1
|
Shi F. Understanding the roles of salt-inducible kinases in cardiometabolic disease. Front Physiol 2024; 15:1426244. [PMID: 39081779 PMCID: PMC11286596 DOI: 10.3389/fphys.2024.1426244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 06/26/2024] [Indexed: 08/02/2024] Open
Abstract
Salt-inducible kinases (SIKs) are serine/threonine kinases of the adenosine monophosphate-activated protein kinase family. Acting as mediators of a broad array of neuronal and hormonal signaling pathways, SIKs play diverse roles in many physiological and pathological processes. Phosphorylation by the upstream kinase liver kinase B1 is required for SIK activation, while phosphorylation by protein kinase A induces the binding of 14-3-3 protein and leads to SIK inhibition. SIKs are subjected to auto-phosphorylation regulation and their activity can also be modulated by Ca2+/calmodulin-dependent protein kinase in response to cellular calcium influx. SIKs regulate the physiological processes through direct phosphorylation on various substrates, which include class IIa histone deacetylases, cAMP-regulated transcriptional coactivators, phosphatase methylesterase-1, among others. Accumulative body of studies have demonstrated that SIKs are important regulators of the cardiovascular system, including early works establishing their roles in sodium sensing and vascular homeostasis and recent progress in pulmonary arterial hypertension and pathological cardiac remodeling. SIKs also regulate inflammation, fibrosis, and metabolic homeostasis, which are essential pathological underpinnings of cardiovascular disease. The development of small molecule SIK inhibitors provides the translational opportunity to explore their potential as therapeutic targets for treating cardiometabolic disease in the future.
Collapse
Affiliation(s)
- Fubiao Shi
- Department of Medicine, Division of Cardiovascular Medicine, Vanderbilt University Medical Center, Nashville, TN, United States
| |
Collapse
|
2
|
Mooli RGR, Zhu B, Khan SR, Nagati V, Michealraj KA, Jurczak MJ, Ramakrishnan SK. Epigenetically active chromatin in neonatal iWAT reveals GABPα as a potential regulator of beige adipogenesis. Front Endocrinol (Lausanne) 2024; 15:1385811. [PMID: 38765953 PMCID: PMC11099907 DOI: 10.3389/fendo.2024.1385811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 04/12/2024] [Indexed: 05/22/2024] Open
Abstract
Background Thermogenic beige adipocytes, which dissipate energy as heat, are found in neonates and adults. Recent studies show that neonatal beige adipocytes are highly plastic and contribute to >50% of beige adipocytes in adults. Neonatal beige adipocytes are distinct from recruited beige adipocytes in that they develop independently of temperature and sympathetic innervation through poorly defined mechanisms. Methods We characterized the neonatal beige adipocytes in the inguinal white adipose tissue (iWAT) of C57BL6 postnatal day 3 and 20 mice (P3 and P20) by imaging, genome-wide RNA-seq analysis, ChIP-seq analysis, qRT-PCR validation, and biochemical assays. Results We found an increase in acetylated histone 3 lysine 27 (H3K27ac) on the promoter and enhancer regions of beige-specific gene UCP1 in iWAT of P20 mice. Furthermore, H3K27ac ChIP-seq analysis in the iWAT of P3 and P20 mice revealed strong H3K27ac signals at beige adipocyte-associated genes in the iWAT of P20 mice. The integration of H3K27ac ChIP-seq and RNA-seq analysis in the iWAT of P20 mice reveal epigenetically active signatures of beige adipocytes, including oxidative phosphorylation and mitochondrial metabolism. We identify the enrichment of GA-binding protein alpha (GABPα) binding regions in the epigenetically active chromatin regions of the P20 iWAT, particularly on beige genes, and demonstrate that GABPα is required for beige adipocyte differentiation. Moreover, transcriptomic analysis and glucose oxidation assays revealed increased glycolytic activity in the neonatal iWAT from P20. Conclusions Our findings demonstrate that epigenetic mechanisms regulate the development of peri-weaning beige adipocytes via GABPα. Further studies to better understand the upstream mechanisms that regulate epigenetic activation of GABPα and characterization of the metabolic identity of neonatal beige adipocytes will help us harness their therapeutic potential in metabolic diseases.
Collapse
Affiliation(s)
- Raja Gopal Reddy Mooli
- Division of Endocrinology and Metabolism, University of Pittsburgh, Pittsburgh, PA, United States
| | - Bokai Zhu
- Division of Endocrinology and Metabolism, University of Pittsburgh, Pittsburgh, PA, United States
- Pittsburgh Liver Research Centre, University of Pittsburgh, Pittsburgh, PA, United States
- Aging Institute of University of Pittsburgh Medical Center (UPMC), University of Pittsburgh, Pittsburgh, PA, United States
| | - Saifur R. Khan
- Division of Cardiology, University of Pittsburgh, Pittsburgh, PA, United States
- Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA, United States
- Pittsburgh VA Medical Centre, Pittsburgh, PA, United States
- Center for Immunometabolism, University of Pittsburgh, Pittsburgh, PA, United States
| | - Veerababu Nagati
- Division of Endocrinology and Metabolism, University of Pittsburgh, Pittsburgh, PA, United States
| | | | - Michael J. Jurczak
- Division of Endocrinology and Metabolism, University of Pittsburgh, Pittsburgh, PA, United States
| | - Sadeesh K. Ramakrishnan
- Division of Endocrinology and Metabolism, University of Pittsburgh, Pittsburgh, PA, United States
- Pittsburgh Liver Research Centre, University of Pittsburgh, Pittsburgh, PA, United States
| |
Collapse
|
3
|
de Sousa É, de Mendonça M, Bolin AP, de Oliveira NP, Real CC, Hu X, Huang ZP, Wang DZ, Rodrigues AC. Sex-specific regulation of miR-22 and ERα in white adipose tissue of obese dam's female offspring impairs the early postnatal development of functional beige adipocytes in mice. Biochim Biophys Acta Mol Basis Dis 2024; 1870:167057. [PMID: 38331111 DOI: 10.1016/j.bbadis.2024.167057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 12/31/2023] [Accepted: 01/30/2024] [Indexed: 02/10/2024]
Abstract
During inguinal adipose tissue (iWAT) ontogenesis, beige adipocytes spontaneously appear between postnatal 10 (P10) and P20 and their ablation impairs iWAT browning capacity in adulthood. Since maternal obesity has deleterious effects on offspring iWAT function, we aimed to investigate its effect in spontaneous iWAT browning in offspring. Female C57BL/6 J mice were fed a control or obesogenic diet six weeks before mating. Male and female offspring were euthanized at P10 and P20 or weaned at P21 and fed chow diet until P60. At P50, mice were treated with saline or CL316,243, a β3-adrenoceptor agonist, for ten days. Maternal obesity induced insulin resistance at P60, and CL316,243 treatment effectively restored insulin sensitivity in male but not female offspring. This discrepancy occurred due to female offspring severe browning impairment. During development, the spontaneous iWAT browning and sympathetic nerve branching at P20 were severely impaired in female obese dam's offspring but occurred normally in males. Additionally, maternal obesity increased miR-22 expression in the iWAT of male and female offspring during development. ERα, a target and regulator of miR-22, was concomitantly upregulated in the male's iWAT. Next, we evaluated miR-22 knockout (KO) offspring at P10 and P20. The miR-22 deficiency does not affect spontaneous iWAT browning in females and, surprisingly, anticipates iWAT browning in males. In conclusion, maternal obesity impairs functional iWAT development in the offspring in a sex-specific way that seems to be driven by miR-22 levels and ERα signaling. This impacts adult browning capacity and glucose homeostasis, especially in female offspring.
