitochondrial carrier, adenine nucleotide translocator), member 5; STZ, streptozotocin.
Collapse
Affiliation(s)
- Lan Jiang
- Department of Pharmacology, School of Pharmacy, Minhang Hospital, Fudan University, Shanghai, China
| | - Haidong He
- Department of Pharmacology, School of Pharmacy, Minhang Hospital, Fudan University, Shanghai, China
| | - Yuyan Tang
- Department of Pharmacology, School of Pharmacy, Minhang Hospital, Fudan University, Shanghai, China
| | - Jiawei Li
- Department of Pharmacology, School of Pharmacy, Minhang Hospital, Fudan University, Shanghai, China
| | - Svetlana Reilly
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, John Radcliffe Hospital, University of Oxford, Oxford, UK
| | - Hong Xin
- Department of Pharmacology, School of Pharmacy, Minhang Hospital, Fudan University, Shanghai, China
| | - Zhiping Li
- Department of Clinical Pharmacy, National Children’s Medical Center, Children’s Hospital of Fudan University, Shanghai, China
| | - Hui Cai
- Department of Medicine, Renal Division, Emory University School of Medicine, Atlanta, GA, USA
- Section of Nephrology, Atlanta Veteran Administration Medical Center, Decatur, GA, USA
| | - Xuemei Zhang
- Department of Pharmacology, School of Pharmacy, Minhang Hospital, Fudan University, Shanghai, China
| |
Collapse
|
2
|
Lukowski R, Cruz Santos M, Kuret A, Ruth P. cGMP and mitochondrial K + channels-Compartmentalized but closely connected in cardioprotection. Br J Pharmacol 2021; 179:2344-2360. [PMID: 33991427 DOI: 10.1111/bph.15536] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 05/05/2021] [Accepted: 05/07/2021] [Indexed: 01/01/2023] Open
Abstract
The 3',5'-cGMP pathway triggers cytoprotective responses and improves cardiomyocyte survival during myocardial ischaemia and reperfusion (I/R) injury. These beneficial effects were attributed to NO-sensitive GC induced cGMP production leading to activation of cGMP-dependent protein kinase I (cGKI). cGKI in turn phosphorylates many substrates, which eventually facilitate opening of mitochondrial ATP-sensitive potassium channels (mitoKATP ) and Ca2+ -activated potassium channels of the BK type (mitoBK). Accordingly, agents activating mitoKATP or mitoBK provide protection against I/R-induced damages. Here, we provide an up-to-date summary of the infarct-limiting actions exhibited by the GC/cGMP axis and discuss how mitoKATP and mitoBK, which are present at the inner mitochondrial membrane, confer mito- and cytoprotective effects on cardiomyocytes exposed to I/R injury. In view of this, we believe that the functional connection between the cGMP cascade and mitoK+ channels should be exploited further as adjunct to reperfusion therapy in myocardial infarction.
Collapse
Affiliation(s)
- Robert Lukowski
- Department of Pharmacology, Toxicology and Clinical Pharmacy, Institute of Pharmacy, University of Tuebingen, Tuebingen, Germany
| | - Melanie Cruz Santos
- Department of Pharmacology, Toxicology and Clinical Pharmacy, Institute of Pharmacy, University of Tuebingen, Tuebingen, Germany
| | - Anna Kuret
- Department of Pharmacology, Toxicology and Clinical Pharmacy, Institute of Pharmacy, University of Tuebingen, Tuebingen, Germany
| | - Peter Ruth
- Department of Pharmacology, Toxicology and Clinical Pharmacy, Institute of Pharmacy, University of Tuebingen, Tuebingen, Germany
| |
Collapse
|
3
|
Chamberlain LH, Shipston MJ, Gould GW. Regulatory effects of protein S-acylation on insulin secretion and insulin action. Open Biol 2021; 11:210017. [PMID: 33784857 PMCID: PMC8061761 DOI: 10.1098/rsob.210017] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 03/02/2021] [Indexed: 12/23/2022] Open
Abstract
Post-translational modifications (PTMs) such as phosphorylation and ubiquitination are well-studied events with a recognized importance in all aspects of cellular function. By contrast, protein S-acylation, although a widespread PTM with important functions in most physiological systems, has received far less attention. Perturbations in S-acylation are linked to various disorders, including intellectual disability, cancer and diabetes, suggesting that this less-studied modification is likely to be of considerable biological importance. As an exemplar, in this review, we focus on the newly emerging links between S-acylation and the hormone insulin. Specifically, we examine how S-acylation regulates key components of the insulin secretion and insulin response pathways. The proteins discussed highlight the diverse array of proteins that are modified by S-acylation, including channels, transporters, receptors and trafficking proteins and also illustrate the diverse effects that S-acylation has on these proteins, from membrane binding and micro-localization to regulation of protein sorting and protein interactions.
