1
|
Xu Y, Huang J, Tang S, Sun Y, Li H, Li P, Li X, Hattori M, Wu X, Zhang H, Wang Z. Anti-diabetes activity of (R)-gentiandiol in KKAy type 2 mice. Sci Rep 2025; 15:15730. [PMID: 40325051 PMCID: PMC12052974 DOI: 10.1038/s41598-025-00422-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Accepted: 04/28/2025] [Indexed: 05/07/2025] Open
Abstract
Swertiamarin is a major component of many traditional Chinese Swertia herbs that show significant antidiabetic activity. (R)-Gentiandiol and (S)-gentiandiol are metabolites of swertiamarin found in vivo. The antidiabetic activity of swertiamarin and its nitrogen-containing metabolites (R)-gentiandiol and (S)-gentiandiol was evaluated in this research, and their mechanism of action was investigated after evaluating the serum metabolic profile of KK/Upj-Ay type 2 mice. The pharmaceutical effects of swertiamarin, (R)-gentiandiol, and (S)-gentiandiol were tested by biochemical indices and histopathological observations. Moreover, the mechanism underlying the action of three compounds against type 2 diabetes was elucidated using a metabolomic method. It was shown that (R)-gentiandiol significantly improved pathological changes in the kidney and pancreas. The levels of total cholesterol, triglyceride, and high-density and low-density lipoprotein cholesterol improved considerably after treatment with (R)-gentiandiol, compared to their levels in model mice. However, the levels of these compounds showed no improvement after treatment with (S)-gentiandiol. In total, 15 biomarkers were identified in KK/Upj-Ay type 2 mice, and the levels of 10 biomarkers were measured after treatment with (R)-gentiandiol. (R)-Gentiandiol reduced the abnormalities in metabolic pathways, including lipid metabolism, amino acid metabolism, carbohydrate metabolism, and nucleotide metabolism. Additionally, glycine, serine, and threonine metabolism related to the regulation of glycine was affected the most. The study indicated that the antidiabetic effects of Swertia herbs may due to (R)-gentiandiol which is a metabolite of swertiamarin in vivo. This study helps clarify the active metabolites of swertiamarin, provide greater insights into the clinical antidiabetic effects of Swertia herbs and bring novel ideas for developing new drugs from antidiabetic herbs.
Collapse
Affiliation(s)
- Yaqi Xu
- Department of Pharmaceutical Analysis, College of Pharmacy, Heilongjiang University of Chinese Medicine, Heping road 24, Harbin, 150040, China
| | - Jinyue Huang
- Department of Pharmaceutical Analysis, College of Pharmacy, Heilongjiang University of Chinese Medicine, Heping road 24, Harbin, 150040, China
| | - Shuhan Tang
- Institute of Natural Medicine, University of Toyama, 2630 Sugitani, Toyama, 930-0194, Japan
- Heilongjiang Hospital, Beijing Children's Hospital, Youyi road 57, Harbin, 150000, China
| | - Yidan Sun
- Department of Pharmaceutical Analysis, College of Pharmacy, Heilongjiang University of Chinese Medicine, Heping road 24, Harbin, 150040, China
| | - Hao Li
- Department of Pharmaceutical Analysis, College of Pharmacy, Heilongjiang University of Chinese Medicine, Heping road 24, Harbin, 150040, China
| | - Pengyu Li
- Department of Pharmaceutical Analysis, College of Pharmacy, Heilongjiang University of Chinese Medicine, Heping road 24, Harbin, 150040, China
| | - Xianna Li
- Department of Pharmaceutical Analysis, College of Pharmacy, Heilongjiang University of Chinese Medicine, Heping road 24, Harbin, 150040, China
| | - Masao Hattori
- Institute of Natural Medicine, University of Toyama, 2630 Sugitani, Toyama, 930-0194, Japan
| | - Xiuhong Wu
- Department of Pharmaceutical Analysis, College of Pharmacy, Heilongjiang University of Chinese Medicine, Heping road 24, Harbin, 150040, China
| | - Hailong Zhang
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
| | - Zhigang Wang
- Department of Pharmaceutical Analysis, College of Pharmacy, Heilongjiang University of Chinese Medicine, Heping road 24, Harbin, 150040, China.
- Institute of Natural Medicine, University of Toyama, 2630 Sugitani, Toyama, 930-0194, Japan.
| |
Collapse
|
2
|
Bala C, Rusu A, Ciobanu DM, Roman G, Crăciun AE. Metabolomics in Pathogenic Pathways and Targeted Therapies for Diabetic Neuropathy: A Comprehensive Review. Metabolites 2025; 15:86. [PMID: 39997711 PMCID: PMC11857525 DOI: 10.3390/metabo15020086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2024] [Revised: 01/23/2025] [Accepted: 01/27/2025] [Indexed: 02/26/2025] Open
Abstract
INTRODUCTION AND OBJECTIVE This literature review aims to provide an overview of the progress in metabolomic assessment in animal and cell models and in humans with diabetic neuropathy (DN). METHODS Metabolomics has emerged as an important approach for investigating, identifying, and describing biomarkers related to DN. None has yet been validated for use in clinical practice. RESULTS DN induced significant alterations in energy metabolism and carbohydrates, lipids, amino acids, peptides, and proteins. Several treatments for DN, evaluated using metabolomics, were proved to have promising results. CONCLUSIONS The ideal metabolite or set of metabolites that could be used as biomarkers should identify patients with diabetes prone to develop DN or those prone to progress to severe forms of sensory loss, associated with risk of ulcerations and amputation. Another potential use of a metabolite might be as an indicator of treatment response in clinical trials using agents with potential disease-modifying properties.
Collapse
Affiliation(s)
| | | | - Dana Mihaela Ciobanu
- Department of Diabetes and Nutrition Diseases, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400006 Cluj-Napoca, Romania; (C.B.); (A.R.); (G.R.); (A.E.C.)
| | | | | |
Collapse
|
3
|
Yu X, Fu B, Sun T, Sun X. Causal relationship between diabetes mellitus and lung cancer: a two-sample Mendelian randomization and mediation analysis. Front Genet 2024; 15:1449881. [PMID: 39655224 PMCID: PMC11625780 DOI: 10.3389/fgene.2024.1449881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Accepted: 11/13/2024] [Indexed: 12/12/2024] Open
Abstract
Background Diabetes mellitus (DM) is the common comorbidity with lung cancer (LC), and metabolic disorders have been identified as significant contributors to the pathogenesis of both DM and LC. The causality between diabetes mellitus and lung cancer is still controversial. Hence, the causal effects of DM on the risk of LC was systemically investigated, and the mediating role of blood metabolites in this relationship was further explored. Methods This study utilized a comprehensive Mendelian randomization (MR) analysis to investigate the association between diabetes mellitus and lung cancer. The inverse variance weighted method was employed as the principle approach. MR Egger and weighted median were complementary calculations for MR assessment. A two-step MR analysis was performed to evaluate the mediating effects of blood metabolites as potential intermediate factors. Simultaneously, sensitivity analyses were performed to confirm the lack of horizontal pleiotropy and heterogeneity. Results The two-sample MR analysis illustrated the overall effect of type 1 diabetes mellitus (T1DM) on lung squamous cell carcinoma (LUSC) (OR: 1.040, 95% CI: 1.010-1.072, p = 0.009). No causal connection was found between T2DM and the subtypes of lung cancer. Two-step MR identified two candidate mediators partially mediating the total effect of T1DM on LUSC, including glutamine conjugate of C6H10O2 levels (17.22%) and 2-hydroxyoctanoate levels (5.85%). Conclusion Our findings supported a potentially causal effect of T1DM against LUSC, and shed light on the importance of metabolites as risk factors in understanding this relationship.
Collapse
Affiliation(s)
| | | | | | - Xu Sun
- Department of Integrated Chinese and Western Medicine, The Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, Zhengzhou, China
| |
Collapse
|
4
|
Xue S, Yang L, Xu M, Zhang Y, Liu H. The screening of α-glucosidase inhibitory peptides from β-conglycinin and hypoglycemic mechanism in HepG2 cells and zebrafish larvae. Int J Biol Macromol 2024; 278:134678. [PMID: 39137852 DOI: 10.1016/j.ijbiomac.2024.134678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 08/09/2024] [Accepted: 08/10/2024] [Indexed: 08/15/2024]
Abstract
Inhibition of carbohydrate digestive enzymes is a key focus across diverse fields, given the prominence of α-glucosidase inhibitors as preferred oral hypoglycaemic drugs for diabetes treatment. β-conglycinin is the most abundant functional protein in soy; however, it is unclear whether the peptides produced after its gastrointestinal digestion exhibit α-glucosidase inhibitory properties. Therefore, we examined the α-glucosidase inhibitory potential of soy peptides. Specifically, β-conglycinin was subjected to simulated gastrointestinal digestion by enzymatically cleaving it into 95 peptides with gastric, pancreatic and chymotrypsin enzymes. Eight soybean peptides were selected based on their predicted activity; absorption, distribution, metabolism, excretion and toxicity score; and molecular docking analysis. The results indicated that hydrogen bonding and electrostatic interactions play important roles in inhibiting α-glucosidase, with the tripeptide SGR exhibiting the greatest inhibitory effect (IC50 = 10.57 μg/mL). In vitro studies revealed that SGR markedly improved glucose metabolism disorders in insulin-resistant HepG2 cells without affecting cell viability. Animal experiments revealed that SGR significantly improved blood glucose and decreased maltase activity in type 2 diabetic zebrafish larvae, but it did not result in the death of zebrafish larvae. Transcriptomic analysis revealed that SGR exerts its anti-diabetic and hypoglycaemic effects by attenuating the expression of several genes, including Slc2a1, Hsp70, Cpt2, Serpinf1, Sfrp2 and Ggt1a. These results suggest that SGR is a potential food-borne bioactive peptide for managing diabetes.
Collapse
Affiliation(s)
- Sen Xue
- College of Food Science and Engineering, Bohai University, Jinzhou, Liaoning 121013, China; Grain and Cereal Food Bio-efficient Transformation Engineering Research Center of Liaoning Province, Jinzhou 121013, China
| | - Lina Yang
- College of Food Science and Engineering, Bohai University, Jinzhou, Liaoning 121013, China; Grain and Cereal Food Bio-efficient Transformation Engineering Research Center of Liaoning Province, Jinzhou 121013, China.
| | - Mengnan Xu
- College of Food Science and Engineering, Bohai University, Jinzhou, Liaoning 121013, China; Grain and Cereal Food Bio-efficient Transformation Engineering Research Center of Liaoning Province, Jinzhou 121013, China
| | - Yangyang Zhang
- College of Food Science and Engineering, Bohai University, Jinzhou, Liaoning 121013, China; Grain and Cereal Food Bio-efficient Transformation Engineering Research Center of Liaoning Province, Jinzhou 121013, China
| | - He Liu
- College of Food Science and Engineering, Bohai University, Jinzhou, Liaoning 121013, China; Grain and Cereal Food Bio-efficient Transformation Engineering Research Center of Liaoning Province, Jinzhou 121013, China
| |
Collapse
|
5
|
Insenser MR, Nattero-Chávez L, Luque-Ramírez M, Quiñones SDL, Quintero-Tobar A, Samino S, Amigó N, Dorado Avendaño B, Fiers T, Escobar-Morreale HF. Investigating the Link between Intermediate Metabolism, Sexual Dimorphism, and Cardiac Autonomic Dysfunction in Patients with Type 1 Diabetes. Metabolites 2024; 14:436. [PMID: 39195532 DOI: 10.3390/metabo14080436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 07/24/2024] [Accepted: 08/02/2024] [Indexed: 08/29/2024] Open
Abstract
Sexual dimorphism influences cardiovascular outcomes in type 1 diabetes (T1D), with women facing a higher relative risk of macrovascular events compared to men, especially after menopause. This study hypothesizes that abnormalities in intermediate metabolism may be associated with cardiac autonomic neuropathy (CAN) in T1D. We aim to assess low molecular weight metabolites (LMWM) as markers of CAN in T1D, considering the effects of sexual dimorphism and age. In this cross-sectional study, we included 323 subjects with T1D (147 women and 176 men), with a mean age of 41 ± 13 years. A total of 44 women and 41 men were over 50 years old. CAN was assessed using Ewing's tests, and serum metabolites were analyzed by proton nuclear magnetic resonance spectroscopy (1H-NMR). Patients with CAN had lower levels of valine, isoleucine, and threonine, and higher levels of lactate, compared to those without CAN. These differences persisted after adjusting for BMI and estimated glucose disposal rate (eGDR). In a logistic regression model (R² = 0.178, p < 0.001), the main determinants of CAN included isoleucine [Exp(β) = 0.972 (95% CI 0.952; 0.003)], age [Exp(β) = 1.031 (95% CI 1.010; 1.053)], A1c [Exp(β) = 1.361 (95% CI 1.058; 1.752)], and microangiopathy [Exp(β) = 2.560 (95% CI 1.372; 4.778)]. Sex influenced LMWM profiles, with over half of the metabolites differing between men and women. However, no interactions were found between CAN and sex, or between sex, age, and CAN, on metabolomics profiles. Our findings suggest an association between CAN and LMWM levels in T1D. The sexual dimorphism observed in amino acid metabolites was unaffected by the presence of CAN.
Collapse
Affiliation(s)
- María Rosa Insenser
- Diabetes, Obesity and Human Reproduction Research Group, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS) & Centro de Investigación Biomédica en Red Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Universidad de Alcalá, 28034 Madrid, Spain
| | - Lía Nattero-Chávez
- Diabetes, Obesity and Human Reproduction Research Group, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS) & Centro de Investigación Biomédica en Red Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Universidad de Alcalá, 28034 Madrid, Spain
- Department of Endocrinology and Nutrition, Hospital Universitario Ramón y Cajal, 28034 Madrid, Spain
| | - Manuel Luque-Ramírez
- Diabetes, Obesity and Human Reproduction Research Group, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS) & Centro de Investigación Biomédica en Red Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Universidad de Alcalá, 28034 Madrid, Spain
- Department of Endocrinology and Nutrition, Hospital Universitario Ramón y Cajal, 28034 Madrid, Spain
| | - Sara de Lope Quiñones
- Diabetes, Obesity and Human Reproduction Research Group, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS) & Centro de Investigación Biomédica en Red Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Universidad de Alcalá, 28034 Madrid, Spain
| | - Alejandra Quintero-Tobar
- Diabetes, Obesity and Human Reproduction Research Group, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS) & Centro de Investigación Biomédica en Red Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Universidad de Alcalá, 28034 Madrid, Spain
| | - Sara Samino
- Biosfer Teslab, CIBERDEM, 43206 Tarragona, Spain
| | - Núria Amigó
- Biosfer Teslab, CIBERDEM, 43206 Tarragona, Spain
- Institut d'Investigació Sanitària Pere Virgili (IISPV), Department of Basic Medical Sciences, Universitat Rovira i Virgili (URV), 43002 Tarragona, Spain
| | - Beatriz Dorado Avendaño
- Department of Endocrinology and Nutrition, Hospital Universitario Ramón y Cajal, 28034 Madrid, Spain
| | - Tom Fiers
- Laboratory for Hormonology and Department of Endocrinology, Ghent University Hospital, 9000 Ghent, Belgium
| | - Héctor F Escobar-Morreale
- Diabetes, Obesity and Human Reproduction Research Group, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS) & Centro de Investigación Biomédica en Red Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Universidad de Alcalá, 28034 Madrid, Spain
- Department of Endocrinology and Nutrition, Hospital Universitario Ramón y Cajal, 28034 Madrid, Spain
| |
Collapse
|
6
|
Mihailović M, Soković Bajić S, Arambašić Jovanović J, Brdarić E, Dinić S, Grdović N, Uskoković A, Rajić J, Đorđević M, Tolinački M, Golić N, Živković M, Vidaković M. Beneficial Effects of Probiotic Lactobacillus paraplantarum BGCG11 on Pancreatic and Duodenum Function in Diabetic Rats. Int J Mol Sci 2024; 25:7697. [PMID: 39062940 PMCID: PMC11277547 DOI: 10.3390/ijms25147697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 07/09/2024] [Accepted: 07/11/2024] [Indexed: 07/28/2024] Open
Abstract
Diabetes mellitus, as a chronic metabolic disorder, significantly impacts the pancreas and among other organs, affects duodenal function. Emerging evidence suggests that probiotics can exert beneficial effects on gut health and metabolism. In our previous research, we evaluated the probiotic Lactobacillus paraplantarum BGCG11 primarily for its protective properties against diabetic rats' damaged liver and kidneys. In this work, we further examined the effects of probiotic strain BGCG11 on the function of the duodenum and pancreas in diabetic rats. We explored the potential mechanisms underlying the probiotic's effects, focusing on general indicators of diabetes, the architecture and morphology of pancreatic islets, duodenal integrity (measuring the transfer of fluid and serum zonulin level), and the modulation of gut microbiota composition. Our findings reveal the protective and regulatory roles of L. paraplantarum BGCG11 in mitigating diabetes-induced pancreatic and duodenal dysfunction regardless of its application time (pre- or post-treatment), highlighting its therapeutic potential in managing diabetes-related gastrointestinal complications.
