1
|
Huang C, Rosolowsky E, Nour MA, Butalia S, Ho J, Mayengbam S, Wang W, Pyke S, Virtanen H, Reimer RA. Prebiotic supplementation in patients with type 1 diabetes: study protocol for a randomised controlled trial in Canada. BMJ Open 2025; 15:e102486. [PMID: 40449951 DOI: 10.1136/bmjopen-2025-102486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 06/03/2025] Open
Abstract
INTRODUCTION Type 1 diabetes (T1D) mellitus is caused by autoimmune destruction of insulin-producing beta-cells, requiring exogenous insulin to sustain life. Achieving near normal blood glucose levels with insulin, a primary goal of diabetes management, carries a significant risk of hypoglycaemia. There is compelling evidence that an abnormal gut microbiota or dysbiosis can increase intestinal permeability (IP) and contribute to dysglycaemia seen in T1D. Given that prebiotic fibre can mitigate dysbiosis, reduce IP and improve glycaemic control, we hypothesise that microbial changes induced by prebiotics contribute to gut and endocrine adaptations that reduce glucose fluctuations, including less hypoglycaemia. In a pilot study, we showed that in children who had T1D for at least 1 year, a 3-month course of prebiotic fibre significantly reduced the frequency of hypoglycaemia. The prebiotic group had an increase in Bifidobacterium with a moderate improvement in IP. Importantly, the prebiotic group maintained their serum C peptide level (marker of residual beta cell function) while the placebo group saw a drop. Given that preserving endogenous beta cell function in patients with T1D, particularly in the first year of diagnosis, reduces hypoglycaemia and glycaemic variability, we propose to examine the effect of prebiotic supplementation in patients with T1D. METHODS AND ANALYSIS This is a multicentre, randomised, double-blind, placebo-controlled study. Individuals (n=144) with T1D will be randomised 1:1 for 6 months to prebiotic (oligofructose-enriched inulin) or placebo (isocaloric maltodextrin). Participants will have three in-person study visits at baseline, 3 months and 6 months. The primary outcome, frequency of hypoglycaemia, will be determined from continuous glucose monitor (CGM) reports and patient blood glucose logs. Secondary outcomes will include glycaemic variability, time-in-range, glycated haemoglobin, stimulated C peptide, IP, serum inflammatory markers, quality of life and fear of hypoglycaemia ratings, as well as gut microbiome and metabolomics analysis. At 9 months, participant CGM data will be used to assess frequency of hypoglycaemia and glycaemic variability at 3 months postintervention. ETHICS AND DISSEMINATION The study received ethical approval from the University of Calgary Conjoint Health Research Ethics Board (REB21-0852). The University of Alberta subsite was granted ethical approval under the province of Alberta's research ethics reciprocity agreement as a participating site (REB21-0852; pSite00000066). The University of Saskatchewan subsite was granted ethical approval by the Biomedical Research Ethics Board (#4149). Trial findings will be disseminated through peer-reviewed publications and conference presentations. TRIAL REGISTRATION NUMBER clinicaltrials.gov NCT04963777.
Collapse
Affiliation(s)
- Carol Huang
- Department of Pediatrics, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Elizabeth Rosolowsky
- Department of Pediatrics, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, Alberta, Canada
- Women & Children's Health Research Institute, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Munier A Nour
- College of Nursing, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Sonia Butalia
- Department of Community Health Sciences, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Division of Endocrinology and Metabolism, Department of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Josephine Ho
- Department of Pediatrics, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Shyamchand Mayengbam
- Department of Biochemistry, Memorial University of Newfoundland, St. John's, Newfoundland, Canada
| | - Weilan Wang
- Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada
| | - Shannon Pyke
- Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada
| | - Heidi Virtanen
- Department of Pediatrics, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Raylene A Reimer
- Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
2
|
Li L, Yang X, Ren JS, Huang MZ, Zhao QW. Immunosuppressive agents in diabetes treatment: Hope or despair? World J Diabetes 2025; 16:100590. [DOI: 10.4239/wjd.v16.i5.100590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 01/19/2025] [Accepted: 03/05/2025] [Indexed: 04/25/2025] Open
Abstract
Exploration of immunosuppressive agents for the treatment of diabetes is a burgeoning field that has captured the attention of the medical community. The innovative approach of using these agents to combat diabetes is driven by their diverse capabilities to regulate the immune system, which is pivotal for disease pathogenesis. The primary objective is to enhance the management of blood glucose levels, which is a critical factor in the daily life of diabetic patients. This comprehensive review delves into the therapeutic horizons opened by immunosuppressive agents, particularly their potential impact on type 1 and type 2 diabetes mellitus, and their utility in the transplantation process. The complex etiology of diabetes, which involves a delicate interplay of genetic, environmental, and immunological factors, presents a multifaceted target landscape for these therapies. The agents discussed in the review, including CD3 inhibitors, cytotoxic T-lymphocyte-associated protein 4-immunoglobulin G, Janus kinase inhibitors, anti-thymocyte globulin, tumor necrosis factor-α inhibitors, CD20 inhibitors, alefacept, and alemtuzumab, each bring a unique mechanism to the table, offering a tailored approach to immune modulation. As research progresses, emphasis is being placed on evaluating the long-term efficacy and safety of these agents to pave the way for more personalized and effective diabetes management strategies.
Collapse
Affiliation(s)
- Lu Li
- Department of Clinical Pharmacy, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, Zhejiang Province, China
| | - Xi Yang
- Department of Clinical Pharmacy, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, Zhejiang Province, China
| | - Jin-Shuai Ren
- Department of Clinical Pharmacy, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, Zhejiang Province, China
| | - Ming-Zhu Huang
- Department of Clinical Pharmacy, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, Zhejiang Province, China
| | - Qing-Wei Zhao
- Department of Clinical Pharmacy, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, Zhejiang Province, China
| |
Collapse
|
3
|
Mauvais FX, van Endert PM. Type 1 Diabetes: A Guide to Autoimmune Mechanisms for Clinicians. Diabetes Obes Metab 2025. [PMID: 40375390 DOI: 10.1111/dom.16460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2025] [Revised: 04/27/2025] [Accepted: 04/30/2025] [Indexed: 05/18/2025]
Abstract
Type 1 diabetes (T1D) results from the destruction of pancreatic beta cells by autoreactive T lymphocytes, leading to insulin deficiency and lifelong insulin dependence. It develops in genetically predisposed individuals, triggered by environmental or immunological factors. Although the exact causes of T1D remain unknown, the autoimmune pathogenesis of the disease is clearly indicated by the genetic risk conferred by allelic human leukocyte antigens (HLA), the almost obligatory presence of islet cell autoantibodies (AAbs) and immune cell infiltration of pancreatic islets from patients. At the same time, epidemiological data point to a role of environmental factors, notably enteroviral infections, in the disease, although precise causative links between specific pathogens and T1D have been difficult to establish. Studies of human pancreas organs from patients made available through repositories and the advent of high-dimensional high-throughput technologies for genomic and proteomic studies have significantly elucidated our understanding of the disease in recent years and provided mechanistic insights that can be exploited for innovative targeted therapeutic approaches. This short overview will summarise current salient knowledge on immune cell and beta cell dysfunction in T1D pathogenesis. PLAIN LANGUAGE SUMMARY: Type 1 diabetes (T1D) is a chronic disease where the body's own immune system attacks and destroys the insulin-producing beta cells in the pancreas. This leads to a lack of insulin, a hormone essential for regulating blood sugar, which means people with T1D need insulin for life. The disease can develop at any age but is most diagnosed in children and young adults. Despite advances in treatment, T1D still significantly reduces life expectancy, especially in countries with fewer healthcare resources. T1D develops in people with a genetic predisposition, often triggered by environmental factors such as viral infections or changes in the gut microbiome. The disease progresses silently through three stages: Stage 1: Autoantibodies to beta cell components appear, signalling the immune system is reacting against the pancreas, but there are no symptoms; Stage 2: Beta cell function starts to decline, but fasting blood sugar is still normal; Stage 3: Enough beta cells are destroyed that fasting blood sugar rises, and symptoms of diabetes appear. The risk of progressing from stage 1 to full-blown diabetes is about 35-50% within five years, and even higher from stage 2. Over 60 genes are linked to T1D risk, most of which affect how the immune system works. The strongest genetic risk comes from specific versions of histocompatibility genes, which help the immune system distinguish between the body's own cells and invaders. Some types of these genes make it easier for the immune system to mistakenly attack beta cells. However, 90% of people diagnosed with T1D have no family member with T1D, showing that genetics is only part of the story. Environmental factors also play a big role. For example, certain viral infections, especially with viruses infecting the intestine, are associated with a higher risk of developing T1D. The gut microbiome - the community of bacteria living in our intestines - also influences risk, with healthier, more diverse microbiomes appearing to offer some protection. In T1D, immune cells - especially so-called T lymphocytes - mistake beta cells in the pancreas for threats and destroy them. This process is called autoimmunity. The attack is often reflected by the presence of autoantibodies against proteins found in beta cells. Over time, as more beta cells are lost, the body can no longer produce enough insulin, leading to the symptoms of diabetes. Interestingly, not all people with T1D have the same pattern of disease. For example, children diagnosed before age 7 often have more aggressive disease, more autoantibodies, and stronger genetic risk factors than those diagnosed later. Much of our understanding of T1D has come from studying animal models, but new technologies now allow researchers to study human pancreas tissue and blood immune cells in greater detail. Scientists are also exploring how the gut microbiome, diet, and environmental exposures contribute to T1D risk and progression. Treatment currently focuses on replacing insulin, but researchers are working on therapies that target the immune system or aim to protect or replace beta cells. Strategies include immunotherapy, gene therapy, and even modifying the gut microbiome. The goal is to prevent or reverse the disease, not just manage its symptoms. In summary, T1D is a complex autoimmune disease influenced by both genes and the environment. It progresses silently before symptoms appear, and while insulin therapy is life-saving, new research is paving the way for treatments that could one day halt or even prevent the disease.
Collapse
Affiliation(s)
- François-Xavier Mauvais
- Université Paris Cité, INSERM, CNRS, Institut Necker Enfants Malades, Paris, France
- Service de Physiologie - Explorations Fonctionnelles Pédiatriques, AP-HP, Hôpital Universitaire Robert Debré, Paris, France
| | - Peter M van Endert
- Université Paris Cité, INSERM, CNRS, Institut Necker Enfants Malades, Paris, France
- Service Immunologie Biologique, AP-HP, Hôpital Universitaire Necker - Enfants Malades, Paris, France
| |
Collapse
|
4
|
Salame G, Hakim V, Dagher C, Daou RM, Dada AE, Nassif L, Ghadieh HE, Azar S, Bazzi S, Harb F. Immunotherapy as a treatment for type 1 diabetes mellitus in children and young adults: A comprehensive systematic review and meta-analysis. PLoS One 2025; 20:e0321727. [PMID: 40215252 PMCID: PMC11990578 DOI: 10.1371/journal.pone.0321727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Accepted: 03/11/2025] [Indexed: 04/14/2025] Open
Abstract
BACKGROUND AND OBJECTIVE Type 1 diabetes mellitus (T1DM) is characterized by the loss of pancreatic cells, resulting in total insulin insufficiency. According to the Diabetes Control and Complications Trial, T1DM treatment aims to achieve appropriate glycemic control and to prevent and avoid repeated episodes of hypoglycemia. Insulin therapy alone addresses the symptoms of the disease but fails to target the underlying pathophysiology of T1DM in children despite continuous efforts to enhance insulin regimens. Therefore, immunotherapy-based approaches have been considered potential treatments for T1DM in children since they can regulate the autoimmune responses and enhance the children's quality of life by reducing their daily dose intake of insulin. METHODS In this meta-analysis, we have covered a few immunotherapeutic options based on preclinical and clinical data, namely, Teplizumab, Golimumab, Imatinib, Etanercept, Canakinumab, Ladarixin, Ala-Ala, Anakinra, and Otelixizumab in reliable databases such as Pubmed, Google Scholar, and Cochrane. SPSS was used for statistical analysis. Mean difference (MD) and standard mean difference (SMD) were used to evaluate the outcomes with a 95% confidence interval (CI). RESULTS To assess the effect of immunotherapy on the patients' daily dosage of insulin and their HbA1c and C-peptide levels, data from twelve trials were combined and synthesized. Because of the high levels of heterogeneity in the selected studies, a random-effects model was used for analysis. The combined data showed that patients receiving immunotherapy had higher C-peptide levels (Mean Difference (MD) = 1.51; 95% Confidence Interval (CI): [-2.56, 5.58]); however, this difference was not statistically significant (p = 0.42). On the other hand, patients in the immunotherapy group had significantly decreased HbA1c levels (MD = -0.63; 95% CI: [-1.18, -0.07]; p = 0.03), indicating that immunotherapy had a positive impact on glycemic management. Additionally, patients receiving immunotherapy exhibited a drop in their daily insulin dosage (MD = -1.15; 95% CI: [-2.59, 0.28]); however, this drop failed to achieve statistical significance (p = 0.10), thus indicating the need for additional research. CONCLUSION This meta-analysis aimed to assess the effectiveness of immunotherapy in treating T1DM by examining its effects on the patients' required dose of insulin, C-peptide, and HbA1c levels. While some studies failed to show desired results, the overall effect was an increase in C-peptide levels and a decrease in HbA1c levels. However, the study did not achieve statistical significance for insulin dosing. The main study's strength is its focus on randomized clinical trials which is considered among the highest levels of epidemiological evidence. Therefore, further research is required to minimize the gaps and to explore immunotherapy-based drugs as potential treatments for T1DM.
Collapse
Affiliation(s)
- Gaelle Salame
- Faculty of Medicine and Medical Sciences, University of Balamand, Kalhat, Lebanon
| | - Vincent Hakim
- Faculty of Medicine and Medical Sciences, University of Balamand, Kalhat, Lebanon
| | - Clara Dagher
- Faculty of Medicine and Medical Sciences, University of Balamand, Kalhat, Lebanon
| | - Rose-Mary Daou
- Faculty of Medicine and Medical Sciences, University of Balamand, Kalhat, Lebanon
| | - Anthony El Dada
- Faculty of Medicine and Medical Sciences, University of Balamand, Kalhat, Lebanon
| | - Lea Nassif
- Faculty of Medicine and Medical Sciences, University of Balamand, Kalhat, Lebanon
| | - Hilda E. Ghadieh
- Faculty of Medicine and Medical Sciences, University of Balamand, Kalhat, Lebanon
- AUB Diabetes, American University of Beirut, Beirut, Lebanon
| | - Sami Azar
- Faculty of Medicine and Medical Sciences, University of Balamand, Kalhat, Lebanon
- AUB Diabetes, American University of Beirut, Beirut, Lebanon
| | - Samer Bazzi
- Faculty of Medicine and Medical Sciences, University of Balamand, Kalhat, Lebanon
| | - Frederic Harb
- Faculty of Medicine and Medical Sciences, University of Balamand, Kalhat, Lebanon
- AUB Diabetes, American University of Beirut, Beirut, Lebanon
| |
Collapse
|
5
|
Foster TP, Bruggeman BS, Haller MJ. Emerging Immunotherapies for Disease Modification of Type 1 Diabetes. Drugs 2025; 85:457-473. [PMID: 39873914 PMCID: PMC11949705 DOI: 10.1007/s40265-025-02150-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/13/2025] [Indexed: 01/30/2025]
Abstract
Type 1 diabetes mellitus (T1DM) is characterized by the progressive, autoimmune-mediated destruction of β cells. As such, restoring immunoregulation early in the disease course is sought to retain endogenous insulin production. Nevertheless, in the more than 100 years since the discovery of insulin, treatment of T1DM has focused primarily on hormone replacement and glucose monitoring. That said, immunotherapies are widely used to interdict autoimmune and autoinflammatory diseases and are emerging as potential therapeutics seeking the preservation of β-cell function among those with T1DM. In the past 4 decades of diabetes research, several immunomodulatory therapies have been explored, culminating with the US Food and Drug Administration approval of teplizumab to delay stage 3 (clinical) onset of T1DM. Clinical trials seeking to prevent or reverse T1DM by repurposing immunotherapies approved for other autoimmune conditions and by exploring new therapeutics are ongoing. Collectively, these efforts have the potential to transform the future of diabetes care. We encapsulate the past 40 years of immunotherapy trials, take stock of our successes and failures, and chart paths forward in this new age of clinically available immune therapies for T1DM.