Collapse
Affiliation(s)
- Luke H. Chamberlain
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, UK
| | - Michael J. Shipston
- Centre for Discovery Brain Sciences, Edinburgh Medical School: Biomedical Sciences, University of Edinburgh, Edinburgh, UK
| | - Gwyn W. Gould
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, UK
| |
Collapse
|
4
|
Ren J, Cheng Y, Wen X, Liu P, Zhao F, Xin F, Wang M, Huang H, Wang W. BK Ca channel participates in insulin-induced lipid deposition in adipocytes by increasing intracellular calcium. J Cell Physiol 2021; 236:5818-5831. [PMID: 33432604 DOI: 10.1002/jcp.30266] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 12/22/2020] [Accepted: 12/24/2020] [Indexed: 12/21/2022]
Abstract
Storing energy in the form of triglyceride (TG) is one of the basic functions of adipose tissue. Large-conductance calcium-activated potassium channels (BKCa channels) are expressed in adipose tissue and adipocyte-specific BKCa deficiency resists obesity in mice, but the role of BKCa channels in lipid deposition and the underlying mechanisms have not been elucidated. In the present study, we generated BKCa knockout (KO) rats and performed a transcriptome analysis of adipose tissue. We found that the phosphoinositide 3-kinase (PI3K)-protein kinase B (Akt) signaling pathway, which is important for lipid deposition, exhibited the most notable reduction among various signaling pathways in BKCa KO rats compared to wild-type rats. Insulin-induced TG deposition, glucose uptake, and Akt (Ser473) phosphorylation were significantly reduced in cultured adipocytes differentiated from adipose-derived stem cells of BKCa KO rats. Furthermore, we found that the insulin-induced increase of intracellular calcium resulting from extracellular calcium influx was significantly impaired in BKCa KO adipocytes. Finally, insulin activated BKCa currents through PI3K, which was independent of Akt and intracellular calcium. The results of this study suggested that BKCa channels participate in the insulin signaling pathway and promote TG deposition by increasing extracellular calcium influx in adipocytes.
Collapse
Affiliation(s)
- Jie Ren
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Yuan Cheng
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Xinxin Wen
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Ping Liu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China.,Beijing Lab for Cardiovascular Precision Medicine, Beijing, China
| | - Feng Zhao
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Fang Xin
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China.,Beijing Lab for Cardiovascular Precision Medicine, Beijing, China
| | - Meili Wang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China.,Beijing Key Laboratory of Metabolic Disorders Related Cardiovascular Diseases, Capital Medical University, Beijing, China
| | - Haixia Huang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China.,Beijing Lab for Cardiovascular Precision Medicine, Beijing, China.,Beijing Key Laboratory of Metabolic Disorders Related Cardiovascular Diseases, Capital Medical University, Beijing, China
| | - Wei Wang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China.,Beijing Lab for Cardiovascular Precision Medicine, Beijing, China
| |
Collapse
|
5
|
Leiss V, Schönsiegel A, Gnad T, Kerner J, Kaur J, Sartorius T, Machann J, Schick F, Birnbaumer L, Häring HU, Pfeifer A, Nürnberg B. Lack of Gα i2 proteins in adipocytes attenuates diet-induced obesity. Mol Metab 2020; 40:101029. [PMID: 32480042 PMCID: PMC7306590 DOI: 10.1016/j.molmet.2020.101029] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 05/26/2020] [Accepted: 05/26/2020] [Indexed: 12/20/2022] Open
Abstract
