1
|
Drake TN, Sheppard JD. Impact of Neurostimulation, Immunomodulation, Topical Medication Application, and Surgical Reconstruction on Corneal Nerve Function and Regeneration. Eye Contact Lens 2025; 51:3-13. [PMID: 39392164 DOI: 10.1097/icl.0000000000001130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/19/2024] [Indexed: 10/12/2024]
Abstract
ABSTRACT The corneal epithelium, supplied by thousands of nerve endings, plays a substantial role in absorbing and distributing nutrients along the ocular surface. Many studies have explored the influence of various modalities in regulating tear production to manage corneal disorders and dry eye disease. These findings have highlighted the advantages of enhancing corneal nerve function and regeneration through neurostimulation, neural signaling, immunomodulation, topical medication application, and surgical reconstruction. The purpose of this narrative review article was to provide an overview of the current state of knowledge on this topic based on a PubMed database literature search for relevant animal and human studies investigating the modification of the trigeminal pathway to restore corneal nerve function and improve overall ocular health. Further investigation into this area of research is important to help guide new therapeutic targets for the prevention and development of treatments of corneal degeneration.
Collapse
Affiliation(s)
- Taylor N Drake
- Eastern Virginia Medical School (T.N.D., J.D.S.), Department of Ophthalmology, Norfolk, VA; and Virginia Eye Consultants/EyeCare Partners (J.D.S.), Norfolk, VA
| | | |
Collapse
|
2
|
Fait BW, Cotto B, Murakami TC, Hagemann-Jensen M, Zhan H, Freivald C, Turbek I, Gao Y, Yao Z, Way SW, Zeng H, Tasic B, Steward O, Heintz N, Schmidt EF. Spontaneously regenerative corticospinal neurons in mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.09.612115. [PMID: 39314356 PMCID: PMC11419066 DOI: 10.1101/2024.09.09.612115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
The spinal cord receives inputs from the cortex via corticospinal neurons (CSNs). While predominantly a contralateral projection, a less-investigated minority of its axons terminate in the ipsilateral spinal cord. We analyzed the spatial and molecular properties of these ipsilateral axons and their post-synaptic targets in mice and found they project primarily to the ventral horn, including directly to motor neurons. Barcode-based reconstruction of the ipsilateral axons revealed a class of primarily bilaterally-projecting CSNs with a distinct cortical distribution. The molecular properties of these ipsilaterally-projecting CSNs (IP-CSNs) are strikingly similar to the previously described molecular signature of embryonic-like regenerating CSNs. Finally, we show that IP-CSNs are spontaneously regenerative after spinal cord injury. The discovery of a class of spontaneously regenerative CSNs may prove valuable to the study of spinal cord injury. Additionally, this work suggests that the retention of juvenile-like characteristics may be a widespread phenomenon in adult nervous systems.
Collapse
|
3
|
Smith J, Rai V. Novel Factors Regulating Proliferation, Migration, and Differentiation of Fibroblasts, Keratinocytes, and Vascular Smooth Muscle Cells during Wound Healing. Biomedicines 2024; 12:1939. [PMID: 39335453 PMCID: PMC11429312 DOI: 10.3390/biomedicines12091939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 08/08/2024] [Accepted: 08/20/2024] [Indexed: 09/30/2024] Open
Abstract
Chronic diabetic foot ulcers (DFUs) are a significant complication of diabetes mellitus, often leading to amputation, increased morbidity, and a substantial financial burden. Even with the advancements in the treatment of DFU, the risk of amputation still exists, and this occurs due to the presence of gangrene and osteomyelitis. Nonhealing in a chronic DFU is due to decreased angiogenesis, granulation tissue formation, and extracellular matrix remodeling in the presence of persistent inflammation. During wound healing, the proliferation and migration of fibroblasts, smooth muscle cells, and keratinocytes play a critical role in extracellular matrix (ECM) remodeling, angiogenesis, and epithelialization. The molecular factors regulating the migration, proliferation, and differentiation of these cells are scarcely discussed in the literature. The literature review identifies the key factors influencing the proliferation, migration, and differentiation of fibroblasts, keratinocytes, and vascular smooth muscle cells (VSMCs), which are critical in wound healing. This is followed by a discussion on the various novel factors regulating the migration, proliferation, and differentiation of these cells but not in the context of wound healing; however, they may play a role. Using a network analysis, we examined the interactions between various factors, and the findings suggest that the novel factors identified may play a significant role in promoting angiogenesis, granulation tissue formation, and extracellular matrix remodeling during wound healing or DFU healing. However, these interactions warrant further investigation to establish their role alone or synergistically.
Collapse
Affiliation(s)
- Jacob Smith
- Department of Translational Research, Western University of Health Sciences, Pomona, CA 91766, USA
| | - Vikrant Rai
- Department of Translational Research, Western University of Health Sciences, Pomona, CA 91766, USA
| |
Collapse
|
4
|
Chen R, Wang Y, Zhang Z, Wang X, Li Y, Wang M, Wang H, Dong M, Zhou Q, Yang L. The Role of SLIT3-ROBO4 Signaling in Endoplasmic Reticulum Stress-Induced Delayed Corneal Epithelial and Nerve Regeneration. Invest Ophthalmol Vis Sci 2024; 65:8. [PMID: 38700874 PMCID: PMC11077912 DOI: 10.1167/iovs.65.5.8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 03/23/2024] [Indexed: 05/08/2024] Open
Abstract
Purpose In the present study, we aim to elucidate the underlying molecular mechanism of endoplasmic reticulum (ER) stress induced delayed corneal epithelial wound healing and nerve regeneration. Methods Human limbal epithelial cells (HLECs) were treated with thapsigargin to induce excessive ER stress and then RNA sequencing was performed. Immunofluorescence, qPCR, Western blot, and ELISA were used to detect the expression changes of SLIT3 and its receptors ROBO1-4. The role of recombinant SLIT3 protein in corneal epithelial proliferation and migration were assessed by CCK8 and cell scratch assay, respectively. Thapsigargin, exogenous SLIT3 protein, SLIT3-specific siRNA, and ROBO4-specific siRNA was injected subconjunctivally to evaluate the effects of different intervention on corneal epithelial and nerve regeneration. In addition, Ki67 staining was performed to evaluate the proliferation ability of epithelial cells. Results Thapsigargin suppressed normal corneal epithelial and nerve regeneration significantly. RNA sequencing genes related to development and regeneration revealed that thapsigargin induced ER stress significantly upregulated the expression of SLIT3 and ROBO4 in corneal epithelial cells. Exogenous SLIT3 inhibited normal corneal epithelial injury repair and nerve regeneration, and significantly suppressed the proliferation and migration ability of cultured mouse corneal epithelial cells. SLIT3 siRNA inhibited ROBO4 expression and promoted epithelial wound healing under thapsigargin treatment. ROBO4 siRNA significantly attenuated the delayed corneal epithelial injury repair and nerve regeneration induced by SLIT3 treatment or thapsigargin treatment. Conclusions ER stress inhibits corneal epithelial injury repair and nerve regeneration may be related with the upregulation of SLIT3-ROBO4 pathway.
Collapse
Affiliation(s)
- Rong Chen
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, Qingdao, China
| | - Yao Wang
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, Qingdao, China
| | - Zhenzhen Zhang
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, Qingdao, China
| | - Xiaolei Wang
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, Qingdao, China
| | - Ya Li
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, Qingdao, China
| | - Min Wang
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, Qingdao, China
| | - Huifeng Wang
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, Qingdao, China
| | - Muchen Dong
- Eye Institute of Shandong First Medical University, Eye Hospital of Shandong First Medical University (Shandong Eye Hospital), Jinan, China
| | - Qingjun Zhou
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, Qingdao, China
| | - Lingling Yang
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, Qingdao, China
| |
Collapse
|
5
|
Kistenmacher S, Schwämmle M, Martin G, Ulrich E, Tholen S, Schilling O, Gießl A, Schlötzer-Schrehardt U, Bucher F, Schlunck G, Nazarenko I, Reinhard T, Polisetti N. Enrichment, Characterization, and Proteomic Profiling of Small Extracellular Vesicles Derived from Human Limbal Mesenchymal Stromal Cells and Melanocytes. Cells 2024; 13:623. [PMID: 38607062 PMCID: PMC11011788 DOI: 10.3390/cells13070623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 03/27/2024] [Accepted: 03/28/2024] [Indexed: 04/13/2024] Open
Abstract
Limbal epithelial progenitor cells (LEPC) rely on their niche environment for proper functionality and self-renewal. While extracellular vesicles (EV), specifically small EVs (sEV), have been proposed to support LEPC homeostasis, data on sEV derived from limbal niche cells like limbal mesenchymal stromal cells (LMSC) remain limited, and there are no studies on sEVs from limbal melanocytes (LM). In this study, we isolated sEV from conditioned media of LMSC and LM using a combination of tangential flow filtration and size exclusion chromatography and characterized them by nanoparticle tracking analysis, transmission electron microscopy, Western blot, multiplex bead arrays, and quantitative mass spectrometry. The internalization of sEV by LEPC was studied using flow cytometry and confocal microscopy. The isolated sEVs exhibited typical EV characteristics, including cell-specific markers such as CD90 for LMSC-sEV and Melan-A for LM-sEV. Bioinformatics analysis of the proteomic data suggested a significant role of sEVs in extracellular matrix deposition, with LMSC-derived sEV containing proteins involved in collagen remodeling and cell matrix adhesion, whereas LM-sEV proteins were implicated in other cellular bioprocesses such as cellular pigmentation and development. Moreover, fluorescently labeled LMSC-sEV and LM-sEV were taken up by LEPC and localized to their perinuclear compartment. These findings provide valuable insights into the complex role of sEV from niche cells in regulating the human limbal stem cell niche.