Collapse
Affiliation(s)
- Érica de Sousa
- Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | - Mariana de Mendonça
- Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | - Anaysa Paola Bolin
- Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | - Nayara Preste de Oliveira
- Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | | | - Xiaoyun Hu
- Department of Cardiology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Zhan-Peng Huang
- Department of Cardiology, Center for Translational Medicine, Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Da-Zhi Wang
- Department of Cardiology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Alice Cristina Rodrigues
- Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil.
| |
Collapse
|
4
|
Huang B, Chen K, Li Y. Aerobic exercise, an effective prevention and treatment for mild cognitive impairment. Front Aging Neurosci 2023; 15:1194559. [PMID: 37614470 PMCID: PMC10442561 DOI: 10.3389/fnagi.2023.1194559] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 07/28/2023] [Indexed: 08/25/2023] Open
Abstract
Aerobic exercise has emerged as a promising intervention for mild cognitive impairment (MCI), a precursor to dementia. The therapeutic benefits of aerobic exercise are multifaceted, encompassing both clinical and molecular domains. Clinically, aerobic exercise has been shown to mitigate hypertension and type 2 diabetes mellitus, conditions that significantly elevate the risk of MCI. Moreover, it stimulates the release of nitric oxide, enhancing arterial elasticity and reducing blood pressure. At a molecular level, it is hypothesized that aerobic exercise modulates the activation of microglia and astrocytes, cells crucial to brain inflammation and neurogenesis, respectively. It has also been suggested that aerobic exercise promotes the release of exercise factors such as irisin, cathepsin B, CLU, and GPLD1, which could enhance synaptic plasticity and neuroprotection. Consequently, regular aerobic exercise could potentially prevent or reduce the likelihood of MCI development in elderly individuals. These molecular mechanisms, however, are hypotheses that require further validation. The mechanisms of action are intricate, and further research is needed to elucidate the precise molecular underpinnings and to develop targeted therapeutics for MCI.
Collapse
Affiliation(s)
- Baiqing Huang
- Sports Institute, Yunnan Minzu University, Kunming, China
| | - Kang Chen
- Tianjin Key Lab of Exercise Physiology and Sports Medicine, Tianjin University of Sport, Tianjin, China
| | - Ying Li
- Sports Institute, Yunnan Minzu University, Kunming, China
| |
Collapse
|
5
|
Shi F, de Fatima Silva F, Liu D, Patel HU, Xu J, Zhang W, Türk C, Krüger M, Collins S. Salt-inducible kinase inhibition promotes the adipocyte thermogenic program and adipose tissue browning. Mol Metab 2023; 74:101753. [PMID: 37321371 PMCID: PMC10319839 DOI: 10.1016/j.molmet.2023.101753] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 05/30/2023] [Accepted: 06/08/2023] [Indexed: 06/17/2023] Open
Abstract
OBJECTIVE Norepinephrine stimulates the adipose tissue thermogenic program through a β-adrenergic receptor (βAR)-cyclic adenosine monophosphate (cAMP)-protein kinase A (PKA) signaling cascade. We discovered that a noncanonical activation of the mechanistic target of rapamycin complex 1 (mTORC1) by PKA is required for the βAR-stimulation of adipose tissue browning. However, the downstream events triggered by PKA-phosphorylated mTORC1 activation that drive this thermogenic response are not well understood. METHODS We used a proteomic approach of Stable Isotope Labeling by/with Amino acids in Cell culture (SILAC) to characterize the global protein phosphorylation profile in brown adipocytes treated with the βAR agonist. We identified salt-inducible kinase 3 (SIK3) as a candidate mTORC1 substrate and further tested the effect of SIK3 deficiency or SIK inhibition on the thermogenic gene expression program in brown adipocytes and in mouse adipose tissue. RESULTS SIK3 interacts with RAPTOR, the defining component of the mTORC1 complex, and is phosphorylated at Ser884 in a rapamycin-sensitive manner. Pharmacological SIK inhibition by a pan-SIK inhibitor (HG-9-91-01) in brown adipocytes increases basal Ucp1 gene expression and restores its expression upon blockade of either mTORC1 or PKA. Short-hairpin RNA (shRNA) knockdown of Sik3 augments, while overexpression of SIK3 suppresses, Ucp1 gene expression in brown adipocytes. The regulatory PKA phosphorylation domain of SIK3 is essential for its inhibition. CRISPR-mediated Sik3 deletion in brown adipocytes increases type IIa histone deacetylase (HDAC) activity and enhances the expression of genes involved in thermogenesis such as Ucp1, Pgc1α, and mitochondrial OXPHOS complex protein. We further show that HDAC4 interacts with PGC1α after βAR stimulation and reduces lysine acetylation in PGC1α. Finally, a SIK inhibitor well-tolerated in vivo (YKL-05-099) can stimulate the expression of thermogenesis-related genes and browning of mouse subcutaneous adipose tissue. CONCLUSIONS Taken together, our data reveal that SIK3, with the possible contribution of other SIKs, functions as a phosphorylation switch for β-adrenergic activation to drive the adipose tissue thermogenic program and indicates that more work to understand the role of the SIKs is warranted. Our findings also suggest that maneuvers targeting SIKs could be beneficial for obesity and related cardiometabolic disease.
Collapse
Affiliation(s)
- Fubiao Shi
- Division of Cardiovascular Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA.
| | - Flaviane de Fatima Silva
- Division of Cardiovascular Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo 05508-000, Brazil
| | - Dianxin Liu
- Division of Cardiovascular Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Hari U Patel
- Division of Cardiovascular Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Jonathan Xu
- Division of Cardiovascular Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Wei Zhang
- Division of Cardiovascular Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Clara Türk
- CECAD Research Center, Institute for Genetics, University of Cologne, Cologne 50931, Germany
| | - Marcus Krüger
- CECAD Research Center, Institute for Genetics, University of Cologne, Cologne 50931, Germany; Center for Molecular Medicine (CMMC), University of Cologne, Cologne 50931, Germany
| | - Sheila Collins
- Division of Cardiovascular Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN 37232, USA.
| |
Collapse
|
6
|
Tsukada A, Okamatsu-Ogura Y, Futagawa E, Habu Y, Takahashi N, Kato-Suzuki M, Kato Y, Ishizuka S, Sonoyama K, Kimura K. White adipose tissue undergoes browning during preweaning period in association with microbiota formation in mice. iScience 2023; 26:107239. [PMID: 37485363 PMCID: PMC10362363 DOI: 10.1016/j.isci.2023.107239] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 05/11/2023] [Accepted: 06/26/2023] [Indexed: 07/25/2023] Open
Abstract
Beige adipocytes are transiently induced during early postnatal period in mice. Previous studies have suggested that, unlike in adults, the induction is independent of the sympathetic nerve activity; however, the mechanism is yet unknown. Here, we showed that beige adipocytes are induced during the preweaning period in association with the formation of microbiota in mice. Alteration of gut microbiota composition in preweaning mice by maternal treatment with antibiotics or high-fat diet feeding substantially suppressed WAT browning. The suppression was also found in pups transplanted cecal microbiota from pups of high-fat diet-fed dams. These treatments reduced the hepatic expression of genes involved in bile acid synthesis and the serum bile acids level. The abundance of Porphyromonadaceae and Ruminococcaceae in microbiota showed a positive and negative correlation with the induction of beige adipocytes, respectively. This finding may provide comprehensive understanding of the association between gut microbiota and adipose tissue development in the neonatal period.