OBJECTIVES Typically, obesity results from an inappropriate balance between energy uptake from nutrient consumption and burning of calories, which leads to a pathological increase in fat mass. Obesity is a major cause of insulin resistance and diabetes. Inhibitory G proteins (Gαi) form a subfamily that is involved in the regulation of adipose tissue function. Among the three Gαi members, i.e. Gαi1, Gαi2, Gαi3, the Gαi2, protein is predominantly expressed in adipose tissue. However, the functions of the Gαi2 isoform in adipose tissue and its impact on the development of obesity are poorly understood. METHODS By using AdipoqCreERT2 mice, we generated adipocyte-specific Gnai2-deficient mice to study Gαi2 function, specifically in white and brown adipocytes. These mice were fed either a control diet (CD) or a high fat diet (HFD). Mice were examined for obesity development, insulin resistance and glucose intolerance. We examined adipocyte morphology and the development of inflammation in the white adipose tissue. Finally, intracellular cAMP levels as an indicator of Gαi signaling and glycerol release as an indicator of lipolysis rates were measured to verify the impact of Gαi2 on the signaling pathway in brown and white adipocytes. RESULTS An adipocyte-specific deficiency of Gαi2 significantly reduced diet-induced obesity, leading to decreased fat masses, smaller adipocytes and decreased inflammation in the white adipose tissue relative to littermate controls. Concurrently, oxygen consumption of brown adipocytes and in vivo measured energy expenditure were significantly enhanced. In addition, glucose tolerance and insulin sensitivity of HFD-fed adipocyte-specific Gnai2-deficient mice were improved compared to the respective controls. In the absence of Gαi2, adrenergic stimulation of intracellular adipocyte cAMP levels was increased, which correlated with increased lipolysis and energy expenditure. CONCLUSION We conclude that adipocyte Gαi2 is a major regulator of adipocyte lipid content in diet-induced obesity by inhibiting adipocyte lipolysis in a cAMP-dependent manner resulting in increased energy expenditure.
Collapse
MESH Headings
- Adipocytes, Brown/metabolism
- Adipocytes, White/metabolism
- Adipose Tissue/metabolism
- Adipose Tissue/physiology
- Adipose Tissue, Brown/metabolism
- Adipose Tissue, White/metabolism
- Animals
- Diet, High-Fat
- Energy Metabolism
- GTP-Binding Protein alpha Subunit, Gi2/metabolism
- GTP-Binding Protein alpha Subunit, Gi2/physiology
- GTP-Binding Protein alpha Subunits, Gi-Go/metabolism
- GTP-Binding Protein alpha Subunits, Gi-Go/physiology
- Glucose/metabolism
- Glucose Intolerance/metabolism
- Insulin/metabolism
- Insulin Resistance/physiology
- Lipolysis
- Male
- Mice
- Mice, Inbred C57BL
- Obesity/genetics
- Obesity/metabolism
- Oxygen Consumption
Collapse
Affiliation(s)
- Veronika Leiss
- Department of Pharmacology, Experimental Therapy and Toxicology and Interfaculty Center of Pharmacoge-nomics and Drug Research, University of Tübingen, 72074, Tübingen, Germany
| | - Annika Schönsiegel
- Department of Pharmacology, Experimental Therapy and Toxicology and Interfaculty Center of Pharmacoge-nomics and Drug Research, University of Tübingen, 72074, Tübingen, Germany
| | - Thorsten Gnad
- Institute of Pharmacology and Toxicology, University of Bonn, 53127, Bonn, Germany
| | - Johannes Kerner
- Department of Pharmacology, Experimental Therapy and Toxicology and Interfaculty Center of Pharmacoge-nomics and Drug Research, University of Tübingen, 72074, Tübingen, Germany
| | - Jyotsna Kaur
- Department of Pharmacology, Experimental Therapy and Toxicology and Interfaculty Center of Pharmacoge-nomics and Drug Research, University of Tübingen, 72074, Tübingen, Germany
| | - Tina Sartorius
