1
|
Zhao J, Massoudian SD, Stray-Gundersen S, Wojan F, Lalande S. Short bouts of hypoxia improve insulin sensitivity in adults with type 2 diabetes. J Appl Physiol (1985) 2025; 138:873-880. [PMID: 40013508 DOI: 10.1152/japplphysiol.00932.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 12/28/2024] [Accepted: 02/20/2025] [Indexed: 02/28/2025] Open
Abstract
Hypoxia stimulates glucose uptake independently from the action of insulin. The purpose of this study was to determine the effect of intermittent hypoxia, consisting of alternating short bouts of breathing hypoxic and room air, on glucose concentration, insulin concentration, and insulin sensitivity during an oral glucose tolerance test in adults with type 2 diabetes and adults with normal glycemic control. Nine adults with type 2 diabetes (2 women, HbA1c: 7.3 ± 1.5%, age: 52 ± 13 yr) and nine adults with normal glycemic control (4 women, HbA1c: 5.4 ± 0.1%, age: 24 ± 4 yr) performed a 2-h oral glucose tolerance test on two separate visits to the laboratory. Following ingestion of the glucose drink, participants were exposed to either an intermittent hypoxia protocol, consisting of eight 4-min hypoxic cycles at a targeted oxygen saturation of 80% interspersed with breathing room air to resaturation, or a sham protocol consisting of eight 4-min normoxic cycles interspersed with breathing room air. Intermittent hypoxia did not attenuate the increase in glucose concentration but attenuated the increase in insulin concentration in response to an oral glucose tolerance test in comparison with the sham protocol in adults with type 2 diabetes. Insulin sensitivity was greater during intermittent hypoxia in comparison with the sham protocol in adults with type 2 diabetes (0.043 ± 0.036 vs. 0.032 ± 0.046 μmol/kg/min/pmol, P = 0.01), but did not change in the control group (0.122 ± 0.015 vs. 0.128 ± 0.008 μmol/kg/min/pmol, P = 0.12). In conclusion, intermittent hypoxia improved insulin sensitivity in adults with type 2 diabetes.NEW & NOTEWORTHY The aim of this study was to determine the effect of short bouts of hypoxia, which stimulates glucose uptake, on glucose concentration, insulin concentration, and insulin sensitivity during an oral glucose tolerance test in adults with type 2 diabetes and adults with normal glycemic control. Intermittent hypoxia acutely improved insulin sensitivity in adults with type 2 diabetes.
Collapse
Affiliation(s)
- Jiahui Zhao
- Department of Kinesiology and Health EducationThe University of Texas at Austin, Austin, Texas, United States
| | - Sahar D Massoudian
- Department of Kinesiology and Health EducationThe University of Texas at Austin, Austin, Texas, United States
| | - Sten Stray-Gundersen
- Department of Kinesiology and Health EducationThe University of Texas at Austin, Austin, Texas, United States
| | - Frank Wojan
- Department of Kinesiology and Health EducationThe University of Texas at Austin, Austin, Texas, United States
| | - Sophie Lalande
- Department of Kinesiology and Health EducationThe University of Texas at Austin, Austin, Texas, United States
| |
Collapse
|
2
|
Kapel JS, Stokholm R, Elmengaard B, Nochi Z, Olsen RJ, Foldager CB. Individualized Algorithm-Based Intermittent Hypoxia Improves Quality of Life in Patients Suffering from Long-Term Sequelae After COVID-19 Infection. J Clin Med 2025; 14:1590. [PMID: 40095507 PMCID: PMC11900126 DOI: 10.3390/jcm14051590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Revised: 02/17/2025] [Accepted: 02/21/2025] [Indexed: 03/19/2025] Open
Abstract
Background/Objectives: Post-COVID-19 condition (PCC), also known as long COVID, has emerged as a recognized syndrome affecting millions of people worldwide, significantly impairing their quality of life. Currently, no effective therapeutic options are available to manage this condition. The objective of the present study was to evaluate the long-term effects of personalized, algorithm-based intermittent hypoxia-hyperoxia conditioning (IHHC) on quality of life and pain in patients with PCC. Methods: This open-label cohort study included 199 PCC patients, aged 11-87 years (female-to-male ratio: 67:33) and experiencing moderate-to-severe fatigue, between 1 January 2020 and 31 December 2023. Each patient received an algorithm-based treatment plan tailored to their demographics, symptom duration, and baseline pain (NRS) and quality of life (SF-36) scores. Patients received an average of six treatment sessions (range: 2-21), each consisting of intermittent hypoxic-hyperoxic cycles, with hypoxia (9-13% O2) lasting 3-8 min and hyperoxia (34-36% O2) lasting 1-3 min. The primary outcomes were changes in the NRS and SF-36 scores at the 6-week and 6-month follow-ups. Results: At the 6-week follow-up after treatment initiation, the SF-36 scores increased by 102 points (p < 0.001, 95% CI: 78.4-127), and this improvement persisted at the 6-month follow-up (Δ106, p < 0.001, 95% CI: 57.0-154). Pain was reduced by 28-32% at both follow-up time points, exceeding the clinically relevant threshold. Health transition scores indicated a patient-perceived improvement in health status. Conclusions: In this study, a personalized, algorithm-based IHHC alleviated pain and improved quality of life in patients suffering from persistent long-term sequelae after COVID-19 infection. The effects were sustained for up to six months. Further research is warranted to elucidate the mechanisms underlying IHHC's therapeutic effects in this patient population.