Collapse
Affiliation(s)
- Anju Tsukada
- Laboratory of Biochemistry, Faculty of Veterinary Medicine, Hokkaido University, Sapporo 060-0818, Japan
| | - Yuko Okamatsu-Ogura
- Laboratory of Biochemistry, Faculty of Veterinary Medicine, Hokkaido University, Sapporo 060-0818, Japan
| | - Emi Futagawa
- Laboratory of Biochemistry, Faculty of Veterinary Medicine, Hokkaido University, Sapporo 060-0818, Japan
| | - Yuki Habu
- Laboratory of Biochemistry, Faculty of Veterinary Medicine, Hokkaido University, Sapporo 060-0818, Japan
| | - Natsumi Takahashi
- Laboratory of Biochemistry, Faculty of Veterinary Medicine, Hokkaido University, Sapporo 060-0818, Japan
| | - Mira Kato-Suzuki
- Laboratory of Biochemistry, Faculty of Veterinary Medicine, Hokkaido University, Sapporo 060-0818, Japan
| | - Yuko Kato
- Laboratory of Nutritional Biochemistry, Research Faculty of Agriculture, Hokkaido University, Sapporo 060-0809, Japan
| | - Satoshi Ishizuka
- Laboratory of Nutritional Biochemistry, Research Faculty of Agriculture, Hokkaido University, Sapporo 060-0809, Japan
| | - Kei Sonoyama
- Laboratory of Food Biochemistry, Research Faculty of Agriculture, Hokkaido University, Sapporo 060-0809, Japan
| | - Kazuhiro Kimura
- Laboratory of Biochemistry, Faculty of Veterinary Medicine, Hokkaido University, Sapporo 060-0818, Japan
| |
Collapse
|
7
|
Wang F, Xu S, Chen T, Ling S, Zhang W, Wang S, Zhou R, Xia X, Yao Z, Li P, Zhao X, Wang J, Guo X. FOXP4 differentially controls cold-induced beige adipocyte differentiation and thermogenesis. Development 2022; 149:274748. [PMID: 35297993 DOI: 10.1242/dev.200260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 03/07/2022] [Indexed: 11/20/2022]
Abstract
Beige adipocytes have a discrete developmental origin and possess notable plasticity in their thermogenic capacity in response to various environmental cues, but the transcriptional machinery controlling beige adipocyte development and thermogenesis remains largely unknown. By analyzing beige adipocyte-specific knockout mice, we identified a transcription factor, forkhead box P4 (FOXP4), that differentially governs beige adipocyte differentiation and activation. Depletion of Foxp4 in progenitor cells impaired beige cell early differentiation. However, we observed that ablation of Foxp4 in differentiated adipocytes profoundly potentiated their thermogenesis capacity upon cold exposure. Of note, the outcome of Foxp4 deficiency on UCP1-mediated thermogenesis was confined to beige adipocytes, rather than to brown adipocytes. Taken together, we suggest that FOXP4 primes beige adipocyte early differentiation, but attenuates their activation by potent transcriptional repression of the thermogenic program.
Collapse
Affiliation(s)
- Fuhua Wang
- Bio-X-Renji Hospital Research Center, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Shuqin Xu
- Bio-X-Renji Hospital Research Center, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Tienan Chen
- Bio-X-Renji Hospital Research Center, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Shifeng Ling
- Bio-X-Renji Hospital Research Center, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Wei Zhang
- Bio-X-Renji Hospital Research Center, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Shaojiao Wang
- Bio-X-Renji Hospital Research Center, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Rujiang Zhou
- Bio-X-Renji Hospital Research Center, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Xuechun Xia
- Bio-X-Renji Hospital Research Center, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Zhengju Yao
- Bio-X-Renji Hospital Research Center, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Pengxiao Li
- Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Xiaodong Zhao
- Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Jiqiu Wang
- Department of Endocrinology and Metabolism, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Xizhi Guo
- Bio-X-Renji Hospital Research Center, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200240, China
| |
Collapse
|
8
|
Yue Y, Hua Y, Zhang J, Guo Y, Zhao D, Huo W, Xiong Y, Chen F, Lin Y, Xiong X, Li J. Establishment of a subcutaneous adipogenesis model and distinct roles of LKB1 regulation on adipocyte lipid accumulation in high-altitude Bos grunniens. JOURNAL OF APPLIED ANIMAL RESEARCH 2022. [DOI: 10.1080/09712119.2022.2042001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Yongqi Yue
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Ministry of Education, Chengdu, People’s Republic of China
- College of Animal &Veterinary Sciences, Southwest Minzu University, Chengdu, People’s Republic of China
| | - Yonglin Hua
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Ministry of Education, Chengdu, People’s Republic of China
- College of Animal &Veterinary Sciences, Southwest Minzu University, Chengdu, People’s Republic of China
| | - Jing Zhang
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Ministry of Education, Chengdu, People’s Republic of China
- College of Animal &Veterinary Sciences, Southwest Minzu University, Chengdu, People’s Republic of China
| | - Yu Guo
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Ministry of Education, Chengdu, People’s Republic of China
- College of Animal &Veterinary Sciences, Southwest Minzu University, Chengdu, People’s Republic of China
| | - Dan Zhao
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Ministry of Education, Chengdu, People’s Republic of China
- College of Animal &Veterinary Sciences, Southwest Minzu University, Chengdu, People’s Republic of China
| | - Wentao Huo
- College of Animal &Veterinary Sciences, Southwest Minzu University, Chengdu, People’s Republic of China
| | - Yan Xiong
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Ministry of Education, Chengdu, People’s Republic of China
- Key Laboratory of Animal Science of National Ethnic Affairs Commission of China, Southwest Minzu University, Chengdu, People’s Republic of China
- College of Animal &Veterinary Sciences, Southwest Minzu University, Chengdu, People’s Republic of China
| | - Fenfen Chen
- School of Life Sciences, Southwest Forestry University, Kunming, People’s Republic of China
| | - Yaqiu Lin
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Ministry of Education, Chengdu, People’s Republic of China
- Key Laboratory of Animal Science of National Ethnic Affairs Commission of China, Southwest Minzu University, Chengdu, People’s Republic of China
- College of Animal &Veterinary Sciences, Southwest Minzu University, Chengdu, People’s Republic of China
| | - Xianrong Xiong
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Ministry of Education, Chengdu, People’s Republic of China
- Key Laboratory of Animal Science of National Ethnic Affairs Commission of China, Southwest Minzu University, Chengdu, People’s Republic of China
- College of Animal &Veterinary Sciences, Southwest Minzu University, Chengdu, People’s Republic of China
| | - Jian Li
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Ministry of Education, Chengdu, People’s Republic of China
- Key Laboratory of Animal Science of National Ethnic Affairs Commission of China, Southwest Minzu University, Chengdu, People’s Republic of China
- College of Animal &Veterinary Sciences, Southwest Minzu University, Chengdu, People’s Republic of China
| |
Collapse
|
9
|
Gavaldà-Navarro A, Villarroya J, Cereijo R, Giralt M, Villarroya F. The endocrine role of brown adipose tissue: An update on actors and actions. Rev Endocr Metab Disord 2022; 23:31-41. [PMID: 33712997 DOI: 10.1007/s11154-021-09640-6] [Citation(s) in RCA: 89] [Impact Index Per Article: 29.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/26/2021] [Indexed: 02/06/2023]
Abstract
In recent years, brown adipose tissue (BAT) has been recognized not only as a main site of non-shivering thermogenesis in mammals, but also as an endocrine organ. BAT secretes a myriad of regulatory factors. These so-called batokines exert local autocrine and paracrine effects, as well as endocrine actions targeting tissues and organs at a distance. The endocrine batokines include peptide factors, such as fibroblast growth factor-21 (FGF21), neuregulin-4 (NRG4), phospholipid transfer protein (PLTP), interleukin-6, adiponectin and myostatin, and also lipids (lipokines; e.g., 12,13-dihydroxy-9Z-octadecenoic acid [12,13-diHOME]) and miRNAs (e.g., miR-99b). The liver, heart, and skeletal muscle are the most commonly reported targets of batokines. In response to BAT thermogenic activation, batokines such as NRG4 and PLTP are released and act to reduce hepatic steatosis and improve insulin sensitivity. Stress-induced interleukin-6-mediated signaling from BAT to liver favors hepatic glucose production through enhanced gluconeogenesis. Batokines may act on liver to induce the secretion of regulatory hepatokines (e.g. FGF21 and bile acids in response to miR-99b and PLTP, respectively), thereby resulting in a systemic expansion of BAT-originating signals. Batokines also target extrahepatic tissues: FGF21 and 12,13-diHOME are cardioprotective, whereas BAT-secreted myostatin and 12,13-diHOME influence skeletal muscle development and performance. Further research is needed to ascertain in humans the role of batokines, which have been identified mostly in experimental models. The endocrine role of BAT may explain the association between active BAT and a healthy metabolism in the human system, which is characterized by small amounts of BAT and a likely moderate BAT-mediated energy expenditure.