- Department of Internal Medicine, Division of Endocrinology, Diabetology, Vascular Disease, Nephrology and Clinical Chemistry, University of Tuebingen, Tuebingen, Germany; German Center for Diabetes Research (DZD), Neuherberg, Germany; Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Center Munich at the University of Tuebingen (IDM), Tuebingen, Germany
| | - Jürgen Machann
- German Center for Diabetes Research (DZD), Neuherberg, Germany; Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Center Munich at the University of Tuebingen (IDM), Tuebingen, Germany; Section on Experimental Radiology, Department of Diagnostic and Interventional Radiology, University of Tuebingen, Germany
| | - Fritz Schick
- Section on Experimental Radiology, Department of Diagnostic and Interventional Radiology, University of Tuebingen, Germany
| | - Lutz Birnbaumer
- Neurobiology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Durham, NC, USA; Institute of Biomedical Research (BIOMED), Catholic University of Argentina, Buenos Aires, Argentina
| | - Hans-Ulrich Häring
- Department of Internal Medicine, Division of Endocrinology, Diabetology, Vascular Disease, Nephrology and Clinical Chemistry, University of Tuebingen, Tuebingen, Germany; German Center for Diabetes Research (DZD), Neuherberg, Germany; Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Center Munich at the University of Tuebingen (IDM), Tuebingen, Germany
| | - Alexander Pfeifer
- Institute of Pharmacology and Toxicology, University of Bonn, 53127, Bonn, Germany
| | - Bernd Nürnberg
- Department of Pharmacology, Experimental Therapy and Toxicology and Interfaculty Center of Pharmacoge-nomics and Drug Research, University of Tübingen, 72074, Tübingen, Germany.
| |
Collapse
|
6
|
Mohr CJ, Schroth W, Mürdter TE, Gross D, Maier S, Stegen B, Dragoi A, Steudel FA, Stehling S, Hoppe R, Madden S, Ruth P, Huber SM, Brauch H, Lukowski R. Subunits of BK channels promote breast cancer development and modulate responses to endocrine treatment in preclinical models. Br J Pharmacol 2020; 179:2906-2924. [PMID: 32468618 DOI: 10.1111/bph.15147] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2019] [Revised: 03/20/2020] [Accepted: 05/13/2020] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND AND PURPOSE Pore-forming α subunits of the voltage- and Ca2+ -activated K+ channel with large conductance (BKα) promote malignant phenotypes of breast tumour cells. Auxiliary subunits such as the leucine-rich repeat containing 26 (LRRC26) protein, also termed BKγ1, may be required to permit activation of BK currents at a depolarized resting membrane potential that frequently occur in non-excitable tumour cells. EXPERIMENTAL APPROACH Anti-tumour effects of BKα loss were investigated in breast tumour-bearing MMTV-PyMT transgenic BKα knockout (KO) mice, primary MMTV-PyMT cell cultures, and in a syngeneic transplantation model of breast cancer derived from these cells. The therapeutic relevance of BK channels in the context of endocrine treatment was assessed in human breast cancer cell lines expressing either low (MCF-7) or high (MDA-MB-453) levels of BKα and BKγ1, as well as in BKα-negative MDA-MB-157. KEY RESULTS BKα promoted breast cancer onset and overall survival in preclinical models. Conversely, lack of BKα and/or knockdown of BKγ1 attenuated proliferation of murine and human breast cancer cells in vitro. At low concentrations, tamoxifen and its major active metabolites stimulated proliferation of BKα/γ1-positive breast cancer cells, independent of the genomic signalling controlled by the oestrogen receptor. Finally, tamoxifen increased the relative survival time of BKα KO but not of wild-type tumour cell recipient mice. CONCLUSION AND IMPLICATIONS Breast cancer initiation, progression, and tamoxifen sensitivity depend on functional BK channels thereby providing a rationale for the future exploration of the oncogenic actions of BK channels in clinical outcomes with anti-oestrogen therapy.