Collapse
Affiliation(s)
- Timothy P Foster
- Division of Endocrinology, Department of Pediatrics, College of Medicine, University of Florida, 1699 SW 16th Ave, Building A, Gainesville, FL, 32608, USA.
| | - Brittany S Bruggeman
- Division of Endocrinology, Department of Pediatrics, College of Medicine, University of Florida, 1699 SW 16th Ave, Building A, Gainesville, FL, 32608, USA
| | - Michael J Haller
- Division of Endocrinology, Department of Pediatrics, College of Medicine, University of Florida, 1699 SW 16th Ave, Building A, Gainesville, FL, 32608, USA
- Department of Pathology, Immunology, and Laboratory Medicine, Diabetes Institute, University of Florida, Gainesville, FL, USA
| |
Collapse
|
6
|
Rendell M. Pharmacotherapy of type 1 diabetes - part 3: tomorrow. Expert Opin Pharmacother 2025; 26:535-550. [PMID: 40056035 DOI: 10.1080/14656566.2025.2468906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 02/02/2025] [Accepted: 02/14/2025] [Indexed: 03/27/2025]
Abstract
INTRODUCTION The last 100 years have seen type 1 diabetes, a previously fatal disease, transformed by the administration of exogenous insulin. AREAS COVERED A standard literature search using the Google and Microsoft search engines and PubMed was performed. The development of synthetic insulins with varying onsets and duration of action improved glucose control, essential to mitigate the microvascular and macrovascular consequences of diabetes. Today insulin pumps guided by continuous glucose monitors are approaching the objective of normalized glucose levels. The area of greatest development is now in attempting to suppress the immune process which results in progressive destruction of the beta cell. It is possible to identify family members of patients with type 1 diabetes who may eventually develop the disease by measuring several beta cell antibodies. Very recently teplizumab, a CD3 inhibitor, has been approved to delay the onset of hyperglycemia in these individuals. EXPERT OPINION The future will see progress in immunosuppression, possibly using specific CAR-Treg cells directed at the beta cell antigens which trigger the immune process. In parallel, stem cell-derived beta cells may eventually make it possible to replace lost beta cells, resulting in a true cure for type 1 diabetes.
Collapse
Affiliation(s)
- Marc Rendell
- The Association of Diabetes Investigators, Omaha, NE, USA
- The Rose Salter Medical Research Foundation, Newport Coast, CA, USA
| |
Collapse
|
7
|
Liu J, He MQ, Guan GP, Wan XX, Jin P. ISG15 increases the apoptosis of β cells in type 1 diabetes. Cell Signal 2025; 127:111592. [PMID: 39765279 DOI: 10.1016/j.cellsig.2025.111592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 12/15/2024] [Accepted: 01/03/2025] [Indexed: 01/12/2025]
Abstract
Type 1 diabetes (T1D) is an autoimmune disease characterized by hyperglycemia caused by the destruction of insulin-producing β cells. Viral infection is an important environmental factor which is associated with the islet autoimmunity in genetically susceptible individuals. Loss of β-cells and triggering of insulitis following viral infection could result from several non-exclusive mechanisms. Despite a significant increase in ISG15 levels following viral infection, the specific role of ISG15 in the impairment of insulin-producing β-cells is unclear. To address this issue at the clinical level, we conducted this experimental work, and found elevated levels of ISG15 in the peripheral blood of T1D patients, suggesting a potential link between ISG15 and T1D. In the T1D animal model, we discovered that both ISG15 levels and cellular apoptosis were increased in pancreatic islet tissue. To investigate at the cellular level, we cultured MIN6 cells in the presence of supernatants derived from iBMDM cells transfected with poly(I:C) (PIC), a viral mimic. This exposure led to an upregulation of ISG15 expression in MIN6 cells, which was accompanied by the suppression of their functional capabilities and viability. Intriguingly, the direct transfection of MIN6 cells with PIC increased the expression of ISG15. We further found that elevated levels of ISG15 had a direct inhibitory effect on insulin secretion and it also contributed to β-cell apoptosis in a TNF-α-dependent manner. In conclusion, our study revealed a potential underlying mechanism through which ISG15 increases the apoptosis of β-cells, providing valuable insights that could facilitate the development of T1D treatment strategies.
Collapse
Affiliation(s)
- Jie Liu
- Department of Endocrinology, The Third Xiangya Hospital, Central South University, 410007 Changsha, Hunan, China
| | - Mei-Qi He
- Department of Endocrinology, The Third Xiangya Hospital, Central South University, 410007 Changsha, Hunan, China
| | - Gao-Peng Guan
- Department of Endocrinology, The Third Xiangya Hospital, Central South University, 410007 Changsha, Hunan, China
| | - Xin-Xing Wan
- Department of Endocrinology, The Third Xiangya Hospital, Central South University, 410007 Changsha, Hunan, China
| | - Ping Jin
- Department of Endocrinology, The Third Xiangya Hospital, Central South University, 410007 Changsha, Hunan, China.
| |
Collapse
|
8
|
Kosheleva L, Koshelev D, Lagunas-Rangel FA, Levit S, Rabinovitch A, Schiöth HB. Disease-modifying pharmacological treatments of type 1 diabetes: Molecular mechanisms, target checkpoints, and possible combinatorial treatments. Pharmacol Rev 2025; 77:100044. [PMID: 40014914 PMCID: PMC11964952 DOI: 10.1016/j.pharmr.2025.100044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Accepted: 01/10/2025] [Indexed: 03/01/2025] Open
Abstract
After a century of extensive scientific investigations, there is still no curative or disease-modifying treatment available that can provide long-lasting remission for patients diagnosed with type 1 diabetes (T1D). Although T1D has historically been regarded as a classic autoimmune disorder targeting and destroying pancreatic islet β-cells, significant research has recently demonstrated that β-cells themselves also play a substantial role in the disease's progression, which could explain some of the unfavorable clinical outcomes. We offer a thorough review of scientific and clinical insights pertaining to molecular mechanisms behind pathogenesis and the different therapeutic interventions in T1D covering over 20 possible pharmaceutical intervention treatments. The interventions are categorized as immune therapies, treatments targeting islet endocrine dysfunctions, medications with dual modes of action in immune and islet endocrine cells, and combination treatments with a broader spectrum of activity. We suggest that these collective findings can provide a valuable platform to discover new combinatorial synergies in search of the curative disease-modifying intervention for T1D. SIGNIFICANCE STATEMENT: This research delves into the underlying causes of T1D and identifies critical mechanisms governing β-cell function in both healthy and diseased states. Thus, we identify specific pathways that could be manipulated by existing or new pharmacological interventions. These interventions fall into several categories: (1) immunomodifying therapies individually targeting immune cell processes, (2) interventions targeting β-cells, (3) compounds that act simultaneously on both immune cell and β-cell pathways, and (4) combinations of compounds simultaneously targeting immune and β-cell pathways.
Collapse
Affiliation(s)
- Liudmila Kosheleva
- Department of Surgical Sciences, Functional Pharmacology and Neuroscience, Uppsala University, Uppsala, Sweden
| | - Daniil Koshelev
- Department of Surgical Sciences, Functional Pharmacology and Neuroscience, Uppsala University, Uppsala, Sweden
| | - Francisco Alejandro Lagunas-Rangel
- Department of Surgical Sciences, Functional Pharmacology and Neuroscience, Uppsala University, Uppsala, Sweden; Laboratory of Pharmaceutical Pharmacology, Latvian Institute of Organic Synthesis, Riga, Latvia
| | - Shmuel Levit
- Diabetes and Metabolism Institute, Assuta Medical Centers, Tel Aviv, Israel
| | | | - Helgi B Schiöth
- Department of Surgical Sciences, Functional Pharmacology and Neuroscience, Uppsala University, Uppsala, Sweden; Laboratory of Pharmaceutical Pharmacology, Latvian Institute of Organic Synthesis, Riga, Latvia.
| |
Collapse
|
9
|
Jeun R. Immunotherapies for prevention and treatment of type 1 diabetes. Immunotherapy 2025; 17:201-210. [PMID: 40033931 PMCID: PMC11951698 DOI: 10.1080/1750743x.2025.2473311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Accepted: 02/25/2025] [Indexed: 03/05/2025] Open
Abstract
Type 1 diabetes (T1D) is characterized by the autoimmune destruction of insulin-producing β-cells of the pancreatic islets necessitating lifelong insulin therapy. Despite significant advancements in diabetes technology with increasingly sophisticated methods of insulin delivery and glucose monitoring, people with T1D remain at risk of severe complications like hypoglycemia and diabetic ketoacidosis. There has long been an interest in altering the immune response in T1D to prevent or cure T1D across its various stages with limited efficacy. This review highlights immunomodulatory approaches over the years including the anti-CD3 monoclonal antibody teplizumab which is now approved to delay onset of T1DM and other interventions under current investigation.
Collapse
Affiliation(s)
- Rebecca Jeun
- Division of Endocrinology, Diabetes & Metabolism, University of Louisville, Louisville, KY, USA
| |
Collapse
|
10
|
Mondal S, Pappachan JM. Current perspectives and the future of disease-modifying therapies in type 1 diabetes. World J Diabetes 2025; 16:99496. [PMID: 39817218 PMCID: PMC11718456 DOI: 10.4239/wjd.v16.i1.99496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 10/11/2024] [Accepted: 11/04/2024] [Indexed: 11/29/2024] Open
Abstract
Use of immunomodulating agents to prevent the progression of autoimmune β-cell damage leading to type 1 diabetes mellitus (T1DM) is an interesting area for research. These include non-specific anti-inflammatory agents, immunologic vaccination and anti-inflammatory agents targeting specific immune cells or cytokines. Teplizumab is an anti-CD3-molecule that binds to and leads to the disappearance of the CD3/TCR complex and rendering the T cell anergic to its target antigen. Preclinical and clinical trials have demonstrated its efficacy in reducing the decline in serum C-peptide levels and the need for insulin therapy if used early in the disease process of T1DM. The benefits have been apparent as early as six months to as long as seven years after therapy. It has recently been approved by the Food and Drug Administration to delay the onset of clinical (stage 3) type 1 diabetes in children above 8 years of age. In their recent meta-analysis published in the World Journal of Diabetes, Ma et al found that those in the teplizumab treatment group have a greater likelihood of reduction in insulin use, change in C-peptide response, and better glycemic control compared to the control group with a good safety profile. However, all the included randomized control trials have been conducted in high-income countries. High cost of therapy and unknown utility of the molecule in stage 3 disease limit its widespread use.
Collapse
Affiliation(s)
- Sunetra Mondal
- Department of Endocrinology, NRS Medical College and Hospital, Kolkata 700014, West Bengal, India
| | - Joseph M Pappachan
- Department of Endocrinology and Metabolism, Lancashire Teaching Hospitals NHS Trust, Preston PR2 9HT, United Kingdom
- Faculty of Science, Manchester Metropolitan University, Manchester M15 6BH, United Kingdom
- Department of Endocrinology, Kasturba Medical College, Manipal 576104, India
| |
Collapse
|
11
|
Gómez-Peralta F, Pinés-Corrales PJ, Santos E, Cuesta M, González-Albarrán O, Azriel S, Castaño L, Mathieu C, on behalf of the AGORA Diabetes Collaborative Group. Autoimmune Type 1 Diabetes: An Early Approach Appraisal for Spain by the AGORA Diabetes Collaborative Group. J Clin Med 2025; 14:418. [PMID: 39860426 PMCID: PMC11766439 DOI: 10.3390/jcm14020418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 12/23/2024] [Accepted: 01/06/2025] [Indexed: 01/27/2025] Open
Abstract
Type 1 diabetes (T1D) is an autoimmune disorder characterized by the destruction of insulin-producing pancreatic beta-cells, leading to lifelong insulin dependence. This review explores the current understanding of T1D pathogenesis, clinical progression, and emerging therapeutic approaches. We examined the complex interplay between genetic predisposition and environmental factors that could trigger the autoimmune response as well as the immunological mechanisms involved in beta-cell destruction. The clinical phases of T1D are discussed from the preclinical stage through diagnosis and long-term management, highlighting the importance of early detection and intervention. Recent advancements in treatment strategies are presented, including immunomodulatory therapies and potential cell-based treatments aimed at preserving or restoring beta-cell function. Additionally, this review critically evaluates the feasibility and potential benefits of implementing a population-wide screening program for T1D in Spain. The epidemiological, economic, and ethical implications of such an initiative were considered by the national expert panel, focusing on the potential of early diagnosis to improve clinical outcomes in the face of the challenges of large-scale implementation. This comprehensive analysis aims to provide healthcare professionals, researchers, and policymakers with valuable insights into the current landscape of T1D management and prospects for enhanced prevention and treatment strategies in the Spanish context.
Collapse
Affiliation(s)
| | - Pedro J. Pinés-Corrales
- Endocrinology and Nutrition Service, Complejo Hospitalario Universitario de Albacete, 02008 Albacete, Spain;
| | - Estefanía Santos
- Endocrinology and Nutrition Service, Complejo Hospitalario de Burgos, 09006 Burgos, Spain;
| | - Martín Cuesta
- Endocrinology and Nutrition Service, Hospital Clínico San Carlos, 28040 Madrid, Spain;
| | | | - Sharona Azriel
- Endocrinology and Nutrition Service, Hospital Universitario Infanta Sofía, 28702 San Sebastián De Los Reyes, Spain;
| | - Luis Castaño
- Biobizkaia Health Research Institute, Pediatric Endocrinology Department, Cruces University Hospital, UPU/EHU, Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Endo-ERN, 48903 Barakaldo, Spain;
| | - Chantal Mathieu
- Clinical and Experimental Endocrinology, Department of Chronic Diseases and Metabolism (CHROMETA), KU Leuven, 3000 Leuven, Belgium;
| | | |
Collapse
|
12
|
Casas R, Tompa A, Åkesson K, Teixeira PF, Lindqvist A, Ludvigsson J. Redosing with Intralymphatic GAD-Alum in the Treatment of Type 1 Diabetes: The DIAGNODE-B Pilot Trial. Int J Mol Sci 2025; 26:374. [PMID: 39796229 PMCID: PMC11720063 DOI: 10.3390/ijms26010374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 12/20/2024] [Accepted: 12/23/2024] [Indexed: 01/13/2025] Open
Abstract
Immunotherapies aimed at preserving residual beta cell function in type 1 diabetes have been successful, although the effect has been limited, or raised safety concerns. Transient effects often observed may necessitate redosing to prolong the effect, although this is not always feasible or safe. Treatment with intralymphatic GAD-alum has been shown to be tolerable and safe in persons with type 1 diabetes and has shown significant efficacy to preserve C-peptide with associated clinical benefit in individuals with the human leukocyte antigen DR3DQ2 haplotype. To further explore the feasibility and advantages of redosing with intralymphatic GAD-alum, six participants who had previously received active treatment with intralymphatic GAD-alum and carried HLA DR3-DQ2 received one additional intralymphatic dose of 4 μg GAD-alum in the pilot trial DIAGNODE-B. The participants also received 2000 U/day vitamin D (Calciferol) supplementation for two months, starting one month prior to the GAD-alum injection. During the 12-month follow-up, residual beta cell function was estimated with Mixed-Meal Tolerance Tests, and clinical and immune responses were observed. C-peptide decreased minimally, and most patients showed stable HbA1c and IDAA1c. The mean % TIR increased while the mean daily insulin dose decreased at month 12 compared to the baseline. Redosing with GAD-alum seems to be safe and tolerable, and may prolong the disease modification elicited by the original GAD-alum treatment.
Collapse
Affiliation(s)
- Rosaura Casas
- Division of Pediatrics, Department of Biomedical and Clinical Sciences, Faculty of Medicine and Health Sciences, Linköping University, 581 83 Linköping, Sweden;
| | - Andrea Tompa
- Department of Clinical Diagnostics, School of Health and Welfare, Jönköping University, 551 11 Jönköping, Sweden;
- Division of Medical Diagnostics, Department of Laboratory Medicine, Ryhov County Hospital, 551 85 Jönköping, Sweden
| | - Karin Åkesson
- Department of Pediatrics, Ryhov County Hospital, 551 85 Jönköping, Sweden;
| | | | - Anton Lindqvist
- Diamyd Medical AB, 111 56 Stockholm, Sweden; (P.F.T.); (A.L.)
| | - Johnny Ludvigsson
- Division of Pediatrics, Department of Biomedical and Clinical Sciences, Faculty of Medicine and Health Sciences, Linköping University, 581 83 Linköping, Sweden;
- Crown Princess Victoria Children’s Hospital, Linköping University, 581 85 Linköping, Sweden
| |
Collapse
|
13
|
Agrawal N, Kumar G, Pandey SP, Yadav S, Kumar M, Sudheesh MS, Pandey RS. Immunotherapy for Type 1 Diabetes: Mechanistic Insights and Impact of Delivery Systems. Curr Pharm Des 2025; 31:925-933. [PMID: 39694966 DOI: 10.2174/0113816128343081241030054303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 09/14/2024] [Accepted: 09/19/2024] [Indexed: 12/20/2024]
Abstract
Type 1 diabetes is an autoimmune disease characterized by the destruction of insulin-producing pancreatic β-cells, leading to hyperglycemia and various complications. Despite insulin replacement therapy, there is a need for therapies targeting the underlying autoimmune response. This review aims to explore the mechanistic insights into T1D pathogenesis and the impact of delivery systems on immunotherapy. Genetic predisposition and environmental factors contribute to T1D development, triggering an immune-mediated attack on β-cells. T cells, particularly CD4+ and CD8+ T cells, play a central role in β-cell destruction. Antigen- specific immunotherapy is a unique way to modify the immune system by targeting specific antigens (substances that trigger the immune system) for immunotherapy. It aims to restore immune tolerance by targeting autoantigens associated with T1D. Nanoparticle-based delivery systems offer precise antigen delivery, promoting immune tolerance induction. Various studies have demonstrated the efficacy of nanoparticle-mediated delivery of autoantigens and immunomodulatory agents in preclinical models, and several patents have been made in T1D. Combining antigen-specific immunotherapy with β-cell regeneration strategies presents a promising approach for T1D treatment. However, challenges remain in optimizing delivery systems for targeted immune modulation while ensuring safety and efficacy.