Collapse
Affiliation(s)
| | | | | | - Zahra Nochi
- Research Unit for Molecular Medicine, Department of Clinical Medicine, Aarhus University and Aarhus University Hospital, 8200 Aarhus N, Denmark
- Danish Pain Research Center, Department of Clinical Medicine, Aarhus University, 8200 Aarhus N, Denmark
| | - Rikke Jentoft Olsen
- Research Unit for Molecular Medicine, Department of Clinical Medicine, Aarhus University and Aarhus University Hospital, 8200 Aarhus N, Denmark
| | | |
Collapse
|
3
|
Abdreshov SN, Demchenko GA, Kozhaniyazova UN, Yeshmukhanbet AN, Yessenova MA, Nurmakhanova BA, Karjaubaev RM, Koibasova LU. Lymph flow, ionic and biochemical indicators of lymph and blood during hypoxia. BRAZ J BIOL 2025; 84:e284264. [PMID: 39936788 DOI: 10.1590/1519-6984.284264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 10/01/2024] [Indexed: 02/13/2025] Open
Abstract
In this study, the biochemical parameters and physico-chemical reactions of the body in experimental hypoxia, using a Sprague Dawley Rat Model. Hypoxia changed the dynamics and biochemical parameters of blood and lymph, as well as urine. During hypoxia, there was a change in the osmotic resistance of erythrocytes. Hypoxic training was conducted in a hypoxic animal chamber for 15 days and 30 days for 40 minutes every day. Physical and chemical parameters of blood, lymph and its morphological composition were studied on a hematological analyser, oxygen tension and pH of blood and lymph on an OPTI CCA-TS2 Blood Gas and Electrolyte Analyser. The value of osmotic pressure in the lymph changed slightly from 280.22 ± 2.07 to 293.3±3.1 and 285.6 ± 2.8 mOsm/l, respectively, 15 and 30 days of hypoxia. Urine osmotic pressure decreased by 15.1-10.4%, respectively, compared to the control group. After 15 and 30 days of hypoxia, ion exchange in the blood plasma showed a decrease in the concentration of K+, Cl- ions and an increase in the concentration of Na+ ions in the blood plasma and lymph. Ca2+ concentrations decreased in blood plasma and increased in lymph and urine. The analysis of the osmotic resistance of erythrocytes showed its decrease. Lipid peroxidation of erythrocyte membranes showed a significant increase in the level of malondialdehyde and diene conjugates by 52.2% and 69.6%, as well as a decrease in the activity of superoxide dismutase and catalase by 32% and 29.7%. Hypoxia leads to a decrease in erythrocyte resistance and lipid peroxidation in experimental animals. Shifts in pH on the side of acidosis and disturbances in physico-chemical properties in the blood and lymph were detected. As a result of developing hypoxia in the body, structural and functional rearrangements occur in the whole blood of experimental animals.