Collapse
Affiliation(s)
- Corinna J Mohr
- Department of Pharmacology, Toxicology and Clinical Pharmacy, Institute of Pharmacy, University of Tuebingen, Tuebingen, Germany.,Dr. Margarete Fischer-Bosch-Institute of Clinical Pharmacology, Stuttgart and University of Tuebingen, Germany
| | - Werner Schroth
- Dr. Margarete Fischer-Bosch-Institute of Clinical Pharmacology, Stuttgart and University of Tuebingen, Germany
| | - Thomas E Mürdter
- Dr. Margarete Fischer-Bosch-Institute of Clinical Pharmacology, Stuttgart and University of Tuebingen, Germany
| | - Dominic Gross
- Department of Pharmacology, Toxicology and Clinical Pharmacy, Institute of Pharmacy, University of Tuebingen, Tuebingen, Germany
| | - Selina Maier
- Department of Pharmacology, Toxicology and Clinical Pharmacy, Institute of Pharmacy, University of Tuebingen, Tuebingen, Germany.,Dr. Margarete Fischer-Bosch-Institute of Clinical Pharmacology, Stuttgart and University of Tuebingen, Germany
| | - Benjamin Stegen
- Department of Radiation Oncology, University of Tuebingen, Tuebingen, Germany
| | - Alice Dragoi
- Department of Pharmacology, Toxicology and Clinical Pharmacy, Institute of Pharmacy, University of Tuebingen, Tuebingen, Germany
| | - Friederike A Steudel
- Department of Pharmacology, Toxicology and Clinical Pharmacy, Institute of Pharmacy, University of Tuebingen, Tuebingen, Germany
| | - Severine Stehling
- Department of Pharmacology, Toxicology and Clinical Pharmacy, Institute of Pharmacy, University of Tuebingen, Tuebingen, Germany
| | - Reiner Hoppe
- Dr. Margarete Fischer-Bosch-Institute of Clinical Pharmacology, Stuttgart and University of Tuebingen, Germany
| | - Stephen Madden
- RCSI Division of Population Health Sciences, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Peter Ruth
- Department of Pharmacology, Toxicology and Clinical Pharmacy, Institute of Pharmacy, University of Tuebingen, Tuebingen, Germany
| | - Stephan M Huber
- Department of Radiation Oncology, University of Tuebingen, Tuebingen, Germany
| | - Hiltrud Brauch
- Dr. Margarete Fischer-Bosch-Institute of Clinical Pharmacology, Stuttgart and University of Tuebingen, Germany.,German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany.,iFIT-Cluster of Excellence, University of Tuebingen, Tuebingen, Germany
| | - Robert Lukowski
- Department of Pharmacology, Toxicology and Clinical Pharmacy, Institute of Pharmacy, University of Tuebingen, Tuebingen, Germany
| |
Collapse
|
7
|
Comprehensive lipidomics of mouse plasma using class-specific surrogate calibrants and SWATH acquisition for large-scale lipid quantification in untargeted analysis. Anal Chim Acta 2019; 1086:90-102. [PMID: 31561798 DOI: 10.1016/j.aca.2019.08.030] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 08/03/2019] [Accepted: 08/14/2019] [Indexed: 12/24/2022]
Abstract
Lipidomics has gained rising attention in recent years. Several strategies for lipidomic profiling have been developed, with targeted analysis of selected lipid species, typically utilized for lipid quantification by low-resolution triple quadrupole MS/MS, and untargeted analysis by high-resolution MS instruments, focusing on hypothesis generation for prognostic, diagnostic and/or disease-relevant biomarker discovery. The latter methodologies generally yield relative quantification data with limited inter-assay comparability. In this work we aimed to combine untargeted analysis and absolute quantification to enhance data quality and to obtain independent results for optimum comparability to previous studies or database entries. For the lipidomic analysis of mouse plasma, RP-UHPLC hyphenated to a high-resolution quadrupole TOF mass spectrometer in comprehensive data-independent SWATH acquisition mode was employed. This way, quantifiable data on the MS and the MS/MS level were recorded, which increases assay specificity and quantitative performance. Due to the lack of an appropriate blank matrix for untargeted lipidomics, we herein established a sophisticated strategy for lipid class-specific calibration with stable isotope labeled standards (surrogate calibrants). LLOQs were in the range between 10 and 50 ng mL-1 for LPC, LPE, PI, PS, PG, SM, PC, PE, DAG) or 100-700 ng mL-1 (MAG, TAG), except for cholesterol and CE (1-20 μg mL-1). Acceptable values for accuracy and precision well below ±15% bias were reached for the majority of surrogate calibrants. However, to achieve sufficient accuracy for target lipids, response factors to corresponding surrogate calibrants are required. An approach to estimate response factors via a standard reference material (NIST SRM 1950) was therefore conducted. Furthermore, a useful workflow for post-acquisition re-calibration, involving response factor determination and iteratively built libraries, is suggested. In comparison to single-point calibration, the presented surrogate calibrant method was shown to yield results with improved accuracy that are largely in accordance with standard addition. Quantitative results of real samples (high-fat diet vs control diet) were then compared to two previously published dietary mouse plasma studies that provided absolute lipid levels and showed similar trends.