Collapse
Affiliation(s)
- Sebastian Kistenmacher
- Eye Center, Medical Center, Faculty of Medicine, University of Freiburg, Killianstrasse 5, 79106 Freiburg, Germany
| | - Melanie Schwämmle
- Eye Center, Medical Center, Faculty of Medicine, University of Freiburg, Killianstrasse 5, 79106 Freiburg, Germany
- Faculty of Biology, University of Freiburg, Schaenzlestrasse 1, D–79104 Freiburg, Germany
| | - Gottfried Martin
- Eye Center, Medical Center, Faculty of Medicine, University of Freiburg, Killianstrasse 5, 79106 Freiburg, Germany
| | - Eva Ulrich
- Eye Center, Medical Center, Faculty of Medicine, University of Freiburg, Killianstrasse 5, 79106 Freiburg, Germany
| | - Stefan Tholen
- Institute of Surgical Pathology, Faculty of Medicine, Freiburg, Medical Center, University of Freiburg, 79085 Freiburg im Breisgau, Germany
| | - Oliver Schilling
- Institute of Surgical Pathology, Faculty of Medicine, Freiburg, Medical Center, University of Freiburg, 79085 Freiburg im Breisgau, Germany
| | - Andreas Gießl
- Department of Ophthalmology, University Hospital Erlangen, Friedrich-Alexander-University of Erlan-gen-Nürnberg, Schwabachanlage 6, 91054 Erlangen, Germany
| | - Ursula Schlötzer-Schrehardt
- Department of Ophthalmology, University Hospital Erlangen, Friedrich-Alexander-University of Erlan-gen-Nürnberg, Schwabachanlage 6, 91054 Erlangen, Germany
| | - Felicitas Bucher
- Eye Center, Medical Center, Faculty of Medicine, University of Freiburg, Killianstrasse 5, 79106 Freiburg, Germany
| | - Günther Schlunck
- Eye Center, Medical Center, Faculty of Medicine, University of Freiburg, Killianstrasse 5, 79106 Freiburg, Germany
| | - Irina Nazarenko
- Institute for Infection Prevention and Hospital Epidemiology, Faculty of Medicine, Medical Center, University of Freiburg, 79106 Freiburg, Germany
| | - Thomas Reinhard
- Eye Center, Medical Center, Faculty of Medicine, University of Freiburg, Killianstrasse 5, 79106 Freiburg, Germany
| | - Naresh Polisetti
- Eye Center, Medical Center, Faculty of Medicine, University of Freiburg, Killianstrasse 5, 79106 Freiburg, Germany
| |
Collapse
|
6
|
Dhupar R, Powers AA, Eisenberg SH, Gemmill RM, Bardawil CE, Udoh HM, Cubitt A, Nangle LA, Soloff AC. Orchestrating Resilience: How Neuropilin-2 and Macrophages Contribute to Cardiothoracic Disease. J Clin Med 2024; 13:1446. [PMID: 38592275 PMCID: PMC10934188 DOI: 10.3390/jcm13051446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 02/21/2024] [Accepted: 02/24/2024] [Indexed: 04/10/2024] Open
Abstract
Immunity has evolved to balance the destructive nature of inflammation with wound healing to overcome trauma, infection, environmental insults, and rogue malignant cells. The inflammatory response is marked by overlapping phases of initiation, resolution, and post-resolution remodeling. However, the disruption of these events can lead to prolonged tissue damage and organ dysfunction, resulting long-term disease states. Macrophages are the archetypic phagocytes present within all tissues and are important contributors to these processes. Pleiotropic and highly plastic in their responses, macrophages support tissue homeostasis, repair, and regeneration, all while balancing immunologic self-tolerance with the clearance of noxious stimuli, pathogens, and malignant threats. Neuropilin-2 (Nrp2), a promiscuous co-receptor for growth factors, semaphorins, and integrins, has increasingly been recognized for its unique role in tissue homeostasis and immune regulation. Notably, recent studies have begun to elucidate the role of Nrp2 in both non-hematopoietic cells and macrophages with cardiothoracic disease. Herein, we describe the unique role of Nrp2 in diseases of the heart and lung, with an emphasis on Nrp2 in macrophages, and explore the potential to target Nrp2 as a therapeutic intervention.
Collapse
Affiliation(s)
- Rajeev Dhupar
- Department of Cardiothoracic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA; (R.D.); (H.M.U.)
- UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA 15213, USA
- Surgical and Research Services, VA Pittsburgh Healthcare System, Pittsburgh, PA 15240, USA
| | - Amy A. Powers
- Department of Cardiothoracic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA; (R.D.); (H.M.U.)
| | - Seth H. Eisenberg
- Department of Cardiothoracic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA; (R.D.); (H.M.U.)
| | - Robert M. Gemmill
- Division of Hematology/Oncology, Department of Medicine, Medical University of South Carolina, Charleston, SC 29425, USA;
- Hollings Cancer Center, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Charles E. Bardawil
- Department of Cardiothoracic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA; (R.D.); (H.M.U.)
| | - Hannah M. Udoh
- Department of Cardiothoracic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA; (R.D.); (H.M.U.)
| | - Andrea Cubitt
- aTyr Pharma, San Diego, CA 92121, USA; (A.C.); (L.A.N.)
| | | | - Adam C. Soloff
- Department of Cardiothoracic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA; (R.D.); (H.M.U.)
- UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA 15213, USA
- Surgical and Research Services, VA Pittsburgh Healthcare System, Pittsburgh, PA 15240, USA
| |
Collapse
|
7
|
Sidhu N, Vanathi M, Gupta N, Tandon R. COVID and COVID vaccine-related corneal morbidity: A review. Indian J Ophthalmol 2023; 71:3595-3599. [PMID: 37991289 PMCID: PMC10788745 DOI: 10.4103/ijo.ijo_765_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 07/24/2023] [Accepted: 07/30/2023] [Indexed: 11/23/2023] Open
Abstract
Systemic coronavirus disease caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus has had several ocular consequences. Many vaccines have been developed against the disease, with adverse events being reported as well. Various ocular adverse events secondary to coronavirus disease 2019 (COVID-19) vaccines have also featured in literature in recent times. This review features the reported corneal-related effects of COVID infection and vaccination. These include direct effects on corneal grafts and unilateral or bilateral corneal melts. The compilation of reported experiences from across the world in this systematic review will help clinicians recognize the possible presentations, pathogenesis, and management of the same.
Collapse
Affiliation(s)
- Navneet Sidhu
- Dr. R. P. Center for Ophthalmic Sciences, All India Institute of Medical Sciences, New Delhi, India
| | - Murugesan Vanathi
- Dr. R. P. Center for Ophthalmic Sciences, All India Institute of Medical Sciences, New Delhi, India
| | - Noopur Gupta
- Dr. R. P. Center for Ophthalmic Sciences, All India Institute of Medical Sciences, New Delhi, India
| | - Radhika Tandon
- Dr. R. P. Center for Ophthalmic Sciences, All India Institute of Medical Sciences, New Delhi, India
| |
Collapse
|
8
|
Shin HA, Park M, Lee HJ, Duong VA, Kim HM, Hwang DY, Lee H, Lew H. Unveiling Neuroprotection and Regeneration Mechanisms in Optic Nerve Injury: Insight from Neural Progenitor Cell Therapy with Focus on Vps35 and Syntaxin12. Cells 2023; 12:2412. [PMID: 37830626 PMCID: PMC10572010 DOI: 10.3390/cells12192412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 09/27/2023] [Accepted: 10/02/2023] [Indexed: 10/14/2023] Open
Abstract
Axonal degeneration resulting from optic nerve damage can lead to the progressive death of retinal ganglion cells (RGCs), culminating in irreversible vision loss. We contrasted two methods for inducing optic nerve damage: optic nerve compression (ONCo) and optic nerve crush (ONCr). These were assessed for their respective merits in simulating traumatic optic neuropathies and neurodegeneration. We also administered neural progenitor cells (NPCs) into the subtenon space to validate their potential in mitigating optic nerve damage. Our findings indicate that both ONCo and ONCr successfully induced optic nerve damage, as shown by increases in ischemia and expression of genes linked to neuronal regeneration. Post NPC injection, recovery in the expression of neuronal regeneration-related genes was more pronounced in the ONCo model than in the ONCr model, while inflammation-related gene expression saw a better recovery in ONCr. In addition, the proteomic analysis of R28 cells in hypoxic conditions identified Vps35 and Syntaxin12 genes. Vps35 preserved the mitochondrial function in ONCo, while Syntaxin12 appeared to restrain inflammation via the Wnt/β-catenin signaling pathway in ONCr. NPCs managed to restore damaged RGCs by elevating neuroprotection factors and controlling inflammation through mitochondrial homeostasis and Wnt/β-catenin signaling in hypoxia-injured R28 cells and in both animal models. Our results suggest that ischemic injury and crush injury cause optic nerve damage via different mechanisms, which can be effectively simulated using ONCo and ONCr, respectively. Moreover, cell-based therapies such as NPCs may offer promising avenues for treating various optic neuropathies, including ischemic and crush injuries.