Collapse
Affiliation(s)
- Nishi Agrawal
- Department of Pharmacy, Guru Ghasidas Vishwavidyalaya, Bilaspur (C.G.) 495009, India
| | - Ganesh Kumar
- Department of Pharmacy, Guru Ghasidas Vishwavidyalaya, Bilaspur (C.G.) 495009, India
| | - Sree Prakash Pandey
- Department of Pharmacy, Guru Ghasidas Vishwavidyalaya, Bilaspur (C.G.) 495009, India
| | - Shweta Yadav
- Department of Pharmacy, Guru Ghasidas Vishwavidyalaya, Bilaspur (C.G.) 495009, India
| | - Manoj Kumar
- Department of Pharmacy, Guru Ghasidas Vishwavidyalaya, Bilaspur (C.G.) 495009, India
| | - M S Sudheesh
- Department of Pharmaceutics, Amrita School of Pharmacy, Kochi, India
| | - Ravi Shankar Pandey
- Department of Pharmacy, Guru Ghasidas Vishwavidyalaya, Bilaspur (C.G.) 495009, India
| |
Collapse
|
14
|
Gomaa S, Nassef M, Hafez A. Potentials of bone marrow cells-derived from naïve or diabetic mice in autoimmune type 1 diabetes: immunomodulatory, anti-inflammatory, anti hyperglycemic, and antioxidative. Endocrine 2024; 86:959-979. [PMID: 39014283 PMCID: PMC11554735 DOI: 10.1007/s12020-024-03929-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 06/11/2024] [Indexed: 07/18/2024]
Abstract
BACKGROUND The scarcity of transplanted human islet tissue and the requirement for immunosuppressive drugs to prevent the rejection of allogeneic grafts have hindered the treatment of autoimmune type 1 diabetes mellitus (T1DM) through islet transplantation. However, there is hope in adoptively transferred bone marrow cells (BMCs) therapy, which has emerged as a propitious pathway for forthcoming medications. BMCs have the potential to significantly impact both replacement and regenerative therapies for a range of disorders, including diabetes mellitus, and have demonstrated anti-diabetic effects. AIM The main goal of this study is to evaluate the effectiveness of adoptively transferred bone marrow cells derived from either naïve mice (nBMCs) or diabetic mice (dBMCs) in treating a T1DM mice model. METHODS Male Swiss albino mice were starved for 16 h and then injected with streptozotocin (STZ) at a dose of 40 mg/kg body weight for 5 consecutive days to induce T1DM. After 14 days, the diabetic mice were distributed into four groups. The first group served as a diabetic control treated with sodium citrate buffer, while the other three groups were treated for two weeks, respectively, with insulin (subcutaneously at a dose of 8 U/kg/day), nBMCs (intravenously at a dose of 1 × 106 cells/mouse/once), and dBMCs (intravenously at a dose of 1 × 106 cells/mouse/once). RESULTS It is worth noting that administering adoptively transferred nBMCs or adoptively transferred dBMCs to STZ-induced T1DM mice resulted in a significant amelioration in glycemic condition, accompanied by a considerable reduction in the level of blood glucose and glycosylated hemoglobin % (HbA1C %), ultimately restoring serum insulin levels to their initial state in control mice. Administering nBMCs or dBMCs to STZ-induced T1DM mice led to a remarkable decrease in levels of inflammatory cytokine markers in the serum, including interferon-γ (INF-γ), tumor necrosis factor- α (TNF-α), tumor growth factor-β (TGF-β), interleukin-1 β (L-1β), interlekin-4 (IL-4), interleukin-6 (IL-6), and interleukin-10 (IL-10). Additionally, STZ-induced T1DM mice, when treated with nBMCs or dBMCs, experienced a notable rise in total immunoglobulin (Ig) level. Furthermore, there was a significant reduction in the levels of islet cell autoantibodies (ICA) and insulin autoantibodies (IAA). Furthermore, the serum of STZ-induced T1DM mice showed a significant increase in Zinc transporter 8 antigen protein (ZnT8), islet antigen 2 protein (IA-2), and glutamic acid decarboxylase antigen protein (GAD) levels. Interestingly, the administration of nBMCs or dBMCs resulted in a heightened expression of IA-2 protein in STZ-induced T1DM mice treated with nBMCs or dBMCs. Furthermore, the level of malondialdehyde (MDA) was increased, while the levels of catalase (CAT) and superoxide dismutase (SOD) were decreased in non-treated STZ-induced T1DM mice. However, when nBMCs or dBMCs were administered to STZ-induced T1DM mice, it had a significant impact on reducing oxidative stress. This was accomplished by reducing the levels of MDA in the serum and enhancing the activities of enzymatic antioxidants like CAT and SOD. STZ-induced T1DM mice displayed a significant elevation in the levels of liver enzymes ALT and AST, as well as heightened levels of creatinine and urea. Considering the crucial roles of the liver and kidney in metabolism and excretion, this research further examined the effects of administering nBMCs or dBMCs to STZ-induced T1DM mice. Notably, the administration of these cells alleviated the observed effects. CONCLUSION The present study suggests that utilizing adoptively transferred nBMCs or adoptively transferred dBMCs in the treatment of T1DM led to noteworthy decreases in blood glucose levels, possibly attributed to their capacity to enhance insulin secretion and improve the performance of pancreatic islets. Additionally, BMCs may exert their beneficial effects on the pancreatic islets of diabetic mice through their immunomodulatory, antioxidant, anti-inflammatory, and anti-oxidative stress properties.
Collapse
Affiliation(s)
- Soha Gomaa
- Zoology Department, Faculty of Science, Tanta University, Tanta, Egypt.
| | - Mohamed Nassef
- Zoology Department, Faculty of Science, Tanta University, Tanta, Egypt
| | - Amira Hafez
- Zoology Department, Faculty of Science, Tanta University, Tanta, Egypt
| |
Collapse
|
15
|
Eizirik DL, Zimath PL, Yi X, Roca Rivada A, Richardson SJ. Comment on the role of interferons in the pathology of beta cell destruction in type 1 diabetes. Reply to Lenzen S [letter]. Diabetologia 2024; 67:2600-2602. [PMID: 39231828 DOI: 10.1007/s00125-024-06269-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 08/09/2024] [Indexed: 09/06/2024]
Affiliation(s)
- Decio L Eizirik
- ULB Center for Diabetes Research, Medical Faculty, Université Libre de Bruxelles, Brussels, Belgium.
| | - Priscila L Zimath
- ULB Center for Diabetes Research, Medical Faculty, Université Libre de Bruxelles, Brussels, Belgium
| | - Xiaoyan Yi
- ULB Center for Diabetes Research, Medical Faculty, Université Libre de Bruxelles, Brussels, Belgium
| | - Arturo Roca Rivada
- ULB Center for Diabetes Research, Medical Faculty, Université Libre de Bruxelles, Brussels, Belgium
| | - Sarah J Richardson
- Islet Biology Exeter (IBEx), Exeter Centre of Excellence for Diabetes Research (EXCEED), Department of Clinical and Biomedical Sciences, University of Exeter Medical School, Exeter, UK
| |
Collapse
|
16
|
Greenbaum CJ, Nepom GT, Wood-Heickman LK, Wherrett DK, DiMeglio LA, Herold KC, Krischer JP. Evolving Concepts in Pathophysiology, Screening, and Prevention of Type 1 Diabetes: Report of Diabetes Mellitus Interagency Coordinating Committee Workshop. Diabetes 2024; 73:1780-1790. [PMID: 39167668 PMCID: PMC11493760 DOI: 10.2337/dbi24-0020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 08/01/2024] [Indexed: 08/23/2024]
Abstract
The approval of teplizumab to delay the onset of type 1 diabetes is an important inflection point in the decades-long pursuit to treat the cause of the disease rather than its symptoms. The National Institute of Diabetes and Digestive and Kidney Diseases convened a workshop of the Diabetes Mellitus Interagency Coordinating Committee titled "Evolving Concepts in Pathophysiology, Screening, and Prevention of Type 1 Diabetes" to review this accomplishment and identify future goals. Speakers representing Type 1 Diabetes TrialNet (TrialNet) and the Immune Tolerance Network emphasized that the ability to robustly identify individuals destined to develop type 1 diabetes was essential for clinical trials. The presenter from the U.S. Food and Drug Administration described how regulatory approval relied on data from the single clinical trial of TrialNet with testing of teplizumab for delay of clinical diagnosis, along with confirmatory evidence from studies in patients after diagnosis. The workshop reviewed the etiology of type 1 diabetes as a disease involving multiple immune pathways, highlighting the current understanding of prognostic markers and proposing potential strategies to improve the therapeutic response of disease-modifying therapies based on the mechanism of action. While celebrating these achievements funded by the congressionally appropriated Special Diabetes Program, panelists from professional organizations, nonprofit advocacy/funding groups, and industry also identified significant hurdles in translating this research into clinical care.
Collapse
Affiliation(s)
- Carla J. Greenbaum
- Center for Interventional Immunology, Benaroya Research Institute, Seattle, WA
| | - Gerald T. Nepom
- Immune Tolerance Network, Benaroya Research Institute, Seattle, WA
| | - Lauren K. Wood-Heickman
- Division of Diabetes, Lipid Disorders and Obesity in the Office of New Drugs, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD
| | - Diane K. Wherrett
- Paediatric Endocrinology, The Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
| | - Linda A. DiMeglio
- Department of Pediatrics, Riley Hospital for Children, Indiana University School of Medicine, Indianapolis, IN
| | - Kevan C. Herold
- Departments of Immunobiology and Internal Medicine, Yale University, New Haven, CT
| | - Jeffrey P. Krischer
- Departments of Pediatrics and Internal Medicine, Health Informatics Institute, Morsani College of Medicine, University of South Florida, Tampa, FL
| |
Collapse
|
17
|
Ray S, Palui R. Immunotherapy in type 1 diabetes: Novel pathway to the future ahead. World J Diabetes 2024; 15:2022-2035. [PMID: 39493558 PMCID: PMC11525730 DOI: 10.4239/wjd.v15.i10.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Revised: 07/23/2024] [Accepted: 07/26/2024] [Indexed: 09/26/2024] Open
Abstract
Since the discovery of insulin over 100 years ago, the focus of research in the management of type 1 diabetes (T1D) has centered around glycemic control and management of complications rather than the prevention of autoimmune destruction of pancreatic β cells. Fortunately, in recent years, there has been significant advancement in immune-targeted pharmacotherapy to halt the natural progression of T1D. The immune-targeted intervention aims to alter the underlying pathogenesis of T1D by targeting different aspects of the immune system. The immunotherapy can either antagonize the immune mediators like T cells, B cells or cytokines (antibody-based therapy), or reinduce self-tolerance to pancreatic β cells (antigen-based therapy) or stem-cell treatment. Recently, the US Food and Drug Administration approved the first immunotherapy teplizumab to be used only in stage 2 of T1D. However, the window of opportunity to practically implement this approved molecule in the selected target population is limited. In this Editorial, we briefly discuss the various promising recent developments in the field of immunotherapy research in T1D. However, further studies of these newer therapeutic agents are needed to explore their true potential for prevention or cure of T1D.
Collapse
Affiliation(s)
- Sayantan Ray
- Department of Endocrinology, All India Institute of Medical Sciences, Bhubaneswar 751019, India
| | - Rajan Palui
- Department of Endocrinology, The Mission Hospital, Durgapur 713212, India
| |
Collapse
|
18
|
Jacobsen LM, Schatz D. Immunotherapy-Based Strategies for Treatment of Type 1 Diabetes. Horm Res Paediatr 2024:1-10. [PMID: 39401495 PMCID: PMC12038710 DOI: 10.1159/000542002] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Accepted: 10/08/2024] [Indexed: 04/03/2025] Open
Abstract
BACKGROUND Type 1 diabetes (T1D) is more than an insulin-deficiency disease - it is an autoimmune disease, and the field is moving toward adopting disease-modifying immunotherapy as part of clinical care during T1D development. SUMMARY Recent successful immunotherapies as well as therapies that missed the mark are reviewed. T cell-directed therapies may allow for the greatest preservation of β cell function but also come with more side effects. Anti-cytokine therapies are very promising but likely need chronic administration. Antigen-specific therapies while safe have not produced meaningful results. Most successful trials have been conducted in adolescents and adults with stage 3 T1D (clinical T1D) with preserved C-peptide (up to 60% more compared to placebo) demonstrated 1-2 years post treatment. HbA1c and total insulin dose are less likely to be significantly different between treated and placebo groups because most participants in studies are meeting glycemic targets and because of the heterogeneous nature of these measures. In the prevention space (delaying progression from stage 2 to stage 3 T1D), the outcome is more discrete, and a T cell-directed therapy, teplizumab, has received FDA approval. Even negative studies with promising mechanistic and safety profiles have added value. KEY MESSAGES What is clear, a single administration or short course of an immunotherapy is unlikely to provide sustained freedom from exogenous insulin.
Collapse
Affiliation(s)
- Laura M Jacobsen
- Department of Pediatrics, Division of Endocrinology, University of Florida, Gainesville, Florida, USA
| | - Desmond Schatz
- Department of Pediatrics, Division of Endocrinology, University of Florida, Gainesville, Florida, USA,
| |
Collapse
|
19
|
Bazile C, Abdel Malik MM, Ackeifi C, Anderson RL, Beck RW, Donath MY, Dutta S, Hedrick JA, Karpen SR, Kay TWH, Marder T, Marinac M, McVean J, Meyer R, Pettus J, Quattrin T, Verstegen RHJ, Vieth JA, Latres E. TNF-α inhibitors for type 1 diabetes: exploring the path to a pivotal clinical trial. Front Immunol 2024; 15:1470677. [PMID: 39411715 PMCID: PMC11473295 DOI: 10.3389/fimmu.2024.1470677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 09/11/2024] [Indexed: 10/19/2024] Open
Abstract
Type 1 diabetes (T1D) is an autoimmune disease characterized by the destruction of insulin-producing β-cells in the pancreas. This destruction leads to chronic hyperglycemia, necessitating lifelong insulin therapy to manage blood glucose levels. Typically diagnosed in children and young adults, T1D can, however, occur at any age. Ongoing research aims to uncover the precise mechanisms underlying T1D and to develop potential interventions. These include efforts to modulate the immune system, regenerate β-cells, and create advanced insulin delivery systems. Emerging therapies, such as closed-loop insulin pumps, stem cell-derived β-cell replacement and disease-modifying therapies (DMTs), offer hope for improving the quality of life for individuals with T1D and potentially moving towards a cure. Currently, there are no disease-modifying therapies approved for stage 3 T1D. Preserving β-cell function in stage 3 T1D is associated with better clinical outcomes, including lower HbA1c and decreased risk of hypoglycemia, neuropathy, and retinopathy. Tumor Necrosis Factor alpha (TNF-α) inhibitors have demonstrated efficacy at preserving β-cell function by measurement of C-peptide in two clinical trials in people with stage 3 T1D. However, TNF-α inhibitors have yet to be evaluated in a pivotal trial for T1D. To address the promising clinical findings of TNF-α inhibitors in T1D, Breakthrough T1D convened a panel of key opinion leaders (KOLs) in the field. The workshop aimed to outline an optimal clinical path for moving TNF-α inhibitors to a pivotal clinical trial in T1D. Here, we summarize the evidence for the beneficial use of TNF-α inhibitors in T1D and considerations for strategies collectively identified to advance TNF-α inhibitors beyond phase 2 clinical studies for stage 3 T1D.