Collapse
|
8
|
Drotleff B, Lämmerhofer M. Guidelines for Selection of Internal Standard-Based Normalization Strategies in Untargeted Lipidomic Profiling by LC-HR-MS/MS. Anal Chem 2019; 91:9836-9843. [DOI: 10.1021/acs.analchem.9b01505] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Bernhard Drotleff
- Institute of Pharmaceutical Sciences, Pharmaceutical (Bio-)Analysis, University of Tübingen, Tübingen 72076, Germany
| | - Michael Lämmerhofer
- Institute of Pharmaceutical Sciences, Pharmaceutical (Bio-)Analysis, University of Tübingen, Tübingen 72076, Germany
| |
Collapse
|
9
|
Frankenreiter S, Bednarczyk P, Kniess A, Bork NI, Straubinger J, Koprowski P, Wrzosek A, Mohr E, Logan A, Murphy MP, Gawaz M, Krieg T, Szewczyk A, Nikolaev VO, Ruth P, Lukowski R. cGMP-Elevating Compounds and Ischemic Conditioning Provide Cardioprotection Against Ischemia and Reperfusion Injury via Cardiomyocyte-Specific BK Channels. Circulation 2017; 136:2337-2355. [PMID: 29051185 DOI: 10.1161/circulationaha.117.028723] [Citation(s) in RCA: 120] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Accepted: 10/02/2017] [Indexed: 11/16/2022]
Abstract
BACKGROUND The nitric oxide-sensitive guanylyl cyclase/cGMP-dependent protein kinase type I signaling pathway can afford protection against the ischemia/reperfusion injury that occurs during myocardial infarction. Reportedly, voltage and Ca2+-activated K+ channels of the BK type are stimulated by cGMP/cGMP-dependent protein kinase type I, and recent ex vivo studies implicated that increased BK activity favors the survival of the myocardium at ischemia/reperfusion. It remains unclear, however, whether the molecular events downstream of cGMP involve BK channels present in cardiomyocytes or in other cardiac cell types. METHODS Gene-targeted mice with a cardiomyocyte- or smooth muscle cell-specific deletion of the BK (CMBK or SMBK knockouts) were subjected to the open-chest model of myocardial infarction. Infarct sizes of the conditional mutants were compared with litter-matched controls, global BK knockout, and wild-type mice. Cardiac damage was assessed after mechanical conditioning or pharmacological stimulation of the cGMP pathway and by using direct modulators of BK. Long-term outcome was studied with respect to heart functions and cardiac fibrosis in a chronic myocardial infarction model. RESULTS Global BK knockouts and CMBK knockouts, in contrast with SMBK knockouts, exhibited significantly larger infarct sizes compared with their respective controls. Ablation of CMBK resulted in higher serum levels of cardiac troponin I and elevated amounts of reactive oxygen species, lower phosphorylated extracellular receptor kinase and phosphorylated AKT levels and an increase in myocardial apoptosis. Moreover, CMBK was required to allow beneficial effects of both nitric oxide-sensitive guanylyl cyclase activation and inhibition of the cGMP-degrading phosphodiesterase-5, ischemic preconditioning, and postconditioning regimens. To this end, after 4 weeks of reperfusion, fibrotic tissue increased and myocardial strain echocardiography was significantly compromised in CMBK-deficient mice. CONCLUSIONS Lack of CMBK channels renders the heart more susceptible to ischemia/reperfusion injury, whereas the pathological events elicited by ischemia/reperfusion do not involve BK in vascular smooth muscle cells. BK seems to permit the protective effects triggered by cinaciguat, riociguat, and different phosphodiesterase-5 inhibitors and beneficial actions of ischemic preconditioning and ischemic postconditioning by a mechanism stemming primarily from cardiomyocytes. This study establishes mitochondrial CMBK channels as a promising target for limiting acute cardiac damage and adverse long-term events that occur after myocardial infarction.