Collapse
Affiliation(s)
- Hyun-Ah Shin
- Department of Biomedical Science, CHA University, Pocheon-si 13488, Gyeonggi-Do, Republic of Korea; (H.-A.S.); (H.-M.K.); (D.-Y.H.)
| | - Mira Park
- Department of Ophthalmology, CHA Medical Center, CHA University, Pocheon-si 13488, Gyeonggi-Do, Republic of Korea;
| | - Hey Jin Lee
- CHA Advanced Research Institute, CHA University, Pocheon-si 13488, Gyeonggi-Do, Republic of Korea;
| | - Van-An Duong
- Gachon Institute of Pharmaceutical Sciences, Gachon College of Pharmacy, Gachon University, Incheon 21936, Republic of Korea; (V.-A.D.); (H.L.)
| | - Hyun-Mun Kim
- Department of Biomedical Science, CHA University, Pocheon-si 13488, Gyeonggi-Do, Republic of Korea; (H.-A.S.); (H.-M.K.); (D.-Y.H.)
| | - Dong-Youn Hwang
- Department of Biomedical Science, CHA University, Pocheon-si 13488, Gyeonggi-Do, Republic of Korea; (H.-A.S.); (H.-M.K.); (D.-Y.H.)
- Department of Microbiology, School of Medicine, CHA University, Pocheon-si 13488, Gyeonggi-Do, Republic of Korea
| | - Hookeun Lee
- Gachon Institute of Pharmaceutical Sciences, Gachon College of Pharmacy, Gachon University, Incheon 21936, Republic of Korea; (V.-A.D.); (H.L.)
| | - Helen Lew
- Department of Ophthalmology, CHA Medical Center, CHA University, Pocheon-si 13488, Gyeonggi-Do, Republic of Korea;
| |
Collapse
|
9
|
Lin C, Li W, Fan X. S1P promotes corneal trigeminal neuron differentiation and corneal nerve repair via upregulating nerve growth factor expression in a mouse model. Open Life Sci 2022; 17:1324-1332. [PMID: 36313859 PMCID: PMC9559473 DOI: 10.1515/biol-2022-0491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Revised: 07/24/2022] [Accepted: 08/09/2022] [Indexed: 11/15/2022] Open
Abstract
Corneal disease was the most critical cause of vision loss. This study aimed to research a new method and provide a theoretical basis for treating corneal injury. A mice corneal epithelial injury model was constructed by the method of mechanical curettage. Models were treated with sphingosine 1-phosphate (S1P) and si-Spns2. An immunofluorescence assay was used to detect βIII-tubulin. The expressions of neurotrophic factor, S1P transporter, and extracellular signal-regulated kinase 1/2 (ERK1/2) signaling pathway-related proteins were detected by western blot. Hematoxylin-eosin staining was processed to detect the effect of SIP on corneal repair in mice. si-Spns2 inhibited the effect of S1P. S1P significantly repaired the corneal injury, while si-Spns2 treatment made it more severe. Moreover, S1P could significantly increase the levels of NGF, BDNF, GDNF, Spns2, and p-ERK1/2. si-Spns2 inhibits the effect of S1P in the expression of these proteins. S1P significantly increased axonal differentiation of trigeminal ganglion neurons, which was inhibited after si-Spns2 treatment. S1P promoted corneal trigeminal neuron differentiation and corneal nerve repair via upregulating nerve growth factor expression in a mouse model. Treatment of corneal injury by S1P may be an effective approach.
Collapse
Affiliation(s)
- Chaoqun Lin
- Department of Neurosurgery, University of Chinese Academy of Sciences-Shenzhen Hospital (Guangming District), Shenzhen 518106, Guangdong, China
| | - Weina Li
- Department of Glaucoma and Cataract, Liuzhou Aier Eye Hospital, Affiliated Hospital of Aier Ophthalmology College of Central South University, 151 Liushi Road, Yufeng District, Liuzhou 545005, Guangxi, China
| | - Xuezheng Fan
- Department of Neurosurgery, University of Chinese Academy of Sciences-Shenzhen Hospital (Guangming District), Shenzhen 518106, Guangdong, China
| |
Collapse
|
10
|
Asiedu K. Role of ocular surface neurobiology in neuronal-mediated inflammation in dry eye disease. Neuropeptides 2022; 95:102266. [PMID: 35728484 DOI: 10.1016/j.npep.2022.102266] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 06/07/2022] [Accepted: 06/08/2022] [Indexed: 01/18/2023]
Abstract
Inflammation is the consequence of dry eye disease regardless of its etiology. Several injurious or harmless processes to the ocular surface neurons promote ocular surface neurogenic inflammation, leading to the vicious cycle of dry eye disease. These processes include the regular release of neuromediators during the conduction of ocular surface sensations, hyperosmolarity-induced ocular surface neuronal damage, neuro-regenerative activities, and neuronal-mediated dendritic cell activities. Neurogenic inflammation appears to be the main culprit, instigating the self-perpetuating inflammation observed in patients with dry eye disease.
Collapse
Affiliation(s)
- Kofi Asiedu
- School of Optometry & Vision Science, Faculty of Medicine and Health, University of New South Wales, Sydney, Australia.
| |
Collapse
|
11
|
Shen Z, Ma J, Peng R, Hu B, Zhao Y, Liu S, Hong J. Biomarkers in Ocular Graft-Versus-Host Disease: Implications for the Involvement of B Cells. Transplant Cell Ther 2022; 28:749.e1-749.e7. [DOI: 10.1016/j.jtct.2022.07.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Revised: 07/19/2022] [Accepted: 07/22/2022] [Indexed: 10/16/2022]
|
12
|
Yu FSX, Lee PSY, Yang L, Gao N, Zhang Y, Ljubimov AV, Yang E, Zhou Q, Xie L. The impact of sensory neuropathy and inflammation on epithelial wound healing in diabetic corneas. Prog Retin Eye Res 2022; 89:101039. [PMID: 34991965 PMCID: PMC9250553 DOI: 10.1016/j.preteyeres.2021.101039] [Citation(s) in RCA: 82] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 12/10/2021] [Accepted: 12/20/2021] [Indexed: 02/08/2023]
Abstract
Diabetic peripheral neuropathy (DPN) is the most common complication of diabetes, with several underlying pathophysiological mechanisms, some of which are still uncertain. The cornea is an avascular tissue and sensitive to hyperglycemia, resulting in several diabetic corneal complications including delayed epithelial wound healing, recurrent erosions, neuropathy, loss of sensitivity, and tear film changes. The manifestation of DPN in the cornea is referred to as diabetic neurotrophic keratopathy (DNK). Recent studies have revealed that disturbed epithelial-neural-immune cell interactions are a major cause of DNK. The epithelium is supplied by a dense network of sensory nerve endings and dendritic cell processes, and it secretes growth/neurotrophic factors and cytokines to nourish these neighboring cells. In turn, sensory nerve endings release neuropeptides to suppress inflammation and promote epithelial wound healing, while resident immune cells provide neurotrophic and growth factors to support neuronal and epithelial cells, respectively. Diabetes greatly perturbs these interdependencies, resulting in suppressed epithelial proliferation, sensory neuropathy, and a decreased density of dendritic cells. Clinically, this results in a markedly delayed wound healing and impaired sensory nerve regeneration in response to insult and injury. Current treatments for DPN and DNK largely focus on managing the severe complications of the disease. Cell-based therapies hold promise for providing more effective treatment for diabetic keratopathy and corneal ulcers.