Collapse
Affiliation(s)
- S N Abdreshov
- Institute of Genetics and Physiology CS MSHE RK, Almaty, Kazakhstan
| | - G A Demchenko
- Institute of Genetics and Physiology CS MSHE RK, Almaty, Kazakhstan
| | | | | | - M A Yessenova
- Institute of Genetics and Physiology CS MSHE RK, Almaty, Kazakhstan
| | - B A Nurmakhanova
- Institute of Genetics and Physiology CS MSHE RK, Almaty, Kazakhstan
| | - R M Karjaubaev
- Institute of Genetics and Physiology CS MSHE RK, Almaty, Kazakhstan
| | - L U Koibasova
- Institute of Genetics and Physiology CS MSHE RK, Almaty, Kazakhstan
| |
Collapse
|
4
|
Li G, Meex RCR, Goossens GH. The role of tissue oxygenation in obesity-related cardiometabolic complications. Rev Endocr Metab Disord 2025; 26:19-30. [PMID: 39298040 PMCID: PMC11790814 DOI: 10.1007/s11154-024-09910-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/08/2024] [Indexed: 09/21/2024]
Abstract
Obesity is a complex, multifactorial, chronic disease that acts as a gateway to a range of other diseases. Evidence from recent studies suggests that changes in oxygen availability in the microenvironment of metabolic organs may exert an important role in the development of obesity-related cardiometabolic complications. In this review, we will first discuss results from observational and controlled laboratory studies that examined the relationship between reduced oxygen availability and obesity-related metabolic derangements. Next, the effects of alterations in oxygen partial pressure (pO2) in the adipose tissue, skeletal muscle and the liver microenvironment on physiological processes in these key metabolic organs will be addressed, and how this might relate to cardiometabolic complications. Since many obesity-related chronic diseases, including type 2 diabetes mellitus, cardiovascular diseases, chronic kidney disease, chronic obstructive pulmonary disease and obstructive sleep apnea, are characterized by changes in pO2 in the tissue microenvironment, a better understanding of the metabolic impact of altered tissue oxygenation can provide valuable insights into the complex interplay between environmental and biological factors involved in the pathophysiology of metabolic impairments. This may ultimately contribute to the development of novel strategies to prevent and treat obesity-related cardiometabolic diseases.
Collapse
Affiliation(s)
- Geng Li
- Department of Human Biology, Institute of Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University Medical Centre+, PO Box 616, Maastricht, 6200 MD, The Netherlands
| | - Ruth C R Meex
- Department of Human Biology, Institute of Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University Medical Centre+, PO Box 616, Maastricht, 6200 MD, The Netherlands
| | - Gijs H Goossens
- Department of Human Biology, Institute of Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University Medical Centre+, PO Box 616, Maastricht, 6200 MD, The Netherlands.
| |
Collapse
|
5
|
Wevers A, San Roman-Mata S, Navarro-Ledesma S, Pruimboom L. The Role of Insulin Within the Socio-Psycho-Biological Framework in Type 2 Diabetes-A Perspective from Psychoneuroimmunology. Biomedicines 2024; 12:2539. [PMID: 39595105 PMCID: PMC11591609 DOI: 10.3390/biomedicines12112539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 10/22/2024] [Accepted: 10/30/2024] [Indexed: 11/28/2024] Open
Abstract
The interplay between socio-psychological factors and biological systems is pivotal in defining human health and disease, particularly in chronic non-communicable diseases. Recent advancements in psychoneuroimmunology and mitochondrial psychobiology have emphasized the significance of psychological factors as critical determinants of disease onset, progression, recurrence, and severity. These insights align with evolutionary biology, psychology, and psychiatry, highlighting the inherent social nature of humans. This study proposes a theory that expands insulin's role beyond traditional metabolic functions, incorporating it into the Mitochondrial Information Processing System (MIPS) and exploring it from an evolutionary medicine perspective to explore its function in processing psychological and social factors into biological responses. This narrative review comprises data from preclinical animal studies, longitudinal cohort studies, cross-sectional studies, machine learning analyses, and randomized controlled trials, and investigates the role of insulin in health and disease. The result is a proposal for a theoretical framework of insulin as a social substance within the socio-psycho-biological framework, emphasizing its extensive roles in health and disease. Type 2 Diabetes Mellitus (T2DM) with musculoskeletal disorders and neurodegeneration exemplifies this narrative. We suggest further research towards a comprehensive treatment protocol meeting evolutionary expectations, where incorporating psychosocial interventions plays an essential role. By supporting the concept of 'insulin resilience' and suggesting the use of heart rate variability to assess insulin resilience, we aim to provide an integrative approach to managing insulin levels and monitoring the effectiveness of interventions. This integrative strategy addresses broader socio-psychological factors, ultimately improving health outcomes for individuals with T2DM and musculoskeletal complications and neurodegeneration while providing new insights into the interplay between socio-psychological factors and biological systems in chronic diseases.
