1
|
Abstract
PURPOSE OF REVIEW This review will briefly revise the evidence concerning the pharmacological inhibition of Apolipoprotein CIII (ApoCIII) in patients with hypertriglyceridemia. RECENT FINDINGS ApoCIII is a plasma apolipoprotein playing a major role in the metabolism of triglyceride-rich lipoproteins, namely chylomicrons and very-low-density lipoproteins as well as in the pathological processes involved in atherosclerosis. Therefore, ApoCIII is a potential new target for reducing plasma levels of TRLs and, thereby, cardiovascular risk. In recent years, there have been extensive preclinical and clinical pharmacological studies aimed at testing drugs directed against ApoCIII. SUMMARY In this review, firstly we will summarize the molecular function of ApoCIII in lipoprotein metabolism. Then, we will examine the lipid-lowering potential of the pharmacological inhibition of ApoCIII based on the results of clinical trial employing Volansesorsen, the first approved antisense therapeutic oligonucleotide against ApoCIII mRNA. The future perspectives for ApoCIII inhibition will be also revised.
Collapse
Affiliation(s)
- Daniele Tramontano
- Department of Translational and Precision Medicine, Sapienza University of Rome, Rome, Italy
| | | | | | | |
Collapse
|
2
|
Alcala-Diaz JF, Arenas-de Larriva AP, Torres-Peña JD, Rodriguez-Cantalejo F, Rangel-Zuñiga OA, Yubero-Serrano EM, Gutierrez-Mariscal FM, Cardelo MP, Luque RM, Ordovas JM, Perez-Martinez P, Delgado-Lista J, Lopez-Miranda J. A Gene Variation at the ZPR1 Locus (rs964184) Interacts With the Type of Diet to Modulate Postprandial Triglycerides in Patients With Coronary Artery Disease: From the Coronary Diet Intervention With Olive Oil and Cardiovascular Prevention Study. Front Nutr 2022; 9:885256. [PMID: 35782928 PMCID: PMC9247506 DOI: 10.3389/fnut.2022.885256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Accepted: 05/09/2022] [Indexed: 11/22/2022] Open
Abstract
Background and Aims rs964184 variant in the ZPR1 gene has been associated with blood lipids levels both in fasting and postprandial state and with the risk of myocardial infarction in high-risk cardiovascular patients. However, whether this association is modulated by diet has not been studied. Objective To investigate whether the type of diet (low-fat or Mediterranean diets) interacts with genetic variability at this loci to modulate fasting and postprandial lipids in coronary patients. Materials and Methods The genotype of the rs964184 polymorphism was determined in the Cordioprev Study population (NCT00924937). Fasting and Postprandial triglycerides were assessed before and after 3 years of dietary intervention with either a Mediterranean or a low-fat diet. Postprandial lipid assessment was done by a 4-h oral fat tolerance test (OFTT). Differences in triglycerides levels were identified using repeated-measures ANCOVA. Results From 523 patients (85% males, mean age 59 years) that completed the OFTT at baseline and after 3 years of intervention and had complete genotype information, 125 of them were carriers of the risk allele G. At the start of the study, these patients showed a higher fasting and postprandial triglycerides (TG) plasma levels. After 3 years of dietary intervention, G-carriers following a Mediterranean Diet maintained higher fasting and postprandial triglycerides, while those on the low-fat diet reduced their postprandial triglycerides to similar values to the population without the G-allele. Conclusion After 3 years of dietary intervention, the altered postprandial triglyceride response induced by genetic variability in the rs964184 polymorphism of the ZPR1 gene can be modulated by a low-fat diet, better than by a Mediterranean diet, in patients with coronary artery disease.
Collapse
Affiliation(s)
- Juan F. Alcala-Diaz
- Lipids and Atherosclerosis Unit, Department of Internal Medicine, Maimonides Biomedical Research Institute of Córdoba (IMIBIC), Reina Sofía University Hospital, University of Córdoba, Córdoba, Spain
- Centro de Investigación Biomédica en Red de Fisiología de la Obesidad y Nutricion (CIBERobn), Instituto de Salud Carlos III, Madrid, Spain
| | - Antonio P. Arenas-de Larriva
- Lipids and Atherosclerosis Unit, Department of Internal Medicine, Maimonides Biomedical Research Institute of Córdoba (IMIBIC), Reina Sofía University Hospital, University of Córdoba, Córdoba, Spain
- Centro de Investigación Biomédica en Red de Fisiología de la Obesidad y Nutricion (CIBERobn), Instituto de Salud Carlos III, Madrid, Spain
| | - Jose D. Torres-Peña
- Lipids and Atherosclerosis Unit, Department of Internal Medicine, Maimonides Biomedical Research Institute of Córdoba (IMIBIC), Reina Sofía University Hospital, University of Córdoba, Córdoba, Spain
- Centro de Investigación Biomédica en Red de Fisiología de la Obesidad y Nutricion (CIBERobn), Instituto de Salud Carlos III, Madrid, Spain
| | | | - Oriol A. Rangel-Zuñiga
- Lipids and Atherosclerosis Unit, Department of Internal Medicine, Maimonides Biomedical Research Institute of Córdoba (IMIBIC), Reina Sofía University Hospital, University of Córdoba, Córdoba, Spain
- Centro de Investigación Biomédica en Red de Fisiología de la Obesidad y Nutricion (CIBERobn), Instituto de Salud Carlos III, Madrid, Spain
| | - Elena M. Yubero-Serrano
- Lipids and Atherosclerosis Unit, Department of Internal Medicine, Maimonides Biomedical Research Institute of Córdoba (IMIBIC), Reina Sofía University Hospital, University of Córdoba, Córdoba, Spain
- Centro de Investigación Biomédica en Red de Fisiología de la Obesidad y Nutricion (CIBERobn), Instituto de Salud Carlos III, Madrid, Spain
| | - Francisco M. Gutierrez-Mariscal
- Lipids and Atherosclerosis Unit, Department of Internal Medicine, Maimonides Biomedical Research Institute of Córdoba (IMIBIC), Reina Sofía University Hospital, University of Córdoba, Córdoba, Spain
- Centro de Investigación Biomédica en Red de Fisiología de la Obesidad y Nutricion (CIBERobn), Instituto de Salud Carlos III, Madrid, Spain
| | - Magdalena P. Cardelo
- Lipids and Atherosclerosis Unit, Department of Internal Medicine, Maimonides Biomedical Research Institute of Córdoba (IMIBIC), Reina Sofía University Hospital, University of Córdoba, Córdoba, Spain
- Centro de Investigación Biomédica en Red de Fisiología de la Obesidad y Nutricion (CIBERobn), Instituto de Salud Carlos III, Madrid, Spain
| | - Raul M. Luque
- Department of Cell Biology, Physiology, and Immunology, Maimonides Biomedical Research Institute of Córdoba (IMIBIC), Reina Sofía University Hospital, University of Córdoba, Córdoba, Spain
| | - Jose M. Ordovas
- Jean Mayer USDA Human Nutrition Research Center on Aging, Tufts University, Boston, MA, United States
- Instituto Madrileño de Estudios Avanzados en Alimentación (IMDEA-Food), Madrid, Spain
- International Advisory Board, University Camilo José Cela, Madrid, Spain
| | - Pablo Perez-Martinez
- Lipids and Atherosclerosis Unit, Department of Internal Medicine, Maimonides Biomedical Research Institute of Córdoba (IMIBIC), Reina Sofía University Hospital, University of Córdoba, Córdoba, Spain
- Centro de Investigación Biomédica en Red de Fisiología de la Obesidad y Nutricion (CIBERobn), Instituto de Salud Carlos III, Madrid, Spain
| | - Javier Delgado-Lista
- Lipids and Atherosclerosis Unit, Department of Internal Medicine, Maimonides Biomedical Research Institute of Córdoba (IMIBIC), Reina Sofía University Hospital, University of Córdoba, Córdoba, Spain
- Centro de Investigación Biomédica en Red de Fisiología de la Obesidad y Nutricion (CIBERobn), Instituto de Salud Carlos III, Madrid, Spain
| | - Jose Lopez-Miranda
- Lipids and Atherosclerosis Unit, Department of Internal Medicine, Maimonides Biomedical Research Institute of Córdoba (IMIBIC), Reina Sofía University Hospital, University of Córdoba, Córdoba, Spain
- Centro de Investigación Biomédica en Red de Fisiología de la Obesidad y Nutricion (CIBERobn), Instituto de Salud Carlos III, Madrid, Spain
- *Correspondence: Jose Lopez-Miranda,
| |
Collapse
|
3
|
Kolovou GD, Watts GF, Mikhailidis DP, Pérez-Martínez P, Mora S, Bilianou H, Panotopoulos G, Katsiki N, Ooi TC, Lopez-Miranda J, Tybjærg-Hansen A, Tentolouris N, Nordestgaard BG. Postprandial Hypertriglyceridaemia Revisited in the Era of Non-Fasting Lipid Profile Testing: A 2019 Expert Panel Statement, Main Text. Curr Vasc Pharmacol 2020; 17:498-514. [PMID: 31060488 DOI: 10.2174/1570161117666190507110519] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 04/01/2019] [Accepted: 04/21/2019] [Indexed: 12/12/2022]
Abstract
Residual vascular risk exists despite the aggressive lowering of Low-Density Lipoprotein Cholesterol (LDL-C). A contributor to this residual risk may be elevated fasting, or non-fasting, levels of Triglyceride (TG)-rich lipoproteins. Therefore, there is a need to establish whethe a standardised Oral Fat Tolerance Test (OFTT) can improve atherosclerotic Cardiovascular (CV) Disease (ASCVD) risk prediction in addition to a fasting or non-fasting lipid profile. An expert panel considered the role of postprandial hypertriglyceridaemia (as represented by an OFTT) in predicting ASCVD. The panel updated its 2011 statement by considering new studies and various patient categories. The recommendations are based on expert opinion since no strict endpoint trials have been performed. Individuals with fasting TG concentration <1 mmol/L (89 mg/dL) commonly do not have an abnormal response to an OFTT. In contrast, those with fasting TG concentration ≥2 mmol/L (175 mg/dL) or nonfasting ≥2.3 mmol/L (200 mg/dL) will usually have an abnormal response. We recommend considering postprandial hypertriglyceridaemia testing when fasting TG concentrations and non-fasting TG concentrations are 1-2 mmol/L (89-175 mg/dL) and 1.3-2.3 mmol/L (115-200 mg/dL), respectively as an additional investigation for metabolic risk prediction along with other risk factors (obesity, current tobacco abuse, metabolic syndrome, hypertension, and diabetes mellitus). The panel proposes that an abnormal TG response to an OFTT (consisting of 75 g fat, 25 g carbohydrate and 10 g proteins) is >2.5 mmol/L (220 mg/dL). Postprandial hypertriglyceridaemia is an emerging factor that may contribute to residual CV risk. This possibility requires further research. A standardised OFTT will allow comparisons between investigational studies. We acknowledge that the OFTT will be mainly used for research to further clarify the role of TG in relation to CV risk. For routine practice, there is a considerable support for the use of a single non-fasting sample.