Collapse
Affiliation(s)
- Fu-Shin X Yu
- Departments of Ophthalmology and Anatomy and Cell Biology, Wayne State University School of Medicine, Detroit, MI, 48201, USA.
| | - Patrick S Y Lee
- Departments of Ophthalmology and Anatomy and Cell Biology, Wayne State University School of Medicine, Detroit, MI, 48201, USA
| | - Lingling Yang
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, Qingdao, China
| | - Nan Gao
- Departments of Ophthalmology and Anatomy and Cell Biology, Wayne State University School of Medicine, Detroit, MI, 48201, USA
| | - Yangyang Zhang
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, Qingdao, China
| | - Alexander V Ljubimov
- Departments of Biomedical Sciences and Neurosurgery, Cedars-Sinai Medical Center, Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Ellen Yang
- Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL, 60064, USA
| | - Qingjun Zhou
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, Qingdao, China
| | - Lixin Xie
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, Qingdao, China.
| |
Collapse
|
13
|
Guaiquil VH, Xiao C, Lara D, Dimailig G, Zhou Q. Expression of axon guidance ligands and their receptors in the cornea and trigeminal ganglia and their recovery after corneal epithelium injury. Exp Eye Res 2022; 219:109054. [PMID: 35427568 PMCID: PMC9133167 DOI: 10.1016/j.exer.2022.109054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Revised: 03/15/2022] [Accepted: 03/22/2022] [Indexed: 11/04/2022]
Abstract
Axon guidance proteins are essential for axonal pathfinding during development. In adulthood, they have been described as pleiotropic proteins with multiple roles in different organs and tissues. While most studies on the roles of these proteins in the cornea have been performed on the Semaphorin family members, with few reports on Netrins or Ephrins, their function in corneal epithelium wound healing and functional nerve regeneration is largely unknown. Here, we studied the expression of ligands belonging to three distinct axon guidance families (Semaphorins, Ephrins, and Netrins) and their most commonly associated receptors in the cornea and trigeminal ganglia (TG) using immunofluorescence staining and RT-qPCR. We also evaluated how their expression recovers after corneal epithelium injury. We found that all ligands studied (Sema3A, Sema3F, EphrinB1, EphrinB2, Netrin-1, and Netrin-4) are abundantly expressed in both the TG and corneal epithelium. Similarly, their receptors (Neuropilin-1, Neuropilin-2, PlexinA1, PlexinA3, EphB2, EphB4, Neogenin, UNC5H1 and DCC) are also expressed in both tissues. Upon corneal epithelium injury, quick recovery of both ligands and receptors was observed at the protein and gene expression levels. While the timing and expression levels vary among these proteins, in general, most of them remained upregulated for several weeks after injury. We propose that the initial protein expression recovery may be related to corneal epithelium recovery since Sema3A, EphrinB2 and Netrin-4 accelerated corneal epithelial cells wound healing. The sustained high expression levels may be functionally related to nerve regeneration and/or patterning. Whilst further studies are required to test this hypothesis, this work contributes to unraveling their function in normal and injured cornea.
Collapse
Affiliation(s)
- Victor H Guaiquil
- Department of Ophthalmology and Visual Sciences, University of Illinois-Chicago, Chicago, IL, USA.
| | - Cissy Xiao
- Department of Ophthalmology and Visual Sciences, University of Illinois-Chicago, Chicago, IL, USA
| | - Daniel Lara
- Department of Ophthalmology and Visual Sciences, University of Illinois-Chicago, Chicago, IL, USA
| | - Greigory Dimailig
- Department of Ophthalmology and Visual Sciences, University of Illinois-Chicago, Chicago, IL, USA
| | - Qiang Zhou
- Department of Ophthalmology and Visual Sciences, University of Illinois-Chicago, Chicago, IL, USA
| |
Collapse
|
14
|
Yang Y, Zhang B, Yang Y, Peng B, Ye R. FOXM1 accelerates wound healing in diabetic foot ulcer by inducing M2 macrophage polarization through a mechanism involving SEMA3C/NRP2/Hedgehog signaling. Diabetes Res Clin Pract 2022; 184:109121. [PMID: 34742786 DOI: 10.1016/j.diabres.2021.109121] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 10/26/2021] [Accepted: 10/31/2021] [Indexed: 02/08/2023]
Abstract
AIMS The diabetic wound environment is accompanied with prolonged inflammation leading to impaired wound healing in diabetic foot ulcer (DFU). Our study illustrated the molecular mechanisms by which Forkhead box M1 (FOXM1) enhanced M2 polarization and wound healing of DFU. METHODS Diabetes was modeled in vivo by streptozotocin injection in rats and in vitro by exposure to high glucose in human dermal fibroblasts (HDF). Macrophages were exposed to IL-4 to induce M2 phenotype polarization. Ectopic expression or knockdown of FOXM1 was performed to observe collagen deposition, angiogenesis, the proliferation and migration of HDF, as well as macrophage polarization. RESULTS FOXM1 was lowly expressed in the wound tissue of DFU rats. In vitro experiments showed that silencing FOXM1 reversed the M2 polarization-induced promotion of HDF proliferation and migration. We further found that FOXM1 bound to the promoter region of SEMA3C to elevate its expression, and SEMA3C upregulated NRP2 and activated the Hedgehog signaling pathway. Silencing of SMO, a signal transducer in the Hedgehog pathway, negated the promoting effect of FOXM1 overexpression in M2 polarization and HDF proliferation. CONCLUSIONS Thus, our results suggest that targeting transcription factor FOXM1 may provide a therapeutic target for promoting wound healing in DFU.
Collapse
Affiliation(s)
- Yang Yang
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, PR China; Department of General Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, PR China
| | - Bo Zhang
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, PR China; Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, PR China
| | - Yufan Yang
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, PR China
| | - Bibo Peng
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, PR China
| | - Rui Ye
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, PR China; Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, PR China.
| |
Collapse
|
15
|
Abstract
The global prevalence of metabolic diseases, such as obesity, diabetes, and atherosclerosis, is rapidly increasing and has now reached epidemic proportions. Chronic tissue inflammation is a characteristic of these metabolic diseases, indicating that immune responses are closely involved in the pathogenesis of metabolic disorders. However, the regulatory mechanisms underlying immunometabolic crosstalk in these diseases are not completely understood. Recent studies have revealed the multifaceted functions of semaphorins, originally identified as axon guidance molecules, in regulating tissue inflammation and metabolic disorders, thereby highlighting the functional coupling between semaphorin signaling and immunometabolism. In this review, we explore how semaphorin signaling transcends beyond merely guiding axons to controlling immune responses and metabolic diseases.
Collapse
|
16
|
Zhou Q, Yang L, Wang Q, Li Y, Wei C, Xie L. Mechanistic investigations of diabetic ocular surface diseases. Front Endocrinol (Lausanne) 2022; 13:1079541. [PMID: 36589805 PMCID: PMC9800783 DOI: 10.3389/fendo.2022.1079541] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 12/02/2022] [Indexed: 12/23/2022] Open
Abstract
With the global prevalence of diabetes mellitus over recent decades, more patients suffered from various diabetic complications, including diabetic ocular surface diseases that may seriously affect the quality of life and even vision sight. The major diabetic ocular surface diseases include diabetic keratopathy and dry eye. Diabetic keratopathy is characterized with the delayed corneal epithelial wound healing, reduced corneal nerve density, decreased corneal sensation and feeling of burning or dryness. Diabetic dry eye is manifested as the reduction of tear secretion accompanied with the ocular discomfort. The early clinical symptoms include dry eye and corneal nerve degeneration, suggesting the early diagnosis should be focused on the examination of confocal microscopy and dry eye symptoms. The pathogenesis of diabetic keratopathy involves the accumulation of advanced glycation end-products, impaired neurotrophic innervations and limbal stem cell function, and dysregulated growth factor signaling, and inflammation alterations. Diabetic dry eye may be associated with the abnormal mitochondrial metabolism of lacrimal gland caused by the overactivation of sympathetic nervous system. Considering the important roles of the dense innervations in the homeostatic maintenance of cornea and lacrimal gland, further studies on the neuroepithelial and neuroimmune interactions will reveal the predominant pathogenic mechanisms and develop the targeting intervention strategies of diabetic ocular surface complications.