Collapse
Affiliation(s)
- Aleix Gavaldà-Navarro
- Departament de Bioquimica I Biomedicina Molecular, and Institut de Biomedicina de La Universitat de Barcelona, Barcelona, Catalonia, Spain
- Institut de Recerca Sant Joan de Déu, Esplugues, Catalonia, Spain
- CIBER Fisiopatología de La Obesidad Y Nutrición, Madrid, Spain
| | - Joan Villarroya
- Departament de Bioquimica I Biomedicina Molecular, and Institut de Biomedicina de La Universitat de Barcelona, Barcelona, Catalonia, Spain
- Institut de Recerca Sant Joan de Déu, Esplugues, Catalonia, Spain
- CIBER Fisiopatología de La Obesidad Y Nutrición, Madrid, Spain
| | - Rubén Cereijo
- Departament de Bioquimica I Biomedicina Molecular, and Institut de Biomedicina de La Universitat de Barcelona, Barcelona, Catalonia, Spain
- CIBER Fisiopatología de La Obesidad Y Nutrición, Madrid, Spain
- Institut de Recerca Hospital de La Santa Creu I Sant Pau, Barcelona, Spain
| | - Marta Giralt
- Departament de Bioquimica I Biomedicina Molecular, and Institut de Biomedicina de La Universitat de Barcelona, Barcelona, Catalonia, Spain
- Institut de Recerca Sant Joan de Déu, Esplugues, Catalonia, Spain
- CIBER Fisiopatología de La Obesidad Y Nutrición, Madrid, Spain
| | - Francesc Villarroya
- Departament de Bioquimica I Biomedicina Molecular, and Institut de Biomedicina de La Universitat de Barcelona, Barcelona, Catalonia, Spain.
- Institut de Recerca Sant Joan de Déu, Esplugues, Catalonia, Spain.
- CIBER Fisiopatología de La Obesidad Y Nutrición, Madrid, Spain.
| |
Collapse
|
10
|
Bruder J, Fromme T. Global Adipose Tissue Remodeling During the First Month of Postnatal Life in Mice. Front Endocrinol (Lausanne) 2022; 13:849877. [PMID: 35250892 PMCID: PMC8892685 DOI: 10.3389/fendo.2022.849877] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 01/21/2022] [Indexed: 12/13/2022] Open
Abstract
During the first month of postnatal life, adipose tissue depots of mice go through a drastic, but transient, remodeling process. Between postnatal days 10 and 20, several white fat depots display a strong and sudden surge in beige adipocyte emergence that reverts until day 30. At the same time, brown fat depots appear to undergo an opposite phenomenon. We comprehensively describe these events, their depot specificity and known environmental and genetic interactions, such as maternal diet, housing temperature and mouse strain. We further discuss potential mechanisms and plausible purposes, including the tempting hypothesis that postnatal transient remodeling creates a lasting adaptive capacity still detectable in adult animals. Finally, we propose postnatal adipose tissue remodeling as a model process to investigate mechanisms of beige adipocyte recruitment advantageous to cold exposure or adrenergic stimulation in its entirely endogenous sequence of events without external manipulation.
Collapse
Affiliation(s)
- Johanna Bruder
- Else Kröner-Fresenius Center for Nutritional Medicine (EKFZ), Technical University of Munich, Freising, Germany
- Chair of Molecular Nutritional Medicine, TUM School of Life Sciences, Technical University of Munich, Freising, Germany
| | - Tobias Fromme
- Chair of Molecular Nutritional Medicine, TUM School of Life Sciences, Technical University of Munich, Freising, Germany
- *Correspondence: Tobias Fromme,
| |
Collapse
|
11
|
Rondini EA, Ramseyer VD, Burl RB, Pique-Regi R, Granneman JG. Single cell functional genomics reveals plasticity of subcutaneous white adipose tissue (WAT) during early postnatal development. Mol Metab 2021; 53:101307. [PMID: 34298199 PMCID: PMC8385178 DOI: 10.1016/j.molmet.2021.101307] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 07/09/2021] [Accepted: 07/16/2021] [Indexed: 02/06/2023] Open
Abstract
OBJECTIVE The current study addresses the cellular complexity and plasticity of subcutaneous (inguinal) white adipose tissue (iWAT) in mice during the critical periods of perinatal growth and establishment. METHODS We performed a large-scale single cell transcriptomic (scRNA-seq) and epigenomic (snATAC-seq) characterization of cellular subtypes (adipose stromal cells (ASC) and adipocyte nuclei) during inguinal WAT (subcutaneous; iWAT) development in mice, capturing the early postnatal period (postnatal days (PND) 06 and 18) through adulthood (PND56). RESULTS Perinatal and adult iWAT contain 3 major ASC subtypes that can be independently identified by RNA expression profiles and DNA transposase accessibility. Furthermore, the transcriptomes and enhancer landscapes of both ASC and adipocytes dynamically change during postnatal development. Perinatal ASC (PND06) are highly enriched for several imprinted genes (IGs; e.g., Mest, H19, Igf2) and extracellular matrix proteins whose expression then declines prior to weaning (PND18). By comparison, adult ASC (PND56) are more enriched for transcripts associated with immunoregulation, oxidative stress, and integrin signaling. Two clusters of mature adipocytes, identified through single nuclei RNA sequencing (snRNA-seq), were distinctive for proinflammatory/immune or metabolic gene expression patterns that became more transcriptionally diverse in adult animals. Single nuclei assay for transposase-accessible chromatin (snATAC-seq) revealed that differences in gene expression were associated with developmental changes in chromatin accessibility and predicted transcription factor motifs (e.g., Plagl1, Ar) in both stromal cells and adipocytes. CONCLUSIONS Our data provide new insights into transcriptional and epigenomic signaling networks important during iWAT establishment at a single cell resolution, with important implications for the field of metabolic programming.
Collapse
Affiliation(s)
- Elizabeth A Rondini
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, MI, USA
| | - Vanesa D Ramseyer
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, MI, USA
| | - Rayanne B Burl
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, MI, USA
| | - Roger Pique-Regi
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, MI, USA
| | - James G Granneman
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, MI, USA; Center for Integrative Metabolic and Endocrine Research, Wayne State University, Detroit, MI, USA.
| |
Collapse
|
12
|
Paulo E, Zhang Y, Masand R, Huynh TL, Seo Y, Swaney DL, Soucheray M, Stevenson E, Jimenez-Morales D, Krogan NJ, Wang B. Brown adipocyte ATF4 activation improves thermoregulation and systemic metabolism. Cell Rep 2021; 36:109742. [PMID: 34551310 PMCID: PMC9202523 DOI: 10.1016/j.celrep.2021.109742] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 07/28/2021] [Accepted: 08/30/2021] [Indexed: 01/02/2023] Open
Abstract
Cold-induced thermogenesis in endotherms demands adaptive thermogenesis fueled by mitochondrial respiration and Ucp1-mediated uncoupling in multilocular brown adipocytes (BAs). However, dietary regulation of thermogenesis in BAs isn't fully understood. Here, we describe that the deficiency of Leucine-rich pentatricopeptide repeat containing-protein (Lrpprc) in BAs reduces mtDNA-encoded ETC gene expression, causes ETC proteome imbalance, and abolishes the mitochondria-fueled thermogenesis. BA-specific Lrpprc knockout mice are cold resistant in a 4°C cold-tolerance test in the presence of food, which is accompanied by the activation of transcription factor 4 (ATF4) and proteome turnover in BAs. ATF4 activation genetically by BA-specific ATF4 overexpression or physiologically by a low-protein diet feeding can improve cold tolerance in wild-type and Ucp1 knockout mice. Furthermore, ATF4 activation in BAs improves systemic metabolism in obesogenic environment regardless of Ucp1's action. Therefore, our study reveals a diet-dependent but Ucp1-independent thermogenic mechanism in BAs that is relevant to systemic thermoregulation and energy homeostasis.