Collapse
Affiliation(s)
- Genovefa D Kolovou
- Cardiology Department and LDL-Apheresis Unit, Onassis Cardiac Surgery Center, Athens, Greece
| | - Gerald F Watts
- Lipid Disorders Clinic, Department of Cardiology, Royal Perth Hospital, School of Medicine, Faculty of Health and Medical Sciences, University of Western Australia, Crawley, Australia
| | - Dimitri P Mikhailidis
- Department of Clinical Biochemistry, Royal Free Hospital Campus, University College London Medical School, University College London (UCL), London, United Kingdom
| | - Pablo Pérez-Martínez
- Lipid and Atherosclerosis Unit, IMIBIC/Reina Sofia University Hospital/University of Cordoba, and CIBER Fisiopatologia Obesidad y Nutricion (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain
| | - Samia Mora
- Center for Lipid Metabolomics, Divisions of Preventive and Cardiovascular Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
| | - Helen Bilianou
- Department of Cardiology, Tzanio Hospital, Piraeus, Greece
| | | | - Niki Katsiki
- First Department of Internal Medicine, Division of Endocrinology-Metabolism, Diabetes Center, AHEPA University Hospital, Thessaloniki, Greece
| | - Teik C Ooi
- Department of Medicine, Division of Endocrinology and Metabolism, University of Ottawa, Ottawa Hospital Research Institute, Ottawa, ON, Canada
| | - José Lopez-Miranda
- Lipid and Atherosclerosis Unit, IMIBIC/Reina Sofia University Hospital/University of Cordoba, and CIBER Fisiopatologia Obesidad y Nutricion (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain
| | - Anne Tybjærg-Hansen
- Department of Clinical Biochemistry, Rigshospitalet, Copenhagen University Hospital, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Nicholas Tentolouris
- First Department of Propaedeutic Internal Medicine, Medical School, National and Kapodistrian University of Athens, Laiko General Hospital, Athens, Greece
| | - Børge G Nordestgaard
- Department of Clinical Biochemistry, Herlev and Gentofte Hospital, Copenhagen University Hospital, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
4
|
Borén J, Packard CJ, Taskinen MR. The Roles of ApoC-III on the Metabolism of Triglyceride-Rich Lipoproteins in Humans. Front Endocrinol (Lausanne) 2020; 11:474. [PMID: 32849270 PMCID: PMC7399058 DOI: 10.3389/fendo.2020.00474] [Citation(s) in RCA: 96] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Accepted: 06/16/2020] [Indexed: 12/12/2022] Open
Abstract
Cardiovascular disease (CVD) is the leading cause of death globally. It is well-established based on evidence accrued during the last three decades that high plasma concentrations of cholesterol-rich atherogenic lipoproteins are causatively linked to CVD, and that lowering these reduces atherosclerotic cardiovascular events in humans (1-9). Historically, most attention has been on low-density lipoproteins (LDL) since these are the most abundant atherogenic lipoproteins in the circulation, and thus the main carrier of cholesterol into the artery wall. However, with the rise of obesity and insulin resistance in many populations, there is increasing interest in the role of triglyceride-rich lipoproteins (TRLs) and their metabolic remnants, with accumulating evidence showing they too are causatively linked to CVD. Plasma triglyceride, measured either in the fasting or non-fasting state, is a useful index of the abundance of TRLs and recent research into the biology and genetics of triglyceride heritability has provided new insight into the causal relationship of TRLs with CVD. Of the genetic factors known to influence plasma triglyceride levels variation in APOC3- the gene for apolipoprotein (apo) C-III - has emerged as being particularly important as a regulator of triglyceride transport and a novel therapeutic target to reduce dyslipidaemia and CVD risk (10).
Collapse
Affiliation(s)
- Jan Borén
- Department of Molecular and Clinical Medicine, University of Gothenburg, Gothenburg, Sweden
- *Correspondence: Jan Borén
| | - Chris J. Packard
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Marja-Riitta Taskinen
- Research Programs Unit, Clinical and Molecular Metabolism, University of Helsinki, Helsinki, Finland
| |
Collapse
|
5
|
Gomez-Delgado F, Alcala-Diaz JF, Leon-Acuña A, Lopez-Moreno J, Delgado-Lista J, Gomez-Marin B, Roncero-Ramos I, Yubero-Serrano EM, Rangel-Zuñiga OA, Vals-Delgado C, Luque RM, Ordovas JM, Lopez-Miranda J, Perez-Martinez P. Apolipoprotein E genetic variants interact with Mediterranean diet to modulate postprandial hypertriglyceridemia in coronary heart disease patients: CORDIOPREV study. Eur J Clin Invest 2019; 49:e13146. [PMID: 31166609 DOI: 10.1111/eci.13146] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 06/02/2019] [Accepted: 06/03/2019] [Indexed: 12/17/2022]
Abstract
BACKGROUND We try to explore whether long-term consumption of two healthy dietary patterns (low-fat [LF] diet or Mediterranean diet [MedDiet]) interacts with the apolipoprotein E (APOE) single-nucleotide polymorphisms (SNPs: rs439401, rs440446 and rs7412) modulating postprandial hypertriglyceridemia (ppHTG) in coronary heart disease (CHD) patients. METHODS AND RESULTS We selected patients from the CORDIOPREV study with genotyping and who underwent an oral fat load test (FLT) at baseline and after 3 years follow-up (n = 506). After 3 years of follow-up, we found a gene-diet interaction between the APOE rs439401 SNP and MedDiet. Specifically, T-allele carriers in the MedDiet group showed a more significant decrease in postprandial triglycerides (TG: P = 0.03) and large triacylglycerol-rich lipoproteins (TRLs) TG (large TRLs TG; P = 0.01) compared with CC subjects. Consistently, the area under the curve of TG (AUC-TG; P-interaction = 0.03) and AUC-large TRLs TG (P-interaction = 0.02) were significantly lower in T-allele carriers compared with CC subjects. CONCLUSIONS The long-term consumption of a MedDiet modulates ppHTG through APOE genetic variants in CHD patients. This gene-diet interaction may contribute to a more precise dietary advice in CHD patients.
Collapse
Affiliation(s)
- Francisco Gomez-Delgado
- Lipids and Atherosclerosis Unit, IMIBIC/Reina Sofia University Hospital/University of Cordoba, Cordoba, Spain.,CIBER Fisiopatologia Obesidad y Nutricion (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain
| | - Juan Francisco Alcala-Diaz
- Lipids and Atherosclerosis Unit, IMIBIC/Reina Sofia University Hospital/University of Cordoba, Cordoba, Spain.,CIBER Fisiopatologia Obesidad y Nutricion (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain
| | - Ana Leon-Acuña
- Lipids and Atherosclerosis Unit, IMIBIC/Reina Sofia University Hospital/University of Cordoba, Cordoba, Spain.,CIBER Fisiopatologia Obesidad y Nutricion (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain
| | - Javier Lopez-Moreno
- Lipids and Atherosclerosis Unit, IMIBIC/Reina Sofia University Hospital/University of Cordoba, Cordoba, Spain.,CIBER Fisiopatologia Obesidad y Nutricion (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain
| | - Javier Delgado-Lista
- Lipids and Atherosclerosis Unit, IMIBIC/Reina Sofia University Hospital/University of Cordoba, Cordoba, Spain.,CIBER Fisiopatologia Obesidad y Nutricion (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain
| | - Beatriz Gomez-Marin
- Lipids and Atherosclerosis Unit, IMIBIC/Reina Sofia University Hospital/University of Cordoba, Cordoba, Spain.,CIBER Fisiopatologia Obesidad y Nutricion (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain
| | - Irene Roncero-Ramos
- Lipids and Atherosclerosis Unit, IMIBIC/Reina Sofia University Hospital/University of Cordoba, Cordoba, Spain.,CIBER Fisiopatologia Obesidad y Nutricion (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain
| | - Elena M Yubero-Serrano
- Lipids and Atherosclerosis Unit, IMIBIC/Reina Sofia University Hospital/University of Cordoba, Cordoba, Spain.,CIBER Fisiopatologia Obesidad y Nutricion (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain
| | - Oriol Alberto Rangel-Zuñiga
- Lipids and Atherosclerosis Unit, IMIBIC/Reina Sofia University Hospital/University of Cordoba, Cordoba, Spain.,CIBER Fisiopatologia Obesidad y Nutricion (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain
| | - Cristina Vals-Delgado
- Lipids and Atherosclerosis Unit, IMIBIC/Reina Sofia University Hospital/University of Cordoba, Cordoba, Spain.,CIBER Fisiopatologia Obesidad y Nutricion (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain
| | - Raul M Luque
- CIBER Fisiopatologia Obesidad y Nutricion (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain.,Department of Cell Biology, Physiology and Immunology, IMIBIC/Reina Sofia University Hospital/University of Cordoba, Cordoba, Spain
| | - Jose M Ordovas
- Nutrition and Genomics Laboratory, J.M.-US Department of Agriculture Human Nutrition Research Center on Aging at Tufts University, Boston, Massachusetts.,IMDEA Alimentacion, Madrid, Spain.,CNIC, Madrid, Spain
| | - Jose Lopez-Miranda
- Lipids and Atherosclerosis Unit, IMIBIC/Reina Sofia University Hospital/University of Cordoba, Cordoba, Spain.,CIBER Fisiopatologia Obesidad y Nutricion (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain
| | - Pablo Perez-Martinez
- Lipids and Atherosclerosis Unit, IMIBIC/Reina Sofia University Hospital/University of Cordoba, Cordoba, Spain.,CIBER Fisiopatologia Obesidad y Nutricion (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
6
|
Kolovou GD, Watts GF, Mikhailidis DP, Pérez-Martínez P, Mora S, Bilianou H, Panotopoulos G, Katsiki N, Ooi TC, Lopez-Miranda J, Tybjærg-Hansen A, Tentolouris N, Nordestgaard BG. Postprandial Hypertriglyceridaemia Revisited in the Era of Non-Fasting Lipid Profile Testing: A 2019 Expert Panel Statement, Narrative Review. Curr Vasc Pharmacol 2019; 17:515-537. [DOI: 10.2174/1570161117666190503123911] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 04/01/2019] [Accepted: 04/11/2019] [Indexed: 12/17/2022]
Abstract
Postprandial hypertriglyceridaemia, defined as an increase in plasma triglyceride-containing
lipoproteins following a fat meal, is a potential risk predictor of atherosclerotic cardiovascular disease
and other chronic diseases. Several non-modifiable factors (genetics, age, sex and menopausal status)
and lifestyle factors (diet, physical activity, smoking status, obesity, alcohol and medication use) may
influence postprandial hypertriglyceridaemia. This narrative review considers the studies published over
the last decade that evaluated postprandial hypertriglyceridaemia. Additionally, the genetic determinants
of postprandial plasma triglyceride levels, the types of meals for studying postprandial triglyceride response,
and underlying conditions (e.g. familial dyslipidaemias, diabetes mellitus, metabolic syndrome,
non-alcoholic fatty liver and chronic kidney disease) that are associated with postprandial hypertriglyceridaemia
are reviewed; therapeutic aspects are also considered.