Collapse
Affiliation(s)
- Qingjun Zhou
- State Key Laboratory Cultivation Base, Eye Institute of Shandong First Medical University, Qingdao, China
- Shandong Provincial Key Laboratory of Ophthalmology, Eye Institute of Shandong First Medical University, Qingdao, China
| | - Lingling Yang
- State Key Laboratory Cultivation Base, Eye Institute of Shandong First Medical University, Qingdao, China
- Shandong Provincial Key Laboratory of Ophthalmology, Eye Institute of Shandong First Medical University, Qingdao, China
| | - Qun Wang
- State Key Laboratory Cultivation Base, Eye Institute of Shandong First Medical University, Qingdao, China
- Shandong Provincial Key Laboratory of Ophthalmology, Eye Institute of Shandong First Medical University, Qingdao, China
| | - Ya Li
- State Key Laboratory Cultivation Base, Eye Institute of Shandong First Medical University, Qingdao, China
- Shandong Provincial Key Laboratory of Ophthalmology, Eye Institute of Shandong First Medical University, Qingdao, China
| | - Chao Wei
- State Key Laboratory Cultivation Base, Eye Institute of Shandong First Medical University, Qingdao, China
- Shandong Provincial Key Laboratory of Ophthalmology, Eye Institute of Shandong First Medical University, Qingdao, China
| | - Lixin Xie
- State Key Laboratory Cultivation Base, Eye Institute of Shandong First Medical University, Qingdao, China
- Shandong Provincial Key Laboratory of Ophthalmology, Eye Institute of Shandong First Medical University, Qingdao, China
- *Correspondence: Lixin Xie,
| |
Collapse
|
17
|
McClellan S, Pitchaikannu A, Wright R, Bessert D, Iulianelli M, Hazlett LD, Xu S. Prophylactic Knockdown of the miR-183/96/182 Cluster Ameliorates Pseudomonas aeruginosa-Induced Keratitis. Invest Ophthalmol Vis Sci 2021; 62:14. [PMID: 34919120 PMCID: PMC8684302 DOI: 10.1167/iovs.62.15.14] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Purpose Previously, we demonstrated that miR-183/96/182 cluster (miR-183C) knockout mice exhibit decreased severity of Pseudomonas aeruginosa (PA)-induced keratitis. This study tests the hypothesis that prophylactic knockdown of miR-183C ameliorates PA keratitis indicative of a therapeutic potential. Methods Eight-week-old miR-183C wild-type and C57BL/6J inbred mice were used. Locked nucleic acid-modified anti-miR-183C or negative control oligoribonucleotides with scrambled sequences (NC ORNs) were injected subconjunctivally 1 day before and then topically applied once daily for 5 days post-infection (dpi) (strain 19660). Corneal disease was graded at 1, 3, and 5 dpi. Corneas were harvested for RT-PCR, ELISA, immunofluorescence (IF), myeloperoxidase and plate count assays, and flow cytometry. Corneal nerve density was evaluated in flatmounted corneas by IF staining with anti-β-III tubulin antibody. Results Anti-miR-183C downregulated miR-183C in the cornea. It resulted in an increase in IL-1β at 1 dpi, which was decreased at 5 dpi; fewer polymorphonuclear leukocytes (PMNs) at 5 dpi; lower viable bacterial plate count at both 1 and 5 dpi; increased percentages of MHCII+ macrophages (Mϕ) and dendritic cells (DCs), consistent with enhanced activation/maturation; and decreased severity of PA keratitis. Anti-miR-183C treatment in the cornea of naïve mice resulted in a transient reduction of corneal nerve density, which was fully recovered one week after the last anti-miR application. miR-183C targets repulsive axon-guidance receptor molecule Neuropilin 1, which may mediate the effect of anti-miR-183C on corneal nerve regression. Conclusions Prophylactic miR-183C knockdown is protective against PA keratitis through its regulation of innate immunity, corneal innervation, and neuroimmune interactions.
Collapse
Affiliation(s)
- Sharon McClellan
- Department of Ophthalmology, Visual and Anatomical Sciences, School of Medicine, Wayne State University, Detroit, Michigan, United States
| | - Ahalya Pitchaikannu
- Department of Ophthalmology, Visual and Anatomical Sciences, School of Medicine, Wayne State University, Detroit, Michigan, United States
| | - Robert Wright
- Department of Ophthalmology, Visual and Anatomical Sciences, School of Medicine, Wayne State University, Detroit, Michigan, United States
| | - Denise Bessert
- Department of Ophthalmology, Visual and Anatomical Sciences, School of Medicine, Wayne State University, Detroit, Michigan, United States
| | - Mason Iulianelli
- Departments of Biological Sciences and Public Health, College of Liberal Arts and Sciences, Wayne State University, Detroit, Michigan, United States
| | - Linda D Hazlett
- Department of Ophthalmology, Visual and Anatomical Sciences, School of Medicine, Wayne State University, Detroit, Michigan, United States
| | - Shunbin Xu
- Department of Ophthalmology, Visual and Anatomical Sciences, School of Medicine, Wayne State University, Detroit, Michigan, United States
| |
Collapse
|
18
|
Barros A, Queiruga-Piñeiro J, Lozano-Sanroma J, Alcalde I, Gallar J, Fernández-Vega Cueto L, Alfonso JF, Quirós LM, Merayo-Lloves J. Small fiber neuropathy in the cornea of Covid-19 patients associated with the generation of ocular surface disease. Ocul Surf 2021; 23:40-48. [PMID: 34781021 PMCID: PMC8588585 DOI: 10.1016/j.jtos.2021.10.010] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 10/18/2021] [Accepted: 10/29/2021] [Indexed: 12/17/2022]
Abstract
Purpose To describe the association between Sars-CoV-2 infection and small fiber neuropathy in the cornea identified by in vivo corneal confocal microscopy. Methods Twenty-three patients who had overcome COVID-19 were recruited to this observational retrospective study. Forty-six uninfected volunteers were also recruited and studied as a control group. All subjects were examined under in vivo confocal microscopy to obtain images of corneal subbasal nerve fibers in order to study the presence of neuroma-like structures, axonal beadings and dendritic cells. The Ocular Surface Disease Index (OSDI) questionnaire and Schirmer tear test were used as indicators of Dry Eye Disease (DED) and ocular surface pathology. Results Twenty-one patients (91.31%) presented alterations of the corneal subbasal plexus and corneal tissue consistent with small fiber neuropathy. Images from healthy subjects did not indicate significant nerve fiber or corneal tissue damage. Eight patients reported increased sensations of ocular dryness after COVID-19 infection and had positive DED indicators. Beaded axons were found in 82.60% of cases, mainly in patients reporting ocular irritation symptoms. Neuroma-like images were found in 65.22% patients, more frequently in those with OSDI scores >13. Dendritic cells were found in 69.56% of patients and were more frequent in younger asymptomatic patients. The presence of morphological alterations in patients up to 10 months after recovering from Sars-CoV-2 infection points to the chronic nature of the neuropathy. Conclusions Sars-CoV-2 infection may be inducing small fiber neuropathy in the ocular surface, sharing symptomatology and morphological landmarks with DED and diabetic neuropathy.
Collapse
Affiliation(s)
| | | | | | - Ignacio Alcalde
- Instituto Universitario Fernández-Vega, Universidad de Oviedo & Fundación de Investigación Oftalmológica, Oviedo, Spain; Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Spain.
| | - Juana Gallar
- Instituto de Neurociencias, Universidad Miguel Hernández-CSIC, San Juan de Alicante, Spain
| | - Luis Fernández-Vega Cueto
- Instituto Oftalmológico Fernández-Vega, Oviedo, Spain; Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Spain.
| | - José F Alfonso
- Instituto Oftalmológico Fernández-Vega, Oviedo, Spain; Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Spain; Department of Surgery and Medical-Surgical Specialties, Universidad de Oviedo, Oviedo, Spain
| | - Luis M Quirós
- Instituto Universitario Fernández-Vega, Universidad de Oviedo & Fundación de Investigación Oftalmológica, Oviedo, Spain; Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Spain; Department of Functional Biology, Universidad de Oviedo, Oviedo, Spain
| | - Jesús Merayo-Lloves
- Instituto Oftalmológico Fernández-Vega, Oviedo, Spain; Instituto Universitario Fernández-Vega, Universidad de Oviedo & Fundación de Investigación Oftalmológica, Oviedo, Spain; Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Spain; Department of Surgery and Medical-Surgical Specialties, Universidad de Oviedo, Oviedo, Spain
| |
Collapse
|
19
|
Chen X, Hu J. Long Noncoding RNA 3632454L22Rik Contributes to Corneal Epithelial Wound Healing by Sponging miR-181a-5p in Diabetic Mice. Invest Ophthalmol Vis Sci 2021; 62:16. [PMID: 34787641 PMCID: PMC8606839 DOI: 10.1167/iovs.62.14.16] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 10/18/2021] [Indexed: 11/24/2022] Open
Abstract
Purpose This work explores the abnormal expression of long noncoding RNAs (lncRNAs), microRNAs (miRNAs) and messenger RNAs (mRNAs) in diabetic corneal epithelial cells (CECs) and constructs an associated competitive endogenous RNA (ceRNA) network. Moreover, we revealed that Rik may exert advantageous effects on diabetic corneal epithelial wound closure by sponging miR-181a-5p. Methods We obtained the profiles of differentially expressed lncRNAs (DELs) of CECs of type 1 diabetic versus control corneas by microarray and summarized the differentially expressed miRNAs (DEmiRs) and differentially expressed genes (DEGs) data by published literature. Subsequently, the ceRNA network was constructed using bioinformatics analyses. The levels of lncRNA ENSMUST00000153610/3632454L22Rik (Rik) and miR-181a-5p were verified. The localization of Rik was identified with fluorescence in situ hybridization (FISH), and dual-luciferase assays proved the targeted relationship between Rik and miR-181a-5p. Furthermore, we validated the functional impact of Rik in vitro. Results Overall, 111 upregulated and 117 downregulated DELs were detected in diabetic versus control CECs. The level of Rik located in both the cytoplasm and the nucleus was clearly downregulated, whereas miR-181a-5p was upregulated in vitro and in vivo in the diabetic group versus the control group. Rik can act as a ceRNA to bind to miR-181a-5p, thus promoting diabetic corneal epithelial wound healing in vitro. Conclusions This work investigated the expression profile of DELs and constructed ceRNA networks of diabetic CECs for the first time. Furthermore, we revealed that Rik may positively impact diabetic corneal epithelial wound healing by sponging miR-181a-5p, providing a novel potential therapeutic target of diabetic keratopathy (DK).