Collapse
Affiliation(s)
- Cassandra Bazile
- Breakthrough T1D (formerly known as JDRF), New York,
NY, United States
| | | | - Courtney Ackeifi
- Breakthrough T1D (formerly known as JDRF), New York,
NY, United States
| | | | - Roy W. Beck
- Jaeb Center for Health Research, Tampa, FL,
United States
| | - Marc Y. Donath
- Clinic of Endocrinology, Diabetes and Metabolism, University of Basel, Basel, Switzerland
| | - Sanjoy Dutta
- Breakthrough T1D (formerly known as JDRF), New York,
NY, United States
| | | | - Stephen R. Karpen
- Breakthrough T1D (formerly known as JDRF), New York,
NY, United States
| | - Thomas W. H. Kay
- St Vincent’s Institute of Medical Research, Fitzroy, VIC, Australia
| | | | - Marjana Marinac
- Breakthrough T1D (formerly known as JDRF), New York,
NY, United States
| | | | | | - Jeremy Pettus
- Division of Endocrinology and Metabolism, Department of Medicine, University of
California San Diego, La Jolla, CA, United States
| | - Teresa Quattrin
- Department of Pediatrics, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, United States
| | - Ruud H. J. Verstegen
- Division of Clinical Pharmacology and Toxicology, Department of Pediatrics, Hospital for Sick Children, Toronto, ON, Canada
- Division of Rheumatology, Department of Pediatrics, Hospital for Sick Children, Toronto, ON, Canada
| | - Joshua A. Vieth
- Breakthrough T1D (formerly known as JDRF), New York,
NY, United States
| | - Esther Latres
- Breakthrough T1D (formerly known as JDRF), New York,
NY, United States
| |
Collapse
|
20
|
Rao A, Quinn LM, Narendran P. Long-term TNF-alpha therapy for preserving beta cell function in new onset type 1 diabetes: a case report. Clin Diabetes Endocrinol 2024; 10:26. [PMID: 39252097 PMCID: PMC11386087 DOI: 10.1186/s40842-024-00185-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 05/10/2024] [Indexed: 09/11/2024] Open
Abstract
BACKGROUND Type 1 diabetes mellitus (T1D) is an autoimmune disease caused by destruction of pancreatic islet beta-cells. There is significant residual beta-cell function, measured through circulating C-peptide, present at the time of T1D diagnosis but this subsequently decreases with time. Higher residual beta-cell function at diagnosis associates with better glycaemic control and less glucose variability, and later in the disease course with less hypoglycaemia, lower glucose variability and fewer microvascular complications. There is therefore value in preserving residual beta cell function in new onset T1D Immunotherapeutic agents can protect residual beta-cell function in type 1 diabetes. However, clinical trials of such agents, whilst demonstrating C-peptide preservation in short term studies, have yet to be taken forward into routine clinical care due to concerns around safety and long-term efficacy. Here we report the case of a gentleman with newly diagnosed T1D whose glycaemic control and insulin requirement improved whilst on a five year infusion programme of infliximab, a monoclonal antibody against TNF-alpha, for colitis. CASE PRESENTATION A 52-year-old White Caucasian man was diagnosed with T1D in August 2018. Glucose was 25.6 mmol/L, HbA1c was 98mmol/mol and GAD antibodies were strongly positive. HbA1c marginally improved to 91mmol/mol following initiation of insulin detemir 5 units at night and 1:10 g of insulin aspart (November 2018). In June 2019, he developed rectal bleeding and abdominal pain. Following colonoscopy, he was diagnosed with "indeterminate colitis" and commenced on 6-weekly infusions of 400-450 mg infliximab. Thus far, he has received 32 doses and achieved colitis remission. Following infliximab initiation there was increased frequency of mild-moderate hypoglycaemia and he was gradually weaned off and discontinued detemir in June 2020. Since then, HbA1c improved from 57mmol/mol in August 2019 to 52mmol/mol in April 2022, remaining stable at 51mmol/mol. His most recent HbA1c is 54mmol/mol in February 2024. His c-peptide was 550pmol/L in October 2022 and 442pmol/L in February 2024, suggesting well-preserved beta-cell function almost 6 years post-diagnosis. CONCLUSIONS Our patient's improvement in glycaemic control can be explained by immunomodulation and C peptide preservation from infliximab. With the growing focus on type 1 diabetes disease modulation and working towards an 'insulin free T1D', our findings strengthen the evidence base for the repurposing of and long-term treatment with anti-TNF-α agents to preserve beta-cell function in new onset T1D.
Collapse
Affiliation(s)
- Adya Rao
- Department of Diabetes, Queen Elizabeth Hospital, University Hospitals of Birmingham, Birmingham, UK.
| | - Lauren M Quinn
- Department of Diabetes, Queen Elizabeth Hospital, University Hospitals of Birmingham, Birmingham, UK
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, UK
| | - Parth Narendran
- Department of Diabetes, Queen Elizabeth Hospital, University Hospitals of Birmingham, Birmingham, UK
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, UK
| |
Collapse
|
21
|
Zhou YH, Yu LT, Wang XN, Li YJ, Xu KY, Li X, Pu CC, Xie FL, Xie BB, Gao Y, Luo C. Reg2 treatment is protective but the induced Reg2 autoantibody is destructive to the islets in NOD mice. Biochem Pharmacol 2024; 227:116444. [PMID: 39038551 DOI: 10.1016/j.bcp.2024.116444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 07/14/2024] [Accepted: 07/18/2024] [Indexed: 07/24/2024]
Abstract
Regenerating family protein 2 (Reg2) is a trophic factor which stimulates β-cell replication and resists islet destruction. However, Reg2 also serves as an islet autoantigen, which makes it complicated to judge the effectiveness in treating diabetes. How Reg2 treatment behaves in non-obese diabetic (NOD) mice is to be investigated. NOD mice were treated with recombinant Reg2 protein, Complete Freund's adjuvant (CFA) + PBS and CFA+Reg2 vaccinations, CFA+PBS- and CFA+Reg2-immunized antisera, and single chain variable fragment (scFv)-Reg2 and mIgG2a-Reg2 antibodies. Glycemic level, bodyweight, serum Reg2 antibody titer, glucose tolerance, and insulin secretion were determined. Islet morphological characteristics, insulitis, cell apoptosis, islet cell components, and T cell infiltration were analyzed by histological examinations. The autoantigenicity of constructed Reg2C and Reg2X fragments was determined in healthy BALB/c mice, and the bioactivity in stimulating cell proliferation and survival was assessed in insulinoma MIN6 cells. Reg2 administration alleviated diabetes in NOD mice with improved glucose tolerance and insulin secretion but elevated serum Reg2 autoantibodies. Histomorphometry showed reduced inflammatory area, TUNEL signal and CD8 + T cell infiltration, and increased β-cell proportion in support of the islet-protective effect of Reg2 treatment. CFA+PBS and CFA+Reg2 immunizations prevented diabetic onset and alleviated insulitis while injections of the antisera offered mild protections. Antibody treatments accelerated diabetic onset without increasing the overall incidence. Reg2C fragment depletes antigenicity, but reserves protective activity in streptozotocin (STZ)-treated MIN6 cells. In conclusion, Reg2 treatment alleviates type 1 diabetes (T1D) by preserving islet β-cells, but induces Reg2 autoantibody production which poses a potential risk of accelerating diabetic progression.
Collapse
Affiliation(s)
- Yi-Han Zhou
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Lu-Ting Yu
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, China; School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing, China
| | - Xiao-Nan Wang
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - You-Jie Li
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Ke-Yi Xu
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Xin Li
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Chun-Cheng Pu
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Fei-Lu Xie
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Bing-Bing Xie
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Yan Gao
- Institute of Suzhou Biobank, Suzhou Center for Disease Prevention and Control, Suzhou, China; Suzhou Institute of Advanced Study in Public Health, Gusu School, Nanjing Medical University, Suzhou, China.
| | - Chen Luo
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, China; Antibody Engineering Laboratory, China Pharmaceutical University, Nanjing, China.
| |
Collapse
|
22
|
Nabi-Afjadi M, Ostadhadi S, Liaghat M, Pasupulla AP, Masoumi S, Aziziyan F, Zalpoor H, Abkhooie L, Tarhriz V. Revolutionizing type 1 diabetes management: Exploring oral insulin and adjunctive treatments. Biomed Pharmacother 2024; 176:116808. [PMID: 38805967 DOI: 10.1016/j.biopha.2024.116808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 05/20/2024] [Accepted: 05/20/2024] [Indexed: 05/30/2024] Open
Abstract
Type 1 diabetes (T1D) is a chronic autoimmune condition that affects millions of people worldwide. Insulin pumps or injections are the standard treatment options for this condition. This article provides a comprehensive overview of the several type 1 diabetes treatment options, focusing on oral insulin. The article is divided into parts that include immune-focused treatments, antigen vaccination, cell-directed interventions, cytokine-directed interventions, and non-immunomodulatory adjuvant therapy. Under the section on non-immunomodulatory adjunctive treatment, the benefits and drawbacks of medications such as metformin, amylin, sodium-glucose cotransporter inhibitors, glucagon-like peptide-1 receptor agonists (GLP-1 Ras), and verapamil are discussed. The article also discusses the advantages of oral insulin, including increased patient compliance and more dependable and regular blood sugar control. However, several variables, including the enzymatic and physical barriers of the digestive system, impair the administration of insulin via the mouth. Researchers have looked at a few ways to get over these challenges, such as changing the structure of the insulin molecule, improving absorption with the use of absorption enhancers or nanoparticles, and taking oral insulin together with other medications. Even with great advancements in the use of these treatment strategies, T1D still needs improvement in the therapeutic difficulties. Future studies in these areas should focus on creating tailored immunological treatments, looking into combination medications, and refining oral insulin formulations in an attempt to better control Type 1 Diabetes. The ultimate objective is to create accurate, customized strategies that will enhance glycemic management and the quality of life for individuals with the condition.
Collapse
Affiliation(s)
- Mohsen Nabi-Afjadi
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran.
| | - Samane Ostadhadi
- Department of Cell and Molecular Biology and Microbiology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran
| | - Mahsa Liaghat
- Department of Medical Laboratory Sciences, Faculty of Medical Sciences, Islamic Azad University, Kazerun Branch, Kazerun, Iran; Network of Immunity in Infection, Malignancy & Autoimmunity (NIIMA), Universal Scientific Education & Research Network (USERN), Tehran, Iran
| | - Ajay Prakash Pasupulla
- Oral and Maxillofacial Pathology, School of Medicine, Colllege of health Sciences, Wachemo University, Hosanna, Ethiopia
| | - Sajjad Masoumi
- Department of Medical Biotechnology, National institute of Genetic Engineering and Biotechnology, Tehran, Iran
| | - Fatemeh Aziziyan
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran; Network of Immunity in Infection, Malignancy & Autoimmunity (NIIMA), Universal Scientific Education & Research Network (USERN), Tehran, Iran
| | - Hamidreza Zalpoor
- Network of Immunity in Infection, Malignancy & Autoimmunity (NIIMA), Universal Scientific Education & Research Network (USERN), Tehran, Iran; Shiraz Neuroscience Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Leila Abkhooie
- Razi Herbal Medicines Research Center, Lorestan University of Medical Sciences, Khorramabad, Iran; Department of Medical Biotechnology, School of Medicine, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Vahideh Tarhriz
- Cardiovascular Center of Excellence, Louisiana State University Health Sciences Center, New Orleans, LA, USA.
| |
Collapse
|
23
|
Herold KC, Delong T, Perdigoto AL, Biru N, Brusko TM, Walker LSK. The immunology of type 1 diabetes. Nat Rev Immunol 2024; 24:435-451. [PMID: 38308004 PMCID: PMC7616056 DOI: 10.1038/s41577-023-00985-4] [Citation(s) in RCA: 45] [Impact Index Per Article: 45.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/15/2023] [Indexed: 02/04/2024]
Abstract
Following the seminal discovery of insulin a century ago, treatment of individuals with type 1 diabetes (T1D) has been largely restricted to efforts to monitor and treat metabolic glucose dysregulation. The recent regulatory approval of the first immunotherapy that targets T cells as a means to delay the autoimmune destruction of pancreatic β-cells highlights the critical role of the immune system in disease pathogenesis and tends to pave the way for other immune-targeted interventions for T1D. Improving the efficacy of such interventions across the natural history of the disease will probably require a more detailed understanding of the immunobiology of T1D, as well as technologies to monitor residual β-cell mass and function. Here we provide an overview of the immune mechanisms that underpin the pathogenesis of T1D, with a particular emphasis on T cells.
Collapse
Affiliation(s)
- Kevan C Herold
- Department of Immunobiology, Yale University, New Haven, CT, USA.
- Department of Internal Medicine, Yale University, New Haven, CT, USA.
| | - Thomas Delong
- Anschutz Medical Campus, University of Colorado, Denver, CO, USA
| | - Ana Luisa Perdigoto
- Department of Internal Medicine, Yale University, New Haven, CT, USA
- Internal Medicine, VA Connecticut Healthcare System, West Haven, CT, USA
| | - Noah Biru
- Department of Immunobiology, Yale University, New Haven, CT, USA
| | - Todd M Brusko
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida Diabetes Institute, Gainesville, FL, USA
| | - Lucy S K Walker
- Institute of Immunity & Transplantation, University College London, London, UK.
- Division of Infection & Immunity, University College London, London, UK.
| |
Collapse
|
24
|
Pant T, Lin CW, Bedrat A, Jia S, Roethle MF, Truchan NA, Ciecko AE, Chen YG, Hessner MJ. Monocytes in type 1 diabetes families exhibit high cytolytic activity and subset abundances that correlate with clinical progression. SCIENCE ADVANCES 2024; 10:eadn2136. [PMID: 38758799 PMCID: PMC11100571 DOI: 10.1126/sciadv.adn2136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 04/15/2024] [Indexed: 05/19/2024]
Abstract
Monocytes are immune regulators implicated in the pathogenesis of type 1 diabetes (T1D), an autoimmune disease that targets insulin-producing pancreatic β cells. We determined that monocytes of recent onset (RO) T1D patients and their healthy siblings express proinflammatory/cytolytic transcriptomes and hypersecrete cytokines in response to lipopolysaccharide exposure compared to unrelated healthy controls (uHCs). Flow cytometry measured elevated circulating abundances of intermediate monocytes and >2-fold more CD14+CD16+HLADR+KLRD1+PRF1+ NK-like monocytes among patients with ROT1D compared to uHC. The intermediate to nonclassical monocyte ratio among ROT1D patients correlated with the decline in functional β cell mass during the first 24 months after onset. Among sibling nonprogressors, temporal decreases were measured in the intermediate to nonclassical monocyte ratio and NK-like monocyte abundances; these changes coincided with increases in activated regulatory T cells. In contrast, these monocyte populations exhibited stability among T1D progressors. This study associates heightened monocyte proinflammatory/cytolytic activity with T1D susceptibility and progression and offers insight to the age-dependent decline in T1D susceptibility.
Collapse
Affiliation(s)
- Tarun Pant
- The Max McGee Research Center for Juvenile Diabetes, Children’s Research Institute of Children’s Hospital of Wisconsin, Milwaukee, WI, USA
- Department of Pediatrics, The Medical College of Wisconsin, Milwaukee, WI, USA
| | - Chien-Wei Lin
- Division of Biostatistics, The Medical College of Wisconsin, Milwaukee, WI, USA
| | - Amina Bedrat
- The Max McGee Research Center for Juvenile Diabetes, Children’s Research Institute of Children’s Hospital of Wisconsin, Milwaukee, WI, USA
- Department of Pediatrics, The Medical College of Wisconsin, Milwaukee, WI, USA
| | - Shuang Jia
- The Max McGee Research Center for Juvenile Diabetes, Children’s Research Institute of Children’s Hospital of Wisconsin, Milwaukee, WI, USA
- Department of Pediatrics, The Medical College of Wisconsin, Milwaukee, WI, USA
| | - Mark F. Roethle
- The Max McGee Research Center for Juvenile Diabetes, Children’s Research Institute of Children’s Hospital of Wisconsin, Milwaukee, WI, USA
- Department of Pediatrics, The Medical College of Wisconsin, Milwaukee, WI, USA
| | - Nathan A. Truchan
- The Max McGee Research Center for Juvenile Diabetes, Children’s Research Institute of Children’s Hospital of Wisconsin, Milwaukee, WI, USA
- Department of Pediatrics, The Medical College of Wisconsin, Milwaukee, WI, USA
| | - Ashley E. Ciecko
- The Max McGee Research Center for Juvenile Diabetes, Children’s Research Institute of Children’s Hospital of Wisconsin, Milwaukee, WI, USA
- Department of Pediatrics, The Medical College of Wisconsin, Milwaukee, WI, USA
| | - Yi-Guang Chen
- The Max McGee Research Center for Juvenile Diabetes, Children’s Research Institute of Children’s Hospital of Wisconsin, Milwaukee, WI, USA
- Department of Pediatrics, The Medical College of Wisconsin, Milwaukee, WI, USA
| | - Martin J. Hessner
- The Max McGee Research Center for Juvenile Diabetes, Children’s Research Institute of Children’s Hospital of Wisconsin, Milwaukee, WI, USA
- Department of Pediatrics, The Medical College of Wisconsin, Milwaukee, WI, USA
| |
Collapse
|
25
|
Coomans de Brachène A, Alvelos MI, Szymczak F, Zimath PL, Castela A, Marmontel de Souza B, Roca Rivada A, Marín-Cañas S, Yi X, Op de Beeck A, Morgan NG, Sonntag S, Jawurek S, Title AC, Yesildag B, Pattou F, Kerr-Conte J, Montanya E, Nacher M, Marselli L, Marchetti P, Richardson SJ, Eizirik DL. Interferons are key cytokines acting on pancreatic islets in type 1 diabetes. Diabetologia 2024; 67:908-927. [PMID: 38409439 DOI: 10.1007/s00125-024-06106-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 01/03/2024] [Indexed: 02/28/2024]
Abstract
AIMS/HYPOTHESIS The proinflammatory cytokines IFN-α, IFN-γ, IL-1β and TNF-α may contribute to innate and adaptive immune responses during insulitis in type 1 diabetes and therefore represent attractive therapeutic targets to protect beta cells. However, the specific role of each of these cytokines individually on pancreatic beta cells remains unknown. METHODS We used deep RNA-seq analysis, followed by extensive confirmation experiments based on reverse transcription-quantitative PCR (RT-qPCR), western blot, histology and use of siRNAs, to characterise the response of human pancreatic beta cells to each cytokine individually and compared the signatures obtained with those present in islets of individuals affected by type 1 diabetes. RESULTS IFN-α and IFN-γ had a greater impact on the beta cell transcriptome when compared with IL-1β and TNF-α. The IFN-induced gene signatures have a strong correlation with those observed in beta cells from individuals with type 1 diabetes, and the level of expression of specific IFN-stimulated genes is positively correlated with proteins present in islets of these individuals, regulating beta cell responses to 'danger signals' such as viral infections. Zinc finger NFX1-type containing 1 (ZNFX1), a double-stranded RNA sensor, was identified as highly induced by IFNs and shown to play a key role in the antiviral response in beta cells. CONCLUSIONS/INTERPRETATION These data suggest that IFN-α and IFN-γ are key cytokines at the islet level in human type 1 diabetes, contributing to the triggering and amplification of autoimmunity.