Collapse
Affiliation(s)
- Esther Paulo
- Cardiovascular Research Institute, Department of Physiology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Yun Zhang
- Cardiovascular Research Institute, Department of Physiology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Ruchi Masand
- Cardiovascular Research Institute, Department of Physiology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Tony L Huynh
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, CA 94143, USA
| | - Youngho Seo
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, CA 94143, USA
| | - Danielle L Swaney
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA; California Institute for Quantitative Biosciences, University of California, San Francisco, San Francisco, CA 94158, USA; J. David Gladstone Institutes, San Francisco, CA 94158, USA
| | - Margaret Soucheray
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA; California Institute for Quantitative Biosciences, University of California, San Francisco, San Francisco, CA 94158, USA; J. David Gladstone Institutes, San Francisco, CA 94158, USA
| | - Erica Stevenson
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA; California Institute for Quantitative Biosciences, University of California, San Francisco, San Francisco, CA 94158, USA; J. David Gladstone Institutes, San Francisco, CA 94158, USA
| | - David Jimenez-Morales
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA; California Institute for Quantitative Biosciences, University of California, San Francisco, San Francisco, CA 94158, USA; J. David Gladstone Institutes, San Francisco, CA 94158, USA
| | - Nevan J Krogan
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA; California Institute for Quantitative Biosciences, University of California, San Francisco, San Francisco, CA 94158, USA; J. David Gladstone Institutes, San Francisco, CA 94158, USA
| | - Biao Wang
- Cardiovascular Research Institute, Department of Physiology, University of California, San Francisco, San Francisco, CA 94158, USA.
| |
Collapse
|
13
|
Maurer S, Harms M, Boucher J. The colorful versatility of adipocytes: white-to-brown transdifferentiation and its therapeutic potential in humans. FEBS J 2020; 288:3628-3646. [PMID: 32621398 DOI: 10.1111/febs.15470] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 06/17/2020] [Accepted: 06/29/2020] [Indexed: 12/22/2022]
Abstract
Brown and brite adipocytes contribute to energy expenditure through nonshivering thermogenesis. Though these cell types are thought to arise primarily from the de novo differentiation of precursor cells, their abundance is also controlled through the transdifferentiation of mature white adipocytes. Here, we review recent advances in our understanding of the regulation of white-to-brown transdifferentiation, as well as the conversion of brown and brite adipocytes to dormant, white-like fat cells. Converting mature white adipocytes into brite cells or reactivating dormant brown and brite adipocytes has emerged as a strategy to ameliorate human metabolic disorders. We analyze the evidence of learning from mice and how they translate to humans to ultimately scrutinize the relevance of this concept. Moreover, we estimate that converting a small percentage of existing white fat mass in obese subjects into active brite adipocytes could be sufficient to achieve meaningful benefits in metabolism. In conclusion, novel browning agents have to be identified before adipocyte transdifferentiation can be realized as a safe and efficacious therapy.
Collapse
Affiliation(s)
- Stefanie Maurer
- Bioscience Metabolism, Research and Early Development, Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Matthew Harms
- Bioscience Metabolism, Research and Early Development, Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Jeremie Boucher
- Bioscience Metabolism, Research and Early Development, Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden.,Lundberg Laboratory for Diabetes Research, University of Gothenburg, Gothenburg, Sweden.,Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
14
|
Jun H, Ma Y, Chen Y, Gong J, Liu S, Wang J, Knights AJ, Qiao X, Emont MP, Xu XZS, Kajimura S, Wu J. Adrenergic-Independent Signaling via CHRNA2 Regulates Beige Fat Activation. Dev Cell 2020; 54:106-116.e5. [PMID: 32533922 DOI: 10.1016/j.devcel.2020.05.017] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2019] [Revised: 03/17/2020] [Accepted: 05/14/2020] [Indexed: 11/28/2022]
Abstract
Maintaining energy homeostasis upon environmental challenges, such as cold or excess calorie intake, is essential to the fitness and survival of mammals. Drug discovery efforts targeting β-adrenergic signaling have not been fruitful after decades of intensive research. We recently identified a new beige fat regulatory pathway mediated via the nicotinic acetylcholine receptor subunit CHRNA2. Here, we generated fat-specific Chrna2 KO mice and observed thermogenic defects in cold and metabolic dysfunction upon dietary challenges caused by adipocyte-autonomous regulation in vivo. We found that CHRNA2 signaling is activated after acute high fat diet feeding and this effect is manifested through both UCP1- and creatine-mediated mechanisms. Furthermore, our data suggested that CHRNA2 signaling may activate glycolytic beige fat, a subpopulation of beige adipocytes mediated by GABPα emerging in the absence of β-adrenergic signaling. These findings reveal the biological significance of the CHRNA2 pathway in beige fat biogenesis and energy homeostasis.
Collapse
Affiliation(s)
- Heejin Jun
- Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | - Yingxu Ma
- Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109, USA; Department of Cardiology, the Second Xiangya Hospital, Central South University, Changsha, Hunan 410013, China
| | - Yong Chen
- UCSF Diabetes Center, San Francisco, CA, USA; Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, San Francisco, CA, USA; Department of Cell and Tissue Biology, University of California, San Francisco, San Francisco, CA, USA
| | - Jianke Gong
- Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109, USA; International Research Center for Sensory Biology and Technology of MOST, Key Laboratory of Molecular Biophysics of MOE, and College of Life Sciences and Technology, and Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Shanshan Liu
- Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | - Jine Wang
- Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | | | - Xiaona Qiao
- Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109, USA; Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Margo P Emont
- Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109, USA; Department of Molecular & Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - X Z Shawn Xu
- Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109, USA; Department of Molecular & Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Shingo Kajimura
- UCSF Diabetes Center, San Francisco, CA, USA; Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, San Francisco, CA, USA; Department of Cell and Tissue Biology, University of California, San Francisco, San Francisco, CA, USA
| | - Jun Wu
- Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109, USA; Department of Molecular & Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI 48109, USA.
| |
Collapse
|
15
|
Distinct signaling and transcriptional pathways regulate peri-weaning development and cold-induced recruitment of beige adipocytes. Proc Natl Acad Sci U S A 2020; 117:6883-6889. [PMID: 32139607 PMCID: PMC7104269 DOI: 10.1073/pnas.1920419117] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Adipose tissue provides a defense against starvation and environmental cold. These dichotomous functions are performed by three distinct cell types: energy-storing white adipocytes, and thermogenic beige and brown adipocytes. Previous studies have demonstrated that exposure to environmental cold stimulates the recruitment of beige adipocytes in the white adipose tissue (WAT) of mice and humans, a process that has been extensively investigated. However, beige adipose tissue also develops during the peri-weaning period in mice, a developmental program that remains poorly understood. Here, we address this gap in our knowledge using genetic, imaging, physiologic, and genomic approaches. We find that, unlike cold-induced recruitment in adult animals, peri-weaning development of beige adipocytes occurs in a temperature- and sympathetic nerve-independent manner. Instead, the transcription factor B cell leukemia/lymphoma 6 (BCL6) acts in a cell-autonomous manner to regulate the commitment but not the maintenance phase of beige adipogenesis. Genome-wide RNA-sequencing (seq) studies reveal that BCL6 regulates a core set of genes involved in fatty acid oxidation and mitochondrial uncoupling, which are necessary for development of functional beige adipocytes. Together, our findings demonstrate that distinct transcriptional and signaling mechanisms control peri-weaning development and cold-induced recruitment of beige adipocytes in mammals.