Collapse
Affiliation(s)
- Sandra Frankenreiter
- Department of Pharmacology, Toxicology and Clinical Pharmacy, Institute of Pharmacy, University of Tuebingen, Germany (S.F., A.K., J.S., E.M., P.R., R.L.)
| | - Piotr Bednarczyk
- Department of Biophysics, Warsaw University of Life Sciences, Poland (P.B.)
| | - Angelina Kniess
- Department of Pharmacology, Toxicology and Clinical Pharmacy, Institute of Pharmacy, University of Tuebingen, Germany (S.F., A.K., J.S., E.M., P.R., R.L.)
| | - Nadja I Bork
- Institute of Experimental Cardiovascular Research, University Medical Center Hamburg-Eppendorf, Germany (N.I.B., V.O.N.)
| | - Julia Straubinger
- Department of Pharmacology, Toxicology and Clinical Pharmacy, Institute of Pharmacy, University of Tuebingen, Germany (S.F., A.K., J.S., E.M., P.R., R.L.)
| | - Piotr Koprowski
- Laboratory of Intracellular Ion Channels, Nencki Institute of Experimental Biology, Warsaw, Poland (P.K., A.W., A.S.)
| | - Antoni Wrzosek
- Laboratory of Intracellular Ion Channels, Nencki Institute of Experimental Biology, Warsaw, Poland (P.K., A.W., A.S.)
| | - Eva Mohr
- Department of Pharmacology, Toxicology and Clinical Pharmacy, Institute of Pharmacy, University of Tuebingen, Germany (S.F., A.K., J.S., E.M., P.R., R.L.)
| | | | | | - Meinrad Gawaz
- University of Cambridge, Cambridge Biomedical Campus, United Kingdom. Internal Medicine III, Cardiology and Cardiovascular Medicine, University Hospital Tuebingen, Germany (M.G.)
| | | | - Adam Szewczyk
- Laboratory of Intracellular Ion Channels, Nencki Institute of Experimental Biology, Warsaw, Poland (P.K., A.W., A.S.)
| | - Viacheslav O Nikolaev
- Institute of Experimental Cardiovascular Research, University Medical Center Hamburg-Eppendorf, Germany (N.I.B., V.O.N.)
| | - Peter Ruth
- Department of Pharmacology, Toxicology and Clinical Pharmacy, Institute of Pharmacy, University of Tuebingen, Germany (S.F., A.K., J.S., E.M., P.R., R.L.)
| | - Robert Lukowski
- Department of Pharmacology, Toxicology and Clinical Pharmacy, Institute of Pharmacy, University of Tuebingen, Germany (S.F., A.K., J.S., E.M., P.R., R.L.)
| |
Collapse
|
10
|
Maqoud F, Cetrone M, Mele A, Tricarico D. Molecular structure and function of big calcium-activated potassium channels in skeletal muscle: pharmacological perspectives. Physiol Genomics 2017; 49:306-317. [DOI: 10.1152/physiolgenomics.00121.2016] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Revised: 02/08/2017] [Accepted: 04/10/2017] [Indexed: 11/22/2022] Open
Abstract
The large-conductance Ca2+-activated K+ (BK) channel is broadly expressed in various mammalian cells and tissues such as neurons, skeletal muscles (sarco-BK), and smooth muscles. These channels are activated by changes in membrane electrical potential and by increases in the concentration of intracellular calcium ion (Ca2+). The BK channel is subjected to many mechanisms that add diversity to the BK channel α-subunit gene. These channels are indeed subject to alternative splicing, auxiliary subunits modulation, posttranslational modifications, and protein-protein interactions. BK channels can be modulated by diverse molecules that may induce either an increase or decrease in channel activity. The linkage of these channels to many intracellular metabolites and pathways, as well as their modulation by extracellular natural agents, have been found to be relevant in many physiological processes. BK channel diversity is obtained by means of alternative splicing and modulatory β- and γ-subunits. The association of the α-subunit with β- or with γ-subunits can change the BK channel phenotype, functional diversity, and pharmacological properties in different tissues. In the case of the skeletal muscle BK channel (sarco-BK channel), we established that the main mechanism regulating BK channel diversity is the alternative splicing of the KCNMA1/slo1 gene encoding for the α-subunit generating different splicing isoform in the muscle phenotypes. This finding helps to design molecules selectively targeting the skeletal muscle subtypes. The use of drugs selectively targeting the skeletal muscle BK channels is a promising strategy in the treatment of familial disorders affecting muscular skeletal apparatus including hyperkalemia and hypokalemia periodic paralysis.