Collapse
Affiliation(s)
- Genovefa D. Kolovou
- Cardiology Department and LDL-Apheresis Unit, Onassis Cardiac Surgery Center, Athens, Greece
| | - Gerald F. Watts
- Lipid Disorders Clinic, Department of Cardiology, Royal Perth Hospital, School of Medicine, Faculty of Health and Medical Sciences, University of Western Australia, Crawley, Australia
| | - Dimitri P. Mikhailidis
- Department of Clinical Biochemistry, Royal Free Hospital Campus, University College London Medical School, University College London (UCL), London, United Kingdom
| | - Pablo Pérez-Martínez
- Lipid and Atherosclerosis Unit, IMIBIC/Reina Sofia University Hospital/University of Cordoba, and CIBER Fisiopatologia Obesidad y Nutricion (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain
| | - Samia Mora
- Center for Lipid Metabolomics, Divisions of Preventive and Cardiovascular Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
| | - Helen Bilianou
- Department of Cardiology, Tzanio Hospital, Piraeus, Greece
| | | | - Niki Katsiki
- First Department of Internal Medicine, Division of Endocrinology-Metabolism, Diabetes Center, AHEPA University Hospital, Thessaloniki, Greece
| | - Teik C. Ooi
- Department of Medicine, Division of Endocrinology and Metabolism, University of Ottawa, Ottawa Hospital Research Institute, Ottawa, ON, Canada
| | - José Lopez-Miranda
- Lipid and Atherosclerosis Unit, IMIBIC/Reina Sofia University Hospital/University of Cordoba, and CIBER Fisiopatologia Obesidad y Nutricion (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain
| | - Anne Tybjærg-Hansen
- Department of Clinical Biochemistry, Rigshospitalet, Copenhagen University Hospital, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Nicholas Tentolouris
- First Department of Propaedeutic Internal Medicine, Medical School, National and Kapodistrian University of Athens, Laiko General Hospital, Athens, Greece
| | - Børge G. Nordestgaard
- Department of Clinical Biochemistry, Herlev and Gentofte Hospital, Copenhagen University Hospital, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
7
|
Kolovou G, Giannakopoulou V, Kalogeropoulos P, Anagnostopoulou K, Goumas G, Kazianis G, Limberi S, Perrea D, Mihas C, Kolovou V, Bilianou H. Hellenic Postprandial Lipemia Study (HPLS): Rationale and design of a prospective, open-label trial to determinate the prevalence of abnormal postprandial lipemia as well as its interaction with statins in patients at high- and very high-risk for cardiovascular disease. Contemp Clin Trials 2019; 82:101-105. [DOI: 10.1016/j.cct.2019.05.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2019] [Revised: 05/23/2019] [Accepted: 05/27/2019] [Indexed: 10/26/2022]
|
8
|
Abstract
Purpose of Review Apolipoprotein C-III (apoC-III) is known to inhibit lipoprotein lipase (LPL) and function as an important regulator of triglyceride metabolism. In addition, apoC-III has also more recently been identified as an important risk factor for cardiovascular disease. This review summarizes the mechanisms by which apoC-III induces hypertriglyceridemia and promotes atherogenesis, as well as the findings from recent clinical trials using novel strategies for lowering apoC-III. Recent Findings Genetic studies have identified subjects with heterozygote loss-of-function (LOF) mutations in APOC3, the gene coding for apoC-III. Clinical characterization of these individuals shows that the LOF variants associate with a low-risk lipoprotein profile, in particular reduced plasma triglycerides. Recent results also show that complete deficiency of apoC-III is not a lethal mutation and is associated with very rapid lipolysis of plasma triglyceride-rich lipoproteins (TRL). Ongoing trials based on emerging gene-silencing technologies show that intervention markedly lowers apoC-III levels and, consequently, plasma triglyceride. Unexpectedly, the evidence points to apoC-III not only inhibiting LPL activity but also suppressing removal of TRLs by LPL-independent pathways. Summary Available data clearly show that apoC-III is an important cardiovascular risk factor and that lifelong deficiency of apoC-III is cardioprotective. Novel therapies have been developed, and results from recent clinical trials indicate that effective reduction of plasma triglycerides by inhibition of apoC-III might be a promising strategy in management of severe hypertriglyceridemia and, more generally, a novel approach to CHD prevention in those with elevated plasma triglyceride.
Collapse
|
9
|
Papademetriou V, Alataki S, Stavropoulos K, Papadopoulos C, Bakogiannis K, Tsioufis K. Pharmacological Management of Diabetic Nephropathy. Curr Vasc Pharmacol 2019; 18:139-147. [PMID: 30961500 DOI: 10.2174/1570161117666190405164749] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2018] [Revised: 11/13/2018] [Accepted: 11/21/2018] [Indexed: 01/13/2023]
Abstract
INTRODUCTION Diabetes mellitus (DM) is one of the most common diseases worldwide. Its adverse effects on several body organs, have made treatment of DM a priority. One of the most serious complications of DM is diabetic nephropathy (DN). OBJECTIVE The aim of this review is to critically discuss available data on the pharmacological management of DN. METHODS A comprehensive review of the literature was performed to identify studies assessing the impact of several drug classes on DN. RESULTS Several studies have been conducted in order to find a novel and effective treatment of DN. So far, the cornerstone therapy of DN consists of renin-angiotensin system (RAS) inhibitors, agents that decrease the synthesis of intrarenal angiotensin II or block its receptors. Their antiproteinuric and antihypertensive effects can not only decelerate the progress of DN but prevent its onset as well. Novel antidiabetic drugs, such as sodium-glucose cotransporter 2 inhibitors (SGLT-2i) and glucagon-like peptide- 1 receptor agonists (GLP-1 RA), are promising agents in the therapy of DN, due to their positive effect on renal and cardiovascular adverse events. From lipid-lowering agents, atorvastatin improves DN up to stage 3 and substantially reduces CVD. CONCLUSION RAS inhibitors, SGLT-2i and GLP-1 agonists were found to be beneficial for the treatment of DN. Larger renal trials are needed in order to incorporate these drugs into the first line treatment of DN.
Collapse
Affiliation(s)
| | - Sofia Alataki
- 2nd Prop Department of Internal Medicine, Aristotle University, Thessaloniki, Greece
| | | | | | | | - Kostas Tsioufis
- 1st Cardiology Department, Kapodestrian University, Athens, Greece
| |
Collapse
|
10
|
Lo C, Toyama T, Wang Y, Lin J, Hirakawa Y, Jun M, Cass A, Hawley CM, Pilmore H, Badve SV, Perkovic V, Zoungas S, Cochrane Kidney and Transplant Group. Insulin and glucose-lowering agents for treating people with diabetes and chronic kidney disease. Cochrane Database Syst Rev 2018; 9:CD011798. [PMID: 30246878 PMCID: PMC6513625 DOI: 10.1002/14651858.cd011798.pub2] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND Diabetes is the commonest cause of chronic kidney disease (CKD). Both conditions commonly co-exist. Glucometabolic changes and concurrent dialysis in diabetes and CKD make glucose-lowering challenging, increasing the risk of hypoglycaemia. Glucose-lowering agents have been mainly studied in people with near-normal kidney function. It is important to characterise existing knowledge of glucose-lowering agents in CKD to guide treatment. OBJECTIVES To examine the efficacy and safety of insulin and other pharmacological interventions for lowering glucose levels in people with diabetes and CKD. SEARCH METHODS We searched the Cochrane Kidney and Transplant Register of Studies up to 12 February 2018 through contact with the Information Specialist using search terms relevant to this review. Studies in the Register are identified through searches of CENTRAL, MEDLINE, and EMBASE, conference proceedings, the International Clinical Trials Register (ICTRP) Search Portal and ClinicalTrials.gov. SELECTION CRITERIA All randomised controlled trials (RCTs) and quasi-RCTs looking at head-to-head comparisons of active regimens of glucose-lowering therapy or active regimen compared with placebo/standard care in people with diabetes and CKD (estimated glomerular filtration rate (eGFR) < 60 mL/min/1.73 m2) were eligible. DATA COLLECTION AND ANALYSIS Four authors independently assessed study eligibility, risk of bias, and quality of data and performed data extraction. Continuous outcomes were expressed as post-treatment mean differences (MD). Adverse events were expressed as post-treatment absolute risk differences (RD). Dichotomous clinical outcomes were presented as risk ratios (RR) with 95% confidence intervals (CI). MAIN RESULTS Forty-four studies (128 records, 13,036 participants) were included. Nine studies compared sodium glucose co-transporter-2 (SGLT2) inhibitors to placebo; 13 studies compared dipeptidyl peptidase-4 (DPP-4) inhibitors to placebo; 2 studies compared glucagon-like peptide-1 (GLP-1) agonists to placebo; 8 studies compared glitazones to no glitazone treatment; 1 study compared glinide to no glinide treatment; and 4 studies compared different types, doses or modes of administration of insulin. In addition, 2 studies compared sitagliptin to glipizide; and 1 study compared each of sitagliptin to insulin, glitazars to pioglitazone, vildagliptin to sitagliptin, linagliptin to voglibose, and albiglutide to sitagliptin. Most studies had a high risk of bias due to funding and attrition bias, and an unclear risk of detection bias.Compared to placebo, SGLT2 inhibitors probably reduce HbA1c (7 studies, 1092 participants: MD -0.29%, -0.38 to -0.19 (-3.2 mmol/mol, -4.2 to -2.2); I2 = 0%), fasting blood glucose (FBG) (5 studies, 855 participants: MD -0.48 mmol/L, -0.78 to -0.19; I2 = 0%), systolic blood pressure (BP) (7 studies, 1198 participants: MD -4.68 mmHg, -6.69 to -2.68; I2 = 40%), diastolic BP (6 studies, 1142 participants: MD -1.72 mmHg, -2.77 to -0.66; I2 = 0%), heart failure (3 studies, 2519 participants: RR 0.59, 0.41 to 0.87; I2 = 0%), and hyperkalaemia (4 studies, 2788 participants: RR 0.58, 0.42 to 0.81; I2 = 0%); but probably increase genital infections (7 studies, 3086 participants: RR 2.50, 1.52 to 4.11; I2 = 0%), and creatinine (4 studies, 848 participants: MD 3.82 μmol/L, 1.45 to 6.19; I2 = 16%) (all effects of moderate certainty evidence). SGLT2 inhibitors may reduce weight (5 studies, 1029 participants: MD -1.41 kg, -1.8 to -1.02; I2 = 28%) and albuminuria (MD -8.14 mg/mmol creatinine, -14.51 to -1.77; I2 = 11%; low certainty evidence). SGLT2 inhibitors may have little or no effect on the risk of cardiovascular death, hypoglycaemia, acute kidney injury (AKI), and urinary tract infection (low certainty evidence). It is uncertain whether SGLT2 inhibitors have any effect on death, end-stage kidney disease (ESKD), hypovolaemia, fractures, diabetic ketoacidosis, or discontinuation due to adverse effects (very low certainty evidence).Compared to placebo, DPP-4 inhibitors may reduce HbA1c (7 studies, 867 participants: MD -0.62%, -0.85 to -0.39 (-6.8 mmol/mol, -9.3 to -4.3); I2 = 59%) but may have little or no effect on FBG (low certainty evidence). DPP-4 inhibitors probably have little or no effect on cardiovascular death (2 studies, 5897 participants: RR 0.93, 0.77 to 1.11; I2 = 0%) and weight (2 studies, 210 participants: MD 0.16 kg, -0.58 to 0.90; I2 = 29%; moderate certainty evidence). Compared to placebo, DPP-4 inhibitors may have little or no effect on heart failure, upper respiratory tract infections, and liver impairment (low certainty evidence). Compared to placebo, it is uncertain whether DPP-4 inhibitors have any effect on eGFR, hypoglycaemia, pancreatitis, pancreatic cancer, or discontinuation due to adverse effects (very low certainty evidence).Compared to placebo, GLP-1 agonists probably reduce HbA1c (7 studies, 867 participants: MD -0.53%, -1.01 to -0.06 (-5.8 mmol/mol, -11.0 to -0.7); I2 = 41%; moderate certainty evidence) and may reduce weight (low certainty evidence). GLP-1 agonists may have little or no effect on eGFR, hypoglycaemia, or discontinuation due to adverse effects (low certainty evidence). It is uncertain whether GLP-1 agonists reduce FBG, increase gastrointestinal symptoms, or affect the risk of pancreatitis (very low certainty evidence).Compared to placebo, it is uncertain whether glitazones have any effect on HbA1c, FBG, death, weight, and risk of hypoglycaemia (very low certainty evidence).Compared to glipizide, sitagliptin probably reduces hypoglycaemia (2 studies, 551 participants: RR 0.40, 0.23 to 0.69; I2 = 0%; moderate certainty evidence). Compared to glipizide, sitagliptin may have had little or no effect on HbA1c, FBG, weight, and eGFR (low certainty evidence). Compared to glipizide, it is uncertain if sitagliptin has any effect on death or discontinuation due to adverse effects (very low certainty).For types, dosages or modes of administration of insulin and other head-to-head comparisons only individual studies were available so no conclusions could be made. AUTHORS' CONCLUSIONS Evidence concerning the efficacy and safety of glucose-lowering agents in diabetes and CKD is limited. SGLT2 inhibitors and GLP-1 agonists are probably efficacious for glucose-lowering and DPP-4 inhibitors may be efficacious for glucose-lowering. Additionally, SGLT2 inhibitors probably reduce BP, heart failure, and hyperkalaemia but increase genital infections, and slightly increase creatinine. The safety profile for GLP-1 agonists is uncertain. No further conclusions could be made for the other classes of glucose-lowering agents including insulin. More high quality studies are required to help guide therapeutic choice for glucose-lowering in diabetes and CKD.