Collapse
Affiliation(s)
- Xiaxue Chen
- Department of Ophthalmology, Fujian Medical University Union Hospital, Fu Zhou, China
| | - Jianzhang Hu
- Department of Ophthalmology, Fujian Medical University Union Hospital, Fu Zhou, China
| |
Collapse
|
20
|
Zhang Y, Dou S, Qi X, Zhang Z, Qiao Y, Wang Y, Xie J, Jiang H, Zhang B, Zhou Q, Wang Q, Xie L. Transcriptional Network Analysis Reveals the Role of miR-223-5p During Diabetic Corneal Epithelial Regeneration. Front Mol Biosci 2021; 8:737472. [PMID: 34513931 PMCID: PMC8427436 DOI: 10.3389/fmolb.2021.737472] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 08/10/2021] [Indexed: 01/10/2023] Open
Abstract
Diabetes mellitus (DM) is a complex metabolic disorder. Long-term hyperglycemia may induce diabetic keratopathy (DK), which is mainly characterized by delayed corneal epithelial regeneration. MicroRNAs (miRNAs) have been reported to play regulatory roles during tissue regeneration. However, the molecular mechanism by which miRNAs influence epithelial regeneration in DK is largely unknown. In this study, we performed miRNA and mRNA sequencing of regenerative corneal epithelium tissue from streptozotocin-induced type 1 diabetic (T1DM) and wild-type mice to screen for differentially expressed miRNAs and mRNAs. Based on regulatory network analysis, miR-223-5p was selected for subsequent experiments and Hpgds was then identified as a direct target gene. MiR-223-5p downregulation significantly promoted diabetic corneal epithelial wound healing and nerve regeneration. However, the beneficial effects of miR-223-5p inhibition were abolished by an Hpgds inhibitor. Furthermore, mechanistic studies demonstrated that miR-223-5p suppression ameliorated inflammation and enhanced cell proliferation signaling in DK. Taken together, our findings revealed that the regulatory role of miR-223-5p in diabetic corneal epithelial and nerve regeneration by mediating inflammatory processes and cell proliferation signaling. And silencing miR-223-5p may contribute to the development of potential therapeutic strategies for DK.
Collapse
Affiliation(s)
- Yuan Zhang
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Qingdao, China.,Department of Ophthalmology, Zhongnan Hospital of Wuhan University, Wuhan, China.,Eye Center, Renmin Hospital of Wuhan University, Wuhan, China
| | - Shengqian Dou
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Qingdao, China.,Qingdao Eye Hospital of Shandong First Medical University, Qingdao, China
| | - Xia Qi
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Qingdao, China.,Qingdao Eye Hospital of Shandong First Medical University, Qingdao, China
| | - Zhenzhen Zhang
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Qingdao, China.,Qingdao Eye Hospital of Shandong First Medical University, Qingdao, China.,Medical College, Qingdao University, Qingdao, China
| | - Yujie Qiao
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Qingdao, China.,Qingdao Eye Hospital of Shandong First Medical University, Qingdao, China
| | - Yani Wang
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Qingdao, China.,Qingdao Eye Hospital of Shandong First Medical University, Qingdao, China.,Medical College, Qingdao University, Qingdao, China
| | - Jin Xie
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Qingdao, China.,Qingdao Eye Hospital of Shandong First Medical University, Qingdao, China
| | - Hui Jiang
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Qingdao, China.,Qingdao Eye Hospital of Shandong First Medical University, Qingdao, China
| | - Bin Zhang
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Qingdao, China.,Qingdao Eye Hospital of Shandong First Medical University, Qingdao, China
| | - Qingjun Zhou
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Qingdao, China.,Qingdao Eye Hospital of Shandong First Medical University, Qingdao, China
| | - Qun Wang
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Qingdao, China.,Qingdao Eye Hospital of Shandong First Medical University, Qingdao, China
| | - Lixin Xie
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Qingdao, China.,Qingdao Eye Hospital of Shandong First Medical University, Qingdao, China
| |
Collapse
|
21
|
Guan H, Huang C, Lu D, Chen G, Lin J, Hu J, He Y, Huang Z. Label-free Raman spectroscopy: A potential tool for early diagnosis of diabetic keratopathy. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 256:119731. [PMID: 33819764 DOI: 10.1016/j.saa.2021.119731] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 03/15/2021] [Accepted: 03/17/2021] [Indexed: 06/12/2023]
Abstract
Diabetes has become a major public health problem worldwide, and the incidence of diabetes has been increasing progressively. Diabetes is prone to cause various complications, among which diabetic keratopathy (DK) emphasizes the significant impact on the cornea. The current diagnosis of DK lacks biochemical markers that can be used for early and non-invasive screening and detection. In contrast, in this study, Raman spectroscopy, which demonstrates non-destructive, label-free features, especially the unique advantage of providing molecular fingerprint information for target substances, were utilized to interrogate the intrinsic information of the corneal tissues from normal and diabetic mouse models, respectively. Visually, the Raman spectral response derived from the biochemical components and biochemical differences between the two groups were compared. Moreover, multivariate analysis methods such as principal component analysis (PCA) and partial least squares discriminant analysis (PLS-DA) were carried out for advanced statistical analysis. PCA yields a diagnostic results of 57.4% sensitivity, 89.2% specificity, 74.8% accuracy between the diabetic group and control group; Moreover, PLS-DA was employed to enhance the diagnostic ability, showing 76.1% sensitivity, 86.1% specificity, and 87.6% accuracy between the diabetic group and control group. Our proof-of-concept results show the potential of Raman spectroscopy-based techniques to help explore the underlying pathogenesis of DK disease and thus be further expanded for potential applications in the early screening of diabetic diseases.
Collapse
Affiliation(s)
- Haohao Guan
- Key Laboratory of Opto-Electronic Science and Technology for Medicine of Ministry of Education, Fujian Provincial Key Laboratory for Photonics Technology, Fujian Normal University, Fuzhou, China
| | - Chunyan Huang
- Department of Ophthalmology, Fujian Medical University Union Hospital, Fuzhou, China
| | - Dechan Lu
- Key Laboratory of Opto-Electronic Science and Technology for Medicine of Ministry of Education, Fujian Provincial Key Laboratory for Photonics Technology, Fujian Normal University, Fuzhou, China
| | - Guannan Chen
- Key Laboratory of Opto-Electronic Science and Technology for Medicine of Ministry of Education, Fujian Provincial Key Laboratory for Photonics Technology, Fujian Normal University, Fuzhou, China
| | - Juqiang Lin
- Key Laboratory of Opto-Electronic Science and Technology for Medicine of Ministry of Education, Fujian Provincial Key Laboratory for Photonics Technology, Fujian Normal University, Fuzhou, China
| | - Jianzhang Hu
- Department of Ophthalmology, Fujian Medical University Union Hospital, Fuzhou, China
| | - Youwu He
- Key Laboratory of Opto-Electronic Science and Technology for Medicine of Ministry of Education, Fujian Provincial Key Laboratory for Photonics Technology, Fujian Normal University, Fuzhou, China
| | - Zufang Huang
- Key Laboratory of Opto-Electronic Science and Technology for Medicine of Ministry of Education, Fujian Provincial Key Laboratory for Photonics Technology, Fujian Normal University, Fuzhou, China.
| |
Collapse
|
22
|
Ivakhnitskaia E, Chin MR, Siegel D, Guaiquil VH. Vinaxanthone inhibits Semaphorin3A induced axonal growth cone collapse in embryonic neurons but fails to block its growth promoting effects on adult neurons. Sci Rep 2021; 11:13019. [PMID: 34155284 PMCID: PMC8217491 DOI: 10.1038/s41598-021-92375-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 06/09/2021] [Indexed: 11/30/2022] Open
Abstract
Semaphorin3A is considered a classical repellent molecule for developing neurons and a potent inhibitor of regeneration after nervous system trauma. Vinaxanthone and other Sema3A inhibitors are currently being tested as possible therapeutics to promote nervous system regeneration from injury. Our previous study on Sema3A demonstrated a switch in Sema3A's function toward induction of nerve regeneration in adult murine corneas and in culture of adult peripheral neurons. The aim of the current study is to determine the direct effects of Vinaxanthone on the Sema3A induced adult neuronal growth. We first demonstrate that Vinaxanthone maintains its anti-Sema3A activity in embryonic dorsal root ganglia neurons by inhibiting Sema3A-induced growth cone collapse. However, at concentrations approximating its IC50 Vinaxanthone treatment does not significantly inhibit neurite formation of adult peripheral neurons induced by Sema3A treatment. Furthermore, Vinaxanthone has off target effects when used at concentrations above its IC50, and inhibits neurite growth of adult neurons treated with either Sema3A or NGF. Our results suggest that Vinaxanthone's pro-regenerative effects seen in multiple in vivo models of neuronal injury in adult animals need further investigation due to the pleiotropic effect of Sema3A on various non-neuronal cell types and the possible effect of Vinaxanthone on other neuroregenerative signals.