Collapse
Affiliation(s)
- Mirjana Mihailović
- Institute for Biological Research “Siniša Stanković”, University of Belgrade, Bulevar Despota Stefana 142, 10060 Belgrade, Serbia; (M.M.); (J.A.J.); (S.D.); (N.G.); (A.U.); (J.R.); (M.Đ.)
| | - Svetlana Soković Bajić
- Institute of Molecular Genetics and Genetics Engineering, University of Belgrade, Vojvode Stepe 444a, P.O. Box 23, 11010 Belgrade, Serbia (E.B.); (M.T.); (N.G.)
| | - Jelena Arambašić Jovanović
- Institute for Biological Research “Siniša Stanković”, University of Belgrade, Bulevar Despota Stefana 142, 10060 Belgrade, Serbia; (M.M.); (J.A.J.); (S.D.); (N.G.); (A.U.); (J.R.); (M.Đ.)
| | - Emilija Brdarić
- Institute of Molecular Genetics and Genetics Engineering, University of Belgrade, Vojvode Stepe 444a, P.O. Box 23, 11010 Belgrade, Serbia (E.B.); (M.T.); (N.G.)
| | - Svetlana Dinić
- Institute for Biological Research “Siniša Stanković”, University of Belgrade, Bulevar Despota Stefana 142, 10060 Belgrade, Serbia; (M.M.); (J.A.J.); (S.D.); (N.G.); (A.U.); (J.R.); (M.Đ.)
| | - Nevena Grdović
- Institute for Biological Research “Siniša Stanković”, University of Belgrade, Bulevar Despota Stefana 142, 10060 Belgrade, Serbia; (M.M.); (J.A.J.); (S.D.); (N.G.); (A.U.); (J.R.); (M.Đ.)
| | - Aleksandra Uskoković
- Institute for Biological Research “Siniša Stanković”, University of Belgrade, Bulevar Despota Stefana 142, 10060 Belgrade, Serbia; (M.M.); (J.A.J.); (S.D.); (N.G.); (A.U.); (J.R.); (M.Đ.)
| | - Jovana Rajić
- Institute for Biological Research “Siniša Stanković”, University of Belgrade, Bulevar Despota Stefana 142, 10060 Belgrade, Serbia; (M.M.); (J.A.J.); (S.D.); (N.G.); (A.U.); (J.R.); (M.Đ.)
| | - Marija Đorđević
- Institute for Biological Research “Siniša Stanković”, University of Belgrade, Bulevar Despota Stefana 142, 10060 Belgrade, Serbia; (M.M.); (J.A.J.); (S.D.); (N.G.); (A.U.); (J.R.); (M.Đ.)
| | - Maja Tolinački
- Institute of Molecular Genetics and Genetics Engineering, University of Belgrade, Vojvode Stepe 444a, P.O. Box 23, 11010 Belgrade, Serbia (E.B.); (M.T.); (N.G.)
| | - Nataša Golić
- Institute of Molecular Genetics and Genetics Engineering, University of Belgrade, Vojvode Stepe 444a, P.O. Box 23, 11010 Belgrade, Serbia (E.B.); (M.T.); (N.G.)
| | - Milica Živković
- Institute of Molecular Genetics and Genetics Engineering, University of Belgrade, Vojvode Stepe 444a, P.O. Box 23, 11010 Belgrade, Serbia (E.B.); (M.T.); (N.G.)
| | - Melita Vidaković
- Institute for Biological Research “Siniša Stanković”, University of Belgrade, Bulevar Despota Stefana 142, 10060 Belgrade, Serbia; (M.M.); (J.A.J.); (S.D.); (N.G.); (A.U.); (J.R.); (M.Đ.)
| |
Collapse
|
7
|
Awchi M, Singh KD, Brenner SB, Burckhardt MA, Hess M, Zeng J, Datta AN, Frey U, Zumsteg U, Szinnai G, Sinues P. Metabolic trajectories of diabetic ketoacidosis onset described by breath analysis. Front Endocrinol (Lausanne) 2024; 15:1360989. [PMID: 38752172 PMCID: PMC11094216 DOI: 10.3389/fendo.2024.1360989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Accepted: 04/02/2024] [Indexed: 05/18/2024] Open
Abstract
Purpose This feasibility study aimed to investigate the use of exhaled breath analysis to capture and quantify relative changes of metabolites during resolution of acute diabetic ketoacidosis under insulin and rehydration therapy. Methods Breath analysis was conducted on 30 patients of which 5 with DKA. They inflated Nalophan bags, and their metabolic content was subsequently interrogated by secondary electrospray ionization high-resolution mass spectrometry (SESI-HRMS). Results SESI-HRMS analysis showed that acetone, pyruvate, and acetoacetate, which are well known to be altered in DKA, were readily detectable in breath of participants with DKA. In addition, a total of 665 mass spectral features were found to significantly correlate with base excess and prompt metabolic trajectories toward an in-control state as they progress toward homeostasis. Conclusion This study provides proof-of-principle for using exhaled breath analysis in a real ICU setting for DKA monitoring. This non-invasive new technology provides new insights and a more comprehensive overview of the effect of insulin and rehydration during DKA treatment.
Collapse
Affiliation(s)
- Mo Awchi
- University Children’s Hospital Basel, Basel, Switzerland
- Department of Biomedical Engineering, University of Basel, Basel, Switzerland
| | - Kapil Dev Singh
- University Children’s Hospital Basel, Basel, Switzerland
- Department of Biomedical Engineering, University of Basel, Basel, Switzerland
| | - Sara Bachmann Brenner
- University Children’s Hospital Basel, Basel, Switzerland
- Department of Clinical Research, University of Basel, Basel, Switzerland
| | - Marie-Anne Burckhardt
- University Children’s Hospital Basel, Basel, Switzerland
- Department of Clinical Research, University of Basel, Basel, Switzerland
| | - Melanie Hess
- University Children’s Hospital Basel, Basel, Switzerland
- Department of Clinical Research, University of Basel, Basel, Switzerland
| | - Jiafa Zeng
- University Children’s Hospital Basel, Basel, Switzerland
- Department of Biomedical Engineering, University of Basel, Basel, Switzerland
| | - Alexandre N. Datta
- University Children’s Hospital Basel, Basel, Switzerland
- Department of Clinical Research, University of Basel, Basel, Switzerland
| | - Urs Frey
- University Children’s Hospital Basel, Basel, Switzerland
- Department of Clinical Research, University of Basel, Basel, Switzerland
| | - Urs Zumsteg
- University Children’s Hospital Basel, Basel, Switzerland
| | - Gabor Szinnai
- University Children’s Hospital Basel, Basel, Switzerland
- Department of Clinical Research, University of Basel, Basel, Switzerland
| | - Pablo Sinues
- University Children’s Hospital Basel, Basel, Switzerland
- Department of Biomedical Engineering, University of Basel, Basel, Switzerland
| |
Collapse
|
8
|
Kushibiki H, Mizukami H, Osonoi S, Takeuchi Y, Sasaki T, Ogasawara S, Wada K, Midorikawa S, Ryuzaki M, Wang Z, Yamada T, Yamazaki K, Tarusawa T, Tanba T, Mikami T, Matsubara A, Ishibashi Y, Hakamada K, Nakaji S. Tryptophan metabolism and small fibre neuropathy: a correlation study. Brain Commun 2024; 6:fcae103. [PMID: 38618209 PMCID: PMC11010654 DOI: 10.1093/braincomms/fcae103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 01/10/2024] [Accepted: 03/24/2024] [Indexed: 04/16/2024] Open
Abstract
Small nerve fibres located in the epidermis sense pain. Dysfunction of these fibres decreases the pain threshold known as small fibre neuropathy. Diabetes mellitus is accompanied by metabolic changes other than glucose, synergistically eliciting small fibre neuropathy. These findings suggest that various metabolic changes may be involved in small fibre neuropathy. Herein, we explored the correlation between pain sensation and changes in plasma metabolites in healthy Japanese subjects. The pain threshold evaluated from the intraepidermal electrical stimulation was used to quantify pain sensation in a total of 1021 individuals in the 2017 Iwaki Health Promotion Project. Participants with a pain threshold evaluated from the intraepidermal electrical stimulation index <0.20 mA were categorized into the pain threshold evaluated from the intraepidermal electrical stimulation index-low group (n = 751); otherwise, they were categorized into the pain threshold evaluated from the intraepidermal electrical stimulation index-high group (n = 270). Metabolome analysis of plasma was conducted using capillary electrophoresis time-of-flight mass spectrometry. The metabolite set enrichment analysis revealed that the metabolism of tryptophan was significantly correlated with the pain threshold evaluated from the intraepidermal electrical stimulation index in all participants (P < 0.05). The normalized level of tryptophan was significantly decreased in participants with a high pain threshold evaluated from the intraepidermal electrical stimulation index. In addition to univariate linear regression analyses, the correlation between tryptophan concentration and the pain threshold evaluated from the intraepidermal electrical stimulation index remained significant after adjustment for multiple factors (β = -0.07615, P < 0.05). These findings indicate that specific metabolic changes are involved in the deterioration of pain thresholds. Here, we show that abnormal tryptophan metabolism is significantly correlated with an elevated pain threshold evaluated from the intraepidermal electrical stimulation index in the Japanese population. This correlation provides insight into the pathology and clinical application of small fibre neuropathy.
Collapse
Affiliation(s)
- Hanae Kushibiki
- Department of Pathology and Molecular Medicine, Biomedical Research Center, Hirosaki University Graduate School of Medicine, Hirosaki, Aomori 036-8562, Japan
| | - Hiroki Mizukami
- Department of Pathology and Molecular Medicine, Biomedical Research Center, Hirosaki University Graduate School of Medicine, Hirosaki, Aomori 036-8562, Japan
| | - Sho Osonoi
- Department of Pathology and Molecular Medicine, Biomedical Research Center, Hirosaki University Graduate School of Medicine, Hirosaki, Aomori 036-8562, Japan
- Department of Endocrinology and Metabolism, Hirosaki University Graduate School of Medicine, Hirosaki, Aomori 036-8562, Japan
| | - Yuki Takeuchi
- Department of Pathology and Molecular Medicine, Biomedical Research Center, Hirosaki University Graduate School of Medicine, Hirosaki, Aomori 036-8562, Japan
- Department of Endocrinology and Metabolism, Hirosaki University Graduate School of Medicine, Hirosaki, Aomori 036-8562, Japan
| | - Takanori Sasaki
- Department of Pathology and Molecular Medicine, Biomedical Research Center, Hirosaki University Graduate School of Medicine, Hirosaki, Aomori 036-8562, Japan
| | - Saori Ogasawara
- Department of Pathology and Molecular Medicine, Biomedical Research Center, Hirosaki University Graduate School of Medicine, Hirosaki, Aomori 036-8562, Japan
| | - Kanichiro Wada
- Department of Orthopaedic Surgery, Hirosaki University Graduate School of Medicine, Hirosaki, Aomori 036-8562, Japan
| | - Shin Midorikawa
- Department of Pathology and Molecular Medicine, Biomedical Research Center, Hirosaki University Graduate School of Medicine, Hirosaki, Aomori 036-8562, Japan
- Department of Otorhinolaryngology-Head and Neck Surgery, Hirosaki University Graduate School of Medicine, Hirosaki, Aomori 036-8562, Japan
| | - Masaki Ryuzaki
- Department of Pathology and Molecular Medicine, Biomedical Research Center, Hirosaki University Graduate School of Medicine, Hirosaki, Aomori 036-8562, Japan
| | - Zhenchao Wang
- Department of Pathology and Molecular Medicine, Biomedical Research Center, Hirosaki University Graduate School of Medicine, Hirosaki, Aomori 036-8562, Japan
| | - Takahiro Yamada
- Department of Pathology and Molecular Medicine, Biomedical Research Center, Hirosaki University Graduate School of Medicine, Hirosaki, Aomori 036-8562, Japan
- Department of Gastroenterological Surgery, Hirosaki University Graduate School of Medicine, Hirosaki, Aomori 036-8562, Japan
| | - Keisuke Yamazaki
- Department of Pathology and Molecular Medicine, Biomedical Research Center, Hirosaki University Graduate School of Medicine, Hirosaki, Aomori 036-8562, Japan
- Department of Gastroenterological Surgery, Hirosaki University Graduate School of Medicine, Hirosaki, Aomori 036-8562, Japan
| | - Takefusa Tarusawa
- Department of Pathology and Molecular Medicine, Biomedical Research Center, Hirosaki University Graduate School of Medicine, Hirosaki, Aomori 036-8562, Japan
- Department of Endocrinology and Metabolism, Hirosaki University Graduate School of Medicine, Hirosaki, Aomori 036-8562, Japan
| | - Taiyo Tanba
- Department of Pathology and Molecular Medicine, Biomedical Research Center, Hirosaki University Graduate School of Medicine, Hirosaki, Aomori 036-8562, Japan
- Department of Gastroenterological Surgery, Hirosaki University Graduate School of Medicine, Hirosaki, Aomori 036-8562, Japan
| | - Tatsuya Mikami
- Innovation Center for Health Promotion, Hirosaki University Graduate School of Medicine, Hirosaki, Aomori 036-8562, Japan
| | - Atsushi Matsubara
- Department of Otorhinolaryngology-Head and Neck Surgery, Hirosaki University Graduate School of Medicine, Hirosaki, Aomori 036-8562, Japan
| | - Yasuyuki Ishibashi
- Department of Orthopaedic Surgery, Hirosaki University Graduate School of Medicine, Hirosaki, Aomori 036-8562, Japan
| | - Kenichi Hakamada
- Department of Gastroenterological Surgery, Hirosaki University Graduate School of Medicine, Hirosaki, Aomori 036-8562, Japan
| | - Shigeyuki Nakaji
- Department of Social Medicine, Hirosaki University Graduate School of Medicine, Hirosaki, Aomori 036-8562, Japan
| |
Collapse
|
9
|
Liu Y, Huo JL, Ren K, Pan S, Liu H, Zheng Y, Chen J, Qiao Y, Yang Y, Feng Q. Mitochondria-associated endoplasmic reticulum membrane (MAM): a dark horse for diabetic cardiomyopathy treatment. Cell Death Discov 2024; 10:148. [PMID: 38509100 PMCID: PMC10954771 DOI: 10.1038/s41420-024-01918-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 02/25/2024] [Accepted: 03/14/2024] [Indexed: 03/22/2024] Open
Abstract
Diabetic cardiomyopathy (DCM), an important complication of diabetes mellitus (DM), is one of the most serious chronic heart diseases and has become a major cause of heart failure worldwide. At present, the pathogenesis of DCM is unclear, and there is still a lack of effective therapeutics. Previous studies have shown that the homeostasis of mitochondria and the endoplasmic reticulum (ER) play a core role in maintaining cardiovascular function, and structural and functional abnormalities in these organelles seriously impact the occurrence and development of various cardiovascular diseases, including DCM. The interplay between mitochondria and the ER is mediated by the mitochondria-associated ER membrane (MAM), which participates in regulating energy metabolism, calcium homeostasis, mitochondrial dynamics, autophagy, ER stress, inflammation, and other cellular processes. Recent studies have proven that MAM is closely related to the initiation and progression of DCM. In this study, we aim to summarize the recent research progress on MAM, elaborate on the key role of MAM in DCM, and discuss the potential of MAM as an important therapeutic target for DCM, thereby providing a theoretical reference for basic and clinical studies of DCM treatment.
Collapse
Affiliation(s)
- Yong Liu
- Research Institute of Nephrology, Zhengzhou University, the First Affiliated Hospital of Zhengzhou University, 450052, Zhengzhou, P. R. China
- Traditional Chinese Medicine Integrated Department of Nephrology, the First Affiliated Hospital of Zhengzhou University, 450052, Zhengzhou, P. R. China
- Henan Province Research Center for Kidney Disease, 450052, Zhengzhou, P. R. China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, 450052, Zhengzhou, P. R. China
| | - Jin-Ling Huo
- Research Institute of Nephrology, Zhengzhou University, the First Affiliated Hospital of Zhengzhou University, 450052, Zhengzhou, P. R. China
- Traditional Chinese Medicine Integrated Department of Nephrology, the First Affiliated Hospital of Zhengzhou University, 450052, Zhengzhou, P. R. China
- Henan Province Research Center for Kidney Disease, 450052, Zhengzhou, P. R. China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, 450052, Zhengzhou, P. R. China
| | - Kaidi Ren
- Department of Pharmacy, the First Affiliated Hospital of Zhengzhou University, 450052, Zhengzhou, P. R. China
| | - Shaokang Pan
- Research Institute of Nephrology, Zhengzhou University, the First Affiliated Hospital of Zhengzhou University, 450052, Zhengzhou, P. R. China
- Traditional Chinese Medicine Integrated Department of Nephrology, the First Affiliated Hospital of Zhengzhou University, 450052, Zhengzhou, P. R. China
- Henan Province Research Center for Kidney Disease, 450052, Zhengzhou, P. R. China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, 450052, Zhengzhou, P. R. China
| | - Hengdao Liu
- Department of Cardiology, the First Affiliated Hospital of Zhengzhou University, 450052, Zhengzhou, P. R. China
| | - Yifeng Zheng
- Institute for Biomedical Sciences, Shinshu University, 8304 Minamiminowa, Kamiina, Nagano, 399-4598, Japan
| | - Jingfang Chen
- Research Institute of Nephrology, Zhengzhou University, the First Affiliated Hospital of Zhengzhou University, 450052, Zhengzhou, P. R. China
- Traditional Chinese Medicine Integrated Department of Nephrology, the First Affiliated Hospital of Zhengzhou University, 450052, Zhengzhou, P. R. China
- Henan Province Research Center for Kidney Disease, 450052, Zhengzhou, P. R. China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, 450052, Zhengzhou, P. R. China
| | - Yingjin Qiao
- Blood Purification Center, the First Affiliated Hospital of Zhengzhou University, 450052, Zhengzhou, P. R. China.
| | - Yang Yang
- Clinical Systems Biology Research Laboratories, Translational Medicine Center, the First Affiliated Hospital of Zhengzhou University, 450052, Zhengzhou, P. R. China.
| | - Qi Feng
- Research Institute of Nephrology, Zhengzhou University, the First Affiliated Hospital of Zhengzhou University, 450052, Zhengzhou, P. R. China.
- Traditional Chinese Medicine Integrated Department of Nephrology, the First Affiliated Hospital of Zhengzhou University, 450052, Zhengzhou, P. R. China.
- Henan Province Research Center for Kidney Disease, 450052, Zhengzhou, P. R. China.
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, 450052, Zhengzhou, P. R. China.
| |
Collapse
|
10
|
Zhao B, Zhang Q, He Y, Cao W, Song W, Liang X. Targeted metabolomics reveals the aberrant energy status in diabetic peripheral neuropathy and the neuroprotective mechanism of traditional Chinese medicine JinMaiTong. J Pharm Anal 2024; 14:225-243. [PMID: 38464790 PMCID: PMC10921333 DOI: 10.1016/j.jpha.2023.09.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 08/15/2023] [Accepted: 09/18/2023] [Indexed: 03/12/2024] Open
Abstract
Diabetic peripheral neuropathy (DPN) is a common and devastating complication of diabetes, for which effective therapies are currently lacking. Disturbed energy status plays a crucial role in DPN pathogenesis. However, the integrated profile of energy metabolism, especially the central carbohydrate metabolism, remains unclear in DPN. Here, we developed a metabolomics approach by targeting 56 metabolites using high-performance ion chromatography-tandem mass spectrometry (HPIC-MS/MS) to illustrate the integrative characteristics of central carbohydrate metabolism in patients with DPN and streptozotocin-induced DPN rats. Furthermore, JinMaiTong (JMT), a traditional Chinese medicine (TCM) formula, was found to be effective for DPN, improving the peripheral neurological function and alleviating the neuropathology of DPN rats even after demyelination and axonal degeneration. JMT ameliorated DPN by regulating the aberrant energy balance and mitochondrial functions, including excessive glycolysis restoration, tricarboxylic acid cycle improvement, and increased adenosine triphosphate (ATP) generation. Bioenergetic profile was aberrant in cultured rat Schwann cells under high-glucose conditions, which was remarkably corrected by JMT treatment. In-vivo and in-vitro studies revealed that these effects of JMT were mainly attributed to the activation of adenosine monophosphate (AMP)-activated protein kinase (AMPK) and downstream peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC-1α). Our results expand the therapeutic framework for DPN and suggest the integrative modulation of energy metabolism using TCMs, such as JMT, as an effective strategy for its treatment.