Collapse
Affiliation(s)
| | - Maria Ines Alvelos
- ULB Center for Diabetes Research, Medical Faculty, Université Libre de Bruxelles, Brussels, Belgium
| | - Florian Szymczak
- ULB Center for Diabetes Research, Medical Faculty, Université Libre de Bruxelles, Brussels, Belgium
| | - Priscila L Zimath
- ULB Center for Diabetes Research, Medical Faculty, Université Libre de Bruxelles, Brussels, Belgium
| | - Angela Castela
- ULB Center for Diabetes Research, Medical Faculty, Université Libre de Bruxelles, Brussels, Belgium
| | | | - Arturo Roca Rivada
- ULB Center for Diabetes Research, Medical Faculty, Université Libre de Bruxelles, Brussels, Belgium
| | - Sandra Marín-Cañas
- ULB Center for Diabetes Research, Medical Faculty, Université Libre de Bruxelles, Brussels, Belgium
| | - Xiaoyan Yi
- ULB Center for Diabetes Research, Medical Faculty, Université Libre de Bruxelles, Brussels, Belgium
| | - Anne Op de Beeck
- ULB Center for Diabetes Research, Medical Faculty, Université Libre de Bruxelles, Brussels, Belgium
| | - Noel G Morgan
- Islet Biology Exeter (IBEx), Exeter Centre of Excellence for Diabetes Research (EXCEED), Department of Clinical and Biomedical Sciences, University of Exeter Medical School, Exeter, UK
| | - Sebastian Sonntag
- InSphero AG, Schlieren, Switzerland
- University of Applied Sciences and Arts Northwestern Switzerland, Basel, Switzerland
| | | | | | | | - François Pattou
- European Genomic Institute for Diabetes, UMR 1190 Translational Research for Diabetes, Inserm, CHU Lille, University of Lille, Lille, France
| | - Julie Kerr-Conte
- European Genomic Institute for Diabetes, UMR 1190 Translational Research for Diabetes, Inserm, CHU Lille, University of Lille, Lille, France
| | - Eduard Montanya
- Hospital Universitari Bellvitge, Bellvitge Biomedical Research Institute (IDIBELL), Centro de Investigación Biomédica en Red Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM) and University of Barcelona, Barcelona, Spain
| | - Montserrat Nacher
- Hospital Universitari Bellvitge, Bellvitge Biomedical Research Institute (IDIBELL), Centro de Investigación Biomédica en Red Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM) and University of Barcelona, Barcelona, Spain
| | - Lorella Marselli
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Piero Marchetti
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Sarah J Richardson
- Islet Biology Exeter (IBEx), Exeter Centre of Excellence for Diabetes Research (EXCEED), Department of Clinical and Biomedical Sciences, University of Exeter Medical School, Exeter, UK
| | - Decio L Eizirik
- ULB Center for Diabetes Research, Medical Faculty, Université Libre de Bruxelles, Brussels, Belgium.
| |
Collapse
|
26
|
Lin C, Hu S, Cai X, Lv F, Yang W, Liu G, Yang X, Ji L. The opportunities and challenges of the disease-modifying immunotherapy for type 1 diabetes: A systematic review and meta-analysis. Pharmacol Res 2024; 203:107157. [PMID: 38531504 DOI: 10.1016/j.phrs.2024.107157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 03/22/2024] [Accepted: 03/22/2024] [Indexed: 03/28/2024]
Abstract
There are multiple disease-modifying immunotherapies showing the potential of preventing or delaying the progression of type 1 diabetes (T1D). We designed and performed this systematic review and meta-analysis to gain an overview of what a role immunotherapy plays in the treatment of T1D. We searched PubMed, Embase and Cochrane Central Register of Controlled Trials (CENTRAL) from inception to December 2023. We included clinical trials of immunotherapy conducted in patients with T1D that reported the incidence of hypoglycemia or changes from baseline in at least one of following outcomes: 2 h and 4 h mixed-meal-stimulated C-peptide area under the curve (AUC), fasting C-peptide, daily insulin dosage, glycated hemoglobin (HbA1c) and fasting plasma glucose (FPG). The results were computed as the weighted mean differences (WMDs) or odds ratios (ORs) and 95% confidence intervals (CIs) in random-effect model. In all, 34 clinical trials were included. When compared with control groups, 2 h C-peptide AUC was marginally higher in patient treated with nonantigen-based immunotherapies (WMD, 0.04nmol/L, 95% CI, 0.00-0.09 nmol/L, P=0.05), which was mainly driven by the effects of T cell-targeted therapy. A greater preservation in 4 h C-peptide AUC was observed in patients with nonantigen-based immunotherapies (WMD, 0.10nmol/L, 95% CI, 0.04-0.16 nmol/L, P=0.0007), which was mainly driven by the effects of tumor necrosis factor α (TNF-α) inhibitor and T cell-targeted therapy. After excluding small-sample trials, less daily insulin dosage was observed in patient treated with nonantigen-based immunotherapies when compared with control groups (WMD, -0.07units/kg/day, 95% CI, -0.11 to -0.03units/kg/day, P=0.0004). The use of antigen-based immunotherapies was also associated with a lower daily insulin dosage versus control groups (WMD, -0.11units/kg/day, 95% CI, -0.23 to -0.00units/kg/day, P=0.05). However, changes of HbA1c or FPG were comparable between nonantigen-based immunotherapies or antigen-based immunotherapies and control groups. The risk of hypoglycemia was not increased in patients treated with nonantigen-based immunotherapies or patients treated with antigen-based immunotherapies when compared with control groups. In conclusion, nonantigen-based immunotherapies were associated with a preservation of 2 h and 4 h C-peptide AUC in patients with T1D when compared with the controls, which was mainly driven by the effects of TNF-a inhibitor and T cell-targeted therapy. Both nonantigen-based immunotherapies and antigen-based immunotherapies tended to reduce the daily insulin dosage in patients with T1D when compared with the controls. However, they did not contribute to a substantial improvement in HbA1c or FPG. Both nonantigen-based immunotherapies and antigen-based immunotherapies were well tolerated with not increased risk of hypoglycemia in patients with T1D.
Collapse
Affiliation(s)
- Chu Lin
- Department of Endocrinology and Metabolism, Peking University People's Hospital, Beijing, China
| | - Suiyuan Hu
- Department of Endocrinology and Metabolism, Peking University People's Hospital, Beijing, China
| | - Xiaoling Cai
- Department of Endocrinology and Metabolism, Peking University People's Hospital, Beijing, China.
| | - Fang Lv
- Department of Endocrinology and Metabolism, Peking University People's Hospital, Beijing, China
| | - Wenjia Yang
- Department of Endocrinology and Metabolism, Peking University People's Hospital, Beijing, China
| | - Geling Liu
- Department of Endocrinology (Section I), Tangshan Gongren Hospital, Tangshan, Hebei, China
| | - Xiaolin Yang
- Department of Endocrinology (Section I), Tangshan Gongren Hospital, Tangshan, Hebei, China
| | - Linong Ji
- Department of Endocrinology and Metabolism, Peking University People's Hospital, Beijing, China.
| |
Collapse
|
27
|
Pearson JA, Hu Y, Peng J, Wong FS, Wen L. TLR5-deficiency controls dendritic cell subset development in an autoimmune diabetes-susceptible model. Front Immunol 2024; 15:1333967. [PMID: 38482010 PMCID: PMC10935730 DOI: 10.3389/fimmu.2024.1333967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 02/06/2024] [Indexed: 03/17/2024] Open
Abstract
Introduction The incidence of the autoimmune disease, type 1 diabetes (T1D), has been increasing worldwide and recent studies have shown that the gut microbiota are associated with modulating susceptibility to T1D. Toll-like receptor 5 (TLR5) recognizes bacterial flagellin and is widely expressed on many cells, including dendritic cells (DCs), which are potent antigen-presenting cells (APCs). TLR5 modulates susceptibility to obesity and alters metabolism through gut microbiota; however, little is known about the role TLR5 plays in autoimmunity, especially in T1D. Methods To fill this knowledge gap, we generated a TLR5-deficient non-obese diabetic (NOD) mouse, an animal model of human T1D, for study. Results We found that TLR5-deficiency led to a reduction in CD11c+ DC development in utero, prior to microbial colonization, which was maintained into adulthood. This was associated with a bias in the DC populations expressing CD103, with or without CD8α co-expression, and hyper-secretion of different cytokines, both in vitro (after stimulation) and directly ex vivo. We also found that TLR5-deficient DCs were able to promote polyclonal and islet antigen-specific CD4+ T cell proliferation and proinflammatory cytokine secretion. Interestingly, only older TLR5-deficient NOD mice had a greater risk of developing spontaneous T1D compared to wild-type mice. Discussion In summary, our data show that TLR5 modulates DC development and enhances cytokine secretion and diabetogenic CD4+ T cell responses. Further investigation into the role of TLR5 in DC development and autoimmune diabetes may give additional insights into the pathogenesis of Type 1 diabetes.
Collapse
Affiliation(s)
- James Alexander Pearson
- Section of Endocrinology, School of Medicine, Yale University, New Haven, CT, United States
- Diabetes Research Group, Division of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - Youjia Hu
- Section of Endocrinology, School of Medicine, Yale University, New Haven, CT, United States
| | - Jian Peng
- Section of Endocrinology, School of Medicine, Yale University, New Haven, CT, United States
| | - F. Susan Wong
- Diabetes Research Group, Division of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - Li Wen
- Section of Endocrinology, School of Medicine, Yale University, New Haven, CT, United States
| |
Collapse
|
28
|
Deng W, Zhao Z, Zou T, Kuang T, Wang J. Research Advances in Fusion Protein-Based Drugs for Diabetes Treatment. Diabetes Metab Syndr Obes 2024; 17:343-362. [PMID: 38288338 PMCID: PMC10823413 DOI: 10.2147/dmso.s421527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 12/22/2023] [Indexed: 01/31/2024] Open
Abstract
Diabetes mellitus (DM) is a chronic metabolic disease characterized by elevated blood glucose levels, resulting in multi-organ dysfunction and various complications. Fusion proteins can form multifunctional complexes by combining the target proteins with partner proteins. It has significant advantages in improving the performance of the target proteins, extending their biological half-life, and enhancing patient drug compliance. Fusion protein-based drugs have emerged as promising new drugs in diabetes therapeutics. However, there has not been a systematic review of fusion protein-based drugs for diabetes therapeutics. Hence, we conducted a comprehensive review of published literature on diabetic fusion protein-based drugs for diabetes, with a primary focus on immunoglobulin G (IgG) fragment crystallizable (Fc) region, albumin, and transferrin (TF). This review aims to provide a reference for the subsequent development and clinical application of fusion protein-based drugs in diabetes therapeutics.
Collapse
Affiliation(s)
- Wenying Deng
- School of Basic Medical Sciences, University of South China, Hengyang, Hunan Province, 421001, People’s Republic of China
| | - Zeyi Zhao
- School of Basic Medical Sciences, University of South China, Hengyang, Hunan Province, 421001, People’s Republic of China
| | - Tao Zou
- Department of Cardiovascular Medicine, First Affiliated Hospital of University of South China, Hengyang, Hunan Province, 421001, People’s Republic of China
| | - Tongdong Kuang
- Guangxi Key Laboratory of Diabetic Systems Medicine, Guilin Medical University, Guilin, Guangxi Province, 541199, People’s Republic of China
| | - Jing Wang
- School of Basic Medical Sciences, University of South China, Hengyang, Hunan Province, 421001, People’s Republic of China
| |
Collapse
|
29
|
Lord SM, Bahnson HT, Greenbaum CJ, Liljenquist DR, Virostko J, Speake C. Testing a new platform to screen disease-modifying therapy in type 1 diabetes. PLoS One 2023; 18:e0293268. [PMID: 38096190 PMCID: PMC10721089 DOI: 10.1371/journal.pone.0293268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 10/06/2023] [Indexed: 12/17/2023] Open
Abstract
Studies of new therapies to preserve insulin secretion in early type 1 diabetes require several years to recruit eligible subjects and to see a treatment effect; thus, there is interest in alternative study designs to speed this process. Most people with longstanding type 1 diabetes no longer secrete insulin. However, studies from pancreata of those with longstanding T1D show that beta cells staining for insulin can persist for decades after diagnosis, and this is paralleled in work showing proinsulin secretion in individuals with longstanding disease; collectively this suggests that there is a reserve of alive but "sleeping" beta cells. Here, we designed a novel clinical trial platform to test whether a short course of therapy with an agent known to have effects in type 1 diabetes with residual endogenous insulin could transiently induce insulin secretion in those who no longer produce insulin. A therapy that transiently "wakes up" sleeping beta cells might be tested next in a fully powered trial in those with endogenous insulin secretion. In this three-arm non-randomized pilot study, we tested three therapies known to impact disease: two beta-cell supportive agents, liraglutide and verapamil, and an immunomodulatory agent, golimumab. The golimumab treated arm was not fully enrolled due to uncertainties about immunotherapy during the COVID-19 pandemic. Participants had mixed-meal tolerance test (MMTT)-stimulated C-peptide below the quantitation limit (<0.02 ng/mL) at enrollment and received 8 to 12 weeks of therapy. At the completion of therapy, none of the individuals achieved the primary outcome of MMTT-stimulated C-peptide ≥ 0.02 ng/mL. An exploratory outcome of the verapamil arm was MRI-assessed pancreas size, diffusion, and longitudinal relaxation time, which showed repeatability of these measures but no treatment effect. The liraglutide and golimumab arms were registered on clinicaltrials.gov under accession number NCT03632759 and the verapamil arm under accession number NCT05847413. Trail registration: Protocols are registered in ClinicalTrials.gov under accession numbers NCT03632759 and NCT05847413.