Collapse
Affiliation(s)
- Evguenia Ivakhnitskaia
- Department of Ophthalmology and Visual Sciences, University of Illinois-Chicago, Chicago, IL, USA
| | - Matthew R Chin
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA, USA
| | - Dionicio Siegel
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA, USA
| | - Victor H Guaiquil
- Department of Ophthalmology and Visual Sciences, University of Illinois-Chicago, Chicago, IL, USA.
| |
Collapse
|
23
|
Shah R, Amador C, Tormanen K, Ghiam S, Saghizadeh M, Arumugaswami V, Kumar A, Kramerov AA, Ljubimov AV. Systemic diseases and the cornea. Exp Eye Res 2021; 204:108455. [PMID: 33485845 PMCID: PMC7946758 DOI: 10.1016/j.exer.2021.108455] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 01/11/2021] [Accepted: 01/12/2021] [Indexed: 01/08/2023]
Abstract
There is a number of systemic diseases affecting the cornea. These include endocrine disorders (diabetes, Graves' disease, Addison's disease, hyperparathyroidism), infections with viruses (SARS-CoV-2, herpes simplex, varicella zoster, HTLV-1, Epstein-Barr virus) and bacteria (tuberculosis, syphilis and Pseudomonas aeruginosa), autoimmune and inflammatory diseases (rheumatoid arthritis, Sjögren's syndrome, lupus erythematosus, gout, atopic and vernal keratoconjunctivitis, multiple sclerosis, granulomatosis with polyangiitis, sarcoidosis, Cogan's syndrome, immunobullous diseases), corneal deposit disorders (Wilson's disease, cystinosis, Fabry disease, Meretoja's syndrome, mucopolysaccharidosis, hyperlipoproteinemia), and genetic disorders (aniridia, Ehlers-Danlos syndromes, Marfan syndrome). Corneal manifestations often provide an insight to underlying systemic diseases and can act as the first indicator of an undiagnosed systemic condition. Routine eye exams can bring attention to potentially life-threatening illnesses. In this review, we provide a fairly detailed overview of the pathologic changes in the cornea described in various systemic diseases and also discuss underlying molecular mechanisms, as well as current and emerging treatments.
Collapse
Affiliation(s)
- Ruchi Shah
- Eye Program, Board of Governors Regenerative Medicine Institute, Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA.
| | - Cynthia Amador
- Eye Program, Board of Governors Regenerative Medicine Institute, Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Kati Tormanen
- Center for Neurobiology and Vaccine Development, Department of Surgery, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Sean Ghiam
- Sackler School of Medicine, New York State/American Program of Tel Aviv University, Tel Aviv, Israel
| | - Mehrnoosh Saghizadeh
- Eye Program, Board of Governors Regenerative Medicine Institute, Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA; Departments of Molecular and Medical Pharmacology, Medicine, and Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Vaithi Arumugaswami
- Departments of Molecular and Medical Pharmacology, Medicine, and Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Ashok Kumar
- Department of Ophthalmology, Visual and Anatomical Sciences, Wayne State University, Detroit, MI, USA
| | - Andrei A Kramerov
- Eye Program, Board of Governors Regenerative Medicine Institute, Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Alexander V Ljubimov
- Eye Program, Board of Governors Regenerative Medicine Institute, Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA; Departments of Molecular and Medical Pharmacology, Medicine, and Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA.
| |
Collapse
|
24
|
Efraim Y, Chen FYT, Stashko C, Cheong KN, Gaylord E, McNamara N, Knox SM. Alterations in corneal biomechanics underlie early stages of autoimmune-mediated dry eye disease. J Autoimmun 2020; 114:102500. [PMID: 32565048 PMCID: PMC8269964 DOI: 10.1016/j.jaut.2020.102500] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Revised: 05/25/2020] [Accepted: 05/25/2020] [Indexed: 12/11/2022]
Abstract
Autoimmune-mediated dry eye disease is a pathological feature of multiple disorders including Sjögren's syndrome, lupus and rheumatoid arthritis that has a life-long, detrimental impact on vision and overall quality of life. Although late stage disease outcomes such as epithelial barrier dysfunction, reduced corneal innervation and chronic inflammation have been well characterized in both human patients and mouse models, there is little to no understanding of early pathological processes. Moreover, the mechanisms underlying the loss of cornea homeostasis and disease progression are unknown. Here, we utilize the autoimmune regulatory (Aire)-deficient mouse model of autoimmune-mediated dry eye disease in combination with genome wide transcriptomics, high-resolution imaging and atomic force microscopy to reveal a potential extracellular matrix (ECM)-biomechanical-based mechanism driving cellular and morphological changes at early disease onset. Early disease in the Aire-deficient mouse model is associated with a mild reduction in tear production and moderate immune cell infiltration, allowing for interrogation of cellular, molecular and biomechanical changes largely independent of chronic inflammation. Using these tools, we demonstrate for the first time that the emergence of autoimmune-mediated dry eye disease is associated with an alteration in the biomechanical properties of the cornea. We reveal a dramatic disruption of the synthesis and organization of the extracellular matrix as well as degradation of the epithelial basement membrane during early disease. Notably, we provide evidence that the nerve supply to the cornea is severely reduced at early disease stages and that this is independent of basement membrane destruction or significant immune cell infiltration. Furthermore, diseased corneas display spatial heterogeneity in mechanical, structural and compositional changes, with the limbal compartment often exhibiting the opposite response compared to the central cornea. Despite these differences, however, epithelial hyperplasia is apparent in both compartments, possibly driven by increased activation of IL-1R1 and YAP signaling pathways. Thus, we reveal novel perturbations in corneal biomechanics, matrix organization and cell behavior during the early phase of dry eye that may underlie disease development and progression, presenting new potential targets for therapeutic intervention.
Collapse
Affiliation(s)
- Yael Efraim
- Program in Craniofacial Biology, Department of Cell & Tissue Biology, University of California San Francisco, San Francisco, CA, 94143, USA
| | - Feeling Yu Ting Chen
- Program in Craniofacial Biology, Department of Cell & Tissue Biology, University of California San Francisco, San Francisco, CA, 94143, USA
| | - Connor Stashko
- Center for Bioengineering and Tissue Regeneration, Department of Surgery, University of California San Francisco, San Francisco, CA, 94143, USA
| | - Ka Neng Cheong
- Program in Craniofacial Biology, Department of Cell & Tissue Biology, University of California San Francisco, San Francisco, CA, 94143, USA
| | - Eliza Gaylord
- Program in Craniofacial Biology, Department of Cell & Tissue Biology, University of California San Francisco, San Francisco, CA, 94143, USA
| | - Nancy McNamara
- School of Optometry and Vision Science Graduate Program, University of California, Berkeley, CA, 94720, USA; Department of Anatomy, University of California San Francisco, San Francisco, CA, 94143, USA.
| | - Sarah M Knox
- Program in Craniofacial Biology, Department of Cell & Tissue Biology, University of California San Francisco, San Francisco, CA, 94143, USA.
| |
Collapse
|
25
|
Zhang Y, Jiang H, Dou S, Zhang B, Qi X, Li J, Zhou Q, Li W, Chen C, Wang Q, Xie L. Comprehensive analysis of differentially expressed microRNAs and mRNAs involved in diabetic corneal neuropathy. Life Sci 2020; 261:118456. [PMID: 32956661 DOI: 10.1016/j.lfs.2020.118456] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 09/08/2020] [Accepted: 09/14/2020] [Indexed: 11/26/2022]
Abstract
AIMS Corneal nerve fibers are derived from the ophthalmic division of the trigeminal ganglion (TG). Here, by sequencing of microRNAs (miRNAs) and messenger RNAs (mRNAs) from diabetic and normal TG tissues, we aimed to uncover potential miRNAs, mRNAs, and the network of their interactions involved in the pathogenesis of diabetic corneal neuropathy. MAIN METHODS We performed RNA sequencing to systematically screen out differentially expressed miRNAs and mRNAs in TG tissues from diabetic and normal mice. Functional enrichment analyses were performed to illustrate the biological functions of differentially expressed mRNAs (DEmRNAs). Following this, miRNA-mRNA regulatory networks were built by means of bioinformatics methods to suggest regulatory role for miRNAs in the pathogenesis of diabetic corneal neuropathy. Finally, the credibility of the sequencing-based results was validated using qRT-PCR. KEY FINDINGS Sequencing analyses disclosed that 68 miRNAs and 114 mRNAs were differentially expressed in diabetic TG tissues compared with normal TG samples. The functional analyses showed that DEmRNAs participated in diabetes-related biological processes. After applying an optimized approach to predict miRNA-mRNA pairs, a miRNA-mRNA interacting network was inferred. Subsequently, the expression and correlation of miR-350-5p and Mup20, miR-592-5p and Angptl7 as well as miR-351-5p and Elovl6 were preliminarily validated. SIGNIFICANCE Our study provides a systematic characterization of miRNA and mRNA expression in the TG during diabetic corneal neuropathy and will contribute to the development of clinical diagnostic and therapeutic strategies for diabetic corneal neuropathy.