Collapse
Affiliation(s)
- Bingjia Zhao
- Department of Traditional Chinese Medicine, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Qian Zhang
- Department of Traditional Chinese Medicine, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Yiqian He
- Department of Traditional Chinese Medicine, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Weifang Cao
- Institute of Basic Medicine Sciences, Chinese Academy of Medical Sciences, Beijing, 100005, China
| | - Wei Song
- Medical Research Center, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Xiaochun Liang
- Department of Traditional Chinese Medicine, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, 100730, China
| |
Collapse
|
11
|
Ma L, Liu J, Deng M, Zhou L, Zhang Q, Xiao X. Metabolomics analysis of serum and urine in type 1 diabetes patients with different time in range derived from continuous glucose monitoring. Diabetol Metab Syndr 2024; 16:21. [PMID: 38238828 PMCID: PMC10797982 DOI: 10.1186/s13098-024-01257-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 01/03/2024] [Indexed: 01/22/2024] Open
Abstract
BACKGROUND Time in range (TIR), as an important glycemic variability (GV) index, is clearly associated with disease complications in type 1 diabetes (T1D). Metabolic dysregulation is also involved in the risks of T1D complications. However, the relationship between metabolites and TIR remains poorly understood. We used metabolomics to investigate metabolic profile changes in T1D patients with different TIR. METHODS This study included 85 T1D patients and 81 healthy controls. GV indices, including TIR, were collected from continuous glucose monitoring system. The patients were compared within two subgroups: TIR-L (TIR < 50%, n = 21) and TIR-H (TIR > 70%, n = 14). To screen for differentially abundant metabolites and metabolic pathways, serum and urine samples were obtained for untargeted metabolomics by ultra-performance liquid chromatography‒mass spectrometry. Correlation analysis was conducted with GV metrics and screened biomarkers. RESULTS Metabolites were significantly altered in T1D and subgroups. Compared with healthy controls, T1D patients had higher serum levels of 5-hydroxy-L-tryptophan, 5-methoxyindoleacetate, 4-(2-aminophenyl)-2,4-dioxobutanoate, and 4-pyridoxic acid and higher urine levels of thromboxane B3 but lower urine levels of hypoxanthine. Compared with TIR-H group, The TIR-L subgroup had lower serum levels of 5-hydroxy-L-tryptophan and mevalonolactone and lower urine levels of thromboxane B3 and phenylbutyrylglutamine. Dysregulation of pathways, such as tryptophan, vitamin B6 and purine metabolism, may be involved in the mechanism of diabetic complications related to glycemic homeostasis. Mevalonolactone, hypoxanthine and phenylbutyrylglutamine showed close correlation with TIR. CONCLUSIONS We identified altered metabolic profiles in T1D individuals with different TIR. These findings provide new insights and merit further exploration of the underlying molecular pathways relating to diabetic complications.
Collapse
Affiliation(s)
- Liyuan Ma
- Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100730, China
| | - Jieying Liu
- Department of Endocrinology, Key Laboratory of Endocrinology, Ministry of Health, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100730, China
- Department of Medical Research Center, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100730, China
| | - Mingqun Deng
- Department of Endocrinology, Beijing Hospital, National Center of Gerontology; Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Liyuan Zhou
- Department of Endocrinology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, 100020, China
| | - Qian Zhang
- Department of Endocrinology, Key Laboratory of Endocrinology, Ministry of Health, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100730, China
| | - Xinhua Xiao
- Department of Endocrinology, Key Laboratory of Endocrinology, Ministry of Health, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100730, China.
| |
Collapse
|
12
|
Fu J, Gu J, Bao Z, Zhou Y, Hu H, Yang C, Wu R, Liu H, Qin L, Xu H, Li J, Guo H, Wang L, Zhou Y, Wang X, Li G. 2,5-Dihydroxyterephthalic Acid: A Matrix for Improved Detection and Imaging of Amino Acids. Anal Chem 2023; 95:18709-18718. [PMID: 38018128 DOI: 10.1021/acs.analchem.3c01731] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2023]
Abstract
Amino acids (AAs), which are low-molecular-weight (low-MW) metabolites, serve as essential building blocks not only for protein synthesis but also for maintaining the nitrogen balance in living systems. In situ detection and imaging of AAs are crucial for understanding more complex biological processes. Matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI-MSI) is a label-free mass spectrometric imaging technique that enables the simultaneous detection and imaging of the spatial distribution and relative abundance of different endogenous/exogenous compounds in biological samples. The excellent efficiency of MALDI-MSI is attributed to the choice of the MALDI matrix. However, to the best of our knowledge, no matrix has been specifically developed for AAs. Herein, we report a MALDI matrix, 2,5-dihydroxyterephthalic acid (DHT), which can improve the detection and imaging of AAs in biological samples by MALDI-MS. Our results indicated that DHT exhibited strong ultraviolet-visible (UV-vis) absorption, uniform matrix deposition, and high vacuum stability. Moreover, the matrix-related ion signals produced from DHT were reduced by 50 and 71.8% at m/z < 500 compared to the commonly used matrices of 2,5-dihydroxybenzoic acid (DHB) and α-cyano-4-hydroxycinnamic acid (CHCA), respectively, in their respective organic solvents. In terms of quantitative performance, arginine, glutamic acid, glutamine, and proline can be detected with limits of detection of 6, 4, 6, and 4 ng/mL, respectively, using the DHT as the matrix. Using DHT as the matrix, all 20 protein AAs were successfully detected in human serum by MALDI-MS, whereas only 7 and 10 AAs were detected when DHB and CHCA matrices were used, respectively. Furthermore, 20 protein AAs and taurine were successfully detected and imaged in a section of edible Crassostrea gigas (oyster) tissue for the first time. Our study demonstrates that using DHT as a matrix can improve the detection and imaging of AAs in biological samples by MALDI-MS.
Collapse
Affiliation(s)
- Jinxiang Fu
- Key Laboratory of Mass Spectrometry Imaging and Metabolomics (Minzu University of China), State Ethnic Affairs Commission, Beijing 100081, China
- Centre for Imaging & Systems Biology, College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China
| | - Jianchi Gu
- Key Laboratory of Mass Spectrometry Imaging and Metabolomics (Minzu University of China), State Ethnic Affairs Commission, Beijing 100081, China
- Centre for Imaging & Systems Biology, College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China
| | - Zhibin Bao
- Key Laboratory of Mass Spectrometry Imaging and Metabolomics (Minzu University of China), State Ethnic Affairs Commission, Beijing 100081, China
- Centre for Imaging & Systems Biology, College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China
| | - Yunpeng Zhou
- General Surgery Department, Shanxi Bethune Hospital, Taiyuan 030032, China
| | - Hao Hu
- Key Laboratory of Mass Spectrometry Imaging and Metabolomics (Minzu University of China), State Ethnic Affairs Commission, Beijing 100081, China
- Centre for Imaging & Systems Biology, College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China
| | - Chenyu Yang
- Key Laboratory of Mass Spectrometry Imaging and Metabolomics (Minzu University of China), State Ethnic Affairs Commission, Beijing 100081, China
- Centre for Imaging & Systems Biology, College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China
| | - Ran Wu
- Key Laboratory of Mass Spectrometry Imaging and Metabolomics (Minzu University of China), State Ethnic Affairs Commission, Beijing 100081, China
- Centre for Imaging & Systems Biology, College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China
| | - Haiqiang Liu
- Key Laboratory of Mass Spectrometry Imaging and Metabolomics (Minzu University of China), State Ethnic Affairs Commission, Beijing 100081, China
- Centre for Imaging & Systems Biology, College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China
| | - Liang Qin
- Key Laboratory of Mass Spectrometry Imaging and Metabolomics (Minzu University of China), State Ethnic Affairs Commission, Beijing 100081, China
- Centre for Imaging & Systems Biology, College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China
| | - Hualei Xu
- Key Laboratory of Mass Spectrometry Imaging and Metabolomics (Minzu University of China), State Ethnic Affairs Commission, Beijing 100081, China
- Centre for Imaging & Systems Biology, College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China
| | - Jinrong Li
- Key Laboratory of Mass Spectrometry Imaging and Metabolomics (Minzu University of China), State Ethnic Affairs Commission, Beijing 100081, China
- Centre for Imaging & Systems Biology, College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China
| | - Hua Guo
- Key Laboratory of Mass Spectrometry Imaging and Metabolomics (Minzu University of China), State Ethnic Affairs Commission, Beijing 100081, China
- Centre for Imaging & Systems Biology, College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China
| | - Lei Wang
- Key Laboratory of Mass Spectrometry Imaging and Metabolomics (Minzu University of China), State Ethnic Affairs Commission, Beijing 100081, China
- Centre for Imaging & Systems Biology, College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China
| | - Yijun Zhou
- Centre for Imaging & Systems Biology, College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China
| | - Xiaodong Wang
- Key Laboratory of Mass Spectrometry Imaging and Metabolomics (Minzu University of China), State Ethnic Affairs Commission, Beijing 100081, China
- Centre for Imaging & Systems Biology, College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China
| | - Gaopeng Li
- General Surgery Department, Shanxi Bethune Hospital, Taiyuan 030032, China
| |
Collapse
|
13
|
Zhang W, Cui N, Su F, Sun Y, Li B, Zhang Z, Zeng Y, Guan W, Yang B, Wang Q, Kuang H. Therapeutic impact of stachyose on hyperlipidaemia caused by a high-fat diet in mice as revealed by gut microbiota and metabolomics. Curr Res Food Sci 2023; 7:100638. [PMID: 38045511 PMCID: PMC10692757 DOI: 10.1016/j.crfs.2023.100638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 10/31/2023] [Accepted: 11/07/2023] [Indexed: 12/05/2023] Open
Abstract
Hyperlipidaemia, which is characterized by an excess of lipids or fats in the bloodstream, is a high-risk factor and critical indicator of many metabolic diseases. This study used 16 S rRNA gene sequencing and metabolomics to determine that stachyose (ST) has a therapeutic effect and is a mechanism of hyperlipidaemia. These results show that ST significantly attenuated high-fat diet-induced weight gain and fat deposition while also adjusting the gut microbial composition. Untargeted serum metabolomics identified 12 biomarkers, which suggests that ST may function by regulating metabolic pathways. These results highlight the potential of ST in treating hyperlipidaemia and provides directions for future research including an in-depth investigation of the bioactive components, dosage, and treatment strategies of ST.
Collapse
Affiliation(s)
- Wensen Zhang
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, 24 Heping Road, Xiangfang District, Harbin, 150040, China
| | - Na Cui
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, 24 Heping Road, Xiangfang District, Harbin, 150040, China
| | - Fazhi Su
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, 24 Heping Road, Xiangfang District, Harbin, 150040, China
| | - Yanping Sun
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, 24 Heping Road, Xiangfang District, Harbin, 150040, China
| | - Biao Li
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, 24 Heping Road, Xiangfang District, Harbin, 150040, China
| | - Zhihong Zhang
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, 24 Heping Road, Xiangfang District, Harbin, 150040, China
| | - Yuanning Zeng
- Guangdong Engineering Technology Research Center for Standardized Processing of Chinese Materia Medica (Guangdong Pharmaceutical University, School of Chinese Materia Medica), Guangdong, 510006, China
| | - Wei Guan
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, 24 Heping Road, Xiangfang District, Harbin, 150040, China
| | - Bingyou Yang
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, 24 Heping Road, Xiangfang District, Harbin, 150040, China
| | - Qiuhong Wang
- Guangdong Engineering Technology Research Center for Standardized Processing of Chinese Materia Medica (Guangdong Pharmaceutical University, School of Chinese Materia Medica), Guangdong, 510006, China
| | - Haixue Kuang
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, 24 Heping Road, Xiangfang District, Harbin, 150040, China
| |
Collapse
|
14
|
Kumar A, Prajapati P, Raj V, Kim SC, Mishra V, Raorane CJ, Raj R, Kumar D, Kushwaha S. Salbutamol ameliorates skeletal muscle wasting and inflammatory markers in streptozotocin (STZ)-induced diabetic rats. Int Immunopharmacol 2023; 124:110883. [PMID: 37666067 DOI: 10.1016/j.intimp.2023.110883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 08/13/2023] [Accepted: 08/29/2023] [Indexed: 09/06/2023]
Abstract
Diabetes accelerates muscle atrophy, leading to the deterioration of skeletal muscles. This study aimed to assess the potential of the β2-adrenoceptor agonist, salbutamol (SLB), to alleviate muscle atrophy in streptozotocin (STZ)-induced diabetic rats. Male Sprague Dawley rats were randomized into four groups (n=6): control, SLB, STZ (55 mg/kg, single i.p.), and STZ + SLB (6 mg/kg, orally for 4 weeks). After the final SLB dose, animals underwent tests to evaluate muscle strength and coordination, including forelimb grip strength, wire-hanging, actophotometer, rotarod, and footprint assessments. Rats were then sacrificed, and serum and gastrocnemius (GN) muscles were collected for further analysis. Serum evaluations included proinflammatory markers (tumor necrosis factor α, interleukin-1β, interleukin-6), muscle markers (creatine kinase, myostatin), testosterone, and lipidemic markers. Muscle oxidative stress (malonaldehyde, protein carbonyl), antioxidants (glutathione, catalase, superoxide dismutase), and histology were also performed. Additionally, 1H nuclear magnetic resonance serum profiling was conducted. SLB notably enhanced muscle grip strength, coordination, and antioxidant levels, while reduced proinflammatory markers and oxidative stress in STZ-induced diabetic rats. Reduced serum muscle biomarkers, increased testosterone, restored lipidemic levels, and improved muscle cellular architecture indicated SLB's positive effect on muscle condition in diabetic rats. Metabolomics profiling revealed that the STZ group significantly increased the phenylalanine-to-tyrosine ratio (PTR), lactate-to-pyruvate ratio (LPR), acetate, succinate, isobutyrate, and histidine. SLB administration restored these perturbed serum metabolites in the STZ-induced diabetic group. In conclusion, salbutamol significantly protected against skeletal muscle wasting in STZ-induced diabetic rats.
Collapse
Affiliation(s)
- Anand Kumar
- Department of Pharmaceutical Sciences, School of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Vidya Vihar, Raebareli Road, Lucknow 226025, India
| | - Priyanka Prajapati
- Department of Pharmaceutical Sciences, School of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Vidya Vihar, Raebareli Road, Lucknow 226025, India
| | - Vinit Raj
- School of Chemical Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | - Seong-Cheol Kim
- School of Chemical Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | - Vikas Mishra
- Department of Pharmaceutical Sciences, School of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Vidya Vihar, Raebareli Road, Lucknow 226025, India.
| | | | - Ritu Raj
- Centre of Biomedical Research, SGPGIMS Campus, Lucknow 226014, India
| | - Dinesh Kumar
- Centre of Biomedical Research, SGPGIMS Campus, Lucknow 226014, India
| | - Sapana Kushwaha
- National Institutes of Pharmaceutical Education and Research (NIPER), Raebareli, Transit Campus, Bijnor-Sisendi Road, Sarojini Nagar, Lucknow 226002, India.
| |
Collapse
|
15
|
Lin YK, Tanner E, Wang Y, Ye W, Ang L, Ju W, Pop‐Busui R. Urinary epidermal growth factor levels correlate with cardiovascular autonomic neuropathy indices in adults with type 1 diabetes. J Diabetes Investig 2023; 14:1183-1186. [PMID: 37395013 PMCID: PMC10512902 DOI: 10.1111/jdi.14049] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 05/31/2023] [Accepted: 06/16/2023] [Indexed: 07/04/2023] Open
Abstract
The relationship between urinary endothelial growth factor (uEGF) and cardiovascular autonomic neuropathy (CAN) in adults with type 1 diabetes was evaluated. uEGF levels at baseline and standardized CAN measures were collected at baseline and annually for 3 years for type 1 diabetes adults. Linear regression analysis and linear mixed effects model were used for analysis. In this cohort (n = 44, 59% women, mean ± standard deviation age 34 ± 13 years and diabetes duration 14 ± 6 years), lower baseline uEGF levels correlated with lower baseline expiration : inspiration ratios (P = 0.03) and greater annual declines in Valsalva ratios (P = 0.02) in the unadjusted model, and correlated with lower low-frequency power : high-frequency power ratios (P = 0.01) and greater annual changes in low-frequency power : high-frequency power ratios (P = 0.01) after adjustment for age, sex, body mass index, and hemoglobin A1C. In conclusion, baseline uEGF levels correlate to baseline and longitudinal changes in CAN indices. A large-scale, long-term study is needed to validate uEGF as a reliable CAN biomarker.