Collapse
Affiliation(s)
- Clement Lo
- Monash UniversityMonash Centre for Health Research and Implementation, School of Public Health and Preventive MedicineClaytonVICAustralia
- Monash HealthDiabetes and Vascular Medicine UnitClaytonVICAustralia
- Monash UniversityDivision of Metabolism, Ageing and Genomics, School of Public Health and Preventive MedicinePrahanVICAustralia
| | - Tadashi Toyama
- The George Institute for Global Health, UNSW SydneyRenal and Metabolic DivisionNewtownNSWAustralia2050
- Kanazawa University HospitalDivision of NephrologyKanazawaJapan
| | - Ying Wang
- The George Institute for Global Health, UNSW SydneyRenal and Metabolic DivisionNewtownNSWAustralia2050
| | - Jin Lin
- Beijing Friendship Hospital, Capital Medical UniversityDepartment of Critical Care Medicine95 Yong‐An Road, Xuan Wu DistrictBeijingChina100050
| | - Yoichiro Hirakawa
- The George Institute for Global Health, UNSW SydneyProfessorial UnitNewtownNSWAustralia
| | - Min Jun
- The George Institute for Global Health, UNSW SydneyRenal and Metabolic DivisionNewtownNSWAustralia2050
| | - Alan Cass
- Menzies School of Health ResearchPO Box 41096CasuarinaNTAustralia0811
| | - Carmel M Hawley
- Princess Alexandra HospitalDepartment of NephrologyIpswich RoadWoolloongabbaQLDAustralia4102
| | - Helen Pilmore
- Auckland HospitalDepartment of Renal MedicinePark RoadGraftonAucklandNew Zealand
- University of AucklandDepartment of MedicineGraftonNew Zealand
| | - Sunil V Badve
- St George HospitalDepartment of Renal MedicineKogarahNSWAustralia
| | - Vlado Perkovic
- The George Institute for Global Health, UNSW SydneyRenal and Metabolic DivisionNewtownNSWAustralia2050
| | - Sophia Zoungas
- Monash HealthDiabetes and Vascular Medicine UnitClaytonVICAustralia
- Monash UniversityDivision of Metabolism, Ageing and Genomics, School of Public Health and Preventive MedicinePrahanVICAustralia
- The George Institute for Global Health, UNSW SydneyProfessorial UnitNewtownNSWAustralia
| | | |
Collapse
|
11
|
Kurihara O, Okajima F, Takano M, Kato K, Munakata R, Murakami D, Miyauchi Y, Emoto N, Sugihara H, Seino Y, Shimizu W. Postprandial Hyperchylomicronemia and Thin-Cap Fibroatheroma in Nonculprit Lesions. Arterioscler Thromb Vasc Biol 2018; 38:1940-1947. [PMID: 29930008 DOI: 10.1161/atvbaha.118.311245] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Accepted: 06/04/2018] [Indexed: 11/16/2022]
Abstract
Objective- Although postprandial hypertriglyceridemia can be a risk factor for coronary artery disease, the extent of its significance remains unknown. This study aimed to investigate the correlation between the postprandial lipid profiles rigorously estimated with the meal tolerance test and the presence of lipid-rich plaque, such as thin-cap fibroatheroma (TCFA), in the nonculprit lesion. Approach and Results- A total of 30 patients with stable coronary artery disease who underwent a multivessel examination using optical coherence tomography during catheter intervention for the culprit lesion were enrolled. Patients were divided into 2 groups: patients with TCFA (fibrous cap thickness ≤65 µm) in the nonculprit lesion and those without TCFA. Serum remnant-like particle-cholesterol and ApoB-48 (apolipoprotein B-48) levels were measured during the meal tolerance test. The value of remnant-like particle-cholesterol was significantly greater in the TCFA group than in the non-TCFA group ( P=0.045). Although the baseline ApoB-48 level was similar, the increase in the ApoB-48 level was significantly higher in the TCFA group than in the non-TCFA group ( P=0.028). In addition, the baseline apolipoprotein C-III levels was significantly greater in the TCFA group ( P=0.003). These indexes were independent predictors of the presence of TCFA (ΔApoB-48: odds ratio, 1.608; 95% confidence interval, 1.040-2.486; P=0.032; apolipoprotein C-III: odds ratio, 2.581; 95% confidence interval, 1.177-5.661; P=0.018). Conclusions- Postprandial hyperchylomicronemia correlates with the presence of TCFA in the nonculprit lesion and may be a residual risk factor for coronary artery disease.
Collapse
Affiliation(s)
- Osamu Kurihara
- From the Cardiovascular Center (O.K., M.T., R.M., D.M., Y.M., Y.S.)
| | | | - Masamichi Takano
- From the Cardiovascular Center (O.K., M.T., R.M., D.M., Y.M., Y.S.)
| | - Katsuhito Kato
- Department of Hygiene and Public Health, Graduate School of Medicine (K.K.)
| | - Ryo Munakata
- From the Cardiovascular Center (O.K., M.T., R.M., D.M., Y.M., Y.S.)
| | - Daisuke Murakami
- From the Cardiovascular Center (O.K., M.T., R.M., D.M., Y.M., Y.S.)
| | - Yasushi Miyauchi
- From the Cardiovascular Center (O.K., M.T., R.M., D.M., Y.M., Y.S.)
| | - Naoya Emoto
- Nippon Medical School Chiba Hokusoh Hospital, Japan; and Department of Endocrinology, Diabetes and Metabolism, Graduate School of Medicine (F.O., N.E., H.S.)
| | - Hitoshi Sugihara
- Nippon Medical School Chiba Hokusoh Hospital, Japan; and Department of Endocrinology, Diabetes and Metabolism, Graduate School of Medicine (F.O., N.E., H.S.)
| | - Yoshihiko Seino
- From the Cardiovascular Center (O.K., M.T., R.M., D.M., Y.M., Y.S.)
| | - Wataru Shimizu
- Division of Cardiology (W.S.), Nippon Medical School, Tokyo, Japan
| |
Collapse
|
12
|
Koopal C, Marais AD, Westerink J, van der Graaf Y, Visseren FLJ. Effect of adding bezafibrate to standard lipid-lowering therapy on post-fat load lipid levels in patients with familial dysbetalipoproteinemia. A randomized placebo-controlled crossover trial. J Lipid Res 2017; 58:2180-2187. [PMID: 28928170 PMCID: PMC5665665 DOI: 10.1194/jlr.m076901] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2017] [Revised: 09/13/2017] [Indexed: 12/12/2022] Open
Abstract
Familial dysbetalipoproteinemia (FD) is a genetic disorder associated with impaired postprandial lipid clearance. The effect of adding bezafibrate to standard lipid-lowering therapy on postprandial and fasting lipid levels in patients with FD is unknown. In this randomized placebo-controlled double-blind crossover trial, 15 patients with FD received bezafibrate and placebo for 6 weeks in randomized order in addition to standard lipid-lowering therapy (statin, ezetimibe, and/or lifestyle). We assessed post-fat load lipids, expressed as incremental area under the curve (iAUC) and area under the curve (AUC), as well as fasting levels and safety, and found that adding bezafibrate did not reduce post-fat load non-HDL-cholesterol (non-HDL-C) iAUC (1.78 ± 4.49 mmol·h/l vs. 1.03 ± 2.13 mmol·h/l, P = 0.57), but did reduce post-fat load triglyceride (TG) iAUC (8.05 ± 3.32 mmol·h/l vs. 10.61 ± 5.92 mmol·h/l, P = 0.03) and apoB (0.64 ± 0.62 g·h/l vs. 0.93 ± 0.71 g·h/l, P = 0.01). Furthermore, bezafibrate significantly improved AUC and fasting levels of non-HDL-C, TG, total cholesterol, HDL-C, and apoB. Bezafibrate was associated with lower estimated glomerular filtration rate (78.4 ± 11.4 ml/min/1.73 m2 vs. 86.1 ± 5.85 ml/min/1.73 m2, P = 0.002). In conclusion, in patients with FD, the addition of bezafibrate to standard lipid-lowering therapy resulted in improved post-fat load and fasting plasma lipids. Combination therapy of statin/fibrate could be considered as standard lipid-lowering treatment in FD.
Collapse
Affiliation(s)
- Charlotte Koopal
- Department of Vascular Medicine University Medical Center Utrecht, Utrecht, The Netherlands
| | - A David Marais
- Division of Chemical Pathology, University of Cape Town and National Health Laboratory Service, Cape Town, South Africa
| | - Jan Westerink
- Department of Vascular Medicine University Medical Center Utrecht, Utrecht, The Netherlands
| | - Yolanda van der Graaf
- Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Frank L J Visseren
- Department of Vascular Medicine University Medical Center Utrecht, Utrecht, The Netherlands
| |
Collapse
|
13
|
Dias CB, Moughan PJ, Wood LG, Singh H, Garg ML. Postprandial lipemia: factoring in lipemic response for ranking foods for their healthiness. Lipids Health Dis 2017; 16:178. [PMID: 28923057 PMCID: PMC5604516 DOI: 10.1186/s12944-017-0568-5] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2017] [Accepted: 09/11/2017] [Indexed: 12/15/2022] Open
Abstract
One of the limitations for ranking foods and meals for healthiness on the basis of the glycaemic index (GI) is that the GI is subject to manipulation by addition of fat. Postprandial lipemia, defined as a rise in circulating triglyceride containing lipoproteins following consumption of a meal, has been recognised as a risk factor for the development of cardiovascular disease and other chronic diseases. Many non-modifiable factors (pathological conditions, genetic background, age, sex and menopausal status) and life-style factors (physical activity, smoking, alcohol and medication use, dietary choices) may modulate postprandial lipemia. The structure and the composition of a food or a meal consumed also plays an important role in the rate of postprandial appearance and clearance of triglycerides in the blood. However, a major difficulty in grading foods, meals and diets according to their potential to elevate postprandial triglyceride levels has been the lack of a standardised marker that takes into consideration both the general characteristics of the food and the food’s fat composition and quantity. The release rate of lipids from the food matrix during digestion also has an important role in determining the postprandial lipemic effects of a food product. This article reviews the factors that have been shown to influence postprandial lipemia with a view to develop a novel index for ranking foods according to their healthiness. This index should take into consideration not only the glycaemic but also lipemic responses.