Collapse
Affiliation(s)
- Yuan Zhang
- Department of Ophthalmology, Renmin Hospital of Wuhan University, Wuhan 430060, China; State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, Qingdao 266071, China
| | - Hui Jiang
- Qingdao Eye Hospital of Shandong First Medical University, Qingdao 266071, China; State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, Qingdao 266071, China
| | - Shengqian Dou
- Qingdao Eye Hospital of Shandong First Medical University, Qingdao 266071, China; State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, Qingdao 266071, China
| | - Bin Zhang
- Qingdao Eye Hospital of Shandong First Medical University, Qingdao 266071, China; State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, Qingdao 266071, China
| | - Xia Qi
- Qingdao Eye Hospital of Shandong First Medical University, Qingdao 266071, China; State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, Qingdao 266071, China
| | - Jing Li
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, Qingdao 266071, China
| | - Qingjun Zhou
- Qingdao Eye Hospital of Shandong First Medical University, Qingdao 266071, China; State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, Qingdao 266071, China
| | - Weina Li
- Department of Ophthalmology, Renmin Hospital of Wuhan University, Wuhan 430060, China; State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, Qingdao 266071, China
| | - Chen Chen
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, Qingdao 266071, China
| | - Qun Wang
- Qingdao Eye Hospital of Shandong First Medical University, Qingdao 266071, China; State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, Qingdao 266071, China.
| | - Lixin Xie
- Qingdao Eye Hospital of Shandong First Medical University, Qingdao 266071, China; State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, Qingdao 266071, China.
| |
Collapse
|
26
|
The Role of Semaphorins in Metabolic Disorders. Int J Mol Sci 2020; 21:ijms21165641. [PMID: 32781674 PMCID: PMC7460634 DOI: 10.3390/ijms21165641] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 07/20/2020] [Accepted: 07/28/2020] [Indexed: 12/15/2022] Open
Abstract
Semaphorins are a family originally identified as axonal guidance molecules. They are also involved in tumor growth, angiogenesis, immune regulation, as well as other biological and pathological processes. Recent studies have shown that semaphorins play a role in metabolic diseases including obesity, adipose inflammation, and diabetic complications, including diabetic retinopathy, diabetic nephropathy, diabetic neuropathy, diabetic wound healing, and diabetic osteoporosis. Evidence provides mechanistic insights regarding the role of semaphorins in metabolic diseases by regulating adipogenesis, hypothalamic melanocortin circuit, immune responses, and angiogenesis. In this review, we summarize recent progress regarding the role of semaphorins in obesity, adipose inflammation, and diabetic complications.
Collapse
|
27
|
Zhang Y, Gao N, Wu L, Lee PSY, Me R, Dai C, Xie L, Yu FSX. Role of VIP and Sonic Hedgehog Signaling Pathways in Mediating Epithelial Wound Healing, Sensory Nerve Regeneration, and Their Defects in Diabetic Corneas. Diabetes 2020; 69:1549-1561. [PMID: 32345752 PMCID: PMC7306128 DOI: 10.2337/db19-0870] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Accepted: 04/20/2020] [Indexed: 12/21/2022]
Abstract
Diabetic keratopathy, a sight-threatening corneal disease, comprises several symptomatic conditions including delayed epithelial wound healing, recurrent erosions, and sensory nerve (SN) neuropathy. We investigated the role of neuropeptides in mediating corneal wound healing, including epithelial wound closure and SN regeneration. Denervation by resiniferatoxin severely impaired corneal wound healing and markedly upregulated proinflammatory gene expression. Exogenous neuropeptides calcitonin gene-related peptide (CGRP), substance P (SP), and vasoactive intestinal peptide (VIP) partially reversed resiniferatoxin's effects, with VIP specifically inducing interleukin-10 expression. Hence, we focused on VIP and observed that wounding induced VIP and VIP type 1 receptor (VIPR1) expression in normal (NL) corneas, but not corneas from mice with diabetes mellitus (DM). Targeting VIPR1 in NL corneas attenuated corneal wound healing, dampened wound-induced expression of neurotrophic factors, and exacerbated inflammatory responses, while exogenous VIP had the opposite effects in DM corneas. Remarkably, wounding and diabetes also affected the expression of Sonic Hedgehog (Shh) in a VIP-dependent manner. Downregulating Shh expression in NL corneas decreased while exogenous Shh in DM corneas increased the rates of corneal wound healing. Furthermore, inhibition of Shh signaling dampened VIP-promoted corneal wound healing. We conclude that VIP regulates epithelial wound healing, inflammatory response, and nerve regeneration in the corneas in an Shh-dependent manner, suggesting a therapeutic potential for these molecules in treating diabetic keratopathy.
Collapse
Affiliation(s)
- Yangyang Zhang
- Departments of Ophthalmology, Visual and Anatomical Sciences and Anatomy and Cell Biology, Wayne State University School of Medicine, Detroit, MI
- Qingdao Eye Hospital, Shandong Eye Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Qingdao, China
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Qingdao, China
| | - Nan Gao
- Departments of Ophthalmology, Visual and Anatomical Sciences and Anatomy and Cell Biology, Wayne State University School of Medicine, Detroit, MI
| | - Lin Wu
- Departments of Ophthalmology, Visual and Anatomical Sciences and Anatomy and Cell Biology, Wayne State University School of Medicine, Detroit, MI
| | - Patrick S Y Lee
- Departments of Ophthalmology, Visual and Anatomical Sciences and Anatomy and Cell Biology, Wayne State University School of Medicine, Detroit, MI
| | - Rao Me
- Departments of Ophthalmology, Visual and Anatomical Sciences and Anatomy and Cell Biology, Wayne State University School of Medicine, Detroit, MI
| | - Chenyang Dai
- Departments of Ophthalmology, Visual and Anatomical Sciences and Anatomy and Cell Biology, Wayne State University School of Medicine, Detroit, MI
| | - Lixin Xie
- Qingdao Eye Hospital, Shandong Eye Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Qingdao, China
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Qingdao, China
| | - Fu-Shin X Yu
- Departments of Ophthalmology, Visual and Anatomical Sciences and Anatomy and Cell Biology, Wayne State University School of Medicine, Detroit, MI
| |
Collapse
|
28
|
Li W, Wang X, Cheng J, Li J, Wang Q, Zhou Q, Li H, Xue J, Zhang Y, Yang L, Xie L. Leucine-rich α-2-glycoprotein-1 promotes diabetic corneal epithelial wound healing and nerve regeneration via regulation of matrix metalloproteinases. Exp Eye Res 2020; 196:108060. [DOI: 10.1016/j.exer.2020.108060] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 04/23/2020] [Accepted: 04/28/2020] [Indexed: 12/17/2022]
|
29
|
Wang X, Li W, Zhou Q, Li J, Wang X, Zhang J, Li D, Qi X, Liu T, Zhao X, Li S, Yang L, Xie L. MANF Promotes Diabetic Corneal Epithelial Wound Healing and Nerve Regeneration by Attenuating Hyperglycemia-Induced Endoplasmic Reticulum Stress. Diabetes 2020; 69:1264-1278. [PMID: 32312869 DOI: 10.2337/db19-0835] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Accepted: 03/15/2020] [Indexed: 11/13/2022]
Abstract
Mesencephalic astrocyte-derived neurotrophic factor (MANF) is a neurotrophic factor widely expressed in mammalian tissues, and it exerts critical protective effects on neurons and other cell types in various disease models, such as those for diabetes. However, to date, the expression and roles of MANF in the cornea, with or without diabetic keratopathy (DK), remain unclear. Here, we demonstrate that MANF is abundantly expressed in normal corneal epithelial cells; however, MANF expression was significantly reduced in both unwounded and wounded corneal epithelium in streptozotocin-induced type 1 diabetic C57BL/6 mice. Recombinant human MANF significantly promoted normal and diabetic corneal epithelial wound healing and nerve regeneration. Furthermore, MANF inhibited hyperglycemia-induced endoplasmic reticulum (ER) stress and ER stress-mediated apoptosis. Attenuation of ER stress with 4-phenylbutyric acid (4-PBA) also ameliorated corneal epithelial closure and nerve regeneration. However, the beneficial effects of MANF and 4-PBA were abolished by an Akt inhibitor and Akt-specific small interfering RNA (siRNA). Finally, we reveal that the subconjunctival injection of MANF-specific siRNA prevents corneal epithelial wound healing and nerve regeneration. Our results provide important evidence that hyperglycemia-suppressed MANF expression may contribute to delayed corneal epithelial wound healing and impaired nerve regeneration by increasing ER stress, and MANF may be a useful therapeutic modality for treating DK.
Collapse
Affiliation(s)
- Xiaochuan Wang
- School of Medicine and Life Sciences, University of Jinan-Shandong Academy of Medical Sciences, Jinan, Shandong, China
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Qingdao, Shandong, China
| | - Weina Li
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Qingdao, Shandong, China
- Department of Ophthalmology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Qingjun Zhou
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Qingdao, Shandong, China
| | - Jing Li
- School of Medicine and Life Sciences, University of Jinan-Shandong Academy of Medical Sciences, Jinan, Shandong, China
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Qingdao, Shandong, China
| | - Xiaolei Wang
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Qingdao, Shandong, China
| | - Jing Zhang
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Qingdao, Shandong, China
| | - Dewei Li
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Qingdao, Shandong, China
| | - Xia Qi
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Qingdao, Shandong, China
| | - Ting Liu
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Qingdao, Shandong, China
| | - Xiaowen Zhao
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Qingdao, Shandong, China
| | - Suxia Li
- Shandong Eye Hospital, Shandong Eye Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Lingling Yang
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Qingdao, Shandong, China
| | - Lixin Xie
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Qingdao, Shandong, China
| |
Collapse
|