Collapse
Affiliation(s)
- Yu Kuei Lin
- Division of Metabolism, Endocrinology and Diabetes, Department of Internal MedicineUniversity of MichiganAnn ArborMichiganUSA
| | - Emily Tanner
- Division of Nephrology, Department of Internal MedicineUniversity of MichiganAnn ArborMichiganUSA
| | - Yuee Wang
- Division of Nephrology, Department of Internal MedicineUniversity of MichiganAnn ArborMichiganUSA
| | - Wen Ye
- Department of Biostatistics, School of Public HealthUniversity of MichiganAnn ArborMichiganUSA
| | - Lynn Ang
- Division of Metabolism, Endocrinology and Diabetes, Department of Internal MedicineUniversity of MichiganAnn ArborMichiganUSA
| | - Wenjun Ju
- Division of Nephrology, Department of Internal MedicineUniversity of MichiganAnn ArborMichiganUSA
| | - Rodica Pop‐Busui
- Division of Metabolism, Endocrinology and Diabetes, Department of Internal MedicineUniversity of MichiganAnn ArborMichiganUSA
| |
Collapse
|
16
|
Mizukami H. Serine supplementation: Is it a new option for the treatment of diabetic polyneuropathy? J Diabetes Investig 2023; 14:1157-1159. [PMID: 37357504 PMCID: PMC10512908 DOI: 10.1111/jdi.14047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 06/12/2023] [Accepted: 06/15/2023] [Indexed: 06/27/2023] Open
Affiliation(s)
- Hiroki Mizukami
- Department of Pathology and Molecular MedicineHirosaki University Graduate School of MedicineHirosakiJapan
| |
Collapse
|
17
|
Suresh MV, Aktay S, Yalamanchili G, Solanki S, Sathyarajan DT, Arnipalli MS, Pennathur S, Raghavendran K. Role of succinate in airway epithelial cell regulation following traumatic lung injury. JCI Insight 2023; 8:e166860. [PMID: 37737265 PMCID: PMC10561732 DOI: 10.1172/jci.insight.166860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 08/17/2023] [Indexed: 09/23/2023] Open
Abstract
Lung contusion and gastric aspiration (LC and GA) are major risk factors for developing acute respiratory distress following trauma. Hypoxia from lung injury is mainly regulated by hypoxia-inducible factor 1α (HIF-1α). Published data from our group indicate that HIF-1α regulation in airway epithelial cells (AEC) drives the acute inflammatory response following LC and GA. Metabolomic profiling and metabolic flux of Type II AEC following LC revealed marked increases in glycolytic and TCA intermediates in vivo and in vitro that were HIF-1α dependent. GLUT-1/4 expression was also increased in HIF-1α+/+ mice, suggesting that increased glucose entry may contribute to increased intermediates. Importantly, lactate incubation in vitro on Type II cells did not significantly increase the inflammatory byproduct IL-1β. Contrastingly, succinate had a direct proinflammatory effect on human small AEC by IL-1β generation in vitro. This effect was reversed by dimethylmalonate, suggesting an important role for succinate dehydrogenase in mediating HIF-1α effects. We confirmed the presence of the only known receptor for succinate binding, SUCNR1, on Type II AEC. These results support the hypothesis that succinate drives HIF-1α-mediated airway inflammation following LC. This is the first report to our knowledge of direct proinflammatory activation of succinate in nonimmune cells such as Type II AEC in direct lung injury models.
Collapse
|
18
|
Liu T, Liu C, Song M, Wei Y, Song Y, Chen P, Liu L, Wang B, Shi H. The association of serum serine levels with the risk of incident cancer: results from a nested case-control study. Food Funct 2023; 14:7969-7976. [PMID: 37578153 DOI: 10.1039/d3fo00808h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/15/2023]
Abstract
Background: Cancer is associated with the dysregulation of serum serine levels, and tumor growth is supported by increased serine biosynthesis. This study aims to explore the association of serum serine levels with incident cancer risk in Chinese hypertensive adults. Materials and methods: 1391 patients with incident cancer and 1391 matched controls in terms of age, sex, and residence with cases in a 1 : 1 ratio were included in this nested case-control study. The serum serine concentrations were determined by liquid chromatography with tandem quadrupole mass spectrometry (LC-MS/MS) at the baseline. The associations of serum serine levels with the risk of overall, digestive system, non-digestive system, and lung cancers (the most common type) were assessed by conditional logistic regression. Results: When serum serine concentration was assessed as quartiles, a significantly higher risk of total cancer (OR = 1.32; 95% CI: 1.01-1.71; P = 0.038) was found in participants in the highest quartile (≥17.68 μg mL-1) compared with participants in the lowest quartile (<13.27 μg mL-1). Similar results were also observed for non-digestive system and lung cancers, but not for digestive system cancers. Significant associations of serum with overall cancer risk were found among all age subgroups, men, non-smokers, non-drinkers, and individuals with lower folic acid levels. Conclusion: High serum serine concentrations were associated with an increased risk of overall, non-digestive system, and lung cancers among Chinese hypertensive adult patients.
Collapse
Affiliation(s)
- Tong Liu
- Department of Gastrointestinal Surgery/Clinical Nutrition, Capital Medical University Affiliated Beijing Shijitan Hospital, Beijing, 100038, China.
- Beijing International Science and Technology Cooperation Base for Cancer Metabolism and Nutrition, Beijing, 100038, China
- Key Laboratory of Cancer FSMP for State Market Regulation, Beijing, 100038, China
| | - Chenan Liu
- Department of Gastrointestinal Surgery/Clinical Nutrition, Capital Medical University Affiliated Beijing Shijitan Hospital, Beijing, 100038, China.
- Beijing International Science and Technology Cooperation Base for Cancer Metabolism and Nutrition, Beijing, 100038, China
- Key Laboratory of Cancer FSMP for State Market Regulation, Beijing, 100038, China
| | - Mengmeng Song
- Department of Gastrointestinal Surgery/Clinical Nutrition, Capital Medical University Affiliated Beijing Shijitan Hospital, Beijing, 100038, China.
- Beijing International Science and Technology Cooperation Base for Cancer Metabolism and Nutrition, Beijing, 100038, China
- Key Laboratory of Cancer FSMP for State Market Regulation, Beijing, 100038, China
| | - Yaping Wei
- Key Laboratory of Precision Nutrition and Food Quality, Ministry of Education, Department of Nutrition and Health, College of Food Sciences and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Yun Song
- Shenzhen Evergreen Medical Institute, Shenzhen, China.
| | - Ping Chen
- Shenzhen Evergreen Medical Institute, Shenzhen, China.
| | - Lishun Liu
- Shenzhen Evergreen Medical Institute, Shenzhen, China.
| | - Binyan Wang
- Shenzhen Evergreen Medical Institute, Shenzhen, China.
- Institute for Biomedicine, Anhui Medical University, Hefei, China
| | - Hanping Shi
- Department of Gastrointestinal Surgery/Clinical Nutrition, Capital Medical University Affiliated Beijing Shijitan Hospital, Beijing, 100038, China.
- Beijing International Science and Technology Cooperation Base for Cancer Metabolism and Nutrition, Beijing, 100038, China
- Key Laboratory of Cancer FSMP for State Market Regulation, Beijing, 100038, China
| |
Collapse
|
19
|
Liu Y, Dong G, Huang K, Hong Y, Chen X, Zhu M, Hao X, Ni Y, Fu J. Metabolomics and Lipidomics Studies in Pediatric Type 1 Diabetes: Biomarker Discovery for the Early Diagnosis and Prognosis. Pediatr Diabetes 2023; 2023:6003102. [PMID: 40303249 PMCID: PMC12016713 DOI: 10.1155/2023/6003102] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 05/16/2023] [Accepted: 06/05/2023] [Indexed: 05/02/2025] Open
Abstract
Aim Type 1 diabetes (T1D) is an autoimmune disease with heterogeneous risk factors. Metabolic perturbations in the pathogenesis of the disease are remarkable to illuminate the interaction between genetic and environmental factors and how islet immunity and overt diabetes develop. This review aimed to integrate the metabolic changes of T1D to identify potential biomarkers for predicting disease progression based on recent metabolomics and lipidomics studies with parallel methodologies. Methods A total of 18 metabolomics and lipidomics studies of childhood T1D during the last 15 years were reviewed. The metabolic fingerprints consisting of 41 lipids and/or metabolite classes of subjects with islet autoantibodies, progressors of T1D, and T1D children were mapped in four-time dimensions based on a tentative effect-score rule. Results From birth, high-risk T1D subjects had decreased unsaturated triacylglycerols, unsaturated phosphatidylcholines (PCs), sphingomyelins (SMs), amino acids, and metabolites in the tricarboxylic acid (TCA) cycle. On the contrary, lysophosphatidylcholines (LPCs) and monosaccharides increased. And LPCs and branched-chain amino acids (BCAAs) were elevated before the appearance of islet autoantibodies but were lowered after seroconversion. Choline-related lipids (including PCs, SMs, and LPCs), BCAAs, and metabolites involved in the TCA cycle were identified as consensus biomarkers potentially predicting the development of islet autoimmunity and T1D. Decreased LPCs and amino acids indicated poor glycemic control of T1D, while elevated lysophosphatidylethanolamines and saturated PCs implied good glycemic control. Further pathway analysis revealed that biosynthesis of aminoacyl-tRNA, BCAAs, and alanine, aspartate, and glutamate metabolism were significantly enriched. Moreover, established cohort studies and predictive statistical models of pediatric T1D were also summarized. Conclusion The metabolic profile of high-risk T1D subjects and patients demonstrated significant changes compared with healthy controls. This integrated analysis provides a comprehensive overview of metabolic features and potential biomarkers in the pathogenesis and progression of T1D.
Collapse
Affiliation(s)
- Yaru Liu
- Department of Endocrinology, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, National Children's Regional Medical Center, Hangzhou 310052, China
| | - Guanping Dong
- Department of Endocrinology, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, National Children's Regional Medical Center, Hangzhou 310052, China
| | - Ke Huang
- Department of Endocrinology, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, National Children's Regional Medical Center, Hangzhou 310052, China
| | - Ye Hong
- Department of Endocrinology, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, National Children's Regional Medical Center, Hangzhou 310052, China
| | - Xuefeng Chen
- Department of Endocrinology, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, National Children's Regional Medical Center, Hangzhou 310052, China
| | - Mingqiang Zhu
- Department of Endocrinology, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, National Children's Regional Medical Center, Hangzhou 310052, China
| | - Xiaoqiang Hao
- Department of Endocrinology, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, National Children's Regional Medical Center, Hangzhou 310052, China
| | - Yan Ni
- Department of Endocrinology, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, National Children's Regional Medical Center, Hangzhou 310052, China
| | - Junfen Fu
- Department of Endocrinology, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, National Children's Regional Medical Center, Hangzhou 310052, China
| |
Collapse
|
20
|
Xiao M, Liu W, Shi X, Wu J, Shen G, Feng J. Integration of metabolomics and network pharmacology for enhancing mechanism understanding and medication combination recommendation for diabetes mellitus and diabetic nephropathy. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2023; 15:3173-3187. [PMID: 37338009 DOI: 10.1039/d3ay00560g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2023]
Abstract
With the increasing prevalence of diabetes mellitus (DM) and diabetic nephropathy (DN), effective treatment is particularly important for the recovery of patients. However, the currently approved drugs are usually tailored to clinical symptoms and no mechanism-targeted drugs are available. In this study, the combination of metabolomics and network pharmacology was applied to provide reasonable medication combination regimens to meet the different clinical needs for the targeted treatment of DM and DN. An NMR-based metabolomic strategy was applied to identify the potential urinary biomarkers of DM or/and DN, while network pharmacology was used to identify the therapy targets of DM and DN by intersecting the targets of diseases and currently approved drugs. According to the enriched signaling pathways using the potential biomarkers and the therapy targets, the specific medication combinations were recommended for the specific clinical demands in terms of hypoglycemic, hypertensive, and/or lipid-lowering. For DM, 17 potential urinary biomarkers and 12 disease-related signaling pathways were identified, and 34 combined medication regimens related to hypoglycemia, hypoglycemia, and hypertension, and hypoglycemia, hypertension, and lipid-lowering were administered. For DN, 22 potential urinary biomarkers and 12 disease-related signaling pathways were identified, and 21 combined medication regimens related to hypoglycemia, hypoglycemia, and hypertension were proposed. Molecular docking was used to verify the binding ability, docking sites, and structure of the drug molecules to target proteins. Moreover, an integrated biological information network of the drug-target-metabolite-signaling pathways was constructed to provide insights into the underlined mechanism of DM and DN as well as clinical combination therapy.
Collapse
Affiliation(s)
- Mengxiang Xiao
- Department of Electronic Science, Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, Xiamen University, 422 Siming South Road, Siming District, Xiamen, Fujian 361005, China.
| | - Wuping Liu
- Department of Electronic Science, Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, Xiamen University, 422 Siming South Road, Siming District, Xiamen, Fujian 361005, China.
| | - Xiulin Shi
- The Xiamen Diabetes Institute and Department of Endocrinology and Diabetes, The First Affiliated Hospital of Xiamen University, Xiamen 361003, China
| | - Jinxia Wu
- Department of Electronic Science, Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, Xiamen University, 422 Siming South Road, Siming District, Xiamen, Fujian 361005, China.
| | - Guiping Shen
- Department of Electronic Science, Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, Xiamen University, 422 Siming South Road, Siming District, Xiamen, Fujian 361005, China.
| | - Jianghua Feng
- Department of Electronic Science, Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, Xiamen University, 422 Siming South Road, Siming District, Xiamen, Fujian 361005, China.
| |
Collapse
|
21
|
Cai D, Hou B, Xie SL. Amino acid analysis as a method of discovering biomarkers for diagnosis of diabetes and its complications. Amino Acids 2023:10.1007/s00726-023-03255-8. [PMID: 37067568 DOI: 10.1007/s00726-023-03255-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 02/21/2023] [Indexed: 04/18/2023]
Abstract
Diabetes mellitus (DM) is a severe chronic diseases with a global prevalence of 9%, leading to poor health and high health care costs, and is a direct cause of millions of deaths each year. The rising epidemic of diabetes and its complications, such as retinal and peripheral nerve disease, is a huge burden globally. A better understanding of the molecular pathways involved in the development and progression of diabetes and its complications can facilitate individualized prevention and treatment. High diabetes mellitus incidence rate is caused mainly by lack of non-invasive and reliable methods for early diagnosis, such as plasma biomarkers. The incidence of diabetes and its complications in the world still grows so it is crucial to develop a new, faster, high specificity and more sensitive diagnostic technologies. With the advancement of analytical techniques, metabolomics can identify and quantify multiple biomarkers simultaneously in a high-throughput manner, and effective biomarkers can greatly improve the efficiency of diabetes and its complications. By providing information on potential metabolic pathways, metabolomics can further define the mechanisms underlying the progression of diabetes and its complications, help identify potential therapeutic targets, and improve the prevention and management of T2D and its complications. The application of amino acid metabolomics in epidemiological studies has identified new biomarkers of diabetes mellitus (DM) and its complications, such as branched-chain amino acids, phenylalanine and arginine metabolites. This study focused on the analysis of metabolic amino acid profiling as a method for identifying biomarkers for the detection and screening of diabetes and its complications. The results presented are all from recent studies, and in all cases analyzed, there were significant changes in the amino acid profile of patients in the experimental group compared to the control group. This study demonstrates the potential of amino acid profiles as a detection method for diabetes and its complications.
Collapse
Affiliation(s)
- Dan Cai
- The Affiliated Nanhua Hospital, Department of Hand and Foot Surgery, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
| | - Biao Hou
- The Affiliated Nanhua Hospital, Department of Hand and Foot Surgery, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
| | - Song Lin Xie
- The Affiliated Nanhua Hospital, Department of Hand and Foot Surgery, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China.
| |
Collapse
|
22
|
Li Y, Liu Y, Liu S, Gao M, Wang W, Chen K, Huang L, Liu Y. Diabetic vascular diseases: molecular mechanisms and therapeutic strategies. Signal Transduct Target Ther 2023; 8:152. [PMID: 37037849 PMCID: PMC10086073 DOI: 10.1038/s41392-023-01400-z] [Citation(s) in RCA: 207] [Impact Index Per Article: 103.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 02/19/2023] [Accepted: 02/28/2023] [Indexed: 04/12/2023] Open
Abstract
Vascular complications of diabetes pose a severe threat to human health. Prevention and treatment protocols based on a single vascular complication are no longer suitable for the long-term management of patients with diabetes. Diabetic panvascular disease (DPD) is a clinical syndrome in which vessels of various sizes, including macrovessels and microvessels in the cardiac, cerebral, renal, ophthalmic, and peripheral systems of patients with diabetes, develop atherosclerosis as a common pathology. Pathological manifestations of DPDs usually manifest macrovascular atherosclerosis, as well as microvascular endothelial function impairment, basement membrane thickening, and microthrombosis. Cardiac, cerebral, and peripheral microangiopathy coexist with microangiopathy, while renal and retinal are predominantly microangiopathic. The following associations exist between DPDs: numerous similar molecular mechanisms, and risk-predictive relationships between diseases. Aggressive glycemic control combined with early comprehensive vascular intervention is the key to prevention and treatment. In addition to the widely recommended metformin, glucagon-like peptide-1 agonist, and sodium-glucose cotransporter-2 inhibitors, for the latest molecular mechanisms, aldose reductase inhibitors, peroxisome proliferator-activated receptor-γ agonizts, glucokinases agonizts, mitochondrial energy modulators, etc. are under active development. DPDs are proposed for patients to obtain more systematic clinical care requires a comprehensive diabetes care center focusing on panvascular diseases. This would leverage the advantages of a cross-disciplinary approach to achieve better integration of the pathogenesis and therapeutic evidence. Such a strategy would confer more clinical benefits to patients and promote the comprehensive development of DPD as a discipline.
Collapse
Affiliation(s)
- Yiwen Li
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, Chinese Academy of Chinese Medical Sciences, Beijing, 100091, China
| | - Yanfei Liu
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, Chinese Academy of Chinese Medical Sciences, Beijing, 100091, China
- The Second Department of Gerontology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, 100091, China
| | - Shiwei Liu
- Department of Nephrology and Endocrinology, Wangjing Hospital, China Academy of Chinese Medical Sciences, Beijing, 100102, China
| | - Mengqi Gao
- Department of Nephrology and Endocrinology, Wangjing Hospital, China Academy of Chinese Medical Sciences, Beijing, 100102, China
| | - Wenting Wang
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, Chinese Academy of Chinese Medical Sciences, Beijing, 100091, China
| | - Keji Chen
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, Chinese Academy of Chinese Medical Sciences, Beijing, 100091, China.
| | - Luqi Huang
- China Center for Evidence-based Medicine of TCM, China Academy of Chinese Medical Sciences, Beijing, 100010, China.
| | - Yue Liu
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, Chinese Academy of Chinese Medical Sciences, Beijing, 100091, China.
| |
Collapse
|
23
|
Lin C, Sang Q, Fu Z, Yang S, Zhang M, Zhang H, Wang Y, Hu P. Deciphering mechanism of Zhishi-Xiebai-Guizhi Decoction against hypoxia/reoxygenation injury in cardiomyocytes by cell metabolomics: Regulation of oxidative stress and energy acquisition. J Chromatogr B Analyt Technol Biomed Life Sci 2023; 1216:123603. [PMID: 36652817 DOI: 10.1016/j.jchromb.2023.123603] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 12/06/2022] [Accepted: 01/08/2023] [Indexed: 01/13/2023]
Abstract
Myocardial ischemia/reperfusion (MI/R) injury is a life-threatening syndrome with high morbidity and mortality. Zhishi-Xiebai-Guizhi Decoction (ZSXBGZD) is a classic traditional Chinese medicine formula, used to treat cardiovascular diseases for centuries. However, its underlying medicinal mechanism has not been clearly elucidated, which hinders its widespread application. Here, the curative effects and therapeutic mechanism of ZSXBGZD against MI/R were addressed based on an integration of pharmaceutical evaluation and cellular metabolomics. First, a hypoxia/reoxygenation (H/R) model in H9c2 cells was employed to resemble MI/R and multiple pharmacological indicators were performed to assess the efficacy of ZSXBGZD. The results showed that ZSXBGZD possessed exceptional ability in attenuating cardiomyocyte injury, concerning oxidative stress, mitochondrial dysfunction, energy acquisition and cell apoptosis. Furthermore, a cell metabolomics approach based on HILIC and UPLC-Q-TOF-MS coupled with multivariate analysis was conducted to explore the metabolic regulation of ZSXBGZD. 38 differential polar metabolites related to H/R were uncovered, and 34 of them were reversed to normal state after the treatment of ZSXBGZD, revealing the perturbations of energy metabolism and amino acid metabolism. Moreover, formula decomposition justified the combination of single herbs to form ZSXBZGD and confirmed the pivotal status of Allii Macrostemonis Bulbus and Trichosanthis Fructus.