Collapse
Affiliation(s)
- Cintia Botelho Dias
- Nutraceuticals Research Program, School of Biomedical Sciences & Pharmacy, University of Newcastle, Callaghan, NSW, Australia.,Riddet Institute, Massey University, Palmerston North, New Zealand.,Priority Research Centre in Physical Activity & Nutrition, University of Newcastle, University of Newcastle, Callaghan, NSW, 2308, Australia
| | - Paul J Moughan
- Riddet Institute, Massey University, Palmerston North, New Zealand
| | - Lisa G Wood
- Centre for Asthma and Respiratory Disease, School of Biomedical Sciences & Pharmacy, University of Newcastle, New Lambton, Australia
| | - Harjinder Singh
- Riddet Institute, Massey University, Palmerston North, New Zealand
| | - Manohar L Garg
- Nutraceuticals Research Program, School of Biomedical Sciences & Pharmacy, University of Newcastle, Callaghan, NSW, Australia. .,Riddet Institute, Massey University, Palmerston North, New Zealand. .,Priority Research Centre in Physical Activity & Nutrition, University of Newcastle, University of Newcastle, Callaghan, NSW, 2308, Australia.
| |
Collapse
|
14
|
Khetarpal SA, Qamar A, Millar JS, Rader DJ. Targeting ApoC-III to Reduce Coronary Disease Risk. Curr Atheroscler Rep 2017; 18:54. [PMID: 27443326 DOI: 10.1007/s11883-016-0609-y] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Triglyceride-rich lipoproteins (TRLs) are causal contributors to the risk of developing coronary artery disease (CAD). Apolipoprotein C-III (apoC-III) is a component of TRLs that elevates plasma triglycerides (TGs) through delaying the lipolysis of TGs and the catabolism of TRL remnants. Recent human genetics approaches have shown that heterozygous loss-of-function mutations in APOC3, the gene encoding apoC-III, lower plasma TGs and protect from CAD. This observation has spawned new interest in therapeutic efforts to target apoC-III. Here, we briefly review both currently available as well as developing therapies for reducing apoC-III levels and function to lower TGs and cardiovascular risk. These therapies include existing options including statins, fibrates, thiazolidinediones, omega-3-fatty acids, and niacin, as well as an antisense oligonucleotide targeting APOC3 currently in clinical development. We review the mechanisms of action by which these drugs reduce apoC-III and the current understanding of how reduction in apoC-III may impact CAD risk.
Collapse
Affiliation(s)
- Sumeet A Khetarpal
- Perelman School of Medicine, University of Pennsylvania, 11-125 SCTR, 3400 Civic Center Blvd, Philadelphia, PA, 19104, USA
| | - Arman Qamar
- Perelman School of Medicine, University of Pennsylvania, 11-125 SCTR, 3400 Civic Center Blvd, Philadelphia, PA, 19104, USA
| | - John S Millar
- Perelman School of Medicine, University of Pennsylvania, 11-125 SCTR, 3400 Civic Center Blvd, Philadelphia, PA, 19104, USA
| | - Daniel J Rader
- Perelman School of Medicine, University of Pennsylvania, 11-125 SCTR, 3400 Civic Center Blvd, Philadelphia, PA, 19104, USA.
| |
Collapse
|
15
|
Ruospo M, Saglimbene VM, Palmer SC, De Cosmo S, Pacilli A, Lamacchia O, Cignarelli M, Fioretto P, Vecchio M, Craig JC, Strippoli GFM, Cochrane Kidney and Transplant Group. Glucose targets for preventing diabetic kidney disease and its progression. Cochrane Database Syst Rev 2017; 6:CD010137. [PMID: 28594069 PMCID: PMC6481869 DOI: 10.1002/14651858.cd010137.pub2] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
BACKGROUND Diabetes is the leading cause of end-stage kidney disease (ESKD) around the world. Blood pressure lowering and glucose control are used to reduce diabetes-associated disability including kidney failure. However there is a lack of an overall evidence summary of the optimal target range for blood glucose control to prevent kidney failure. OBJECTIVES To evaluate the benefits and harms of intensive (HbA1c < 7% or fasting glucose levels < 120 mg/dL versus standard glycaemic control (HbA1c ≥ 7% or fasting glucose levels ≥ 120 mg/dL for preventing the onset and progression of kidney disease among adults with diabetes. SEARCH METHODS We searched the Cochrane Kidney and Transplant Specialised Register up to 31 March 2017 through contact with the Information Specialist using search terms relevant to this review. Studies contained in the Specialised Register are identified through search strategies specifically designed for CENTRAL, MEDLINE, and EMBASE; handsearching conference proceedings; and searching the International Clinical Trials Register (ICTRP) Search Portal and ClinicalTrials.gov. SELECTION CRITERIA Randomised controlled trials evaluating glucose-lowering interventions in which people (aged 14 year or older) with type 1 or 2 diabetes with and without kidney disease were randomly allocated to tight glucose control or less stringent blood glucose targets. DATA COLLECTION AND ANALYSIS Two authors independently assessed studies for eligibility and risks of bias, extracted data and checked the processes for accuracy. Outcomes were mortality, cardiovascular complications, doubling of serum creatinine (SCr), ESKD and proteinuria. Confidence in the evidence was assessing using GRADE. Summary estimates of effect were obtained using a random-effects model, and results were expressed as risk ratios (RR) and their 95% confidence intervals (CI) for dichotomous outcomes, and mean difference (MD) and 95% CI for continuous outcomes. MAIN RESULTS Fourteen studies involving 29,319 people with diabetes were included and 11 studies involving 29,141 people were included in our meta-analyses. Treatment duration was 56.7 months on average (range 6 months to 10 years). Studies included people with a range of kidney function. Incomplete reporting of key methodological details resulted in uncertain risks of bias in many studies. Using GRADE assessment, we had moderate confidence in the effects of glucose lowering strategies on ESKD, all-cause mortality, myocardial infarction, and progressive protein leakage by kidney disease and low or very low confidence in effects of treatment on death related to cardiovascular complications and doubling of serum creatinine (SCr).For the primary outcomes, tight glycaemic control may make little or no difference to doubling of SCr compared with standard control (4 studies, 26,874 participants: RR 0.84, 95% CI 0.64 to 1.11; I2= 73%, low certainty evidence), development of ESKD (4 studies, 23,332 participants: RR 0.62, 95% CI 0.34 to 1.12; I2= 52%; low certainty evidence), all-cause mortality (9 studies, 29,094 participants: RR 0.99, 95% CI 0.86 to 1.13; I2= 50%; moderate certainty evidence), cardiovascular mortality (6 studies, 23,673 participants: RR 1.19, 95% CI 0.73 to 1.92; I2= 85%; low certainty evidence), or sudden death (4 studies, 5913 participants: RR 0.82, 95% CI 0.26 to 2.57; I2= 85%; very low certainty evidence). People who received treatment to achieve tighter glycaemic control probably experienced lower risks of non-fatal myocardial infarction (5 studies, 25,596 participants: RR 0.82, 95% CI 0.67 to 0.99; I2= 46%, moderate certainty evidence), onset of microalbuminuria (4 studies, 19,846 participants: RR 0.82, 95% CI 0.71 to 0.93; I2= 61%, moderate certainty evidence), and progression of microalbuminuria (5 studies, 13,266 participants: RR 0.59, 95% CI 0.38 to 0.93; I2= 75%, moderate certainty evidence). In absolute terms, tight versus standard glucose control treatment in 1,000 adults would lead to between zero and two people avoiding non-fatal myocardial infarction, while seven adults would avoid experiencing new-onset albuminuria and two would avoid worsening albuminuria. AUTHORS' CONCLUSIONS This review suggests that people who receive intensive glycaemic control for treatment of diabetes had comparable risks of kidney failure, death and major cardiovascular events as people who received less stringent blood glucose control, while experiencing small clinical benefits on the onset and progression of microalbuminuria and myocardial infarction. The adverse effects of glycaemic management are uncertain. Based on absolute treatment effects, the clinical impact of targeting an HbA1c < 7% or blood glucose < 6.6 mmol/L is unclear and the potential harms of this treatment approach are largely unmeasured.
Collapse
Affiliation(s)
- Marinella Ruospo
- DiaverumMedical Scientific OfficeLundSweden
- Amedeo Avogadro University of Eastern PiedmontDivision of Nephrology and Transplantation, Department of Translational MedicineVia Solaroli 17NovaraItaly28100
| | | | - Suetonia C Palmer
- University of Otago ChristchurchDepartment of Medicine2 Riccarton AvePO Box 4345ChristchurchNew Zealand8140
| | - Salvatore De Cosmo
- Scientific Institute CSSDepartment of MedicineViale CappucciniSan Giovanni RotondoItaly71013
| | - Antonio Pacilli
- Scientific Institute CSSDepartment of MedicineViale CappucciniSan Giovanni RotondoItaly71013
| | - Olga Lamacchia
- University of FoggiaDepartment of EndocrinologyFoggiaItaly
| | | | | | | | - Jonathan C Craig
- The University of SydneySydney School of Public HealthEdward Ford Building A27SydneyNSWAustralia2006
- The Children's Hospital at WestmeadCochrane Kidney and Transplant, Centre for Kidney ResearchWestmeadNSWAustralia2145
| | - Giovanni FM Strippoli
- DiaverumMedical Scientific OfficeLundSweden
- The Children's Hospital at WestmeadCochrane Kidney and Transplant, Centre for Kidney ResearchWestmeadNSWAustralia2145
- University of BariDepartment of Emergency and Organ TransplantationBariItaly
- Diaverum AcademyBariItaly
| | | |
Collapse
|
16
|
Tarantino N, Santoro F, De Gennaro L, Correale M, Guastafierro F, Gaglione A, Di Biase M, Brunetti ND. Fenofibrate/simvastatin fixed-dose combination in the treatment of mixed dyslipidemia: safety, efficacy, and place in therapy. Vasc Health Risk Manag 2017; 13:29-41. [PMID: 28243111 PMCID: PMC5317328 DOI: 10.2147/vhrm.s95044] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Lipids disorder is the principal cause of atherosclerosis and may present with several forms, according to blood lipoprotein prevalence. One of the most common forms is combined dyslipidemia, characterized by high levels of triglycerides and low level of high-density lipoprotein. Single lipid-lowering drugs may have very selective effect on lipoproteins; hence, the need to use multiple therapy against dyslipidemia. However, the risk of toxicity is a concerning issue. In this review, the effect and safety of an approved combination therapy with simvastatin plus fenofibrate are described, with an analysis of pros and cons resulting from randomized multicenter trials, meta-analyses, animal models, and case reports as well.
Collapse
Affiliation(s)
| | - Francesco Santoro
- University of Foggia, Foggia, Italy
- Asklepios Klinik – St Georg, Hamburg, Germany
| | | | | | | | | | | | | |
Collapse
|
17
|
Autosomal dominant familial dysbetalipoproteinemia: A pathophysiological framework and practical approach to diagnosis and therapy. J Clin Lipidol 2017; 11:12-23.e1. [DOI: 10.1016/j.jacl.2016.10.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Revised: 08/26/2016] [Accepted: 10/02/2016] [Indexed: 11/18/2022]
|
18
|
Garcés MF, Guarin Y, Carrero Y, Stekman H, Hernández C, Núñez ML, Apitz R, Camejo G. Fat Intolerance in Apparently Healthy Individuals with Normal Fasting Lipoproteins Is Associated with Markers of Cardiovascular Risk. J Appl Lab Med 2016; 1:250-259. [PMID: 33626837 DOI: 10.1373/jalm.2016.021204] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Accepted: 08/29/2016] [Indexed: 11/06/2022]
Abstract
BACKGROUND Postprandial increase of triglyceride-rich lipoproteins augments the risk of atherosclerotic cardiovascular disease and all-cause mortality. We explored the hypothesis that a simplified oral fat tolerance test can uncover differences in postprandial triglyceride response associated with potentially atherogenic lipoprotein characteristics, even in a cohort of apparently healthy 31-year-old [mean (SD), 31 (11)] nonobese individuals with normal fasting lipids and lipoproteins. METHODS We used a fat tolerance test in 96 females and 62 males with blood sampled at 0, 2, and 4 h after a breakfast containing 26.3 g of fats. The postprandial triglyceride response was used to classify the individuals in apparently fat-tolerant and apparently fat-intolerant participants. RESULTS The intolerant individuals were found to have at 0 h significantly higher body mass index, plasma triglycerides, remnant cholesterol, VLDL cholesterol, and LDL cholesterol and lower apolipoprotein (apo) AI and HDL cholesterol than the tolerant individuals. More than 70% of the variability (r2) of the postprandial response in tolerant and intolerant individuals measured as area under the curve or, at a single point at 4 h after the oral fat load, was linearly correlated with 0-h triglycerides (P < 0001). Fasting lipoprotein parameters, proposed to be markers of cardiovascular risk, as the ratios apo B/apo AI, total cholesterol/HDL cholesterol, and triglycerides/HDL cholesterol, were increased in the intolerant individuals. CONCLUSIONS A simplified oral fat tolerance test, even when used in an apparently healthy, nonobese, normolipidemic cohort, detected that an increased postprandial triglycerides response was associated with augmented lipoprotein markers of increased cardiovascular risk.