Collapse
|
16
|
Xu M, Li Z, Yang L, Zhai W, Wei N, Zhang Q, Chao B, Huang S, Cui H. Elucidation of the Mechanisms and Molecular Targets of Sanhuang Xiexin Decoction for Type 2 Diabetes Mellitus Based on Network Pharmacology. BIOMED RESEARCH INTERNATIONAL 2020; 2020:5848497. [PMID: 32851081 PMCID: PMC7436345 DOI: 10.1155/2020/5848497] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 06/10/2020] [Indexed: 12/16/2022]
Abstract
Sanhuang Xiexin Decoction (SXD) is commonly used to treat type 2 diabetes mellitus (T2DM) in clinical practice of traditional Chinese medicine (TCM). In order to elucidate the specific analysis mechanisms of SXD for T2DM, the method of network pharmacology was applied to this article. First, the effective ingredients of SXD were obtained and their targets were identified based on the TCMSP database. The T2DM-related targets screened from the GEO database were also collected by comparing the differential expressed genes between T2DM patients and healthy individuals. Then, the common targets in SXD-treated T2DM were obtained by intersecting the putative targets of SXD and the differential expressed genes of T2DM. And the protein-protein interaction (PPI) network was established using the above common targets to screen key genes through protein interactions. Meanwhile, these common targets were used for GO and KEGG analyses to further elucidate how they exert antidiabetic effects. Finally, a gene pathway network was established to capture the core one in common targets enriched in the major pathways to further illustrate the role of specific genes. Based on the data obtained, a total of 67 active compounds and 906 targets of SXD were identified. Four thousand one hundred and seventy-six differentially expressed genes with a P value < 0.005 and ∣log2(fold change) | >0.5 were determined between T2DM patients and control groups. After further screening, thirty-seven common targets related to T2DM in SXD were finally identified. Through protein interactions, the top 5 genes (YWHAZ, HNRNPA1, HSPA8, HSP90AA1, and HSPA5) were identified. It was found that the functional annotations of target genes were associated with oxygen levels, protein kinase regulator, mitochondria, and so on. The top 20 pathways including the PI3K-Akt signaling pathway, cancers, HIF-1 signaling pathway, and JAK-STAT signaling pathway were significantly enriched. CDKN1A was shown to be the core gene in the gene-pathway network, and other several genes such as CCND1, ERBB2, RAF1, EGF, and VEGFA were the key genes for SXD against T2DM. Based on the network pharmacology approach, we identified key genes and pathways related to the prognosis and pathogenesis of T2DM and also provided a feasible method for further studying the chemical basis and pharmacology of SXD.
Collapse
Affiliation(s)
- Manman Xu
- 1Research and Development Center of Traditional Chinese Medicine, Guangan'men Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
| | - Zhonghao Li
- 2Department of Neurology, Dongfang Hosipital Beijing University of Chinese Medicine, Beijing 100078, China
| | - Lu Yang
- 3Shaanxi University of Chinese Medicine, Department of Traditional Chinese Medicine, First Clinical Medical College, 712000 Shaanxi, China
| | - Wujianwen Zhai
- 1Research and Development Center of Traditional Chinese Medicine, Guangan'men Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
| | - Nina Wei
- 3Shaanxi University of Chinese Medicine, Department of Traditional Chinese Medicine, First Clinical Medical College, 712000 Shaanxi, China
| | - Qiuyan Zhang
- 1Research and Development Center of Traditional Chinese Medicine, Guangan'men Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
| | - Bin Chao
- 1Research and Development Center of Traditional Chinese Medicine, Guangan'men Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
| | - Shijing Huang
- 1Research and Development Center of Traditional Chinese Medicine, Guangan'men Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
| | - Hanming Cui
- 1Research and Development Center of Traditional Chinese Medicine, Guangan'men Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
| |
Collapse
|
17
|
黄 佳, 贾 如, 魏 晓, 罗 肖. [Time-sequential expression of lnc AK079912 during adipose tissue development and browning in mice]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2019; 39:1494-1499. [PMID: 31907161 PMCID: PMC6942996 DOI: 10.12122/j.issn.1673-4254.2019.12.15] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Indexed: 02/04/2023]
Abstract
OBJECTIVE To investigate the time-sequential expression of a novel long non-coding RNA, lnc AK079912, in metabolically related tissues and during adipose tissue development and browning in mice. METHODS The interscapular brown adipose tissue (iBAT), subcutaneous white adipose tissue (sWAT), epididymal white adipose tissue (eWAT), liver tissues and muscular tissues were collected from 8-week-old C57BL/6J mice. The iBAT, sWAT and eWAT were also collected from the mice during development (0 day, 21 days, 8 weeks and 6 months after birth) and from 8- to 10-week- mice with cold exposure (4 ℃) and intraperitoneal injections of CL316, 243 (1 μg/g body weight) for 1 to 5 days. Trizol was used to extract the total RNA from the tissues, and RT-qPCR was performed to detect the expressions of lnc AK079912. Isolated mouse preadipocytes in primary culture were induced for adipogenic differentiation for 9 days and then treated with CL316, 243 (2 μmol/L) for different durations (no longer than 24 h); the expression of lnc AK079912 in the cells was detected using RT-qPCR at different time points of the treatment. RESULTS Lnc AK079912 was highly expressed in mouse adipose tissues, the highest in iBAT, followed by the muscular tissue, but was hardly detected in the liver tissue. The expression level of lnc AK079912 increased progressively in iBAT and sWAT during development of the mice, while its expression in eWAT showed an initial increase followed by a reduction at 8 weeks (P < 0.001). No significant difference was found in the expression of lnc AK079912 in the iBAT, sWAT or eWAT in mice with cold stimulation for 1 to 5 days (P > 0.05). The expression of lnc AK079912 was significantly decreased in iBAT and eWAT (P < 0.05) but increased in eWAT from mice with intraperitoneal injection of CL316, 243 for 1 to 5 days (P < 0.05). The expression level in the adipocytes in primary culture was significantly increased in response to treatment with CL316, 243 (P < 0.05). CONCLUSIONS Lnc AK079912 is highly expressed in mouse adipose tissue, and its expression gradually increases with the development of adipose tissue but with a depot-specific difference. Lnc AK079912 is significantly elevated in the early stage of adipose tissue browning, indicating its important role in the development and browning of adipose tissue.
Collapse
Affiliation(s)
- 佳琪 黄
- 西安交通大学医学部基础医学院生理学与病理生理学系,教育部环境与疾病相关基因重点实验室,陕西 西安 710061Department of Physiology and Pathophysiology, Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi'an Jiaotong University School of Medicine, Xi'an 710061, China
| | - 如 贾
- 西安交通大学医学部附属口腔医院修复科,陕西 西安 710004Department of Prosthodontics, College of Stomatology, Xi'an Jiaotong University, Xi'an 710004, China
- 陕西省颅颌面精准医学研究重点实验室,陕西 西安 710004Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, Xi'an Jiaotong University School of Medicine, Xi'an 710061, China
| | - 晓静 魏
- 西安交通大学医学部基础医学院生理学与病理生理学系,教育部环境与疾病相关基因重点实验室,陕西 西安 710061Department of Physiology and Pathophysiology, Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi'an Jiaotong University School of Medicine, Xi'an 710061, China
| | - 肖 罗
- 西安交通大学医学部基础医学院生理学与病理生理学系,教育部环境与疾病相关基因重点实验室,陕西 西安 710061Department of Physiology and Pathophysiology, Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi'an Jiaotong University School of Medicine, Xi'an 710061, China
| |
Collapse
|
18
|
Towards a Better Understanding of Beige Adipocyte Plasticity. Cells 2019; 8:cells8121552. [PMID: 31805721 PMCID: PMC6953037 DOI: 10.3390/cells8121552] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2019] [Revised: 11/27/2019] [Accepted: 11/29/2019] [Indexed: 12/16/2022] Open
Abstract
Beige adipocytes are defined as Ucp1+, multilocular adipocytes within white adipose tissue (WAT) that are capable of thermogenesis, the process of heat generation. In both mouse models and humans, the increase of beige adipocyte population, also called WAT browning, is associated with certain metabolic benefits, such as reduced obesity and increased insulin sensitivity. In this review, we summarize the current knowledge regarding WAT browning, with a special focus on the beige adipocyte plasticity, collectively referring to a bidirectional transition between thermogenic active and latent states in response to environmental changes. We further exploit the utility of a unique beige adipocyte ablation system to interrogate anti-obesity effect of beige adipocytes in vivo.