Collapse
Affiliation(s)
- Chuhui Lin
- Shanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Qingni Sang
- Shanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Zhibo Fu
- Shanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Shenglong Yang
- Shanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Min Zhang
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China.
| | - Hongyang Zhang
- Shanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Yuerong Wang
- Shanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Ping Hu
- Shanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China.
| |
Collapse
|
24
|
Liu J, Fu J, Xie Z, Ding L, Wang D, Yu M, Zhang Q, Xie T, Xiao X. Serum metabolomics identified metabolite biomarkers and distinguished maturity-onset diabetes of the young from type 1 diabetes in the Chinese population. Clin Chim Acta 2023; 539:250-258. [PMID: 36584766 DOI: 10.1016/j.cca.2022.12.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 12/17/2022] [Accepted: 12/19/2022] [Indexed: 12/28/2022]
Abstract
BACKGROUND Maturity-onset diabetes of the young (MODY) patients have unique clinical manifestations and need individualized treatments. We identified novel serum metabolic biomarkers to distinguish MODY and explore the possible mechanism of the clinical manifestation and complications of MODY. METHODS Fasting serum samples were collected from MODY3 (n = 17), MODY2 (n = 33), type 1 diabetes (T1DM) (n = 34) and healthy individuals (n = 30), and were analyzed using the ultra-performance liquid chromatography-mass spectrometry (UPLC-MS) metabolomic platform. RESULTS 4 metabolites were found significantly fluctuated between groups, including glycerophosphocholine, LysoPC(18:2(9Z,12Z)), sphinganine and l-Phenylalanine. Glycerophosphocholine was selected as a diagnostic biomarker. The the area under the ROC curve (AUC) for distinguishing MODYs from healthy controls and differentiating MODY3 from T1DM reached 1.0. The combination of metabolites also gained good diagnostic value. The AUC of the combination of LysoPC(18:2(9Z,12Z)), sphinganine and l-Phenylalanine for discriminating MODY3 from T1DM was 0.983. Besides, the combination of clinical indices and metabolites helped to better differentiate the 2 MODY subtypes. CONCLUSIONS We identified the metabolic profiles of MODY2 and MODY3 and found promising biomarkers for distinguishing MODY from T1DM, which provides evidence for the pathogenesis and characteristic clinical manifestations of patients with MODY2 and MODY3.
Collapse
Affiliation(s)
- Jieying Liu
- Department of Endocrinology, Key Laboratory of Endocrinology, Ministry of Health, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China; Department of Medical Research Center, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China
| | - Junling Fu
- Department of Endocrinology, Key Laboratory of Endocrinology, Ministry of Health, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China; Department of Endocrinology, Beijing Institute of Geriatrics, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
| | - Ziyan Xie
- Department of Endocrinology, Key Laboratory of Endocrinology, Ministry of Health, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China
| | - Lu Ding
- Department of Endocrinology, Key Laboratory of Endocrinology, Ministry of Health, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China
| | - Dongmei Wang
- Department of Endocrinology, Key Laboratory of Endocrinology, Ministry of Health, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China
| | - Miao Yu
- Department of Endocrinology, Key Laboratory of Endocrinology, Ministry of Health, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China
| | - Qian Zhang
- Department of Endocrinology, Key Laboratory of Endocrinology, Ministry of Health, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China
| | - Ting Xie
- Department of Endocrinology, Key Laboratory of Endocrinology, Ministry of Health, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China; Department of Medical Research Center, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China
| | - Xinhua Xiao
- Department of Endocrinology, Key Laboratory of Endocrinology, Ministry of Health, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China.
| |
Collapse
|
25
|
Wang G, Xu J, Ma H, Mu Y, Xu W, Yan N, Liu W, Zheng D, Huang X, Li L. Phenolipid JE improves metabolic profile and inhibits gluconeogenesis via modulating AKT-mediated insulin signaling in STZ-induced diabetic mice. Pharmacol Res 2023; 187:106569. [PMID: 36427798 DOI: 10.1016/j.phrs.2022.106569] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 11/13/2022] [Accepted: 11/19/2022] [Indexed: 11/26/2022]
Abstract
Phenolipids are characteristic phytochemicals of Syzygium genus. However, the antidiabetic potential and underlying molecular mechanism of these components are not fully elucidated. Herein, we studied the anti-diabetic effects of jambone E (JE), a phenolipid from S. cumini, with in vitro and in vivo models. Data from current study showed that JE enhanced glucose consumption and uptake, promoted glycogen synthesis, and suppressed gluconeogenesis in insulin resistant (IR)-HepG2 cells and primary mouse hepatocytes. JE also attenuated streptozotocin-induced hyperglycemia and hyperlipidemia in type 1 diabetic (T1D) mice. Eleven metabolites (e.g. trimethylamine n-oxide, 4-pyridoxic acid, phosphatidylinositol 39:4, phenaceturic acid, and hippuric acid) were identified as potential serum biomarkers for JE's antidiabetic effects by an untargeted metabolomics approach. The further molecular mechanistic study revealed that JE up-regulated phosphorylation levels of protein kinase B (AKT), glycogen synthase kinase 3 beta, and forkhead box O1 (FoxO1), promoted nuclear exclusion of FoxO1 whilst decreased gene expression levels of peroxisome proliferator-activated receptor gamma coactivator-1 alpha, phosphoenolpyruvate carboxykinase and glucose 6-phosphatase in IR-HepG2 cells and T1D mice. Our data suggested that JE might be a potent activator for AKT-mediated insulin signaling pathway, which was confirmed by the usage of AKT inhibitor and AKT-target siRNA interference, as well as the cellular thermal shift assay. Findings from the current study shed light on the anti-diabetic effects of phenolipids in the Syzygium species, which supports the use of medicinal plants in the Syzygium genus for potential pharmaceutical applications.
Collapse
Affiliation(s)
- Guihua Wang
- Institute of Microbial Pharmaceuticals, College of Life and Health Sciences, Northeastern University, Shenyang 110819, PR China
| | - Jialin Xu
- Institute of Biochemistry and Molecular Biology, College of Life and Health Sciences, Northeastern University, Shenyang 110169, PR China
| | - Hang Ma
- Bioactive Botanical Research Laboratory, Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, RI 02881, United States
| | - Yu Mu
- Institute of Microbial Pharmaceuticals, College of Life and Health Sciences, Northeastern University, Shenyang 110819, PR China
| | - Wen Xu
- Institute of Microbial Pharmaceuticals, College of Life and Health Sciences, Northeastern University, Shenyang 110819, PR China
| | - Na Yan
- Institute of Microbial Pharmaceuticals, College of Life and Health Sciences, Northeastern University, Shenyang 110819, PR China
| | - Wei Liu
- Institute of Microbial Pharmaceuticals, College of Life and Health Sciences, Northeastern University, Shenyang 110819, PR China
| | - Dan Zheng
- Institute of Microbial Pharmaceuticals, College of Life and Health Sciences, Northeastern University, Shenyang 110819, PR China
| | - Xueshi Huang
- Institute of Microbial Pharmaceuticals, College of Life and Health Sciences, Northeastern University, Shenyang 110819, PR China
| | - Liya Li
- Institute of Microbial Pharmaceuticals, College of Life and Health Sciences, Northeastern University, Shenyang 110819, PR China.
| |
Collapse
|
26
|
Chemotherapy-Induced Peripheral Neuropathy. Handb Exp Pharmacol 2023; 277:299-337. [PMID: 36253554 DOI: 10.1007/164_2022_609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Chemotherapy-induced peripheral neuropathy (CIPN) is a debilitating side effect of many common anti-cancer agents that can lead to dose reduction or treatment discontinuation, which decrease chemotherapy efficacy. Long-term CIPN can interfere with activities of daily living and diminish the quality of life. The mechanism of CIPN is not yet fully understood, and biomarkers are needed to identify patients at high risk and potential treatment targets. Metabolomics can capture the complex behavioral and pathophysiological processes involved in CIPN. This chapter is to review the CIPN metabolomics studies to find metabolic pathways potentially involved in CIPN. These potential CIPN metabolites are then investigated to determine whether there is evidence from studies of other neuropathy etiologies such as diabetic neuropathy and Leber hereditary optic neuropathy to support the importance of these pathways in peripheral neuropathy. Six potential biomarkers and their putative mechanisms in peripheral neuropathy were reviewed. Among these biomarkers, histidine and phenylalanine have clear roles in neurotransmission or neuroinflammation in peripheral neuropathy. Further research is needed to discover and validate CIPN metabolomics biomarkers in large clinical studies.
Collapse
|
27
|
Vigers T, Vinovskis C, Li LP, Prasad P, Heerspink H, D'Alessandro A, Reisz JA, Piani F, Cherney DZ, van Raalte DH, Nadeau KJ, Pavkov ME, Nelson RG, Pyle L, Bjornstad P. Plasma levels of carboxylic acids are markers of early kidney dysfunction in young people with type 1 diabetes. Pediatr Nephrol 2023; 38:193-202. [PMID: 35507146 PMCID: PMC10182875 DOI: 10.1007/s00467-022-05531-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 02/25/2022] [Accepted: 03/07/2022] [Indexed: 01/10/2023]
Abstract
BACKGROUND We compared plasma metabolites of amino acid oxidation and the tricarboxylic acid (TCA) cycle in youth with and without type 1 diabetes mellitus (T1DM) and related the metabolites to glomerular filtration rate (GFR), renal plasma flow (RPF), and albuminuria. Metabolites associated with impaired kidney function may warrant future study as potential biomarkers or even future interventions to improve kidney bioenergetics. METHODS Metabolomic profiling of fasting plasma samples using a targeted panel of 644 metabolites and an untargeted panel of 19,777 metabolites was performed in 50 youth with T1DM ≤ 10 years and 20 controls. GFR and RPF were ascertained by iohexol and p-aminohippurate clearance, and albuminuria calculated as urine albumin to creatinine ratio. Sparse partial least squares discriminant analysis and moderated t tests were used to identify metabolites associated with GFR and RPF. RESULTS Adolescents with and without T1DM were similar in age (16.1 ± 3.0 vs. 16.1 ± 2.9 years) and BMI (23.4 ± 5.1 vs. 22.7 ± 3.7 kg/m2), but those with T1DM had higher GFR (189 ± 40 vs. 136 ± 22 ml/min) and RPF (820 ± 125 vs. 615 ± 65 ml/min). Metabolites of amino acid oxidation and the TCA cycle were significantly lower in adolescents with T1DM vs. controls, and the measured metabolites were able to discriminate diabetes status with an AUC of 0.82 (95% CI: 0.71, 0.93) and error rate of 0.21. Lower glycine (r:-0.33, q = 0.01), histidine (r:-0.45, q < 0.001), methionine (r: -0.29, q = 0.02), phenylalanine (r: -0.29, q = 0.01), serine (r: -0.42, q < 0.001), threonine (r: -0.28, q = 0.02), citrate (r: -0.35, q = 0.003), fumarate (r: -0.24, q = 0.04), and malate (r: -0.29, q = 0.02) correlated with higher GFR. Lower glycine (r: -0.28, q = 0.04), phenylalanine (r:-0.3, q = 0.03), fumarate (r: -0.29, q = 0.04), and malate (r: -0.5, q < 0.001) correlated with higher RPF. Lower histidine (r: -0.28, q = 0.02) was correlated with higher mean ACR. CONCLUSIONS In conclusion, adolescents with relatively short T1DM duration exhibited lower plasma levels of carboxylic acids that associated with hyperfiltration and hyperperfusion. TRIAL REGISTRATION ClinicalTrials.gov NCT03618420 and NCT03584217 A higher resolution version of the Graphical abstract is available as Supplementary information.
Collapse
Affiliation(s)
- Timothy Vigers
- Department of Pediatrics, Section of Endocrinology, University of Colorado School of Medicine, Aurora, CO, USA.
- Department of Biostatistics and Informatics, Colorado School of Public Health, 13123 E 16th Ave, A036-B265, Aurora, CO, 80045, USA.
| | - Carissa Vinovskis
- Department of Pediatrics, Section of Endocrinology, University of Colorado School of Medicine, Aurora, CO, USA
| | - Lu-Ping Li
- Department of Radiology, NorthShore University HealthSystem, Evanston, IL, USA
| | - Pottumarthi Prasad
- Department of Radiology, NorthShore University HealthSystem, Evanston, IL, USA
| | - Hiddo Heerspink
- Department Clinical Pharmacy and Pharmacology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Angelo D'Alessandro
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, CO, USA
| | - Julie A Reisz
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, CO, USA
| | - Federica Piani
- Department of Pediatrics, Section of Endocrinology, University of Colorado School of Medicine, Aurora, CO, USA
| | - David Z Cherney
- Department of Medicine, Division of Nephrology, University of Toronto School of Medicine, Toronto, Ontario, Canada
| | - Daniel H van Raalte
- Diabetes Center, Department of Internal Medicine, Amsterdam University Medical Centers, location VUmc, Amsterdam, the Netherlands
| | - Kristen J Nadeau
- Department of Pediatrics, Section of Endocrinology, University of Colorado School of Medicine, Aurora, CO, USA
| | - Meda E Pavkov
- Division of Diabetes Translation, Center for Disease Control and Prevention, Atlanta, GA, USA
| | - Robert G Nelson
- Chronic Kidney Disease Section, Phoenix Epidemiology and Clinical Research Branch, NIDDK, Phoenix, AZ, USA
| | - Laura Pyle
- Department of Pediatrics, Section of Endocrinology, University of Colorado School of Medicine, Aurora, CO, USA
- Department of Biostatistics and Informatics, Colorado School of Public Health, 13123 E 16th Ave, A036-B265, Aurora, CO, 80045, USA
| | - Petter Bjornstad
- Department of Pediatrics, Section of Endocrinology, University of Colorado School of Medicine, Aurora, CO, USA
- Department of Medicine, Division of Nephrology, University of Colorado School of Medicine, Aurora, CO, USA
| |
Collapse
|
28
|
De Favari Signini É, Castro A, Rehder-Santos P, Cristina Millan-Mattos J, Magalhães de Oliveira J, Minatel V, Bianca Falasco Pantoni C, Sobreiro Selistre de Araújo H, Fabrizzi F, Porta A, Gilberto Ferreira A, Vincenzi Oliveira R, Maria Catai A. Integrative perspective of the healthy aging process considering the metabolome, cardiac autonomic modulation and cardiorespiratory fitness evaluated in age groups. Sci Rep 2022; 12:21314. [PMID: 36494472 PMCID: PMC9734749 DOI: 10.1038/s41598-022-25747-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Accepted: 12/05/2022] [Indexed: 12/13/2022] Open
Abstract
The aging process causes changes at all organic levels. Although metabolism, cardiac autonomic modulation (CAM), and cardiorespiratory fitness (CRF) are widely studied as a function of age, they are mainly studied in isolation, thus making it difficult to perceive their concomitant variations. This study aimed to investigate the integrated changes that occur in the metabolome, CAM, and CRF throughout aging in apparently healthy individuals. The subjects (n = 118) were divided into five groups according to age (20-29, 30-39, 40-49, 50-59, and 60-70 years old) and underwent blood collection, autonomic assessment, and a cardiopulmonary exercise test for metabolomics analysis using mass spectrometry and nuclear magnetic resonance, cardiac autonomic modulation analysis, and CRF by peak oxygen consumption analysis, respectively. The Tukey's post hoc and effect size with confidence interval were used for variables with a significant one-way ANOVA effect (P < 0.01). The main changes were in the oldest age group, where the CRF, valine, leucine, isoleucine, 3-hydroxyisobutyrate, and CAM reduced and hippuric acid increased. The results suggest significant changes in the metabolome, CAM, and CRF after the age of sixty as a consequence of aging impairments, but with some changes in the metabolic profile that may be favorable to mitigate the aging deleterious effects.