Collapse
Affiliation(s)
- Sandra M. Lord
- Center for Interventional Immunology, Benaroya Research Institute at Virginia Mason, Seattle, WA, United States of America
| | - Henry T. Bahnson
- Center for Interventional Immunology, Benaroya Research Institute at Virginia Mason, Seattle, WA, United States of America
| | - Carla J. Greenbaum
- Center for Interventional Immunology, Benaroya Research Institute at Virginia Mason, Seattle, WA, United States of America
| | | | - John Virostko
- Dell Medical School, University of Texas at Austin, Austin, TX, United States of America
| | - Cate Speake
- Center for Interventional Immunology, Benaroya Research Institute at Virginia Mason, Seattle, WA, United States of America
| |
Collapse
|
30
|
Antar SA, Ashour NA, Sharaky M, Khattab M, Ashour NA, Zaid RT, Roh EJ, Elkamhawy A, Al-Karmalawy AA. Diabetes mellitus: Classification, mediators, and complications; A gate to identify potential targets for the development of new effective treatments. Biomed Pharmacother 2023; 168:115734. [PMID: 37857245 DOI: 10.1016/j.biopha.2023.115734] [Citation(s) in RCA: 98] [Impact Index Per Article: 49.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 10/13/2023] [Accepted: 10/13/2023] [Indexed: 10/21/2023] Open
Abstract
Nowadays, diabetes mellitus has emerged as a significant global public health concern with a remarkable increase in its prevalence. This review article focuses on the definition of diabetes mellitus and its classification into different types, including type 1 diabetes (idiopathic and fulminant), type 2 diabetes, gestational diabetes, hybrid forms, slowly evolving immune-mediated diabetes, ketosis-prone type 2 diabetes, and other special types. Diagnostic criteria for diabetes mellitus are also discussed. The role of inflammation in both type 1 and type 2 diabetes is explored, along with the mediators and potential anti-inflammatory treatments. Furthermore, the involvement of various organs in diabetes mellitus is highlighted, such as the role of adipose tissue and obesity, gut microbiota, and pancreatic β-cells. The manifestation of pancreatic Langerhans β-cell islet inflammation, oxidative stress, and impaired insulin production and secretion are addressed. Additionally, the impact of diabetes mellitus on liver cirrhosis, acute kidney injury, immune system complications, and other diabetic complications like retinopathy and neuropathy is examined. Therefore, further research is required to enhance diagnosis, prevent chronic complications, and identify potential therapeutic targets for the management of diabetes mellitus and its associated dysfunctions.
Collapse
Affiliation(s)
- Samar A Antar
- Center for Vascular and Heart Research, Fralin Biomedical Research Institute, Virginia Tech, Roanoke, VA 24016, USA; Department of Pharmacology and Biochemistry, Faculty of Pharmacy, Horus University, New Damietta 34518, Egypt
| | - Nada A Ashour
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Tanta University, Tanta 31527, Egypt
| | - Marwa Sharaky
- Cancer Biology Department, Pharmacology Unit, National Cancer Institute (NCI), Cairo University, Cairo, Egypt
| | - Muhammad Khattab
- Department of Chemistry of Natural and Microbial Products, Division of Pharmaceutical and Drug Industries, National Research Centre, Cairo, Egypt
| | - Naira A Ashour
- Department of Neurology, Faculty of Physical Therapy, Horus University, New Damietta 34518, Egypt
| | - Roaa T Zaid
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Ahram Canadian University, 6th of October City, Giza 12566, Egypt
| | - Eun Joo Roh
- Chemical and Biological Integrative Research Center, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea; Division of Bio-Medical Science & Technology, University of Science and Technology, Daejeon 34113, Republic of Korea
| | - Ahmed Elkamhawy
- BK21 FOUR Team and Integrated Research Institute for Drug Development, College of Pharmacy, Dongguk University-Seoul, Goyang 10326, Republic of Korea; Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt.
| | - Ahmed A Al-Karmalawy
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Ahram Canadian University, 6th of October City, Giza 12566, Egypt; Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Horus University-Egypt, New Damietta 34518, Egypt
| |
Collapse
|
31
|
Caldara R, Tomajer V, Monti P, Sordi V, Citro A, Chimienti R, Gremizzi C, Catarinella D, Tentori S, Paloschi V, Melzi R, Mercalli A, Nano R, Magistretti P, Partelli S, Piemonti L. Allo Beta Cell transplantation: specific features, unanswered questions, and immunological challenge. Front Immunol 2023; 14:1323439. [PMID: 38077372 PMCID: PMC10701551 DOI: 10.3389/fimmu.2023.1323439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 11/06/2023] [Indexed: 12/18/2023] Open
Abstract
Type 1 diabetes (T1D) presents a persistent medical challenge, demanding innovative strategies for sustained glycemic control and enhanced patient well-being. Beta cells are specialized cells in the pancreas that produce insulin, a hormone that regulates blood sugar levels. When beta cells are damaged or destroyed, insulin production decreases, which leads to T1D. Allo Beta Cell Transplantation has emerged as a promising therapeutic avenue, with the goal of reinstating glucose regulation and insulin production in T1D patients. However, the path to success in this approach is fraught with complex immunological hurdles that demand rigorous exploration and resolution for enduring therapeutic efficacy. This exploration focuses on the distinct immunological characteristics inherent to Allo Beta Cell Transplantation. An understanding of these unique challenges is pivotal for the development of effective therapeutic interventions. The critical role of glucose regulation and insulin in immune activation is emphasized, with an emphasis on the intricate interplay between beta cells and immune cells. The transplantation site, particularly the liver, is examined in depth, highlighting its relevance in the context of complex immunological issues. Scrutiny extends to recipient and donor matching, including the utilization of multiple islet donors, while also considering the potential risk of autoimmune recurrence. Moreover, unanswered questions and persistent gaps in knowledge within the field are identified. These include the absence of robust evidence supporting immunosuppression treatments, the need for reliable methods to assess rejection and treatment protocols, the lack of validated biomarkers for monitoring beta cell loss, and the imperative need for improved beta cell imaging techniques. In addition, attention is drawn to emerging directions and transformative strategies in the field. This encompasses alternative immunosuppressive regimens and calcineurin-free immunoprotocols, as well as a reevaluation of induction therapy and recipient preconditioning methods. Innovative approaches targeting autoimmune recurrence, such as CAR Tregs and TCR Tregs, are explored, along with the potential of stem stealth cells, tissue engineering, and encapsulation to overcome the risk of graft rejection. In summary, this review provides a comprehensive overview of the inherent immunological obstacles associated with Allo Beta Cell Transplantation. It offers valuable insights into emerging strategies and directions that hold great promise for advancing the field and ultimately improving outcomes for individuals living with diabetes.
Collapse
Affiliation(s)
- Rossana Caldara
- Clinic Unit of Regenerative Medicine and Organ Transplants, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Valentina Tomajer
- Pancreatic Surgery, Pancreas Translational & Clinical Research Center, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Paolo Monti
- Diabetes Research Institute, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Valeria Sordi
- Diabetes Research Institute, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Antonio Citro
- Diabetes Research Institute, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Raniero Chimienti
- Diabetes Research Institute, IRCCS Ospedale San Raffaele, Milan, Italy
- Università Vita-Salute San Raffaele, Milan, Italy
| | - Chiara Gremizzi
- Clinic Unit of Regenerative Medicine and Organ Transplants, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Davide Catarinella
- Clinic Unit of Regenerative Medicine and Organ Transplants, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Stefano Tentori
- Clinic Unit of Regenerative Medicine and Organ Transplants, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Vera Paloschi
- Clinic Unit of Regenerative Medicine and Organ Transplants, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Raffella Melzi
- Diabetes Research Institute, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Alessia Mercalli
- Diabetes Research Institute, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Rita Nano
- Diabetes Research Institute, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Paola Magistretti
- Diabetes Research Institute, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Stefano Partelli
- Pancreatic Surgery, Pancreas Translational & Clinical Research Center, IRCCS Ospedale San Raffaele, Milan, Italy
- Università Vita-Salute San Raffaele, Milan, Italy
| | - Lorenzo Piemonti
- Clinic Unit of Regenerative Medicine and Organ Transplants, IRCCS Ospedale San Raffaele, Milan, Italy
- Diabetes Research Institute, IRCCS Ospedale San Raffaele, Milan, Italy
- Università Vita-Salute San Raffaele, Milan, Italy
| |
Collapse
|
32
|
Thakkar S, Chopra A, Nagendra L, Kalra S, Bhattacharya S. Teplizumab in Type 1 Diabetes Mellitus: An Updated Review. TOUCHREVIEWS IN ENDOCRINOLOGY 2023; 19:22-30. [PMID: 38187075 PMCID: PMC10769466 DOI: 10.17925/ee.2023.19.2.7] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 07/01/2023] [Indexed: 01/09/2024]
Abstract
Type 1 diabetes mellitus (T1DM) is a chronic autoimmune condition characterized by the irreversible destruction of the β cells of the pancreas, which leads to a lifelong dependency on exogenous insulin. Despite the advancements in insulin delivery methods, the suboptimal outcomes of these methods have triggered the search for therapies that may prevent or reverse the disease. Given the autoimmune aetiology of T1DM, therapies counteracting the immune-mediated destruction of the β-cells are the obvious target. Although several treatment strategies have been attempted to target cellular, humoral and innate immunity, very few have had a clinically meaningful impact. Of all the available immunomodulatory agents, cluster of differentiation (CD) 3 antibodies have exhibited the most promising preclinical and clinical results. Muromonab-CD3, which also happened to be a murine CD3 antibody, was the first monoclonal antibody approved for clinical use and was primarily indicated for graft rejection. The adverse effects associated with muromonab-CD3 led to its withdrawal. Teplizumab, a newer CD3 antibody, has a better side-effect profile because of its humanized nature and non-Fc-receptor-binding domain. In November 2022, teplizumab became the first immunomodulatory agent to be licensed by the US Food and Drug Administration for delaying the onset of T1DM in high-risk adults and children over 8 years old. The mechanism seems to be enhancing regulatory T-cell activity and promoting immune tolerance. This article reviews the mechanism of action and the clinical trials of teplizumab in individuals with T1DM or at risk of developing the disease.
Collapse
Affiliation(s)
- Simran Thakkar
- Department of Endocrinology, Indraprastha Apollo Hospitals, New Delhi, India
| | - Aditi Chopra
- Department of Endocrinology, Manipal Hospital, Bengaluru, India
| | | | - Sanjay Kalra
- Department of Endocrinology, Bharti Hospital, Karnal, Haryana, India
| | | |
Collapse
|
33
|
Daetwyler E, Zippelius A, Danioth S, Donath MY, Gut L. Nivolumab-induced diabetes mellitus-a case report with literature review of the treatment options. Front Immunol 2023; 14:1248919. [PMID: 37965350 PMCID: PMC10640970 DOI: 10.3389/fimmu.2023.1248919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 10/10/2023] [Indexed: 11/16/2023] Open
Abstract
Background Immune checkpoint inhibitor (ICI) treatment has become important for treating various cancer types, including metastatic renal cell carcinoma. However, ICI treatment can lead to endocrine immune-related adverse events (irAEs) by overstimulating the patient's immune system. Here, we report a rare case of a new onset of diabetes mellitus (DM), caused by nivolumab, and we discuss the feasible treatment options with a focus on TNF antagonism. Case presentation A 50-year-old man was diagnosed with metastatic renal cell carcinoma. Due to systemic progression, a combined immunotherapy with ipilimumab and nivolumab was initiated, according to the current study protocol (SAKK 07/17). The administration of ipilimumab was stopped after 10 months, due to partial response as seen in the computer tomography (CT), and nivolumab was continued as monotherapy. Fourteen months after the start of the treatment, the patient was admitted to the emergency department with lethargy, vomiting, blurred vision, polydipsia, and polyuria. The diagnosis of DM with diabetic ketoacidosis was established, although autoantibodies to β-cells were not detectable. Intravenous fluids and insulin infusion treatment were immediately initiated with switching to a subcutaneous administration after 1 day. In addition, the patient received an infusion of the TNF inhibitor infliximab 4 days and 2 weeks after the initial diagnosis of DM. However, the C-peptide values remained low, indicating a sustained insulin deficiency, and the patient remained on basal bolus insulin treatment. Two months later, nivolumab treatment was restarted without destabilization of the diabetic situation. Conclusions In contrast to the treatment of other irAEs, the administration of corticosteroids is not recommended in ICI-induced DM. The options for further treatment are mainly based on the low numbers of case series and case reports. In our case, the administration of infliximab-in an attempt to salvage the function of β-cells-was not successful, and this is in contrast to some previous reports. This apparent discrepancy may be explained by the absence of insulin resistance in our case. There is so far no evidence for immunosuppressive treatment in this situation. Prompt recognition and immediate start of insulin treatment are most important in its management.
Collapse
Affiliation(s)
- Eveline Daetwyler
- Department of Medical Oncology, University Hospital Basel, Basel, Switzerland
| | - Alfred Zippelius
- Department of Medical Oncology, University Hospital Basel, Basel, Switzerland
- Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Simona Danioth
- Clinic for Endocrinology, Diabetes & Metabolism, Luzern Cantonal Hospital, Luzern, Switzerland
| | - Marc Y. Donath
- Department of Biomedicine, University of Basel, Basel, Switzerland
- Clinic for Endocrinology, Diabetes & Metabolism, University Hospital Basel, Basel, Switzerland
| | - Lara Gut
- Clinic for Endocrinology, Diabetes & Metabolism, University Hospital Basel, Basel, Switzerland
- Clinic for Endocrinology & Diabetes, Medical University Clinic Baselland, Liestal, Switzerland
| |
Collapse
|
34
|
Siddiqui K, Nawaz SS. Exploration of Immune Targets for Type 1 Diabetes and Latent Autoimmune Disease Immunotherapy. Immunotargets Ther 2023; 12:91-103. [PMID: 37795196 PMCID: PMC10546931 DOI: 10.2147/itt.s417917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Accepted: 09/09/2023] [Indexed: 10/06/2023] Open
Abstract
Type 1 diabetes (T1D) is an autoimmune disease that destroys pancreatic beta cells, which produce insulin in the islets of Langerhans. The risk of developing T1D is influenced by environmental factors, genetics, and autoantibodies. Latent autoimmune diabetes in adults (LADA) is a type of T1D that is genetically and phenotypically distinct from classic T1D. This review summarizes the accumulated information on the risk factors for T1D and LADA, and immunotherapy trials that offer insights into potential future combined therapeutic interventions for both T1D and LADA to slow the rate of islet cell loss and preserve beta cell function. Future research should also focus on improving intervention doses, conducting more thorough examinations of intervention responders, and/or combining minimally effective single-target immunotherapies to slow the rate of islet cell loss and preserve beta cell function.
Collapse
Affiliation(s)
- Khalid Siddiqui
- Strategic Center for Diabetes Research, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Shaik Sarfaraz Nawaz
- Strategic Center for Diabetes Research, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
35
|
Sionov RV, Ahdut-HaCohen R. A Supportive Role of Mesenchymal Stem Cells on Insulin-Producing Langerhans Islets with a Specific Emphasis on The Secretome. Biomedicines 2023; 11:2558. [PMID: 37761001 PMCID: PMC10527322 DOI: 10.3390/biomedicines11092558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 09/06/2023] [Accepted: 09/14/2023] [Indexed: 09/29/2023] Open
Abstract
Type 1 Diabetes (T1D) is a chronic autoimmune disease characterized by a gradual destruction of insulin-producing β-cells in the endocrine pancreas due to innate and specific immune responses, leading to impaired glucose homeostasis. T1D patients usually require regular insulin injections after meals to maintain normal serum glucose levels. In severe cases, pancreas or Langerhans islet transplantation can assist in reaching a sufficient β-mass to normalize glucose homeostasis. The latter procedure is limited because of low donor availability, high islet loss, and immune rejection. There is still a need to develop new technologies to improve islet survival and implantation and to keep the islets functional. Mesenchymal stem cells (MSCs) are multipotent non-hematopoietic progenitor cells with high plasticity that can support human pancreatic islet function both in vitro and in vivo and islet co-transplantation with MSCs is more effective than islet transplantation alone in attenuating diabetes progression. The beneficial effect of MSCs on islet function is due to a combined effect on angiogenesis, suppression of immune responses, and secretion of growth factors essential for islet survival and function. In this review, various aspects of MSCs related to islet function and diabetes are described.
Collapse
Affiliation(s)
- Ronit Vogt Sionov
- The Institute of Biomedical and Oral Research (IBOR), Faculty of Dental Medicine, The Hebrew University of Jerusalem, Jerusalem 9112102, Israel
| | - Ronit Ahdut-HaCohen
- Department of Medical Neurobiology, Institute of Medical Research, Hadassah Medical School, The Hebrew University of Jerusalem, Jerusalem 9112102, Israel;
- Department of Science, The David Yellin Academic College of Education, Jerusalem 9103501, Israel
| |
Collapse
|
36
|
Kattner N. Immune cell infiltration in the pancreas of type 1, type 2 and type 3c diabetes. Ther Adv Endocrinol Metab 2023; 14:20420188231185958. [PMID: 37529508 PMCID: PMC10387691 DOI: 10.1177/20420188231185958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 06/16/2023] [Indexed: 08/03/2023] Open
Abstract
The different types of diabetes differ in disease pathogenesis but share the impairment or loss of β-cell function leading to chronic hyperglycaemia. While immune cells are present throughout the whole pancreas in normality, their number and activation is increased in diabetes. Different patterns and composition of inflammation could be observed in type 1, type 2 and type 3c diabetes. Immune cells, pancreatic stellate cells and fibrosis were present in the islet microenvironment and could add to β-cell dysfunction and therefore development and progression of diabetes. First studies investigating the use of anti-inflammatory drugs demonstrate their ability to rescue remaining β-cell function and their potential benefit in diabetes treatment. This article provides an overview of immune cell infiltrates in different types of diabetes, highlights the knowledge of their impact on β-cell function and introduces the potential of immunomodulatory strategies.