Collapse
Affiliation(s)
- Fatima Maqoud
- Department of Pharmacy-Drug Science, University of Bari, Bari, Italy
- Faculty of Science, Chouaib Doukkali University, El Jadida, Morocco
| | - Michela Cetrone
- Istituto Tumori Giovanni Paolo II, Istituto di Ricovero e Cura a Carattere Scientifico, National Cancer Institute, Bari, Italy; and
| | - Antonietta Mele
- Department of Pharmacy-Drug Science, University of Bari, Bari, Italy
| | | |
Collapse
|
11
|
Halm ST, Bottomley MA, Almutairi MM, Di Fulvio M, Halm DR. Survival and growth of C57BL/6J mice lacking the BK channel, Kcnma1: lower adult body weight occurs together with higher body fat. Physiol Rep 2017; 5:5/4/e13137. [PMID: 28242822 PMCID: PMC5328773 DOI: 10.14814/phy2.13137] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Revised: 12/23/2016] [Accepted: 01/02/2017] [Indexed: 11/29/2022] Open
Abstract
Big conductance potassium (BK) channels contribute to K+ flow and electrical behavior in many cell types. Mice made null for the gene (Kcnma1) producing the BK channel (BKKO) exhibit numerous deficits in physiological functions. Breeding mice lacking a single allele of Kcnma1 (C57BL/6J background) had litter sizes of approximately eight pups. For the period of maternal care (P0–P21), pup deaths peaked at P1 with a second less severe interval of death peaking near P13. Early deaths were twice as likely during a 20‐month period of building construction compared with the quiescent period after cessation of construction. Births during construction were not consistent with Mendelian predictions indicating the likelihood of a specific disadvantage induced by this environmental stressor. Later BKKO pup deaths (~P13) also were more numerous than Mendelian expectations. After weaning, weight gain was slower for BKKO mice compared with wild‐type littermates: 5 g less for male BKKO mice and 4 g less for female BKKO mice. Body composition determined by quantitative magnetic resonance indicated a higher fat proportion for wild‐type female mice compared with males, as well as a higher hydration ratio. Both male and female BKKO mice showed higher fat proportions than wild‐type, with female BKKO mice exhibiting greater variation. Together, these results indicate that BKKO mice suffered disadvantages that lead to prenatal and perinatal death. A metabolic difference likely related to glucose handling led to the smaller body size and distinct composition for BKKO mice, suggesting a diversion of energy supplies from growth to fat storage.
Collapse
Affiliation(s)
- Susan T Halm
- Department of Neuroscience, Cell Biology and Physiology, Wright State University Boonshoft School of Medicine, Dayton, Ohio
| | - Michael A Bottomley
- Department of Mathematics and Statistics, Statistical Consulting Center, Wright State University, Dayton, Ohio
| | - Mohammed M Almutairi
- Department of Pharmacology and Toxicology, Wright State University Boonshoft School of Medicine, Dayton, Ohio
| | - Maurico Di Fulvio
- Department of Pharmacology and Toxicology, Wright State University Boonshoft School of Medicine, Dayton, Ohio
| | - Dan R Halm
- Department of Neuroscience, Cell Biology and Physiology, Wright State University Boonshoft School of Medicine, Dayton, Ohio
| |
Collapse
|