Collapse
Affiliation(s)
- Étore De Favari Signini
- grid.411247.50000 0001 2163 588XDepartment of Physiotherapy, Federal University of São Carlos, São Carlos, São Paulo Brazil
| | - Alex Castro
- grid.411247.50000 0001 2163 588XDepartment of Chemistry, Federal University of São Carlos, São Carlos, São Paulo Brazil
| | - Patrícia Rehder-Santos
- grid.411247.50000 0001 2163 588XDepartment of Physiotherapy, Federal University of São Carlos, São Carlos, São Paulo Brazil
| | - Juliana Cristina Millan-Mattos
- grid.411247.50000 0001 2163 588XDepartment of Physiotherapy, Federal University of São Carlos, São Carlos, São Paulo Brazil
| | - Juliana Magalhães de Oliveira
- grid.411247.50000 0001 2163 588XDepartment of Chemistry, Federal University of São Carlos, São Carlos, São Paulo Brazil
| | - Vinicius Minatel
- grid.411247.50000 0001 2163 588XDepartment of Physiotherapy, Federal University of São Carlos, São Carlos, São Paulo Brazil
| | - Camila Bianca Falasco Pantoni
- grid.411247.50000 0001 2163 588XDepartment of Physiotherapy, Federal University of São Carlos, São Carlos, São Paulo Brazil ,grid.411247.50000 0001 2163 588XDepartment of Gerontology, Federal University of São Carlos, São Carlos, São Paulo Brazil
| | | | - Fernando Fabrizzi
- Penápolis Educational Foundation (FUNEPE), Penápolis, São Paulo Brazil
| | - Alberto Porta
- grid.4708.b0000 0004 1757 2822Department of Biomedical Sciences for Health, University of Milan, Milan, Italy ,Department of Cardiothoracic, Vascular Anesthesia and Intensive Care, Policlinico San Donato, San Donato Milanese, Milan Italy
| | - Antônio Gilberto Ferreira
- grid.411247.50000 0001 2163 588XDepartment of Chemistry, Federal University of São Carlos, São Carlos, São Paulo Brazil
| | - Regina Vincenzi Oliveira
- grid.411247.50000 0001 2163 588XDepartment of Chemistry, Federal University of São Carlos, São Carlos, São Paulo Brazil
| | - Aparecida Maria Catai
- grid.411247.50000 0001 2163 588XDepartment of Physiotherapy, Federal University of São Carlos, São Carlos, São Paulo Brazil ,grid.411247.50000 0001 2163 588XCardiovascular Physical Therapy Laboratory, Department of Physical Therapy, Nucleus of Research in Physical Exercise, Federal University of São Carlos, Via Washington Luiz, Km 235, CP: 676, São Carlos, SP 13565-905 Brazil
| |
Collapse
|
29
|
Zeng Z, Li M, Jiang Z, Lan Y, Chen L, Chen Y, Li H, Hui J, Zhang L, Hu X, Xia H. Integrated transcriptomic and metabolomic profiling reveals dysregulation of purine metabolism during the acute phase of spinal cord injury in rats. Front Neurosci 2022; 16:1066528. [PMID: 36507345 PMCID: PMC9727392 DOI: 10.3389/fnins.2022.1066528] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 11/01/2022] [Indexed: 11/24/2022] Open
Abstract
Introduction Spinal cord injury (SCI) results in drastic dysregulation of microenvironmental metabolism during the acute phase, which greatly affects neural recovery. A better insight into the potential molecular pathways of metabolic dysregulation by multi-omics analysis could help to reveal targets that promote nerve repair and regeneration in the future. Materials and methods We established the SCI model and rats were randomly divided into two groups: the acute-phase SCI (ASCI) group (n = 14, 3 days post-SCI) and the sham group with day-matched periods (n = 14, without SCI). In each group, rats were sacrificed at 3 days post-surgery for histology study (n = 3), metabolome sequencing (n = 5), transcriptome sequencing (n = 3), and quantitative real-time polymerase chain reaction (n = 3). The motor function of rats was evaluated by double-blind Basso, Beattie, and Bresnahan (BBB) Locomotor Scores at 0, 1, 2, 3 days post-SCI in an open field area. Then the transcriptomic and metabolomic data were integrated in SCI model of rat to reveal the underlying molecular pathways of microenvironmental metabolic dysregulation. Results The histology of the microenvironment was significantly altered in ASCI and the locomotor function was significantly reduced in rats. Metabolomics analysis showed that 360 metabolites were highly altered during the acute phase of SCI, of which 310 were up-regulated and 50 were down-regulated, and bioinformatics analysis revealed that these differential metabolites were mainly enriched in arginine and proline metabolism, D-glutamine and D-glutamate metabolism, purine metabolism, biosynthesis of unsaturated fatty acids. Transcriptomics results showed that 5,963 genes were clearly altered, of which 2,848 genes were up-regulated and 3,115 genes were down-regulated, and these differentially expressed genes were mainly involved in response to stimulus, metabolic process, immune system process. Surprisingly, the Integrative analysis revealed significant dysregulation of purine metabolism at both transcriptome and metabolome levels in the acute phase of SCI, with 48 differential genes and 16 differential metabolites involved. Further analysis indicated that dysregulation of purine metabolism could seriously affect the energy metabolism of the injured microenvironment and increase oxidative stress as well as other responses detrimental to nerve repair and regeneration. Discussion On the whole, we have for the first time combined transcriptomics and metabolomics to systematically analyze the potential molecular pathways of metabolic dysregulation in the acute phase of SCI, which will contribute to broaden our understanding of the sophisticated molecular mechanisms of SCI, in parallel with serving as a foundation for future studies of neural repair and regeneration after SCI.
Collapse
Affiliation(s)
- Zhong Zeng
- Department of Neurosurgery, General Hospital of Ningxia Medical University, Yinchuan, China,Ningxia Key Laboratory of Stem Cell and Regenerative Medicine, General Hospital of Ningxia Medical University, Yinchuan, China,School of Clinical Medicine, Ningxia Medical University, Yinchuan, China,Ningxia Key Laboratory of Craniocerebral Diseases, Ningxia Medical University, Yinchuan, China
| | - Mei Li
- Department of Neurosurgery, General Hospital of Ningxia Medical University, Yinchuan, China,Ningxia Key Laboratory of Stem Cell and Regenerative Medicine, General Hospital of Ningxia Medical University, Yinchuan, China,School of Clinical Medicine, Ningxia Medical University, Yinchuan, China,Ningxia Key Laboratory of Craniocerebral Diseases, Ningxia Medical University, Yinchuan, China
| | - Zhanfeng Jiang
- Department of Neurosurgery, General Hospital of Ningxia Medical University, Yinchuan, China,Ningxia Key Laboratory of Stem Cell and Regenerative Medicine, General Hospital of Ningxia Medical University, Yinchuan, China,School of Clinical Medicine, Ningxia Medical University, Yinchuan, China
| | - Yuanxiang Lan
- Department of Neurosurgery, General Hospital of Ningxia Medical University, Yinchuan, China,Ningxia Key Laboratory of Stem Cell and Regenerative Medicine, General Hospital of Ningxia Medical University, Yinchuan, China,School of Clinical Medicine, Ningxia Medical University, Yinchuan, China
| | - Lei Chen
- Department of Neurosurgery, The First People’s Hospital of Shizuishan, Shizuishan, China
| | - Yanjun Chen
- Department of Neurosurgery, General Hospital of Ningxia Medical University, Yinchuan, China,Ningxia Key Laboratory of Stem Cell and Regenerative Medicine, General Hospital of Ningxia Medical University, Yinchuan, China,School of Clinical Medicine, Ningxia Medical University, Yinchuan, China
| | - Hailiang Li
- School of Clinical Medicine, Ningxia Medical University, Yinchuan, China,Ningxia Key Laboratory of Craniocerebral Diseases, Ningxia Medical University, Yinchuan, China
| | - Jianwen Hui
- Department of Neurosurgery, General Hospital of Ningxia Medical University, Yinchuan, China,Ningxia Key Laboratory of Stem Cell and Regenerative Medicine, General Hospital of Ningxia Medical University, Yinchuan, China,School of Clinical Medicine, Ningxia Medical University, Yinchuan, China
| | - Lijian Zhang
- Department of Neurosurgery, Affiliated Hospital of Hebei University, Hebei University, Baoding, China
| | - Xvlei Hu
- Department of Neurosurgery, Shanxi Provincial People’s Hospital, Taiyuan, China
| | - Hechun Xia
- Department of Neurosurgery, General Hospital of Ningxia Medical University, Yinchuan, China,Ningxia Key Laboratory of Stem Cell and Regenerative Medicine, General Hospital of Ningxia Medical University, Yinchuan, China,*Correspondence: Hechun Xia,
| |
Collapse
|
30
|
He Q, Zhang N, Liang Q, Wang Z, Chen P, Song Y, Zhou Z, Wei Y, Duan Y, Wang B, Qin P, Qin X, Xu X. Serum Serine and the Risk of All-Cause Mortality: A Nested Case-Control Study From the China Stroke Primary Prevention Trial (CSPPT). Front Nutr 2022; 9:946277. [PMID: 35903445 PMCID: PMC9315370 DOI: 10.3389/fnut.2022.946277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 06/20/2022] [Indexed: 11/13/2022] Open
Abstract
Background Serine plays a key role in numerous cellular processes, the levels and metabolism is therefore of critical importance. However, few data are available to illustrate the association of serine with long-term health effects, especially, the predictive value for long-term mortality. Objective This study was conducted to evaluate the relationship between serum serine levels and all-cause mortality in general hypertensive patients in a longitudinal cohort, and to examine the potential effect modifiers. Methods A nested case-control (NCC) study was conducted utilizing 20702 hypertensive participants from the China Stroke Primary Prevention Trial (CSPPT), a randomized, double-blind, actively controlled trial conducted from May 2008 to August 2013 in China. The current study included 291 cases of all-cause mortality and 291 controls matched on age (≤ 1 year), sex and treatment group. All-cause mortality was the main outcome in this analysis, which included death due to any reason. Results With the increase in serum serine levels, the risk of all-cause mortality first increased before flattening. After adjusting for related variables, the risk of mortality increased significantly with the increase of serum serine levels. Compared with group Q1, the mortality risk of group Q2, Q3 and Q4 were significantly increased [ORs, 95% CI: Q2: 2.32, (1.32–4.07); Q3: 2.59, (1.48–4.54); and Q4: 1.85, (1.07–3.22)]. In the exploratory analysis, we observed three effect modifiers, total homocysteine, 5-Methyltetrahydrofolate, and estimated glomerular filtration rate significantly modified the serum serine and all-cause mortality association. Conclusion Serum serine levels were significantly associated with an increased risk of all-cause mortality in hypertensive patients. Our results and findings, if confirmed further, suggest that serum serine should be considered as a marker for screening risk factors of mortality. Clinical Trial Registration [https://www.clinicaltrials.gov/ct2/show/study/NCT00794885.], identifier [CSPPT, NCT00794885].
Collapse
Affiliation(s)
- Qiangqiang He
- Graduate School at Shenzhen, Tsinghua University, Shenzhen, China
- Shenzhen Evergreen Medical Institute, Shenzhen, China
| | - Nan Zhang
- Department of Cardiology, Peking University First Hospital, Beijing, China
| | - Qiongyue Liang
- State Key Laboratory of Natural Medicines, Research Center of Biostatistics and Computational Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Zhuo Wang
- Key Laboratory of Precision Nutrition and Food Quality, Ministry of Education, Department of Nutrition and Health, College of Food Sciences and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Ping Chen
- College of Pharmacy, Jinan University, Guangzhou, China
| | - Yun Song
- AUSA Research Institute, Shenzhen AUSA Pharmed Co. Ltd., Shenzhen, China
- Institute of Biomedicine, Anhui Medical University, Hefei, China
| | - Ziyi Zhou
- Graduate School at Shenzhen, Tsinghua University, Shenzhen, China
- Shenzhen Evergreen Medical Institute, Shenzhen, China
| | - Yaping Wei
- Key Laboratory of Precision Nutrition and Food Quality, Ministry of Education, Department of Nutrition and Health, College of Food Sciences and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Yong Duan
- Yunnan Key Laboratory of Laboratory Medicine, Kunming, China
- Department of Clinical Laboratory, the First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Binyan Wang
- Shenzhen Evergreen Medical Institute, Shenzhen, China
- National Clinical Research Center for Kidney Disease, State Key Laboratory for Organ Failure Research, Guangdong Provincial Key Laboratory of Renal Failure Research, Guangzhou Regenerative Medicine and Health, Guangdong Laboratory, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Peiwu Qin
- Institute of Biopharmaceutical and Health Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen, China
| | - Xianhui Qin
- National Clinical Research Center for Kidney Disease, State Key Laboratory for Organ Failure Research, Guangdong Provincial Key Laboratory of Renal Failure Research, Guangzhou Regenerative Medicine and Health, Guangdong Laboratory, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Xiping Xu
- Key Laboratory of Precision Nutrition and Food Quality, Ministry of Education, Department of Nutrition and Health, College of Food Sciences and Nutritional Engineering, China Agricultural University, Beijing, China
- National Clinical Research Center for Kidney Disease, State Key Laboratory for Organ Failure Research, Guangdong Provincial Key Laboratory of Renal Failure Research, Guangzhou Regenerative Medicine and Health, Guangdong Laboratory, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China
- *Correspondence: Xiping Xu
| |
Collapse
|
31
|
Changes in salivary biomarkers associated with periodontitis and diabetic neuropathy in individuals with type 1 diabetes. Sci Rep 2022; 12:11284. [PMID: 35788667 PMCID: PMC9253002 DOI: 10.1038/s41598-022-15430-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 06/23/2022] [Indexed: 11/08/2022] Open
Abstract
The objective of this pilot clinical study was to identify salivary biomarkers that are associated with periodontal disease and measures of diabetic autonomic dysfunction. Saliva samples from 32 participants were obtained from 3 groups: healthy (H), type 1 diabetes mellitus (DM), and type 1 diabetes mellitus with neuropathy (DMN). Based on the periodontal examination, individuals’ mean Periodontal Screening and Recording scores were categorized into two groups (periodontally healthy and gingivitis), and correlated to specific salivary inflammatory biomarkers assessed by a customized protein array and enzyme assay. The mean salivary IgA level in DM was 9211.5 ± 4776.4 pg/ml, which was significantly lower than H (17,182.2 ± 8899.3 pg/ml). IgA in DMN with healthy periodontium was significantly lower (5905.5 ± 3124.8 pg/ml) compared to H, although IgA levels in DMN patients with gingivitis (16,894. 6 ± 7084.3) were not. According to the result of a logistic regression model, IgA and periodontal condition were the indicators of the binary response given by H versus DM, and H versus DMN, respectively. These data suggest that selected salivary biomarkers, such as IgA, combined with a periodontal examination prior to obtaining salivary samples can offer a non-invasive method to assess risk for developing diabetic neuropathy.
Collapse
|
32
|
Stratmann B, Eggers B, Mattern Y, Silva de Carvalho T, Marcus K, Tschoepe D. Chronic Hyperglycaemia Inhibits Tricarboxylic Acid Cycle in Rat Cardiomyoblasts Overexpressing Glucose Transporter Type 4. Int J Mol Sci 2022; 23:ijms23137255. [PMID: 35806260 PMCID: PMC9266806 DOI: 10.3390/ijms23137255] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 06/23/2022] [Accepted: 06/27/2022] [Indexed: 11/26/2022] Open
Abstract
An oversupply of nutrients with a loss of metabolic flexibility and subsequent cardiac dysfunction are hallmarks of diabetic cardiomyopathy. Even if excess substrate is offered, the heart suffers energy depletion as metabolic fluxes are diminished. To study the effects of a high glucose supply, a stably glucose transporter type 4 (GLUT4)-overexpressing cell line presenting an onset of diabetic cardiomyopathy-like phenotype was established. Long-term hyperglycaemia effects were analysed. Rat cardiomyoblasts overexpressing GLUT4 (H9C2KE2) were cultured under normo- and hyperglycaemic conditions for long-term. Expression profiles of several proteins were compared to non-transfected H9C2 cells (H9C2) using RT-qPCR, proteomics-based analysis, or Western blotting. GLUT4 surface analysis, glucose uptake, and cell morphology changes as well as apoptosis/necrosis measurements were performed using flow cytometry. Additionally, brain natriuretic peptide (BNP) levels, reactive oxygen species (ROS) formation, glucose consumption, and lactate production were quantified. Long-term hyperglycaemia in H9C2KE2 cells induced increased GLUT4 presence on the cell surface and was associated with exaggerated glucose influx and lactate production. On the metabolic level, hyperglycaemia affected the tricarboxylic acid (TCA) cycle with accumulation of fumarate. This was associated with increased BNP-levels, oxidative stress, and lower antioxidant response, resulting in pronounced apoptosis and necrosis. Chronic glucose overload in cardiomyoblasts induced by GLUT4 overexpression and hyperglycaemia resulted in metabolically stimulated proteome profile changes and metabolic alterations on the TCA level.
Collapse
Affiliation(s)
- Bernd Stratmann
- Herz- and Diabeteszentrum NRW, Diabeteszentrum, Ruhr Universität Bochum, 32545 Bad Oeynhausen, Germany; (Y.M.); (T.S.d.C.); (D.T.)
- Correspondence: ; Tel.: +49-(0)-5731/973768
| | - Britta Eggers
- Medizinisches Proteom-Center, Centre for Translational and Behavioural Neurosciences, Medical Faculty, Ruhr-University Bochum, 44801 Bochum, Germany; (B.E.); (K.M.)
- Medical Proteome Analysis, Centre for Protein Diagnostics (PRODI), Ruhr-University Bochum, 44801 Bochum, Germany
| | - Yvonne Mattern
- Herz- and Diabeteszentrum NRW, Diabeteszentrum, Ruhr Universität Bochum, 32545 Bad Oeynhausen, Germany; (Y.M.); (T.S.d.C.); (D.T.)
| | - Tayana Silva de Carvalho
- Herz- and Diabeteszentrum NRW, Diabeteszentrum, Ruhr Universität Bochum, 32545 Bad Oeynhausen, Germany; (Y.M.); (T.S.d.C.); (D.T.)
| | - Katrin Marcus
- Medizinisches Proteom-Center, Centre for Translational and Behavioural Neurosciences, Medical Faculty, Ruhr-University Bochum, 44801 Bochum, Germany; (B.E.); (K.M.)
- Medical Proteome Analysis, Centre for Protein Diagnostics (PRODI), Ruhr-University Bochum, 44801 Bochum, Germany
| | - Diethelm Tschoepe
- Herz- and Diabeteszentrum NRW, Diabeteszentrum, Ruhr Universität Bochum, 32545 Bad Oeynhausen, Germany; (Y.M.); (T.S.d.C.); (D.T.)
- Stiftung DHD (Der herzkranke Diabetiker) Stiftung in der Deutschen Diabetes-Stiftung, 32545 Bad Oeynhausen, Germany
| |
Collapse
|
33
|
Chai J, Sun Z, Xu J. A Contemporary Insight of Metabolomics Approach for Type 1 Diabetes: Potential for Novel Diagnostic Targets. Diabetes Metab Syndr Obes 2022; 15:1605-1625. [PMID: 35642181 PMCID: PMC9148614 DOI: 10.2147/dmso.s357007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 04/08/2022] [Indexed: 11/23/2022] Open
Abstract
High-throughput omics has been widely applied in metabolic disease, type 1 diabetes (T1D) was one of the most typical diseases. Effective prevention and early diagnosis are very important because of infancy and persistent characteristics of T1D. The occurrence and development of T1D is a chronic and continuous process, in which the production of autoantibodies (ie serum transformation) occupies the central position. Metabolomics can evaluate the metabolic characteristics of serum before seroconversion, the changes with age and T1D complications. And the addition of natural drug metabolomics is more conducive to the systematic and comprehensive diagnosis and treatment of T1D. This paper reviewed the metabolic changes and main pathogenesis from pre-diagnosis to treatment in T1D. The metabolic spectrum of significant abnormal energy and glucose-related metabolic pathway, down-regulation of lipid metabolism and up-regulation of some antioxidant pathways has appeared before seroconversion, indicating that the body has been in the dual state of disease progression and disease resistance before T1D onset. Some metabolites (such as methionine) are closely related to age, and the types of autoantibodies produced are age-specific. Some metabolites may jointly predict DN with eGFR, and metabolomics can further contribute to the pathogenesis based on the correlation between DN and DR. Many natural drug components have been proved to act on abnormal metabolic pathways of T1D and have a positive impact on some metabolic levels, which is very important for further finding therapeutic targets and developing new drugs with small side effects. Metabolomics can provide auxiliary value for the diagnosis of T1D and provide a new direction to reveal the pathogenesis of T1D and find new therapeutic targets. The development of T1D metabolomics shows that high-throughput research methods are expected to be introduced into clinical practice.