Collapse
Affiliation(s)
- Nicole Kattner
- Translational and Clinical Research Institute, Newcastle University, Medical School, Framlington Place, Newcastle upon Tyne, UK
| |
Collapse
|
37
|
Sordi V, Monti P, Lampasona V, Melzi R, Pellegrini S, Keymeulen B, Gillard P, Linn T, Bosi E, Rose L, Pozzilli P, Giorgino F, Cossu E, Piemonti L. Post hoc analysis of a randomized, double-blind, prospective trial evaluating a CXCR1/2 inhibitor in new-onset type 1 diabetes: endo-metabolic features at baseline identify a subgroup of responders. Front Endocrinol (Lausanne) 2023; 14:1175640. [PMID: 37409229 PMCID: PMC10319139 DOI: 10.3389/fendo.2023.1175640] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 05/30/2023] [Indexed: 07/07/2023] Open
Abstract
Aim In a recent randomized, multicenter trial (NCT02814838) a short-term anti-inflammatory treatment with ladarixin (LDX; an inhibitor of the CXCR1/2 chemokine receptors) did not show benefit on preserving residual beta cell function in new-onset type 1 diabetes. We present a post hoc analysis of trial patients in the predefined subgroup analysis developed according to baseline daily insulin requirement (DIR) tertiles. Method A double-blind, randomized (2:1), placebo-controlled study was conducted in 45 men and 31 women (aged 18-46 years) within 100 days of the first insulin administration. Patients received LDX (400 mg twice daily) for three cycles of 14 days on/14 days off, or placebo. The primary endpoint was the area under the curve for C-peptide [AUC (0-120 min)] in response to a 2-h mixed meal tolerance test (MMTT) at week 13 ± 1. Seventy-five patients completed the week 13 MMTT and were divided into three groups according to the DIR tertiles: lower, ≤ 0.23U/kg/die (n = 25); middle, 0.24-0.40 U/kg/die (n = 24); upper, ≥ 0.41 U/kg/die (n = 26). Results When considering the patients in the upper tertile (HIGH-DIR), C-peptide AUC (0-120 min) at 13 weeks was higher in the LDX group (n = 16) than in the placebo (n = 10) group [difference: 0.72 nmol/L (95% CI 0.9-1.34), p = 0.027]. This difference reduced over time (0.71 nmol/L at 26 weeks, p = 0.04; 0.42 nmol/L at 52 weeks, p = 0.29), while it has never been significant at any time in patients in the lower and/or middle tertile (LOW-DIR). We characterized at baseline the HIGH-DIR and found that endo-metabolic (HOMA-B, adiponectin, and glucagon-to-C-peptide ratio) and immunologic (chemokine (C-C motif) ligand 2 (CCL2)/monocyte chemoattractant protein 1 (MCP1) and Vascular Endothelial Growth Factor (VEGF)) features distinguished this group from LOW-DIR. Conclusion While LDX did not prevent the progressive loss of beta-cell function in the majority of treated subjects, the post hoc analysis suggests that it could work in subjects with HIGH-DIR at baseline. As we found differences in endo-metabolic and immunologic parameters within this subgroup, this generates the hypothesis that the interactions between host factors and drug action can contribute to its efficacy. Further research is needed to evaluate this hypothesis.
Collapse
Affiliation(s)
- Valeria Sordi
- Diabetes Research Institute, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Paolo Monti
- Diabetes Research Institute, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Vito Lampasona
- Diabetes Research Institute, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Raffaella Melzi
- Diabetes Research Institute, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Silvia Pellegrini
- Diabetes Research Institute, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Bart Keymeulen
- The Belgian Diabetes Registry, Academic Hospital and Diabetes Research Centre, Vrije Universiteit Brussel, Brussels, Belgium
| | - Pieter Gillard
- Department of Endocrinology, University Hospitals Leuven‐Katholieke Universiteit Leuven, Leuven, Belgium
| | - Thomas Linn
- Clinical Research Unit, Medical Clinic and Polyclinic III, Center of Internal Medicine, Justus Liebig University, Giessen, Germany
| | - Emanuele Bosi
- Diabetes Research Institute, IRCCS Ospedale San Raffaele, Milan, Italy
- Università Vita-Salute San Raffaele, Milan, Italy
| | - Ludger Rose
- Zentrum für Diabetes und Gefäßerkrankungen Münster, Munster, Germany
| | - Paolo Pozzilli
- Department of Endocrinology and Metabolic Diseases, University Campus Bio‐Medico, Rome, Italy
| | - Francesco Giorgino
- Department of Emergency and Organ Transplantation, Section of Internal Medicine, Endocrinology, Andrology and Metabolic Diseases, University of Bari Aldo Moro, Bari, Italy
| | - Efisio Cossu
- Department of Medical Sciences and Public Health, University of Cagliari, Cagliari, Italy
| | - Lorenzo Piemonti
- Diabetes Research Institute, IRCCS Ospedale San Raffaele, Milan, Italy
- Università Vita-Salute San Raffaele, Milan, Italy
| |
Collapse
|
38
|
Krishnamurthy B, Lacorcia M, Kay TWH, Thomas HE, Mannering SI. Monitoring immunomodulation strategies in type 1 diabetes. Front Immunol 2023; 14:1206874. [PMID: 37346035 PMCID: PMC10279879 DOI: 10.3389/fimmu.2023.1206874] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Accepted: 05/26/2023] [Indexed: 06/23/2023] Open
Abstract
Type 1 diabetes (T1D) is a T-cell mediated autoimmune disease. Short-term treatment with agents targeting T cells, B cells and inflammatory cytokines to modify the disease course resulted in a short-term pause in disease activity. Lessons learnt from these trials will be discussed in this review. It is expected that effective disease-modifying agents will become available for use in earlier stages of T1D. Progress has been made to analyze antigen-specific T cells with standardization of T cell assay and discovery of antigen epitopes but there are many challenges. High-dimensional profiling of gene, protein and TCR expression at single cell level with innovative computational tools should lead to novel biomarker discovery. With this, assays to detect, quantify and characterize the phenotype and function of antigen-specific T cells will continuously evolve. An improved understanding of T cell responses will help researchers and clinicians to better predict disease onset, and progression, and the therapeutic efficacy of interventions to prevent or arrest T1D.
Collapse
Affiliation(s)
- Balasubramanian Krishnamurthy
- Immunology and Diabetes Unit, St Vincent’s Institute, Fitzroy, VIC, Australia
- Department of Medicine, St Vincent’s Hospital, University of Melbourne, Fitzroy, VIC, Australia
| | - Matthew Lacorcia
- Immunology and Diabetes Unit, St Vincent’s Institute, Fitzroy, VIC, Australia
| | - Thomas W. H. Kay
- Immunology and Diabetes Unit, St Vincent’s Institute, Fitzroy, VIC, Australia
- Department of Medicine, St Vincent’s Hospital, University of Melbourne, Fitzroy, VIC, Australia
| | - Helen E. Thomas
- Immunology and Diabetes Unit, St Vincent’s Institute, Fitzroy, VIC, Australia
- Department of Medicine, St Vincent’s Hospital, University of Melbourne, Fitzroy, VIC, Australia
| | - Stuart I. Mannering
- Immunology and Diabetes Unit, St Vincent’s Institute, Fitzroy, VIC, Australia
- Department of Medicine, St Vincent’s Hospital, University of Melbourne, Fitzroy, VIC, Australia
| |
Collapse
|
39
|
Connor BW, Smith SE, Kalus A. Exploring Immune Therapies in a Twin Case of Latent Autoimmune Diabetes in Adults and Generalized Granuloma Annulare. Clin Diabetes 2023; 41:583-586. [PMID: 37849513 PMCID: PMC10577501 DOI: 10.2337/cd22-0132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/19/2023]
Affiliation(s)
- Brian W. Connor
- University of Washington School of Medicine, Seattle, WA
- Department of Internal Medicine, Division of Dermatology, University of Washington, Seattle, WA
| | | | - Andrea Kalus
- University of Washington School of Medicine, Seattle, WA
- Department of Internal Medicine, Division of Dermatology, University of Washington, Seattle, WA
| |
Collapse
|
40
|
Cheng H, Chen W, Lin Y, Zhang J, Song X, Zhang D. Signaling pathways involved in the biological functions of dendritic cells and their implications for disease treatment. MOLECULAR BIOMEDICINE 2023; 4:15. [PMID: 37183207 PMCID: PMC10183318 DOI: 10.1186/s43556-023-00125-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 04/02/2023] [Indexed: 05/16/2023] Open
Abstract
The ability of dendritic cells (DCs) to initiate and regulate adaptive immune responses is fundamental for maintaining immune homeostasis upon exposure to self or foreign antigens. The immune regulatory function of DCs is strictly controlled by their distribution as well as by cytokines, chemokines, and transcriptional programming. These factors work in conjunction to determine whether DCs exert an immunosuppressive or immune-activating function. Therefore, understanding the molecular signals involved in DC-dependent immunoregulation is crucial in providing insight into the generation of organismal immunity and revealing potential clinical applications of DCs. Considering the many breakthroughs in DC research in recent years, in this review we focused on three basic lines of research directly related to the biological functions of DCs and summarized new immunotherapeutic strategies involving DCs. First, we reviewed recent findings on DC subsets and identified lineage-restricted transcription factors that guide the development of different DC subsets. Second, we discussed the recognition and processing of antigens by DCs through pattern recognition receptors, endogenous/exogenous pathways, and the presentation of antigens through peptide/major histocompatibility complexes. Third, we reviewed how interactions between DCs and T cells coordinate immune homeostasis in vivo via multiple pathways. Finally, we summarized the application of DC-based immunotherapy for autoimmune diseases and tumors and highlighted potential research prospects for immunotherapy that targets DCs. This review provides a useful resource to better understand the immunomodulatory signals involved in different subsets of DCs and the manipulation of these immune signals can facilitate DC-based immunotherapy.
Collapse
Affiliation(s)
- Hao Cheng
- Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Wenjing Chen
- Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Yubin Lin
- Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Jianan Zhang
- Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Xiaoshuang Song
- Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Dunfang Zhang
- Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China.
| |
Collapse
|
41
|
Misra S, Shukla AK. Teplizumab: type 1 diabetes mellitus preventable? Eur J Clin Pharmacol 2023; 79:609-616. [PMID: 37004543 DOI: 10.1007/s00228-023-03474-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 03/08/2023] [Indexed: 04/04/2023]
Abstract
Type 1 diabetes mellitus (T1DM) is an autoimmune condition driven by T lymphocytes that specifically declines the function of beta cells of pancreas. Immunological treatments aim to stop this decline in β-cell function thus preventing TIDM. Although TIDM occur at any age, it is one of the most common chronic disorders in children. T1DM accounts for 5 to 10% of all cases of diabetes amounting 21-42 million affected persons. Teplizumab is a novel drug recently approved by the US FDA for the treatment of T1DM. This drug reduces abnormal glucose tolerance who are at high risk for developing T1DM and have antibodies suggesting an immunological attack on their pancreas. A 14-day infusion of the drug prevents T cells' attack of the insulin-producing cells of the pancreas. Adverse events due to teplizumab reported so far mild and of limited duration. This review gives an overview of the preclinical and clinical research on teplizumab for their role in new-onset T1DM.
Collapse
Affiliation(s)
- Saurav Misra
- Department of Pharmacology, Kalpana Chawla Government Medical College, Karnal, Haryana, India.
| | - Ajay Kumar Shukla
- Department of Pharmacology, AIIMS Bhopal, Bhopal, Madhya Pradesh, India
| |
Collapse
|
42
|
Kim YK, Munir KM, Davis SN. Type 1 diabetes: key drug targets and how they could influence future therapeutics. Expert Opin Ther Targets 2023; 27:31-40. [PMID: 36744390 DOI: 10.1080/14728222.2023.2177150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
INTRODUCTION Despite significant strides made in the management of T1DM, standard management is still insulin analog therapy. Some non-insulin therapies traditionally reserved for the treatment of T2DM have been explored in caring for patients with T1DM, and pancreas transplant is an option for few. However, T1DM remains a challenging disease to manage, encouraging development of novel pharmacologic agents. AREAS COVERED We retrieved PubMed, Cochrane Library, Scopus, Google Scholar, and ClinicalTrials.gov records to identify studies and articles focused on new pharmacologic advances to treat T1DM. EXPERT OPINION Recent research has focused on new targets of pharmacologic treatment of T1DM. Beta-cell preservation through immunomodulation or inhibiting inflammation hopes to delay or halt the progression of the disease. Beta cell regeneration through islet cell transplant or modification in transcription pathways aim to reverse the disease effects. Multiple other new targets such as glucagon antagonism and glucokinase activation are also in development as a potential adjunctive therapy. These new therapeutic targets offer the hope of reducing the daily burden of diabetes management with eventual insulin discontinuation for many individuals with T1DM.
Collapse
Affiliation(s)
- Yoon Kook Kim
- Division of Endocrinology, Diabetes, and Nutrition, University of Maryland School of Medicine, Center for Diabetes and Endocrinology, 800 Linden Ave, 8th Floor, 21201, Baltimore, MD, USA
| | - Kashif M Munir
- Division of Endocrinology, Diabetes, and Nutrition, University of Maryland School of Medicine, Center for Diabetes and Endocrinology, 800 Linden Ave, 8th Floor, 21201, Baltimore, MD, USA
| | - Stephen N Davis
- Department of Medicine, University of Maryland School of Medicine, 22 South Greene Street, 21201, Baltimore, MD, USA
| |
Collapse
|
43
|
Groele L, Szypowska A. Type 1 diabetes mellitus prevention. Pediatr Endocrinol Diabetes Metab 2023; 29:209-213. [PMID: 38282489 PMCID: PMC10826692 DOI: 10.5114/pedm.2023.134130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Accepted: 12/21/2023] [Indexed: 01/30/2024]
Affiliation(s)
- Lidia Groele
- Department of Paediatrics, Medical University of Warsaw, Poland
- Department of Paediatric Diabetology and Paediatrics, University Clinical Centre of Warsaw Medical University, Poland
| | - Agnieszka Szypowska
- Department of Paediatrics, Medical University of Warsaw, Poland
- Department of Paediatric Diabetology and Paediatrics, University Clinical Centre of Warsaw Medical University, Poland
| |
Collapse
|
44
|
Long SA, Buckner JH. Clinical and experimental treatment of type 1 diabetes. Clin Exp Immunol 2022; 210:105-113. [PMID: 35980300 PMCID: PMC9750829 DOI: 10.1093/cei/uxac077] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 07/26/2022] [Accepted: 08/17/2022] [Indexed: 01/25/2023] Open
Abstract
Type 1 diabetes (T1D) is an autoimmune disease resulting in the destruction of the insulin-producing pancreatic beta cells. Disease progression occurs along a trajectory from genetic risk, the development of islet autoantibodies, and autoreactive T cells ultimately progressing to clinical disease. Natural history studies and mechanistic studies linked to clinical trials have provided insight into the role of the immune system in disease pathogenesis. Here, we review our current understanding of the underlying etiology of T1D, focusing on the immune cell types that have been implicated in progression from pre-symptomatic T1D to clinical diagnosis and established disease. This knowledge has been foundational for the development of immunotherapies aimed at the prevention and treatment of T1D.
Collapse
Affiliation(s)
- S Alice Long
- Center for Translational Immunology, Benaroya Research Institute at Virginia Mason, Seattle, WA, USA
| | - Jane H Buckner
- Center for Translational Immunology, Benaroya Research Institute at Virginia Mason, Seattle, WA, USA
| |
Collapse
|
45
|
Kaplan M, Tanoğlu A, Çakır Güney B, Yeniçeri M, Çırak Z, Taştan YÖ, Sade AG, Sade AG, Department of Gastroenterology, Sultan 2. Abdulhamid Han Training and Research Hospital, Istanbul, Turkey, Department of Internal Medicine, Sultan 2. Abdulhamid Han Training and Research Hospital, Istanbul, Turkey, Department of Internal Medicine, Sultan 2. Abdulhamid Han Training and Research Hospital, Istanbul, Turkey, Department of Internal Medicine, Sultan 2. Abdulhamid Han Training and Research Hospital, Istanbul, Turkey, Department of Internal Medicine, Sultan 2. Abdulhamid Han Training and Research Hospital, Istanbul, Turkey, Department of Pathology, Sultan 2. Abdulhamid Han Training and Research Hospital, Istanbul, Turkey. Golimumab Ameliorates Pancreatic Inflammatory Response in the Cerulein-Induced Acute Pancreatitis in Rats. THE TURKISH JOURNAL OF GASTROENTEROLOGY : THE OFFICIAL JOURNAL OF TURKISH SOCIETY OF GASTROENTEROLOGY 2022; 33:918-924. [PMID: 36262104 PMCID: PMC9797786 DOI: 10.5152/tjg.2022.21456] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
BACKGROUND The aim of the study was to evaluate whether a new and successful treatment opportunity can be provided in acute pancreatitis and may prevent symptomatic treatments and show its effect through etiopathogenesis. Therefore, we want to investigate the efficacy of golimumab in an experimental rat model of cerulein-induced acute pancreatitis. METHODS A total of 35 rats, including 7 rats in each group, were distributed into 5 groups (sham, acute pancreatitis, placebo, acute pancreatitis+golimumab 5 mg/kg, and acute pancreatitis+golimumab 10 mg/kg). An experimental cerulein-induced acute pancreatitis model was accomplished by intraperitoneal cerulein injections. After sacrification, rat blood samples were collected for amylase, IL-6, and IL-1beta measurements. Histopathological analysis of the pancreas was performed with Tunel and hematoxylin and eosin staining. RESULTS Amylase, IL-6, and IL-1beta levels were found to be increased in the acute pancreatitis group. IL-1beta, amylase, IL-6 levels, and pancreatic inflammation were all significantly decreased in golimumab groups (P < .01). Moreover, in both golimumab groups, golimumab treatment significantly reduced apoptosis in pancreatic tissues (P < .05). Golimumab treatment was found to significantly reduce edema formation, inflammation, vacuolization, and fat necrosis of pancreatic tissues (P < .05). CONCLUSION Firstly in the literature, we investigated the efficacy of golimumab in the experimental acute pancreatitis model. In the light of our findings, it could be suggested that golimumab may be an effective and safe therapeutic option in the treatment of patients with acute pancreatitis.