Collapse
|
19
|
Jebessa ZH, Shanmukha KD, Dewenter M, Lehmann LH, Xu C, Schreiter F, Siede D, Gong XM, Worst BC, Federico G, Sauer SW, Fischer T, Wechselberger L, Müller OJ, Sossalla S, Dieterich C, Most P, Gröne HJ, Moro C, Oberer M, Haemmerle G, Katus HA, Tyedmers J, Backs J. The lipid droplet-associated protein ABHD5 protects the heart through proteolysis of HDAC4. Nat Metab 2019; 1:1157-1167. [PMID: 31742248 PMCID: PMC6861130 DOI: 10.1038/s42255-019-0138-4] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Catecholamines stimulate the first step of lipolysis by PKA-dependent release of the lipid droplet-associated protein ABHD5 from perilipin to co-activate the lipase ATGL. Here, we unmask a yet unrecognized proteolytic and cardioprotective function of ABHD5. ABHD5 acts in vivo and in vitro as a serine protease cleaving HDAC4. Through the production of an N-terminal polypeptide of HDAC4 (HDAC4-NT), ABHD5 inhibits MEF2-dependent gene expression and thereby controls glucose handling. ABHD5-deficiency leads to neutral lipid storage disease in mice. Cardiac-specific gene therapy of HDAC4-NT does not protect from intra-cardiomyocyte lipid accumulation but strikingly from heart failure, thereby challenging the concept of lipotoxicity-induced heart failure. ABHD5 levels are reduced in failing human hearts and murine transgenic ABHD5 expression protects from pressure-overload induced heart failure. These findings represent a conceptual advance by connecting lipid with glucose metabolism through HDAC4 proteolysis and enable new translational approaches to treat cardiometabolic disease.
Collapse
Affiliation(s)
- Zegeye H Jebessa
- Institute of Experimental Cardiology, University of Heidelberg, Heidelberg, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Heidelberg/Mannheim, Heidelberg, Germany
- Department of Cardiology, University of Heidelberg, Heidelberg, Germany
| | - Kumar D Shanmukha
- Institute of Experimental Cardiology, University of Heidelberg, Heidelberg, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Heidelberg/Mannheim, Heidelberg, Germany
| | - Matthias Dewenter
- Institute of Experimental Cardiology, University of Heidelberg, Heidelberg, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Heidelberg/Mannheim, Heidelberg, Germany
| | - Lorenz H Lehmann
- Institute of Experimental Cardiology, University of Heidelberg, Heidelberg, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Heidelberg/Mannheim, Heidelberg, Germany
- Department of Cardiology, University of Heidelberg, Heidelberg, Germany
| | - Chang Xu
- Institute of Experimental Cardiology, University of Heidelberg, Heidelberg, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Heidelberg/Mannheim, Heidelberg, Germany
| | - Friederike Schreiter
- Institute of Experimental Cardiology, University of Heidelberg, Heidelberg, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Heidelberg/Mannheim, Heidelberg, Germany
| | - Dominik Siede
- Institute of Experimental Cardiology, University of Heidelberg, Heidelberg, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Heidelberg/Mannheim, Heidelberg, Germany
| | - Xue-Min Gong
- Institute of Experimental Cardiology, University of Heidelberg, Heidelberg, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Heidelberg/Mannheim, Heidelberg, Germany
| | - Barbara C Worst
- Institute of Experimental Cardiology, University of Heidelberg, Heidelberg, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Heidelberg/Mannheim, Heidelberg, Germany
- Pediatric Glioma Research Group, Hopp Children's Cancer Center Heidelberg (KiTZ) and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Giuseppina Federico
- Department of Cellular and Molecular Pathology, German Cancer Research Center, Heidelberg, Germany
| | - Sven W Sauer
- Department of General Pediatrics, Division of Inborn Metabolic Diseases, University Children's Hospital, Heidelberg, Germany
| | - Tamas Fischer
- John Curtin School of Medical Research, Australian National University, Canberra, Australian Capital Territory, Australia
| | - Lisa Wechselberger
- Institute of Molecular Biosciences, University of Graz, Graz, Austria
- BioTechMed-Graz, Graz, Austria
| | - Oliver J Müller
- Department of Internal Medicine III, University of Kiel, Kiel, Germany
| | - Samuel Sossalla
- Department of Internal Medicine II, University Hospital Regensburg, Regensburg, Germany
| | - Christoph Dieterich
- DZHK (German Centre for Cardiovascular Research), partner site Heidelberg/Mannheim, Heidelberg, Germany
- Department of Cardiology, University of Heidelberg, Heidelberg, Germany
| | - Patrick Most
- DZHK (German Centre for Cardiovascular Research), partner site Heidelberg/Mannheim, Heidelberg, Germany
- Department of Cardiology, University of Heidelberg, Heidelberg, Germany
| | - Herrmann-Josef Gröne
- Department of Cellular and Molecular Pathology, German Cancer Research Center, Heidelberg, Germany
- Institute for Pathology and Nephropathology, University Hospital Marburg, Marburg, Germany
| | - Cedric Moro
- INSERM, UMR1048, Obesity Research Laboratory, Institute of Metabolic and Cardiovascular Diseases, Toulouse, France
| | - Monika Oberer
- Institute of Molecular Biosciences, University of Graz, Graz, Austria
- BioTechMed-Graz, Graz, Austria
| | - Guenter Haemmerle
- Institute of Molecular Biosciences, University of Graz, Graz, Austria
- BioTechMed-Graz, Graz, Austria
| | - Hugo A Katus
- DZHK (German Centre for Cardiovascular Research), partner site Heidelberg/Mannheim, Heidelberg, Germany
- Department of Cardiology, University of Heidelberg, Heidelberg, Germany
| | - Jens Tyedmers
- Institute of Experimental Cardiology, University of Heidelberg, Heidelberg, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Heidelberg/Mannheim, Heidelberg, Germany
| | - Johannes Backs
- Institute of Experimental Cardiology, University of Heidelberg, Heidelberg, Germany.
- DZHK (German Centre for Cardiovascular Research), partner site Heidelberg/Mannheim, Heidelberg, Germany.
| |
Collapse
|
20
|
Sebo ZL, Rodeheffer MS. Assembling the adipose organ: adipocyte lineage segregation and adipogenesis in vivo. Development 2019; 146:dev172098. [PMID: 30948523 PMCID: PMC6467474 DOI: 10.1242/dev.172098] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Adipose tissue is composed of anatomically distinct depots that mediate several important aspects of energy homeostasis. The past two decades have witnessed increased research effort to elucidate the ontogenetic basis of adipose form and function. In this Review, we discuss advances in our understanding of adipose tissue development with particular emphasis on the embryonic patterning of depot-specific adipocyte lineages and adipocyte differentiation in vivo Micro-environmental cues and other factors that influence cell identity and cell behavior at various junctures in the adipocyte lineage hierarchy are also considered.