Collapse
Affiliation(s)
- Jiatong Chai
- Department of Laboratory Medicine, The First Hospital of Jilin University, Changchun, People’s Republic of China
| | - Zeyu Sun
- Department of Laboratory Medicine, The First Hospital of Jilin University, Changchun, People’s Republic of China
| | - Jiancheng Xu
- Department of Laboratory Medicine, The First Hospital of Jilin University, Changchun, People’s Republic of China
| |
Collapse
|
34
|
Umbilical cord blood metabolomics: association with intrauterine hyperglycemia. Pediatr Res 2022; 91:1530-1535. [PMID: 33980991 DOI: 10.1038/s41390-021-01516-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 03/11/2021] [Accepted: 03/20/2021] [Indexed: 11/08/2022]
Abstract
BACKGROUND Intrauterine hyperglycemia can harm a fetus's growth and development, and this can be seen in the umbilical cord blood metabolism disorder. However, the metabolites and metabolic mechanisms involved in the condition remain unknown. METHODS Targeted metabolomics using liquid chromatography and MetaboAnalyst were conducted in this study to explore differences in metabolites and metabolic pathways between individuals with hyperglycemia or well-controlled gestational diabetes mellitus (GDM) and healthy controls. RESULTS Univariate analysis found that the hyperglycemic and healthy control groups differed in 30 metabolites, while the well-controlled GDM and the healthy control groups differed only in three metabolites-ursodeoxycholic acid, docosahexaenoic acid, and 8,11,14-eicosatrienoic acid. Most of these metabolic variations were negatively associated with neonatal weights. Further research showed that the variations in the metabolites were primarily associated with the metabolic pathways of linoleic acid (LA) and alpha-linolenic acid (ALA). CONCLUSION Gestational hyperglycemia and well-controlled GDM, which may play a major role by inhibiting the LA and ALA metabolic pathways, have detrimental effects on cord blood metabolism. IMPACT The main point of this paper is that intrauterine hyperglycemia has a negative effect on cord blood metabolism mainly through the linoleic acid and alpha-linolenic acid metabolic pathways. This is a study to report a new association between well-controlled GDM and cord blood metabolism. This study provides a possible explanation for the association between intrauterine hyperglycemia and neonatal adverse birth outcomes.
Collapse
|
35
|
Zheng SJ, Luo Y, Xiao JH. The Impact of Intestinal Microorganisms and Their Metabolites on Type 1 Diabetes Mellitus. Diabetes Metab Syndr Obes 2022; 15:1123-1139. [PMID: 35431564 PMCID: PMC9012311 DOI: 10.2147/dmso.s355749] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Accepted: 03/24/2022] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND Type 1 diabetes mellitus (T1DM) is an autoimmune disease with a complex etiology comprising numerous genetic and environmental factors; however, many of the mechanisms underlying disease development remain unclear. Nevertheless, a critical role has recently been assigned to intestinal microorganisms in T1DM disease pathogenesis. In particular, a decrease in intestinal microbial diversity, increase in intestinal permeability, and the translocation of intestinal bacteria to the pancreas have been reported in patients and animal models with T1DM. Moreover, intestinal microbial metabolites differ between healthy individuals and patients with T1DM. Specifically, short-chain fatty acid (SCFA) production, which contributes to intestinal barrier integrity and immune response regulation, is significantly reduced in patients with T1DM. Considering this correlation between intestinal microorganisms and T1DM, many studies have investigated the potential of intestinal microbiota in preventive and therapeutic strategies for T1DM. OBJECTIVE The aim of this review is to provide further support for the notion that intestinal microbiota contributes to the regulation of T1DM occurrence and development. In particular, this article reviews the involvement of the intestinal microbiota and the associated metabolites in T1DM pathogenesis, as well as recent studies on the involvement of the intestinal microbiota in T1DM prevention and treatment. CONCLUSION Intestinal microbes and their metabolites contribute to T1DM occurrence and development and may become a potential target for novel therapeutics.
Collapse
Affiliation(s)
- Shu-Juan Zheng
- Zunyi Municipal Key Laboratory of Medicinal Biotechnology, Affiliated Hospital of Zunyi Medical University, Zunyi, 563003, People’s Republic of China
| | - Yi Luo
- Zunyi Municipal Key Laboratory of Medicinal Biotechnology, Affiliated Hospital of Zunyi Medical University, Zunyi, 563003, People’s Republic of China
- Guizhou Provincial Research Center for Translational Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi, 563003, People’s Republic of China
| | - Jian-Hui Xiao
- Zunyi Municipal Key Laboratory of Medicinal Biotechnology, Affiliated Hospital of Zunyi Medical University, Zunyi, 563003, People’s Republic of China
- Guizhou Provincial Research Center for Translational Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi, 563003, People’s Republic of China
| |
Collapse
|
36
|
It is time for a moonshot to find “Cures” for diabetic retinal disease. Prog Retin Eye Res 2022; 90:101051. [DOI: 10.1016/j.preteyeres.2022.101051] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 01/19/2022] [Accepted: 01/31/2022] [Indexed: 12/13/2022]
|
37
|
Hansen CS, Suvitaival T, Theilade S, Mattila I, Lajer M, Trošt K, Ahonen L, Hansen TW, Legido-Quigley C, Rossing P, Ahluwalia TS. Cardiovascular Autonomic Neuropathy in Type 1 Diabetes Is Associated With Disturbances in TCA, Lipid, and Glucose Metabolism. Front Endocrinol (Lausanne) 2022; 13:831793. [PMID: 35498422 PMCID: PMC9046722 DOI: 10.3389/fendo.2022.831793] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 03/11/2022] [Indexed: 11/17/2022] Open
Abstract
INTRODUCTION Diabetic cardiovascular autonomic neuropathy (CAN) is associated with increased mortality and morbidity. To explore metabolic mechanisms associated with CAN we investigated associations between serum metabolites and CAN in persons with type 1 diabetes (T1D). MATERIALS AND METHODS Cardiovascular reflex tests (CARTs) (heart rate response to: deep breathing; lying-to-standing test; and the Valsalva maneuver) were used to diagnose CAN in 302 persons with T1D. More than one pathological CARTs defined the CAN diagnosis. Serum metabolomics and lipidomic profiles were analyzed with two complementary non-targeted mass-spectrometry methods. Cross-sectional associations between metabolites and CAN were assessed by linear regression models adjusted for relevant confounders. RESULTS Participants were median (IQR) aged 55(49, 63) years, 48% males with diabetes duration 39(32, 47) years, HbA1c 63(55,69) mmol/mol and 34% had CAN. A total of 75 metabolites and 106 lipids were analyzed. In crude models, the CAN diagnosis was associated with higher levels of hydroxy fatty acids (2,4- and 3,4-dihydroxybutanoic acids, 4-deoxytetronic acid), creatinine, sugar derivates (ribitol, ribonic acid, myo-inositol), citric acid, glycerol, phenols, phosphatidylcholines and lower levels of free fatty acids and the amino acid methionine (p<0.05). Upon adjustment, positive associations with the CAN diagnoses were retained for hydroxy fatty acids, tricarboxylic acid (TCA) cycle-based sugar derivates, citric acid, and phenols (P<0.05). CONCLUSION Metabolic pathways, including the TCA cycle, hydroxy fatty acids, phosphatidylcholines and sugar derivatives are associated with the CAN diagnosis in T1D. These pathway may be part of the pathogeneses leading to CAN and may be modifiable risk factors for the complication.
Collapse
Affiliation(s)
- Christian S. Hansen
- Complications Research, Steno Diabetes Center Copenhagen, Herlev, Denmark
- *Correspondence: Christian S. Hansen,
| | - Tommi Suvitaival
- Complications Research, Steno Diabetes Center Copenhagen, Herlev, Denmark
| | - Simone Theilade
- Complications Research, Steno Diabetes Center Copenhagen, Herlev, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
- The Department of Medicine, Herlev-Gentofte Hospital, Copenhagen, Denmark
| | - Ismo Mattila
- Complications Research, Steno Diabetes Center Copenhagen, Herlev, Denmark
| | - Maria Lajer
- Complications Research, Steno Diabetes Center Copenhagen, Herlev, Denmark
| | - Kajetan Trošt
- Complications Research, Steno Diabetes Center Copenhagen, Herlev, Denmark
| | - Linda Ahonen
- Complications Research, Steno Diabetes Center Copenhagen, Herlev, Denmark
| | - Tine W. Hansen
- Complications Research, Steno Diabetes Center Copenhagen, Herlev, Denmark
| | | | - Peter Rossing
- Complications Research, Steno Diabetes Center Copenhagen, Herlev, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Tarunveer S. Ahluwalia
- Complications Research, Steno Diabetes Center Copenhagen, Herlev, Denmark
- The Bioinformatics Center, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
38
|
Ning J, Zhang Y, Hu H, Hu W, Li L, Pang Y, Ma S, Niu Y, Zhang R. Association between ambient particulate matter exposure and metabolic syndrome risk: A systematic review and meta-analysis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 782:146855. [PMID: 33839664 DOI: 10.1016/j.scitotenv.2021.146855] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 03/25/2021] [Accepted: 03/26/2021] [Indexed: 05/22/2023]
Abstract
Although the association between ambient particulate matter and metabolic syndrome (MetS) has been investigated, the effect of particulate matter (PM) on MetS is inconclusive. We conducted a systematic review and meta-analysis to study the association between long-term ambient PM exposure and MetS risk. The data from five databases were extracted to analyze the association between ambient PM exposure and MetS risk. A random-effects model was performed to estimate the overall risk effect. The present systematic review and meta-analysis illustrated that an increase of 5 μg/m3 in annual PM2.5 or PM10 concentration was associated with 14% or 9% increases of MetS risk, respectively (PM2.5, RR = 1.14, 95%CI [1.03, 1.25]; PM10, RR = 1.09, 95%CI [1.00, 1.19]). The population-attributable risk (PAR) was 12.28% for PM2.5 exposure or 8.26% for PM10 exposure, respectively. There was statistical association between PM2.5 exposure and risk of MetS in male proportion ≥50%, Asia, related disease or medication non-adjustment subgroup as well as cohort study subgroups, respectively. The significant association between PM10 exposure and risk of MetS was observed in male proportion ≥50% and calories intake adjustment subgroups, respectively. Sensitivity analyses showed the robustness of our results. No publication bias was detected. In conclusion, there was positive association between long-term PM exposure and MetS risk. 12.28% of MetS risk could be attributable to PM2.5 exposure.
Collapse
Affiliation(s)
- Jie Ning
- Department of Toxicology, Hebei Medical University, Shijiazhuang 050017, PR China
| | - Yaling Zhang
- Department of Toxicology, Hebei Medical University, Shijiazhuang 050017, PR China
| | - Huaifang Hu
- Department of Toxicology, Hebei Medical University, Shijiazhuang 050017, PR China
| | - Wentao Hu
- Department of Toxicology, Hebei Medical University, Shijiazhuang 050017, PR China
| | - Lipeng Li
- Department of Toxicology, Hebei Medical University, Shijiazhuang 050017, PR China
| | - Yaxian Pang
- Department of Toxicology, Hebei Medical University, Shijiazhuang 050017, PR China
| | - Shitao Ma
- Department of Occupation Health and Environmental Health, Hebei Medical University, Shijiazhuang 050017, PR China
| | - Yujie Niu
- Department of Occupation Health and Environmental Health, Hebei Medical University, Shijiazhuang 050017, PR China; Hebei Key Laboratory of Environment and Human Health, Shijiazhuang 050017, PR China
| | - Rong Zhang
- Department of Toxicology, Hebei Medical University, Shijiazhuang 050017, PR China; Hebei Key Laboratory of Environment and Human Health, Shijiazhuang 050017, PR China.
| |
Collapse
|
39
|
Xin X, Tang J, Jia HM, Zhang TE, Zheng Y, Huang LF, Ding Q, Li JC, Guo SY, Li WX. Development of a Multivariable Prediction Model for Citrate Accumulation in Liver Transplant Patients Undergoing Continuous Renal Replacement Therapy with Regional Citrate Anticoagulation. Blood Purif 2021; 51:111-121. [PMID: 33951630 DOI: 10.1159/000513947] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 12/16/2020] [Indexed: 11/19/2022]
Abstract
INTRODUCTION Patients with impaired citrate metabolism may experience citrate accumulation (CA), which causes life-threatening metabolic acidosis and hypocalcemia. CA poses a challenge for clinicians when deciding on the use of regional citrate anticoagulation (RCA) for patients with liver dysfunction. This study aimed to develop a prediction model integrating multiple clinical variables to assess the risk of CA in liver transplant patients. METHODS This single-center prospective cohort study included postoperative liver transplant patients who underwent continuous renal replacement therapy (CRRT) with RCA. The study end point was CA. A prediction model was developed using a generalized linear mixed-effect model based on the Akaike information criterion. The predictive values were assessed using the receiver operating characteristic curve and bootstrap resampling (times = 500) to estimate the area under the curve (AUC) and the corresponding 95% confidence interval (CI). A nomogram was used to visualize the model. RESULTS This study included 32 patients who underwent 133 CRRT sessions with RCA. CA occurred in 46 CRRT sessions. The model included lactate, norepinephrine >0.1 μg/kg/min, alanine aminotransferase, total bilirubin, and standard bicarbonate, which were tested before starting each CRRT session and body mass index, diabetes mellitus, and chronic kidney disease as predictors. The AUC of the model was 0.867 (95% CI 0.786-0.921), which was significantly higher than that of the single predictor (p < 0.05). A nomogram visualized the prediction model. CONCLUSIONS The prediction model integrating multiple clinical variables showed a good predictive value for CA. A nomogram visualized the model for easy application in clinical practice.
Collapse
Affiliation(s)
- Xin Xin
- Surgical Intensive Care Unit, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Jing Tang
- Surgical Intensive Care Unit, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Hui-Miao Jia
- Surgical Intensive Care Unit, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Tian-En Zhang
- Department of Health Science, Gettysburg College, Gettysburg, Pennsylvania, USA
| | - Yue Zheng
- Surgical Intensive Care Unit, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Li-Feng Huang
- Surgical Intensive Care Unit, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Qi Ding
- Surgical Intensive Care Unit, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Jun-Cong Li
- Surgical Intensive Care Unit, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Shu-Yan Guo
- Surgical Intensive Care Unit, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Wen-Xiong Li
- Surgical Intensive Care Unit, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
40
|
Ziegler D, Strom A, Straßburger K, Knebel B, Bönhof GJ, Kotzka J, Szendroedi J, Roden M. Association of cardiac autonomic dysfunction with higher levels of plasma lipid metabolites in recent-onset type 2 diabetes. Diabetologia 2021; 64:458-468. [PMID: 33084971 PMCID: PMC7801358 DOI: 10.1007/s00125-020-05310-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 09/08/2020] [Indexed: 12/14/2022]
Abstract
AIMS/HYPOTHESIS Emerging evidence suggests that in addition to hyperglycaemia, dyslipidaemia could represent a contributing pathogenetic factor to diabetic neuropathy, while obesity and insulin resistance play a role in the development of diabetic cardiac autonomic neuropathy (CAN) characterised by reduced heart rate variability (HRV), particularly in type 2 diabetes. We hypothesised that distinct lipid metabolites are associated with diminished HRV in recent-onset type 2 diabetes rather than type 1 diabetes. METHODS We analysed 127 plasma lipid metabolites (11 acylcarnitines, 39 NEFA, 12 sphingomyelins (SMs), 56 phosphatidylcholines and nine lysophosphatidylcholines) using MS in participants from the German Diabetes Study baseline cohort recently diagnosed with type 1 (n = 100) and type 2 diabetes (n = 206). Four time-domain HRV indices (number of normal-to-normal (NN) intervals >50 ms divided by the number of all NN intervals [pNN50]; root mean square of successive differences [RMSSD]; SD of NN intervals [SDNN]; and SD of differences between adjacent NN intervals) and three frequency-domain HRV indices (very-low-frequency [VLF], low-frequency [LF] and high-frequency [HF] power spectrum) were computed from NN intervals recorded during a 3 h hyperinsulinaemic-euglycaemic clamp at baseline and in subsets of participants with type 1 (n = 60) and type 2 diabetes (n = 95) after 5 years. RESULTS In participants with type 2 diabetes, after Bonferroni correction and rigorous adjustment, SDNN was inversely associated with higher levels of diacyl-phosphatidylcholine (PCaa) C32:0, PCaa C34:1, acyl-alkyl-phosphatidylcholine (PCae) C36:0, SM C16:0 and SM C16:1. SD of differences between NN intervals was inversely associated with PCaa C32:0, PCaa C34:1, PCaa C34:2, PCae C36:0 and SM C16:1, and RMSSD with PCae C36:0. For VLF power, inverse associations were found with PCaa C30:0, PCaa C32:0, PCaa C32:1, PCaa C34:2 and SM C16:1, and for LF power inverse associations were found with PCaa C32:0 and SM C16:1 (r = -0.242 to r = -0.349; p ≤ 0.0005 for all correlations). In contrast, no associations of lipid metabolites with measures of cardiac autonomic function were noted in participants recently diagnosed with type 1 diabetes. After 5 years, HRV declined due to ageing rather than diabetes, whereby prediction analyses for lipid metabolites were hampered. CONCLUSIONS/INTERPRETATION Higher plasma levels of specific lipid metabolites are closely linked to cardiac autonomic dysfunction in recent-onset type 2 diabetes but not type 1 diabetes, suggesting a role for perturbed lipid metabolism in the early development of CAN in type 2 diabetes. Graphical abstract.