Collapse
Affiliation(s)
- Mustafa Kaplan
- Department of Internal Medicine, Sultan 2. Abdulhamid Han Training and Research Hospital, İstanbul, Turkey,Corresponding author: Mustafa Kaplan, e-mail:
| | - Alpaslan Tanoğlu
- Department of Gastroenterology, Sultan 2. Abdulhamid Han Training and Research Hospital, İstanbul, Turkey
| | - Başak Çakır Güney
- Department of Pathology, Sultan 2. Abdulhamid Han Training and Research Hospital, İstanbul, Turkey
| | - Murat Yeniçeri
- Department of Pathology, Sultan 2. Abdulhamid Han Training and Research Hospital, İstanbul, Turkey
| | - Zafer Çırak
- Department of Pathology, Sultan 2. Abdulhamid Han Training and Research Hospital, İstanbul, Turkey
| | - Yeşim Önal Taştan
- Department of Pathology, Sultan 2. Abdulhamid Han Training and Research Hospital, İstanbul, Turkey
| | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Contreras CJ, Mukherjee N, Branco RCS, Lin L, Hogan MF, Cai EP, Oberst AA, Kahn SE, Templin AT. RIPK1 and RIPK3 regulate TNFα-induced β-cell death in concert with caspase activity. Mol Metab 2022; 65:101582. [PMID: 36030035 PMCID: PMC9464965 DOI: 10.1016/j.molmet.2022.101582] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 08/16/2022] [Accepted: 08/19/2022] [Indexed: 12/02/2022] Open
Abstract
OBJECTIVE Type 1 diabetes (T1D) is characterized by autoimmune-associated β-cell loss, insulin insufficiency, and hyperglycemia. Although TNFα signaling is associated with β-cell loss and hyperglycemia in non-obese diabetic mice and human T1D, the molecular mechanisms of β-cell TNF receptor signaling have not been fully characterized. Based on work in other cell types, we hypothesized that receptor interacting protein kinase 1 (RIPK1) and receptor interacting protein kinase 3 (RIPK3) regulate TNFα-induced β-cell death in concert with caspase activity. METHODS We evaluated TNFα-induced cell death, caspase activity, and TNF receptor pathway molecule expression in immortalized NIT-1 and INS-1 β-cell lines and primary mouse islet cells in vitro. Our studies utilized genetic and small molecule approaches to alter RIPK1 and RIPK3 expression and caspase activity to interrogate mechanisms of TNFα-induced β-cell death. We used the β-cell toxin streptozotocin (STZ) to determine the susceptibility of Ripk3+/+ and Ripk3-/- mice to hyperglycemia in vivo. RESULTS Expression of TNF receptor signaling molecules including RIPK1 and RIPK3 was identified in NIT-1 and INS-1 β cells and isolated mouse islets at the mRNA and protein levels. TNFα treatment increased NIT-1 and INS-1 cell death and caspase activity after 24-48 h, and BV6, a small molecule inhibitor of inhibitor of apoptosis proteins (IAPs) amplified this TNFα-induced cell death. RIPK1 deficient NIT-1 cells were protected from TNFα- and BV6-induced cell death and caspase activation. Interestingly, small molecule inhibition of caspases with zVAD-fmk (zVAD) did not prevent TNFα-induced cell death in either NIT-1 or INS-1 cells. This caspase-independent cell death was increased by BV6 treatment and decreased in RIPK1 deficient NIT-1 cells. RIPK3 deficient NIT-1 cells and RIPK3 kinase inhibitor treated INS-1 cells were protected from TNFα+zVAD-induced cell death, whereas RIPK3 overexpression increased INS-1 cell death and promoted RIPK3 and MLKL interaction under TNFα+zVAD treatment. In mouse islet cells, BV6 or zVAD treatment promoted TNFα-induced cell death, and TNFα+zVAD-induced cell death was blocked by RIPK3 inhibition and in Ripk3-/- islet cells in vitro. Ripk3-/- mice were also protected from STZ-induced hyperglycemia and glucose intolerance in vivo. CONCLUSIONS RIPK1 and RIPK3 regulate TNFα-induced β-cell death in concert with caspase activity in immortalized and primary islet β cells. TNF receptor signaling molecules such as RIPK1 and RIPK3 may represent novel therapeutic targets to promote β-cell survival and glucose homeostasis in T1D.
Collapse
Affiliation(s)
- Christopher J Contreras
- Division of Endocrinology, Department of Medicine, Roudebush VA Medical Center and Indiana University School of Medicine, Indianapolis, IN, USA
| | - Noyonika Mukherjee
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Renato C S Branco
- Lilly Diabetes Center of Excellence, Indiana Biosciences Research Institute, Indianapolis, IN, USA
| | - Li Lin
- Lilly Diabetes Center of Excellence, Indiana Biosciences Research Institute, Indianapolis, IN, USA
| | - Meghan F Hogan
- Division of Metabolism, Endocrinology and Nutrition, Department of Medicine, VA Puget Sound Health Care System and University of Washington, Seattle, WA, USA
| | - Erica P Cai
- Lilly Diabetes Center of Excellence, Indiana Biosciences Research Institute, Indianapolis, IN, USA
| | - Andrew A Oberst
- Department of Immunology, University of Washington, Seattle, WA, USA
| | - Steven E Kahn
- Division of Metabolism, Endocrinology and Nutrition, Department of Medicine, VA Puget Sound Health Care System and University of Washington, Seattle, WA, USA
| | - Andrew T Templin
- Division of Endocrinology, Department of Medicine, Roudebush VA Medical Center and Indiana University School of Medicine, Indianapolis, IN, USA; Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, USA; Lilly Diabetes Center of Excellence, Indiana Biosciences Research Institute, Indianapolis, IN, USA; Center for Diabetes and Metabolic Diseases, Indiana University School of Medicine, Indianapolis, IN, USA.
| |
Collapse
|
47
|
Carroll KR, Katz JD. Restoring tolerance to β-cells in Type 1 diabetes: Current and emerging strategies. Cell Immunol 2022; 380:104593. [PMID: 36081179 DOI: 10.1016/j.cellimm.2022.104593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 08/29/2022] [Accepted: 08/29/2022] [Indexed: 11/03/2022]
Abstract
Type 1 diabetes (T1D) results from insulin insufficiency due to islet death and dysfunction following T cell-mediated autoimmune attack. The technical feasibility of durable, functional autologous islet restoration is progressing such that it presents the most likely long-term cure for T1D but cannot succeed without the necessary counterpart of clinically effective therapeutic strategies that prevent grafted islets' destruction by pre-existing anti-islet T cells. While advances have been made in broad immunosuppression to lower off-target effects, the risk of opportunistic infections and cancers remains a concern, especially for well-managed T1D patients. Current immunomodulatory strategies in development focus on autologous Treg expansion, treatments to decrease antigen presentation and T effector (Teff) activation, and broad depletion of T cells with or without hematopoietic stem cell transplants. Emerging strategies harnessing the intensified DNA damage response present in expanding T cells, exacerbating their already high sensitivity to apoptosis to abate autoreactive Teff cells.
Collapse
Affiliation(s)
- Kaitlin R Carroll
- Center for Autoimmune, Musculoskeletal and Hematopoietic Diseases, Feinstein Institute for Medical Research, Northwell Health, Manhasset, NY 11030, United States
| | - Jonathan D Katz
- Division of Immunobiology, Cincinnati Children's Hospital Medical Center and Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45229, United States.
| |
Collapse
|
48
|
Girard D, Vandiedonck C. How dysregulation of the immune system promotes diabetes mellitus and cardiovascular risk complications. Front Cardiovasc Med 2022; 9:991716. [PMID: 36247456 PMCID: PMC9556991 DOI: 10.3389/fcvm.2022.991716] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 08/30/2022] [Indexed: 12/15/2022] Open
Abstract
Diabetes mellitus (DM) is a chronic metabolic disorder characterized by persistent hyperglycemia due to insulin resistance or failure to produce insulin. Patients with DM develop microvascular complications that include chronic kidney disease and retinopathy, and macrovascular complications that mainly consist in an accelerated and more severe atherosclerosis compared to the general population, increasing the risk of cardiovascular (CV) events, such as stroke or myocardial infarction by 2- to 4-fold. DM is commonly associated with a low-grade chronic inflammation that is a known causal factor in its development and its complications. Moreover, it is now well-established that inflammation and immune cells play a major role in both atherosclerosis genesis and progression, as well as in CV event occurrence. In this review, after a brief presentation of DM physiopathology and its macrovascular complications, we will describe the immune system dysregulation present in patients with type 1 or type 2 diabetes and discuss its role in DM cardiovascular complications development. More specifically, we will review the metabolic changes and aberrant activation that occur in the immune cells driving the chronic inflammation through cytokine and chemokine secretion, thus promoting atherosclerosis onset and progression in a DM context. Finally, we will discuss how genetics and recent systemic approaches bring new insights into the mechanisms behind these inflammatory dysregulations and pave the way toward precision medicine.
Collapse
Affiliation(s)
- Diane Girard
- Université Paris Cité, INSERM UMR-S1151, CNRS UMR-S8253, Institut Necker Enfants Malades, IMMEDIAB Laboratory, Paris, France
- Université Paris Cité, Institut Hors-Mur du Diabète, Faculté de Santé, Paris, France
| | - Claire Vandiedonck
- Université Paris Cité, INSERM UMR-S1151, CNRS UMR-S8253, Institut Necker Enfants Malades, IMMEDIAB Laboratory, Paris, France
- Université Paris Cité, Institut Hors-Mur du Diabète, Faculté de Santé, Paris, France
| |
Collapse
|
49
|
Piemonti L, Keymeulen B, Gillard P, Linn T, Bosi E, Rose L, Pozzilli P, Giorgino F, Cossu E, Daffonchio L, Goisis G, Ruffini PA, Maurizi AR, Mantelli F, Allegretti M. Ladarixin, an inhibitor of the interleukin-8 receptors CXCR1 and CXCR2, in new-onset type 1 diabetes: A multicentre, randomized, double-blind, placebo-controlled trial. Diabetes Obes Metab 2022; 24:1840-1849. [PMID: 35589610 PMCID: PMC9540558 DOI: 10.1111/dom.14770] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 05/12/2022] [Accepted: 05/17/2022] [Indexed: 01/09/2023]
Abstract
AIM To evaluate the ability of ladarixin (LDX, 400 mg twice-daily for three cycles of 14 days on/14 days off), an inhibitor of the CXCR1/2 chemokine receptors, to maintain C-peptide production in adult patients with newly diagnosed type 1 diabetes. MATERIALS AND METHODS A double-blind, randomized (2:1), placebo-controlled study was conducted in 45 males and 31 females (aged 18-46 years) within 100 days of the first insulin administration. The primary endpoint was the area under the curve (AUC) for C-peptide in response to a 2-hour mixed meal tolerance test (AUC[0-120 min] ) at week 13 ± 1. Secondary endpoints included C-peptide AUC(15-120 min) , HbA1c, daily insulin requirement, severe hypoglycaemic events (SHE), the proportion of subjects achieving HbA1c less than 7.0% without SHE and maintaining a residual beta cell function. Follow-up assessments were scheduled at weeks 13 ± 1, 26 ± 2 and 52 ± 2. RESULTS In total, 26/26 (100%, placebo) and 49/50 (98%, LDX) patients completed week 13. The mean change from baseline to week 13 in C-peptide AUC(0-120 min) was -0.144 ± 0.449 nmol/L with placebo and 0.003 ± .322 nmol/L with LDX. The difference was not significant (0.149 nmol/L, 95% CI -0.04 to 0.33; P = .122). At week 26, the proportion of patients with HbA1c less than 7.0% without SHE was transiently higher in the LDX group (81% vs. 54%, P = .024). Otherwise, no significant secondary endpoint differences were noted. Transient metabolic benefit was seen at week 26 in favour of the LDX group in the prespecified subpopulation with fasting C-peptide less than the median value at screening. CONCLUSIONS In newly diagnosed patients with type 1 diabetes, short-term LDX treatment had no appreciable effect on preserving residual beta cell function.
Collapse
Affiliation(s)
- Lorenzo Piemonti
- IRCCS Ospedale San Raffaele and Università Vita‐SaluteDiabetes Research InstituteMilanItaly
| | - Bart Keymeulen
- The Belgian Diabetes Registry, Academic Hospital and Diabetes Research CentreVrije Universiteit BrusselBrusselsBelgium
| | - Pieter Gillard
- Department of EndocrinologyUniversity Hospitals Leuven‐KU LeuvenLeuvenBelgium
| | - Thomas Linn
- Clinical Research Unit, Medical Clinic and Polyclinic IIICenter of Internal Medicine, Justus Liebig UniversityGiessenGermany
| | - Emanuele Bosi
- IRCCS Ospedale San Raffaele and Università Vita‐SaluteDiabetes Research InstituteMilanItaly
| | - Ludger Rose
- Zentrum für Diabetes und Gefäßerkrankungen MünsterMunsterGermany
| | - Paolo Pozzilli
- Department of Endocrinology and Metabolic DiseasesUniversity Campus Bio‐MedicoRomeItaly
| | - Francesco Giorgino
- Department of Emergency and Organ Transplantation, Section of Internal Medicine, Endocrinology, Andrology and Metabolic DiseasesUniversity of Bari Aldo MoroBariItaly
| | - Efisio Cossu
- Department of Medical Sciences and Public HealthUniversity of CagliariCagliariItaly
| | | | - Giovanni Goisis
- Research and Development, Dompé farmaceutici S.p.AMilanItaly
| | | | | | - Flavio Mantelli
- Research and Development, Dompé farmaceutici S.p.AMilanItaly
| | | |
Collapse
|
50
|
Mastrandrea LD, Quattrin T. Preventing type 1 diabetes development and preserving beta-cell function. Curr Opin Endocrinol Diabetes Obes 2022; 29:386-391. [PMID: 35799459 DOI: 10.1097/med.0000000000000746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
PURPOSE OF REVIEW Type 1 diabetes (T1D) is the most common chronic disease of childhood presenting a significant burden, both in terms of day-to-day medical management and lifelong care. Studies aligned with diverse strategies to prevent or modify the course of T1D are reviewed. RECENT FINDINGS The diagnosis of T1D precedes the classic clinical presentation when insulin dependence develops. With an increased understanding of the pathophysiology of the autoimmune process leading to T1D, treatment strategies to prevent the development of autoimmunity and/or modify the immune response have been trialed in persons at risk for developing the disease. Interventions prior to insulin dependence or very early after clinical diagnosis show some promise both in preventing disease onset and prolonging beta-cell insulin production. SUMMARY Significant progress has been made in the treatment of T1D. However, suboptimal glycemic control remains a challenge impacting overall health and quality of life for patients with this chronic disease. Although physicians and basic sciences investigators continue to pursue the prevention of the autoimmune process, the advent of disease-modifying agents is a promising strategy. Further studies are needed to ensure that insulin preservation can be achieved longer term.
Collapse
Affiliation(s)
- Lucy D Mastrandrea
- Jacobs School of Medicine and Biomedical Sciences, University at Buffalo
- Diabetes Center, John R. Oishei Children's Hospital, Buffalo, New York, USA
| | - Teresa Quattrin
- Jacobs School of Medicine and Biomedical Sciences, University at Buffalo
- Diabetes Center, John R. Oishei Children's Hospital, Buffalo, New York, USA
| |
Collapse
|