Collapse
Affiliation(s)
- María Fátima Garcés
- Associated Research Laboratory of Basic and Applied Research, Department of Biochemistry at the School of Bioanalysis, Faculty of Medicine, Central University of Venezuela, Caracas, Venezuela
| | - Yamil Guarin
- Associated Research Laboratory of Basic and Applied Research, Department of Biochemistry at the School of Bioanalysis, Faculty of Medicine, Central University of Venezuela, Caracas, Venezuela
| | - Yenny Carrero
- Associated Research Laboratory of Basic and Applied Research, Department of Biochemistry at the School of Bioanalysis, Faculty of Medicine, Central University of Venezuela, Caracas, Venezuela
| | - Hilda Stekman
- Associated Research Laboratory of Basic and Applied Research, Department of Biochemistry at the School of Bioanalysis, Faculty of Medicine, Central University of Venezuela, Caracas, Venezuela
| | - Celsy Hernández
- Associated Research Laboratory of Basic and Applied Research, Department of Biochemistry at the School of Bioanalysis, Faculty of Medicine, Central University of Venezuela, Caracas, Venezuela
| | - María Luisa Núñez
- Associated Research Laboratory of Basic and Applied Research, Department of Biochemistry at the School of Bioanalysis, Faculty of Medicine, Central University of Venezuela, Caracas, Venezuela
| | - Rafael Apitz
- National Academy of Medicine, Caracas, Venezuela
| | - Germán Camejo
- Germán Camejo, Clinical Chemistry Laboratory, Department of Laboratory Medicine, Karolinska Institute, Stockholm, Sweden
| |
Collapse
|
19
|
VRABLÍK M, ČEŠKA R. Treatment of Hypertriglyceridemia: a Review of Current Options. Physiol Res 2015; 64:S331-40. [DOI: 10.33549/physiolres.933199] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Hypertriglyceridemia is an important marker of increased levels of highly atherogenic remnant-like particles. The importance of lowering plasma levels of triglycerides (TG) has been called into question many times, but currently it is considered an integral part of residual cardiovascular risk reduction strategies. Lifestyle changes (improved diet and increased physical activity) are effective TG lowering measures. Pharmacological treatment usually starts with statins, although associated TG reductions are typically modest. Fibrates are currently the drugs of choice for hyperTG, frequently in combination with statins. Niacin and omega-3 fatty acids improve control of triglyceride levels when the above measures are inadequately effective. Some novel therapies including anti-sense oligonucleotides and inhibitors of microsomal triglyceride transfer protein have shown significant TG lowering efficacy. The current approach to the management of hypertriglyceridemia is based on lifestyle changes and, usually, drug combinations (statin and fibrate and/or omega-3 fatty acids or niacin).
Collapse
Affiliation(s)
- M. VRABLÍK
- Third Department of Internal Medicine, First Faculty of Medicine, Charles University in Prague, Prague, Czech Republic
| | | |
Collapse
|
20
|
Is it time to implement a standardized oral glucose and fat load test to detect high risk patients? Probably not yet…. Atherosclerosis 2015; 243:346-7. [DOI: 10.1016/j.atherosclerosis.2014.10.085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2014] [Accepted: 10/27/2014] [Indexed: 11/21/2022]
|
21
|
Aguiar C, Alegria E, Bonadonna RC, Catapano AL, Cosentino F, Elisaf M, Farnier M, Ferrières J, Filardi PP, Hancu N, Kayikcioglu M, Mello e Silva A, Millan J, Reiner Ž, Tokgozoglu L, Valensi P, Viigimaa M, Vrablik M, Zambon A, Zamorano JL, Ferrari R. A review of the evidence on reducing macrovascular risk in patients with atherogenic dyslipidaemia: A report from an expert consensus meeting on the role of fenofibrate–statin combination therapy. ATHEROSCLEROSIS SUPP 2015; 19:1-12. [DOI: 10.1016/s1567-5688(15)30001-5] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
22
|
Sottero B, Gargiulo S, Russo I, Barale C, Poli G, Cavalot F. Postprandial Dysmetabolism and Oxidative Stress in Type 2 Diabetes: Pathogenetic Mechanisms and Therapeutic Strategies. Med Res Rev 2015; 35:968-1031. [PMID: 25943420 DOI: 10.1002/med.21349] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Postprandial dysmetabolism in type 2 diabetes (T2D) is known to impact the progression and evolution of this complex disease process. However, the underlying pathogenetic mechanisms still require full elucidation to provide guidance for disease prevention and treatment. This review focuses on the marked redox changes and inflammatory stimuli provoked by the spike in blood glucose and lipids in T2D individuals after meals. All the causes of exacerbated postprandial oxidative stress in T2D were analyzed, also considering the consequence of enhanced inflammation on vascular damage. Based on this in-depth analysis, current strategies of prevention and pharmacologic management of T2D were critically reexamined with particular emphasis on their potential redox-related rationale.
Collapse
Affiliation(s)
- Barbara Sottero
- Department of Clinical and Biological Sciences, University of Turin, San Luigi Gonzaga Hospital, Orbassano, Turin, 10043, Italy
| | - Simona Gargiulo
- Department of Clinical and Biological Sciences, University of Turin, San Luigi Gonzaga Hospital, Orbassano, Turin, 10043, Italy
| | - Isabella Russo
- Internal Medicine and Metabolic Disease Unit, Department of Clinical and Biological Sciences, University of Turin, San Luigi Gonzaga Hospital, Orbassano, Turin, 10043, Italy
| | - Cristina Barale
- Internal Medicine and Metabolic Disease Unit, Department of Clinical and Biological Sciences, University of Turin, San Luigi Gonzaga Hospital, Orbassano, Turin, 10043, Italy
| | - Giuseppe Poli
- Department of Clinical and Biological Sciences, University of Turin, San Luigi Gonzaga Hospital, Orbassano, Turin, 10043, Italy
| | - Franco Cavalot
- Internal Medicine and Metabolic Disease Unit, Department of Clinical and Biological Sciences, University of Turin, San Luigi Gonzaga Hospital, Orbassano, Turin, 10043, Italy
| |
Collapse
|
23
|
Abstract
PURPOSE OF REVIEW We provide a historical perspective of how high-density lipoprotein (HDL) cholesterol became a clinical standard, the evidence in favor of HDL function as a more appropriate indication of HDL's antiatherogenic nature, and the options ahead. RECENT FINDINGS Recent studies have demonstrated a strong relationship between the cholesterol efflux capacity of plasma and prevalent cardiovascular disease (CVD) and CVD event risk, indicating the utility of HDL function as a diagnostic/prognostic of CVD. SUMMARY We will present how HDL cholesterol came to be the standard proxy of HDL function, the key observations that drew its clinical relevance into question, and the pros and cons of commercially available approaches to measuring HDL function.
Collapse
Affiliation(s)
- Michael N Oda
- Children's Hospital Oakland Research Institute, Oakland, California, USA
| |
Collapse
|
24
|
Iqbal D, Khan MS, Khan MS, Ahmad S, Hussain MS, Ali M. Bioactivity guided fractionation and hypolipidemic property of a novel HMG-CoA reductase inhibitor from Ficus virens Ait. Lipids Health Dis 2015; 14:15. [PMID: 25884722 PMCID: PMC4352280 DOI: 10.1186/s12944-015-0013-6] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Accepted: 02/13/2015] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND The current perspective for the search of 3-hydroxy-3-methyl-glutaryl-coenzyme A (HMG-CoA) reductase inhibitor has been shifted towards a natural agent also having antioxidant property. Thus, this study was intended to isolate and identify the bioactive compounds from methanolic extract of Ficus virens bark (FVBM) and to evaluate their antioxidant, HMG-CoA reductase inhibitory and hypolipidemic activity. METHODS Bioactivity guided fractionation and isolation of bioactive compound from FVBM extract has been done to isolate and characterize the potent HMG-CoA reductase (HMGR) inhibitor with antioxidant activity by using repeated extensive column chromatography followed by spectroscopic methods, including Infrared (IR), 1H & 13C nuclear magnetic resonance (NMR) and Mass spectrum analysis. The in vitro HMGR inhibition and enzyme kinetic assay was determined using HMG-CoA as substrate. In addition, antioxidant activity of the new isolated compound, was measured using 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging assay and FRAP value. In-silico molecular informatics of HMGR enzyme type inhibition and pharmacokinetics data of the new compound was further evaluated through molecular docking and ADME-T studies. Further, in-vivo hypolipidemic property of FVBM extract and newly isolated compound was also analyzed in triton-WR 1339 induced rats. RESULTS Thereby, we report the discovery of n-Octadecanyl-O-α-D-glucopyranosyl(6'→1″)-O-α-D-glucopyranoside (F18) as a novel HMG-CoA reductase inhibitor with strong antioxidant property. This inhibitor exhibited not only higher free radical scavenging activity but also marked HMG-CoA reductase inhibitory activity with an IC50 value of 84±2.8 ng/ml. This inhibitory activity concurred with kinetic study that showed inhibition constant (K i) of 84 ng/ml via an uncompetitive mode of inhibition. The inhibition was also corroborated by molecular docking analysis and in silico pharmacokinetics data. The in vivo study revealed that administration of FVBM extract (at higher dose, 100 mg/rat) and the inhibitor (1 mg/rat) to Triton WR-1339-induced hyperlipidemic rats significantly ameliorated the altered levels of plasma lipids and lipoproteins including hepatic HMG-CoA reductase activity; this effect was comparable to the effect of standard drug atorvastatin. CONCLUSIONS The in vitro, in silico and in vivo results clearly demonstrated the antioxidant potential and therapeutic efficacy of the inhibitor as an alternate drug against hyperlipidemia.
Collapse
Affiliation(s)
- Danish Iqbal
- Department of Biosciences, Clinical Biochemistry & Natural Product Research Lab, Integral University, Lucknow, 226026, India.
| | - M Salman Khan
- Department of Biosciences, Clinical Biochemistry & Natural Product Research Lab, Integral University, Lucknow, 226026, India.
| | - Mohd Sajid Khan
- Department of Biosciences, Clinical Biochemistry & Natural Product Research Lab, Integral University, Lucknow, 226026, India.
| | - Saheem Ahmad
- Department of Biosciences, Clinical Biochemistry & Natural Product Research Lab, Integral University, Lucknow, 226026, India.
| | | | - Mohd Ali
- Department of Pharmacognosy & Phytochemistry, Faculty of Pharmacy, Jamia Hamdard, New Delhi, 110062, India.
| |
Collapse
|
25
|
Athyros VG, Tziomalos K, Karagiannis A, Mikhailidis DP. Genetic, epidemiologic and clinical data strongly suggest that fasting or non-fasting triglycerides are independent cardiovascular risk factors. Curr Med Res Opin 2015; 31:435-438. [PMID: 25163589 DOI: 10.1185/03007995.2014.958147] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Affiliation(s)
- Vasilios G Athyros
- Second Propedeutic Department of Internal Medicine, Medical School, Aristotle University of Thessaloniki, Hippokration Hospital , Thessaloniki , Greece
| | | | | | | |
Collapse
|
26
|
Abstract
Diabetic dyslipidemia is characterized by elevated fasting and postprandial triglycerides, low HDL-cholesterol, elevated LDL-cholesterol and the predominance of small dense LDL particles. These lipid changes represent the major link between diabetes and the increased cardiovascular risk of diabetic patients. The underlying pathophysiology is only partially understood. Alterations of insulin sensitive pathways, increased concentrations of free fatty acids and low grade inflammation all play a role and result in an overproduction and decreased catabolism of triglyceride rich lipoproteins of intestinal and hepatic origin. The observed changes in HDL and LDL are mostly sequence to this. Lifestyle modification and glucose control may improve the lipid profile but statin therapy mediates the biggest benefit with respect to cardiovascular risk reduction. Therefore most diabetic patients should receive statin therapy. The role of other lipid lowering drugs, such as ezetimibe, fibrates, omega-3 fatty acids, niacin and bile acid sequestrants is less well defined as they are characterized by largely negative outcome trials. This review examines the pathophysiology of diabetic dyslipidemia and its relationship to cardiovascular diseases. Management approaches will also be discussed.