Collapse
Affiliation(s)
- Dan Ziegler
- Institute for Clinical Diabetology, German Diabetes Center (DDZ), Leibniz Center for Diabetes Research at Heinrich Heine University, Düsseldorf, Germany.
- Division of Endocrinology and Diabetology, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany.
- German Center for Diabetes Research (DZD), München-Neuherberg, Germany.
| | - Alexander Strom
- Institute for Clinical Diabetology, German Diabetes Center (DDZ), Leibniz Center for Diabetes Research at Heinrich Heine University, Düsseldorf, Germany
- German Center for Diabetes Research (DZD), München-Neuherberg, Germany
| | - Klaus Straßburger
- German Center for Diabetes Research (DZD), München-Neuherberg, Germany
- Institute for Biometrics and Epidemiology, German Diabetes Center (DDZ), Leibniz Center for Diabetes Research at Heinrich Heine University, Düsseldorf, Germany
| | - Birgit Knebel
- German Center for Diabetes Research (DZD), München-Neuherberg, Germany
- Institute for Clinical Biochemistry and Pathobiochemistry, German Diabetes Center (DDZ), Leibniz Center for Diabetes Research at Heinrich Heine University, Düsseldorf, Germany
| | - Gidon J Bönhof
- Institute for Clinical Diabetology, German Diabetes Center (DDZ), Leibniz Center for Diabetes Research at Heinrich Heine University, Düsseldorf, Germany
- Division of Endocrinology and Diabetology, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany
| | - Jörg Kotzka
- German Center for Diabetes Research (DZD), München-Neuherberg, Germany
- Institute for Clinical Biochemistry and Pathobiochemistry, German Diabetes Center (DDZ), Leibniz Center for Diabetes Research at Heinrich Heine University, Düsseldorf, Germany
| | - Julia Szendroedi
- Institute for Clinical Diabetology, German Diabetes Center (DDZ), Leibniz Center for Diabetes Research at Heinrich Heine University, Düsseldorf, Germany
- Division of Endocrinology and Diabetology, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany
- German Center for Diabetes Research (DZD), München-Neuherberg, Germany
| | - Michael Roden
- Institute for Clinical Diabetology, German Diabetes Center (DDZ), Leibniz Center for Diabetes Research at Heinrich Heine University, Düsseldorf, Germany
- Division of Endocrinology and Diabetology, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany
- German Center for Diabetes Research (DZD), München-Neuherberg, Germany
| | | |
Collapse
|
41
|
Liu L, Liu L, Wang J, Zheng Q, Jin B, Sun L. Differentiation of gestational diabetes mellitus by nuclear magnetic resonance-based metabolic plasma analysis. J Biomed Res 2021; 35:351-360. [PMID: 34511531 PMCID: PMC8502693 DOI: 10.7555/jbr.35.20200191] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
This study aimed to investigate the metabolic profile of gestational diabetes mellitus (GDM) at both antepartum and postpartum periods. Seventy pregnant women were divided into three groups: the normal glucose-tolerant group (NGT, n=35), the abnormal glucose-tolerant groups without insulin therapy (A1GDM, n=24) or with insulin therapy (A2GDM, n=11). Metabolic profiles of the plasma were acquired by proton nuclear magnetic resonance (1H-NMR) spectroscopy and analyzed by multivariate statistical data analysis. The relationship between demographic parameters and the potential metabolite biomarkers was further explored. Group antepartum or postpartum showed similar metabolic trends. Compare with those of the NGT group, the levels of 2-hydroxybutyrate, lysine, acetate, glutamine, succinate, tyrosine, formate, and all three BCAAs (leucine, valine, isoleucine) in the A2GDM group were increased dramatically, and the levels of lysine, acetate, and formate in the A1GDM group were elevated significantly. The dramatically decreased levels of 3-methyl-2-oxovalerate and methanol were observed both in the A1GDM group and A2GDM group. Compare to the A1GDM group, the branched-chain amino acids (BCAAs) of leucine, valine, and isoleucine were increased dramatically in the A2GDM group. The levels of aromatic amino acids (AAAs), tyrosine and phenylalanine, were significantly increased in GDM women, consistent with the severity of GDM. Interference of amino acid metabolism and disturbance in energy metabolism occurred in women with different grades of GDM. Metabolic profiles could reflect the severity of GDM. Plasma BCAA concentrations showing strong positive correlations with weight and pre-delivery BMI. This study provides a new perspective to understand the pathogenesis and etiology of GDM, which may help the clinical management and treatment of GDM.
Collapse
Affiliation(s)
- Liping Liu
- Department of Obstetrics, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Lenan Liu
- Department of Obstetrics, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Junsong Wang
- Center for Molecular Metabolism, Nanjing University of Science and Technology, Nanjing, Jiangsu 210094, China
| | - Qi Zheng
- Center for Molecular Metabolism, Nanjing University of Science and Technology, Nanjing, Jiangsu 210094, China
| | - Bai Jin
- Department of Obstetrics, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Lizhou Sun
- Department of Obstetrics, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
| |
Collapse
|
42
|
Fernández-Ochoa Á, Brunius C, Borrás-Linares I, Quirantes-Piné R, Cádiz-Gurrea MDLL, Precisesads Clinical Consortium, Alarcón Riquelme ME, Segura-Carretero A. Metabolic Disturbances in Urinary and Plasma Samples from Seven Different Systemic Autoimmune Diseases Detected by HPLC-ESI-QTOF-MS. J Proteome Res 2020; 19:3220-3229. [PMID: 32460496 DOI: 10.1021/acs.jproteome.0c00179] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Systemic autoimmune diseases (SADs) are characterized by dysfunctioning of the immune system, which causes damage in several tissues and organs. Among these pathologies are systemic lupus erythematosus (SLE), systemic sclerosis or scleroderma, Sjögren's syndrome, rheumatoid arthritis, primary antiphospholipid syndrome (PAPS), mixed connective tissue disease (MCTD), and undifferentiated connective tissue disease (UCTD). Early diagnosis is difficult due to similarity in symptoms, signs, and clinical test results. Hence, our aim was to search for differentiating metabolites of these diseases in plasma and urine samples. We performed metabolomic profiling by liquid chromatography-mass spectrometry (LC-MS) of samples from 228 SADs patients and 55 healthy volunteers. Multivariate PLS models were applied to investigate classification accuracies and identify metabolites differentiating SADs and healthy controls. Furthermore, we specifically investigated UCTD against the other SADs. PLS models were able to classify most SADs vs healthy controls (area under the roc curve (AUC) > 0.7), with the exception of MCTD and PAPS. Differentiating metabolites consisted predominantly of unsaturated fatty acids, acylglycines, acylcarnitines, and amino acids. In accordance with the difficulties in defining UCTD, the UCTD metabolome did not differentiate well from the other SADs. However, most UCTD cases were classified as SLE, suggesting that metabolomics may provide a tool to reassess UCTD diagnosis into other conditions for more well-informed therapeutic strategies.
Collapse
Affiliation(s)
- Álvaro Fernández-Ochoa
- Department of Analytical Chemistry, Faculty of Science, University of Granada, Av. Fuentenueva s/n, Granada 18071, Spain.,Research and Development of Functional Food Centre (CIDAF), Health Science Technological Park, Avda. del Conocimiento, no. 37, s/n, Granada 18016, Spain
| | - Carl Brunius
- Department of Biology and Biological Engineering, Chalmers University of Technology, SE-412 96 Gothenburg, Sweden
| | - Isabel Borrás-Linares
- Research and Development of Functional Food Centre (CIDAF), Health Science Technological Park, Avda. del Conocimiento, no. 37, s/n, Granada 18016, Spain
| | - Rosa Quirantes-Piné
- Research and Development of Functional Food Centre (CIDAF), Health Science Technological Park, Avda. del Conocimiento, no. 37, s/n, Granada 18016, Spain
| | - María de la Luz Cádiz-Gurrea
- Department of Analytical Chemistry, Faculty of Science, University of Granada, Av. Fuentenueva s/n, Granada 18071, Spain.,Research and Development of Functional Food Centre (CIDAF), Health Science Technological Park, Avda. del Conocimiento, no. 37, s/n, Granada 18016, Spain
| | | | - Marta E Alarcón Riquelme
- Centre for Genomics and Oncological Research (GENYO), Pfizer-University of Granada-Andalusian Government, Health Science Technological Park, Av. de la Ilustración 114, 18016 Granada, Spain.,Unit of Inflammatory Diseases, Institute of Environmental Medicine, Karolinska Institute, Nobels vag 13, 171 67 Solna, Sweden
| | - Antonio Segura-Carretero
- Department of Analytical Chemistry, Faculty of Science, University of Granada, Av. Fuentenueva s/n, Granada 18071, Spain.,Research and Development of Functional Food Centre (CIDAF), Health Science Technological Park, Avda. del Conocimiento, no. 37, s/n, Granada 18016, Spain
| |
Collapse
|
43
|
Zhang C, Dong L, Wu J, Qiao S, Xu W, Ma S, Zhao B, Wang X. Intervention of resistant starch 3 on type 2 diabetes mellitus and its mechanism based on urine metabonomics by liquid chromatography-tandem mass spectrometry. Biomed Pharmacother 2020; 128:110350. [PMID: 32521455 DOI: 10.1016/j.biopha.2020.110350] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 05/24/2020] [Accepted: 06/01/2020] [Indexed: 12/24/2022] Open
Abstract
As a severe metabolic disease, type 2 diabetes mellitus (T2DM) has aroused increasing public attentions. Resistant starch 3 (RS3), as a starch resistant to enzymatic hydrolysis owing to its special structure, has a good effect on improving insulin resistance and reducing blood sugar in T2DM patients. However, the possible mechanisms were barely interpreted yet. In our research, we aimed to evaluate the effects and the possible mechanisms of RS3 on the treatment of T2DM. ICR mice treated with high-fat diet (HFD) for eight weeks, and then injected with streptozotocin (STZ) (100 mg/kg) to establish the T2DM. We choose the mice with the fast blood glucose (FBG) more than 11 mmol/L as T2DM. After treated for 11 weeks the relevant data was analyzed. According to the results, the FBG was dramatically reduced (p < 0.05), which also downregulated triglyceride (p < 0.01) and total cholesterol (p < 0.01). Additionally, the insulin resistance indexes were significantly reduced (p < 0.01), the homeostasis model assessment-β and insulin-sensitive index were significantly improved (p < 0.01) in RS3 group. Meanwhile, the metabolic profiles of urine were analyzed and 29 potential biomarkers were screened out, including amino acids and lipids. In conclusion, we speculated that the tricarboxylic acid cycle, amino acid metabolism and lipid metabolism played roles in the therapeutic mechanisms of RS3 on T2DM.
Collapse
Affiliation(s)
- Caijuan Zhang
- Beijing University of Chinese Medicine, Northeast Corner of Intersection of Sunshine South Street and Baiyang East Road, Fang-Shan District, Beijing, 102488, China
| | - Ling Dong
- Beijing University of Chinese Medicine, Northeast Corner of Intersection of Sunshine South Street and Baiyang East Road, Fang-Shan District, Beijing, 102488, China
| | - Jiahui Wu
- Beijing University of Chinese Medicine, Northeast Corner of Intersection of Sunshine South Street and Baiyang East Road, Fang-Shan District, Beijing, 102488, China
| | - Sanyang Qiao
- Beijing University of Chinese Medicine, Northeast Corner of Intersection of Sunshine South Street and Baiyang East Road, Fang-Shan District, Beijing, 102488, China
| | - Wenjuan Xu
- Beijing University of Chinese Medicine, Northeast Corner of Intersection of Sunshine South Street and Baiyang East Road, Fang-Shan District, Beijing, 102488, China
| | - Shuangshuang Ma
- Beijing University of Chinese Medicine, Northeast Corner of Intersection of Sunshine South Street and Baiyang East Road, Fang-Shan District, Beijing, 102488, China
| | - Baosheng Zhao
- Beijing University of Chinese Medicine, Northeast Corner of Intersection of Sunshine South Street and Baiyang East Road, Fang-Shan District, Beijing, 102488, China
| | - Xueyong Wang
- Beijing University of Chinese Medicine, Northeast Corner of Intersection of Sunshine South Street and Baiyang East Road, Fang-Shan District, Beijing, 102488, China.
| |
Collapse
|
44
|
Ang L, Dillon B, Mizokami-Stout K, Pop-Busui R. Cardiovascular autonomic neuropathy: A silent killer with long reach. Auton Neurosci 2020; 225:102646. [PMID: 32106052 DOI: 10.1016/j.autneu.2020.102646] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 01/30/2020] [Accepted: 02/11/2020] [Indexed: 02/07/2023]
Abstract
Cardiovascular autonomic neuropathy (CAN) is a common and deadly complication of diabetes mellitus, which is frequently overlooked in clinical practice due to its characteristic subtle presentation earlier in disease. Yet, timely detection of CAN may help implementation of tailored interventions to prevent its progression and mitigate the risk of associated complications, including cardiovascular disease (CVD), cardiac arrhythmias, myocardial dysfunction leading to congestive heart failure and all-cause mortality. This review highlights current CAN epidemiology trends, novel mechanisms linking CAN with other diabetes complications and current recommendations for diagnosis and management of the disease in the clinical setting.
Collapse
Affiliation(s)
- Lynn Ang
- Division of Metabolism, Endocrinology, and Diabetes, University of Michigan, Ann Arbor, MI, United States of America
| | - Brendan Dillon
- University of Michigan Medical School, Ann Arbor, MI, United States of America
| | - Kara Mizokami-Stout
- Division of Metabolism, Endocrinology, and Diabetes, University of Michigan, Ann Arbor, MI, United States of America
| | - Rodica Pop-Busui
- Division of Metabolism, Endocrinology, and Diabetes, University of Michigan, Ann Arbor, MI, United States of America.
| |
Collapse
|
45
|
Zhang Q, Song W, Liang X, Xie J, Shi Y, Shi X, Qiu B, Chen X. A Metabolic Insight Into the Neuroprotective Effect of Jin-Mai-Tong (JMT) Decoction on Diabetic Rats With Peripheral Neuropathy Using Untargeted Metabolomics Strategy. Front Pharmacol 2020; 11:221. [PMID: 32194428 PMCID: PMC7066215 DOI: 10.3389/fphar.2020.00221] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Accepted: 02/18/2020] [Indexed: 12/20/2022] Open
Abstract
Jin-Mai-Tong (JMT) decoction is a traditional Chinese compound prescription for treating diabetic peripheral neuropathy (DPN). The aim of this study is to investigate the neuroprotective effect of JMT decoction on diabetic rats with peripheral neuropathy and to elucidate the potential mechanism based on a metabolomics approach. Sprague-Dawley (SD) rats were randomly divided into four groups: control group, Streptozotocin (STZ) induced model group, JMT low dose (JMT-L) treated group and JMT high dose (JMT-H) treated group. After 12 weeks of treatment, behavioral changes, small fiber loss, and histopathological damages of sciatic nerves were estimated. Serum samples were collected for untargeted metabolomics analysis based on UPLC/QTOF-MS and multivariate statistics. As a result, JMT treatment at two dosages (13.9 and 27.8 g/kg⋅d) evidently improved the mechanical pain threshold (P < 0.05), increased the intraepidermal nerve fiber density (IENFD) and subepidermal nerve fiber density (SNFD) (P < 0.05), and renovated the demyelination and axonal atrophy of sciatic nerves on DPN rats. Furthermore, metabolomics study revealed that the serum metabolic profiles altered significantly among the control group and the STZ-induced model group. A total of 21 metabolites were identified as potential biomarkers related to the therapeutic effect of JMT decoction. Among them, 16 biomarkers were found in both JMT-H and JMT-L treated groups, while the five others were specific to JMT-H group. These metabolites mainly involved in lipid metabolism, tricarboxylic acid (TCA) cycle, amino acid metabolism, and so on. Besides, correlation analysis indicated that both mechanical pain threshold and distal nerve fiber density were negatively correlated with the serum levels of metabolites from lipid metabolism and TCA cycle. In conclusion, the results demonstrated that JMT decoction has an obvious protective effect against DPN, which could be mediated via ameliorating the metabolic disorders in diabetic rats with peripheral neuropathy.
Collapse
Affiliation(s)
- Qian Zhang
- Department of Traditional Chinese Medicine, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Wei Song
- Medical Research Center, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Xiaochun Liang
- Department of Traditional Chinese Medicine, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Jun Xie
- Department of Traditional Chinese Medicine, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Yue Shi
- Department of Traditional Chinese Medicine, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Xiaohu Shi
- Department of Traditional Chinese Medicine, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Bintao Qiu
- Medical Research Center, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Xiuting Chen
- Medical Research Center, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
46
|
Amino acid-based compound activates atypical PKC and leptin receptor pathways to improve glycemia and anxiety like behavior in diabetic mice. Biomaterials 2020; 239:119839. [PMID: 32065973 DOI: 10.1016/j.biomaterials.2020.119839] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 01/29/2020] [Accepted: 02/01/2020] [Indexed: 12/28/2022]
Abstract
Differences in glucose uptake in peripheral and neural tissues account for the reduced efficacy of insulin in nervous tissues. Herein, we report the design of short peptides, referred as amino acid compounds (AAC) with and without a modified side chain moiety. At nanomolar concentrations, a candidate therapeutic molecule, AAC2, containing a 7-(diethylamino) coumarin-3-carboxamide side-chain improved glucose control in human peripheral adipocytes and the endothelial brain barrier cells by activation of insulin-insensitive glucose transporter 1 (GLUT1). AAC2 interacted specifically with the leptin receptor (LepR) and activated atypical protein kinase C zeta (PKCς) to increase glucose uptake. The effects induced by AAC2 were absent in leptin receptor-deficient predipocytes and in Leprdb mice. In contrast, AAC2 established glycemic control altering food intake in leptin-deficient Lepob mice. Therefore, AAC2 activated the LepR and acted in a cytokine-like manner distinct from leptin. In a monogenic Ins2Akita mouse model for the phenotypes associated with type 1 diabetes, AAC2 rescued systemic glucose uptake in these mice without an increase in insulin levels and adiposity, as seen in insulin-treated Ins2Akita mice. In contrast to insulin, AAC2 treatment increased brain mass and reduced anxiety-related behavior in Ins2Akita mice. Our data suggests that the unique mechanism of action for AAC2, activating LepR/PKCς/GLUT1 axis, offers an effective strategy to broaden glycemic control for the prevention of diabetic complications of the nervous system and, possibly, other insulin insensitive or resistant tissues.
Collapse
|