Collapse
Affiliation(s)
- Zachary L Sebo
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT 06520-8103, USA
| | - Matthew S Rodeheffer
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT 06520-8103, USA
- Department of Comparative Medicine, Yale School of Medicine, New Haven, CT 06520-8016, USA
- Yale Stem Cell Center, Yale School of Medicine, New Haven, CT 06520-8073, USA
- Program in Integrative Cell Signaling and Neurobiology of Metabolism, Yale School of Medicine, New Haven, CT 06510, USA
| |
Collapse
|
21
|
Liver kinase B1 induces browning phenotype in 3 T3-L1 adipocytes. Gene 2019; 682:33-41. [PMID: 30296566 DOI: 10.1016/j.gene.2018.10.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Revised: 09/25/2018] [Accepted: 10/04/2018] [Indexed: 12/11/2022]
|
22
|
Paulo E, Wu D, Hecker P, Zhang Y, Wang B. Adipocyte HDAC4 activation leads to beige adipocyte expansion and reduced adiposity. J Endocrinol 2018; 239:153-165. [PMID: 30121575 PMCID: PMC6379159 DOI: 10.1530/joe-18-0173] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Accepted: 08/14/2018] [Indexed: 12/18/2022]
Abstract
Numerous studies have suggested that beige adipocyte abundance is correlated with improved metabolic performance, but direct evidence showing that beige adipocyte expansion protects animals from the development of obesity is missing. Previously, we have described that the liver kinase b1 (LKB1) regulates beige adipocyte renaissance in subcutaneous inguinal white adipose tissue (iWAT) through a class IIa histone deacetylase 4 (HDAC4)-dependent mechanism. This study investigates the physiological impact of persistent beige adipocyte renaissance in energy homeostasis in mice. Here we present that the transgenic mice H4-TG, overexpressing constitutively active HDAC4 in adipocytes, showed beige adipocyte expansion in iWAT at room temperature. H4-TG mice exhibited increased energy expenditure due to beige adipocyte expansion. They also exhibited reduced adiposity under both normal chow and high-fat diet (HFD) feeding conditions. Specific ablation of beige adipocytes reversed the protection against HFD-induced obesity in H4-TG mice. Taken together, our results directly demonstrate that beige adipocyte expansion regulates adiposity in mice and targeting beige adipocyte renaissance may present a novel strategy to tackle obesity in humans.
Collapse
Affiliation(s)
| | | | | | | | - Biao Wang
- Corresponding Author, Biao Wang Ph.D., 555 Mission Bay Blvd South, Room 252Y, San Francisco, CA 94158, Phone: 415-502-2023,
| |
Collapse
|
23
|
Paulo E, Wu D, Wang Y, Zhang Y, Wu Y, Swaney DL, Soucheray M, Jimenez-Morales D, Chawla A, Krogan NJ, Wang B. Sympathetic inputs regulate adaptive thermogenesis in brown adipose tissue through cAMP-Salt inducible kinase axis. Sci Rep 2018; 8:11001. [PMID: 30030465 PMCID: PMC6054673 DOI: 10.1038/s41598-018-29333-6] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Accepted: 07/10/2018] [Indexed: 12/11/2022] Open
Abstract
Various physiological stimuli, such as cold environment, diet, and hormones, trigger brown adipose tissue (BAT) to produce heat through sympathetic nervous system (SNS)- and β-adrenergic receptors (βARs). The βAR stimulation increases intracellular cAMP levels through heterotrimeric G proteins and adenylate cyclases, but the processes by which cAMP modulates brown adipocyte function are not fully understood. Here we described that specific ablation of cAMP production in brown adipocytes led to reduced lipolysis, mitochondrial biogenesis, uncoupling protein 1 (Ucp1) expression, and consequently defective adaptive thermogenesis. Elevated cAMP signaling by sympathetic activation inhibited Salt-inducible kinase 2 (Sik2) through protein kinase A (PKA)-mediated phosphorylation in brown adipose tissue. Inhibition of SIKs enhanced Ucp1 expression in differentiated brown adipocytes and Sik2 knockout mice exhibited enhanced adaptive thermogenesis at thermoneutrality in an Ucp1-dependent manner. Taken together, our data indicate that suppressing Sik2 by PKA-mediated phosphorylation is a requisite for SNS-induced Ucp1 expression and adaptive thermogenesis in BAT, and targeting Sik2 may present a novel therapeutic strategy to ramp up BAT thermogenic activity in humans.
Collapse
Affiliation(s)
- Esther Paulo
- Cardiovascular Research Institute, Department of Physiology, University of California, San Francisco, San Francisco, CA, 94158, USA
| | - Dongmei Wu
- Cardiovascular Research Institute, Department of Physiology, University of California, San Francisco, San Francisco, CA, 94158, USA.,Institute of Molecular Medicine, Peking-Tsinghua Center for Life Sciences, Peking University, 52 Haidian Road, Beijing, 100871, China
| | - Yangmeng Wang
- Cardiovascular Research Institute, Department of Physiology, University of California, San Francisco, San Francisco, CA, 94158, USA.,Department of Diabetes Complications and Metabolism, Beckman Research Institute of City of Hope, 1500 East Duarte Road, Duarte, CA, 91010, USA
| | - Yun Zhang
- Cardiovascular Research Institute, Department of Physiology, University of California, San Francisco, San Francisco, CA, 94158, USA
| | - Yixuan Wu
- Cardiovascular Research Institute, Department of Physiology, University of California, San Francisco, San Francisco, CA, 94158, USA
| | - Danielle L Swaney
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA, 94158, USA.,California Institute for Quantitative Biosciences, QBI, University of California, San Francisco, San Francisco, CA, 94158, USA.,J. David Gladstone Institutes, San Francisco, CA, 94158, USA
| | - Margaret Soucheray
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA, 94158, USA.,California Institute for Quantitative Biosciences, QBI, University of California, San Francisco, San Francisco, CA, 94158, USA.,J. David Gladstone Institutes, San Francisco, CA, 94158, USA
| | - David Jimenez-Morales
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA, 94158, USA.,California Institute for Quantitative Biosciences, QBI, University of California, San Francisco, San Francisco, CA, 94158, USA.,J. David Gladstone Institutes, San Francisco, CA, 94158, USA
| | - Ajay Chawla
- Cardiovascular Research Institute, Department of Physiology, University of California, San Francisco, San Francisco, CA, 94158, USA
| | - Nevan J Krogan
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA, 94158, USA.,California Institute for Quantitative Biosciences, QBI, University of California, San Francisco, San Francisco, CA, 94158, USA.,J. David Gladstone Institutes, San Francisco, CA, 94158, USA
| | - Biao Wang
- Cardiovascular Research Institute, Department of Physiology, University of California, San Francisco, San Francisco, CA, 94158, USA.
| |
Collapse
|
24
|
Abstract
Brown adipose tissue (BAT) thermogenesis is critical for thermoregulation and contributes to total energy expenditure. However, whether BAT has non-thermogenic functions is largely unknown. Here, we describe that BAT-specific liver kinase b1 knockout (Lkb1BKO) mice exhibited impaired BAT mitochondrial respiration and thermogenesis but reduced adiposity and liver triglyceride accumulation under high-fat-diet feeding at room temperature. Importantly, these metabolic benefits were also present in Lkb1BKO mice at thermoneutrality, where BAT thermogenesis was not required. Mechanistically, decreased mRNA levels of mtDNA-encoded electron transport chain (ETC) subunits and ETC proteome imbalance led to defective BAT mitochondrial respiration in Lkb1BKO mice. Furthermore, reducing mtDNA gene expression directly in BAT by removing mitochondrial transcription factor A (Tfam) in BAT also showed ETC proteome imbalance and the trade-off between BAT thermogenesis and systemic metabolism at room temperature and thermoneutrality. Collectively, our data demonstrate that ETC proteome imbalance in BAT regulates systemic metabolism independently of thermogenesis.
Collapse
|