Collapse
|
27
|
Millán Núñez-Cortés J, Pedro-Botet Montoya J, Pintó Sala X. [Atherogenic dyslipidemia and residual risk. State of the art in 2014]. CLINICA E INVESTIGACION EN ARTERIOSCLEROSIS 2014; 26:287-92. [PMID: 25450326 DOI: 10.1016/j.arteri.2014.09.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2014] [Accepted: 09/30/2014] [Indexed: 11/26/2022]
Abstract
Pandemics of metabolic síndrome, obesity, and type 2 diabetes is a major challenge for the next years and supported the grat burden of cardiovascular diseases. The R3i (Residual Risk Reduction initiative) has previously highlighted atherogenic dyslipidaemia as an important and modifiable contributor to the lipid related residual cardiovascular risk. Atherogenic dyslipidaemia is defined as an imbalance between proatherogenic triglycerides-rich apoB-containing lipoproteins and antiatherogenic AI containing lipoproteins. To improve clinical management of atherogenic dyslipidaemia a despite of lifestyle intervention includes pharmacological approach, and fibrates is the main option for combination with a statin to further reduce non-HDL cholesterol.
Collapse
|
28
|
Borén J, Matikainen N, Adiels M, Taskinen MR. Postprandial hypertriglyceridemia as a coronary risk factor. Clin Chim Acta 2014; 431:131-42. [DOI: 10.1016/j.cca.2014.01.015] [Citation(s) in RCA: 144] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2013] [Revised: 01/10/2014] [Accepted: 01/11/2014] [Indexed: 12/12/2022]
|
29
|
Ferreira AVM, Menezes-Garcia Z, Mario EG, Delpuerto HL, Martins AS, Botion LM. Increased expression of oxidative enzymes in adipose tissue following PPARα-activation. Metabolism 2014; 63:456-60. [PMID: 24439670 DOI: 10.1016/j.metabol.2013.12.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2013] [Revised: 12/05/2013] [Accepted: 12/17/2013] [Indexed: 12/28/2022]
Abstract
OBJECTIVE Evaluate the effect of fenofibrate treatment on the expression of PPARα and oxidative enzymes in adipose tissue. MATERIALS/METHODS Wistar male rats were fed a balanced diet supplemented with 100mg.Kg-1 bw.day-1 fenofibrate (Sigma) during nine days. Plasma glucose, free fatty acids (FFA) leptin and insulin were determined. PPARα, ACO and CPT-1 mRNA expression and amount of PPARα and PPARγ protein were assessed in epididymal adipose tissue. Oral glucose tolerance test was evaluated into overnight fasted rats. Glucose uptake was measured in adipocytes isolated from epididymal fat pads in the presence or absence of insulin (25ng/mL). RESULTS Fenofibrate treatment increased PPARα and PPARγ protein abundance in adipose tissue. In addition to it well- known effect on oxidative enzymes in liver, fenofibrate treatment also induces a high expression of Acyl CoA Oxidase (ACO) and Carnitine palmitoyltransferase 1 (CPT-1) in adipose tissue. Furthermore, we have shown that the fenofibrate treatment improves the glucose tolerance and enhance the glucose uptake by adipocytes. CONCLUSION Altogether, the data suggest that fenofibrate have a direct effect in adipose tissue contributing to the low adiposity and improvement of glucose homeostasis.
Collapse
Affiliation(s)
| | - Zélia Menezes-Garcia
- Department of Microbiology, Biological Sciences Institute, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Erica Guilhen Mario
- Department of Physiology and Biophysics, Biological Sciences Institute, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Helen Lima Delpuerto
- Department of Physiology and Biophysics, Biological Sciences Institute, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Almir Souza Martins
- Department of Physiology and Biophysics, Biological Sciences Institute, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Leida Maria Botion
- Department of Physiology and Biophysics, Biological Sciences Institute, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| |
Collapse
|
30
|
Hermans MP, Ahn SA, Rousseau MF. Novel unbiased equations to calculate triglyceride-rich lipoprotein cholesterol from routine non-fasting lipids. Cardiovasc Diabetol 2014; 13:56. [PMID: 24612479 PMCID: PMC3975291 DOI: 10.1186/1475-2840-13-56] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Accepted: 02/19/2014] [Indexed: 02/03/2023] Open
Abstract
Background Non-fasting triglyceride-rich lipoproteins cholesterol (TRL-C) contributes to cardiovascular risk, in that it includes remnant cholesterol (RC). TRL-C is computed as total C - [LDL-C + HDL-C]. Such calculation applies only if LDL-C is directly measured, or obtained from a non-Friedewald’s formula, a method as yet never benchmarked against independent markers of TRL burden. Methods The Discriminant Ratio (DR) methodology was used in 120 type 2 diabetic patients in order: (i) to compute TRL-C from non-fasting lipids; (ii) to establish the performance of TRL-C and TRL-C/apoA-I (vs. TG-based markers) to grade TRLs and atherogenic dyslipidemia (AD); and (iii) to relate TRL-C with non-fasting TG. Results Depending on apoB100 availability, TRL-C (mg/dL) can be derived from non-fasting lipids in two ways: (a) total cholesterol (TC) - [(0.0106 * TC - 0.0036 * TG + 0.017 * apoB100 - 0.27) * 38.6] - HDL-C; and (b) TC - [(0.0106 * TC - 0.0036 * TG + 0.017 * [0.65 * (TC - HDL-C) + 6.3] - 0.27) * 38.6] - HDL-C. Discrimination between log[TG] and TRL-C was similar (DR 0.94 and 0.84, respectively), whereas that of log[TG]/HDL-C was better than TRL-C/apoA-I (DR 1.01 vs. 0.65; p 0.0482). All Pearson’s correlations between pairs reached unity, allowing formulation of two unbiased equivalence equations: (a) TRL-C = 97.8 * log[TG] - 181.9; and (b) TRL-C/apoA-I = 8.15 * (log[TG]/HDL-C) - 0.18. Conclusions TRL-C and log[TG] are as effective and interchangeable for assessing remnant atherogenic particles. For grading TRL-AD, it is best to use log[TG]/HDL-C, inherently superior to TRL-C/apoA-I, while measuring the same underlying variable.
Collapse
Affiliation(s)
- Michel P Hermans
- Division of Endocrinology & Nutrition, Cliniques universitaires St-Luc and Institut de Recherche Expérimentale et Clinique (IREC), Université catholique de Louvain, Brussels, Belgium.
| | | | | |
Collapse
|
31
|
Fruchart JC, Davignon J, Hermans MP, Al-Rubeaan K, Amarenco P, Assmann G, Barter P, Betteridge J, Bruckert E, Cuevas A, Farnier M, Ferrannini E, Fioretto P, Genest J, Ginsberg HN, Gotto AM, Hu D, Kadowaki T, Kodama T, Krempf M, Matsuzawa Y, Núñez-Cortés JM, Monfil CC, Ogawa H, Plutzky J, Rader DJ, Sadikot S, Santos RD, Shlyakhto E, Sritara P, Sy R, Tall A, Tan CE, Tokgözoğlu L, Toth PP, Valensi P, Wanner C, Zambon A, Zhu J, Zimmet P. Residual macrovascular risk in 2013: what have we learned? Cardiovasc Diabetol 2014; 13:26. [PMID: 24460800 PMCID: PMC3922777 DOI: 10.1186/1475-2840-13-26] [Citation(s) in RCA: 127] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2013] [Accepted: 12/07/2013] [Indexed: 12/13/2022] Open
Abstract
Cardiovascular disease poses a major challenge for the 21st century, exacerbated by the pandemics of obesity, metabolic syndrome and type 2 diabetes. While best standards of care, including high-dose statins, can ameliorate the risk of vascular complications, patients remain at high risk of cardiovascular events. The Residual Risk Reduction Initiative (R3i) has previously highlighted atherogenic dyslipidaemia, defined as the imbalance between proatherogenic triglyceride-rich apolipoprotein B-containing-lipoproteins and antiatherogenic apolipoprotein A-I-lipoproteins (as in high-density lipoprotein, HDL), as an important modifiable contributor to lipid-related residual cardiovascular risk, especially in insulin-resistant conditions. As part of its mission to improve awareness and clinical management of atherogenic dyslipidaemia, the R3i has identified three key priorities for action: i) to improve recognition of atherogenic dyslipidaemia in patients at high cardiometabolic risk with or without diabetes; ii) to improve implementation and adherence to guideline-based therapies; and iii) to improve therapeutic strategies for managing atherogenic dyslipidaemia. The R3i believes that monitoring of non-HDL cholesterol provides a simple, practical tool for treatment decisions regarding the management of lipid-related residual cardiovascular risk. Addition of a fibrate, niacin (North and South America), omega-3 fatty acids or ezetimibe are all options for combination with a statin to further reduce non-HDL cholesterol, although lacking in hard evidence for cardiovascular outcome benefits. Several emerging treatments may offer promise. These include the next generation peroxisome proliferator-activated receptorα agonists, cholesteryl ester transfer protein inhibitors and monoclonal antibody therapy targeting proprotein convertase subtilisin/kexin type 9. However, long-term outcomes and safety data are clearly needed. In conclusion, the R3i believes that ongoing trials with these novel treatments may help to define the optimal management of atherogenic dyslipidaemia to reduce the clinical and socioeconomic burden of residual cardiovascular risk.
Collapse
Affiliation(s)
- Jean-Charles Fruchart
- R3i Foundation, St. Alban-Anlage 46, Basel, CH 4010, Switzerland
- Fondation Cœur et Artères, Lille, France
| | - Jean Davignon
- Institut de recherches cliniques de Montréal; Centre Hospitalier de l’Université de Montréal and Department of Experimental Medicine, McGill University, Montreal, Canada
| | | | - Khalid Al-Rubeaan
- University Diabetes Center, King Saud University, Riyadh, Saudi Arabia
| | - Pierre Amarenco
- Department of Neurology and Stroke Centre, Bichat University Hospital, Paris, France
| | - Gerd Assmann
- Assmann-Stiftung für Prävention, Münster, Germany
| | - Philip Barter
- Centre for Vascular Research, University of New South Wales, Sydney, Australia
| | | | - Eric Bruckert
- Department of Endocrinology and Cardiovascular Disease Prevention, Institut of CardioMetabolism and Nutrition (ICAN) Hôpital Pitié-Salpêtrière, Paris, France
| | - Ada Cuevas
- Nutrition Center, Clínica Las Condes, Santiago, Chile
| | | | - Ele Ferrannini
- University of Pisa School of Medicine, and Metabolism Unit of the National Research Council (CNR) Institute of Clinical Physiology, Pisa, Italy
| | - Paola Fioretto
- Department of Medical and Surgical Sciences, University of Padova, Padova, Italy
| | - Jacques Genest
- McGill University and Center for Innovative Medicine, McGill University Health Center/Royal Victoria Hospital, Montreal, Canada
| | - Henry N Ginsberg
- Department of Medicine and Irving Institute for Clinical and Translational Research, Columbia University, New York, USA
| | - Antonio M Gotto
- Weill Cornell Medical College, Cornell University, New York, USA
| | - Dayi Hu
- Heart Institute, People Hospital of Peking University, Beijing, China
| | - Takashi Kadowaki
- Department of Diabetes and Metabolic Diseases Unit, The University of Tokyo, Tokyo, Japan
| | - Tatsuhiko Kodama
- Department of Systems Biology and Medicine, The University of Tokyo, Tokyo, Japan
| | - Michel Krempf
- Human Nutritional Research Center and Department of Endocrinology, Metabolic Diseases and Nutrition, University Hospital Nantes, Nantes, France
| | | | | | | | - Hisao Ogawa
- Department of Cardiovascular Medicine, Kumamoto University, Kumamoto, Japan
| | - Jorge Plutzky
- Brigham and Women’s Hospital and Harvard Medical School, Boston, USA
| | - Daniel J Rader
- Division of Translational Medicine and Human Genetics, Smilow Center for Translational Research, Penn Cardiovascular Institute, Philadelphia, PA, USA
| | | | - Raul D Santos
- Unidade Clínica de Lipides InCor-HCFMUSP, Sao Paulo, Brazil
| | - Evgeny Shlyakhto
- Federal Almazov Heart Blood Endocrinology Centre, St Petersburg, Russia
| | | | - Rody Sy
- University of the Philippines-Philippine General Hospital, Manila, The Philippines
| | - Alan Tall
- Specialized Center of Research (SCOR) in Molecular Medicine and Atherosclerosis, Columbia University, College of Physicians & Surgeons, New York, USA
| | | | | | - Peter P Toth
- Sterling Rock Falls Clinic, CGH Medical Center, Sterling and University of Illinois School of Medicine, Peoria, IL, USA
| | - Paul Valensi
- Hôpital Jean Verdier, Department of Endocrinology Diabetology Nutrition, AP-HP, Paris-Nord University, CRNH-IdF, CINFO, Bondy, France
| | | | - Alberto Zambon
- Department of Medical and Surgical Sciences, University of Padova, Padova, Italy
| | - Junren Zhu
- Zhongshan Hospital, Fudan University, Shanghai, China
| | - Paul Zimmet
- Baker IDI Heart and Diabetes Institute, Melbourne, Australia
| |
Collapse
|
32
|
Kones R. Molecular sources of residual cardiovascular risk, clinical signals, and innovative solutions: relationship with subclinical disease, undertreatment, and poor adherence: implications of new evidence upon optimizing cardiovascular patient outcomes. Vasc Health Risk Manag 2013; 9:617-70. [PMID: 24174878 PMCID: PMC3808150 DOI: 10.2147/vhrm.s37119] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Residual risk, the ongoing appreciable risk of major cardiovascular events (MCVE) in statin-treated patients who have achieved evidence-based lipid goals, remains a concern among cardiologists. Factors that contribute to this continuing risk are atherogenic non-low-density lipoprotein (LDL) particles and atherogenic processes unrelated to LDL cholesterol, including other risk factors, the inherent properties of statin drugs, and patient characteristics, ie, genetics and behaviors. In addition, providers, health care systems, the community, public policies, and the environment play a role. Major statin studies suggest an average 28% reduction in LDL cholesterol and a 31% reduction in relative risk, leaving a residual risk of about 69%. Incomplete reductions in risk, and failure to improve conditions that create risk, may result in ongoing progression of atherosclerosis, with new and recurring lesions in original and distant culprit sites, remodeling, arrhythmias, rehospitalizations, invasive procedures, and terminal disability. As a result, identification of additional agents to reduce residual risk, particularly administered together with statin drugs, has been an ongoing quest. The current model of atherosclerosis involves many steps during which disease may progress independently of guideline-defined elevations in LDL cholesterol. Differences in genetic responsiveness to statin therapy, differences in ability of the endothelium to regenerate and repair, and differences in susceptibility to nonlipid risk factors, such as tobacco smoking, hypertension, and molecular changes associated with obesity and diabetes, may all create residual risk. A large number of inflammatory and metabolic processes may also provide eventual therapeutic targets to lower residual risk. Classically, epidemiologic and other evidence suggested that raising high-density lipoprotein (HDL) cholesterol would be cardioprotective. When LDL cholesterol is aggressively lowered to targets, low HDL cholesterol levels are still inversely related to MCVE. The efflux capacity, or ability to relocate cholesterol out of macrophages, is believed to be a major antiatherogenic mechanism responsible for reduction in MCVE mediated in part by healthy HDL. HDL cholesterol is a complex molecule with antioxidative, anti-inflammatory, anti-thrombotic, antiplatelet, and vasodilatory properties, among which is protection of LDL from oxidation. HDL-associated paraoxonase-1 has a major effect on endothelial function. Further, HDL promotes endothelial repair and progenitor cell health, and supports production of nitric oxide. HDL from patients with cardiovascular disease, diabetes, and autoimmune disease may fail to protect or even become proinflammatory or pro-oxidant. Mendelian randomization and other clinical studies in which raising HDL cholesterol has not been beneficial suggest that high plasma levels do not necessarily reduce cardiovascular risk. These data, coupled with extensive preclinical information about the functional heterogeneity of HDL, challenge the "HDL hypothesis", ie, raising HDL cholesterol per se will reduce MCVE. After the equivocal AIM-HIGH (Atherothrombosis Intervention in Metabolic Syndrome With Low HDL/High Triglycerides: Impact on Global Health Outcomes) study and withdrawal of two major cholesteryl ester transfer protein compounds, one for off-target adverse effects and the other for lack of efficacy, development continues for two other agents, ie, anacetrapib and evacetrapib, both of which lower LDL cholesterol substantially. The negative but controversial HPS2-THRIVE (the Heart Protection Study 2-Treatment of HDL to Reduce the Incidence of Vascular Events) trial casts further doubt on the HDL cholesterol hypothesis. The growing impression that HDL functionality, rather than abundance, is clinically important is supported by experimental evidence highlighting the conditional pleiotropic actions of HDL. Non-HDL cholesterol reflects the cholesterol in all atherogenic particles containing apolipoprotein B, and has outperformed LDL cholesterol as a lipid marker of cardiovascular risk and future mortality. In addition to including a measure of residual risk, the advantages of using non-HDL cholesterol as a primary lipid target are now compelling. Reinterpretation of data from the Treating to New Targets study suggests that better control of smoking, body weight, hypertension, and diabetes will help lower residual risk. Although much improved, control of risk factors other than LDL cholesterol currently remains inadequate due to shortfalls in compliance with guidelines and poor patient adherence. More efficient and greater use of proven simple therapies, such as aspirin, beta-blockers, angiotensin-converting enzyme inhibitors and angiotensin II receptor blockers, combined with statin therapy, may be more fruitful in improving outcomes than using other complex therapies. Comprehensive, intensive, multimechanistic, global, and national programs using primordial, primary, and secondary prevention to lower the total level of cardiovascular risk are necessary.
Collapse
Affiliation(s)
- Richard Kones
- Cardiometabolic Research Institute, Houston, TX, USA
| |
Collapse
|
33
|
Della-Morte D, Ricordi C, Guadagni F, Rundek T. Measurement of subclinical carotid atherosclerosis may help in predicting risk for stroke in patients with diabetes. Metab Brain Dis 2013; 28:337-9. [PMID: 23397156 DOI: 10.1007/s11011-013-9385-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2012] [Accepted: 01/29/2013] [Indexed: 10/27/2022]
Abstract
Diabetes is one of the most important risk factor for stroke and cardiovascular disease (CVD), especially in young patients. The control of classical vascular risk factors failed in terms of prevention of stroke in patients with diabetes. In addiction, in these patients the glycemic control showed a benefit on microvascular disease but lacked an established benefit in macrovascular disease. Therefore, implementations of effective stroke prevention strategies appear necessary in patients with diabetes. Ultrasound surrogate or intermediate markers of carotid atherosclerosis include carotid intima-media thickness (cIMT), carotid plaque (CP), and carotid stiffness (STIFF) have been demonstrated to increase in patients with diabetes and to be able to predict risk for stroke. In this editorial we discuss the opportunity to prevent the onset of vascular disease in their "preclinical or subclinical" stage in patients with higher risk for stroke such as diabetic patients.
Collapse
Affiliation(s)
- David Della-Morte
- Department of Neurology, Miller School of Medicine, University of Miami, Clinical Research Building, Miami, FL 33136, USA.
| | | | | | | |
Collapse
|
34
|
Agouridis AP, Rizos CV, Elisaf MS, Filippatos TD. Does combination therapy with statins and fibrates prevent cardiovascular disease in diabetic patients with atherogenic mixed dyslipidemia? Rev Diabet Stud 2013; 10:171-90. [PMID: 24380091 DOI: 10.1900/rds.2013.10.171] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Type 2 diabetes mellitus (T2DM) is associated with the development and progression of cardiovascular disease (CVD). Statins have an established efficacy in the management of dyslipidemia primarily by decreasing the levels of low-density lipoprotein cholesterol and thus decreasing CVD risk. They also have a favorable safety profile. Despite the statin-mediated benefit of CVD risk reduction a residual CVD risk remains, especially in T2DM patients with high triglyceride (TG) and low high-density lipoprotein cholesterol (HDL-C) values. Fibrates decrease TG levels, increase HDL-C concentrations, and improve many other atherosclerosis-related variables. Fibrate/statin co-administration improves the overall lipoprotein profile in patients with mixed dyslipidemia and may reduce the residual CVD risk during statin therapy. However, limited data exists regarding the effects of statin/fibrate combination on CVD outcomes in patients with T2DM. In the Action to Control Cardiovascular Risk in Diabetes (ACCORD) study the statin/fibrate combination did not significantly reduce the rate of CVD events compared with simvastatin/placebo in patients with T2DM. However, it did show a possible benefit in a pre-specified analysis in the subgroup of patients with high TG and low HDL-C levels. Furthermore, in the ACCORD study the simvastatin/fenofibrate combination significantly reduced the rate of progression of retinopathy compared with statin/placebo administration in patients with T2DM. The present review presents the available data regarding the effects of statin/fibrate combination in patients with T2DM and atherogenic mixed dyslipidemia.
Collapse
Affiliation(s)
- Aris P Agouridis
- Department of Internal Medicine, University of Ioannina, Ioannina, Greece
| | - Christos V Rizos
- Department of Internal Medicine, University of Ioannina, Ioannina, Greece
| | - Moses S Elisaf
- Department of Internal Medicine, University of Ioannina, Ioannina, Greece
| | | |
Collapse
|
35
|
Abstract
PURPOSE OF REVIEW This review provides an overview of newly described mechanisms by which peroxisome proliferator-activated receptors (PPARs) (α, γ, and δ) regulate several factors associated with cardiovascular risk. RECENT FINDINGS PPAR agonists have known effects on plasma lipoprotein levels, inflammation, and insulin resistance all of which influence the risk of cardiovascular disease. Recent studies provide more detail regarding the mechanisms behind these changes. PPAR-α activation in the enterocyte on HDL and chylomicron formation. PPAR-γ agonists reduce inflammation, in part, through direct effects on adipocytes and regulatory T cells within visceral adipose. PPAR-δ also has a relatively high expression in the macrophage. Incubation of macrophages with PPAR-δ agonists was shown to inhibit foam cell formation induced excessive levels of VLDL remnants. SUMMARY Treatments that activate PPAR-α, PPAR-γ, and PPAR-δ alone or in combination have the potential to reduce cardiovascular risk although multiple independent mechanisms. Treatment with PPAR agonists can reduce the burden of atherogenic postprandial lipoproteins and improve vascular function, reduce inflammation and inhibit foam cell formation. All of these would be expected to have favorable effects on cardiovascular risk. The challenge remains to develop compounds that maximize these potential cardiovascular benefits while minimizing undesirable effects of these compounds.
Collapse
Affiliation(s)
- John S Millar
- Division of Translational Medicine and Human Genetics, Institute of Diabetes, Obesity and Metabolism, University of Pennsylvania, Philadelphia, Pennsylvania, USA.
| |
Collapse
|