Collapse
Affiliation(s)
- Anne Wevers
- Clinical Medicine and Public Health PhD Program, Faculty of Health Sciences, University of Granada, 18071 Granada, Spain;
| | - Silvia San Roman-Mata
- Department of Nursing, Faculty of Health Sciences, Campus of Melilla, University of Granada, 52004 Melilla, Spain;
| | - Santiago Navarro-Ledesma
- Department of Physical Therapy, Faculty of Health Sciences, Campus of Melilla, University of Granada, 52004 Melilla, Spain
- University Chair in Clinical Psychoneuroimmunology, Campus of Melilla, University of Granada and PNI Europe, 52004 Melilla, Spain;
| | - Leo Pruimboom
- University Chair in Clinical Psychoneuroimmunology, Campus of Melilla, University of Granada and PNI Europe, 52004 Melilla, Spain;
| |
Collapse
|
6
|
Wojan F, Stray-Gundersen S, Zhao J, Lalande S. Impaired erythropoietin response to hypoxia in type 2 diabetes. Acta Diabetol 2024; 61:925-932. [PMID: 38570345 DOI: 10.1007/s00592-024-02269-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 03/03/2024] [Indexed: 04/05/2024]
Abstract
AIMS Patients with type 2 diabetes have a 20% lower total blood volume than age- and weight-matched healthy adults, suggesting a reduced capacity to transport oxygen in this population. Intermittent hypoxia, consisting of alternating short bouts of breathing hypoxic and normoxic air, increases erythropoietin levels, the hormone regulating red blood cell production, in young and older adults. The objective of this study was to determine the effect of a single session of intermittent hypoxia on erythropoietin levels and hemoglobin mass, the absolute mass of hemoglobin contained in red blood cells, in patients with type 2 diabetes. METHODS Ten patients with type 2 diabetes were exposed to an intermittent hypoxia protocol consisting of eight 4-min cycles at a targeted oxygen saturation of 80% interspersed with normoxic cycles to resaturation. Erythropoietin and hemoglobin mass responses to intermittent hypoxia in patients with type 2 diabetes were compared to previously published data from an identical intermittent hypoxia protocol performed in age-matched older adults. RESULTS Intermittent hypoxia increased erythropoietin levels in older adults but did not induce any change in erythropoietin levels in patients with type 2 diabetes (3.2 ± 2.2 vs. 0.2 ± 2.7 mU/ml, p = 0.01). Hemoglobin mass indexed to body weight was 21% lower in patients with type 2 diabetes than in older adults (8.1 ± 1.7 vs. 10.2 ± 2.1 g/kg, p < 0.01). CONCLUSIONS These findings suggest an impaired erythropoietin response to decreased oxygen levels in patients with type 2 diabetes, which may contribute to the reduced oxygen transport capacity observed in this population.
Collapse
Affiliation(s)
- Frank Wojan
- Department of Kinesiology and Heath Education, The University of Texas at Austin, Austin, TX, USA
| | - Sten Stray-Gundersen
- Department of Kinesiology and Heath Education, The University of Texas at Austin, Austin, TX, USA
| | - Jiahui Zhao
- Department of Kinesiology and Heath Education, The University of Texas at Austin, Austin, TX, USA
| | - Sophie Lalande
- Department of Kinesiology and Heath Education, The University of Texas at Austin, Austin, TX, USA.
| |
Collapse
|
7
|
Janssen Daalen JM, Koopman WJH, Saris CGJ, Meinders MJ, Thijssen DHJ, Bloem BR. The Hypoxia Response Pathway: A Potential Intervention Target in Parkinson's Disease? Mov Disord 2024; 39:273-293. [PMID: 38140810 DOI: 10.1002/mds.29688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 11/20/2023] [Accepted: 11/28/2023] [Indexed: 12/24/2023] Open
Abstract
Parkinson's disease (PD) is a progressive neurodegenerative disorder for which only symptomatic treatments are available. Both preclinical and clinical studies suggest that moderate hypoxia induces evolutionarily conserved adaptive mechanisms that enhance neuronal viability and survival. Therefore, targeting the hypoxia response pathway might provide neuroprotection by ameliorating the deleterious effects of mitochondrial dysfunction and oxidative stress, which underlie neurodegeneration in PD. Here, we review experimental studies regarding the link between PD pathophysiology and neurophysiological adaptations to hypoxia. We highlight the mechanistic differences between the rescuing effects of chronic hypoxia in neurodegeneration and short-term moderate hypoxia to improve neuronal resilience, termed "hypoxic conditioning". Moreover, we interpret these preclinical observations regarding the pharmacological targeting of the hypoxia response pathway. Finally, we discuss controversies with respect to the differential effects of hypoxia response pathway activation across the PD spectrum, as well as intervention dosing in hypoxic conditioning and potential harmful effects of such interventions. We recommend that initial clinical studies in PD should focus on the safety, physiological responses, and mechanisms of hypoxic conditioning, as well as on repurposing of existing pharmacological compounds. © 2023 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Jules M Janssen Daalen
- Center of Expertise for Parkinson and Movement Disorders, Department of Neurology, Donders Institute for Brain, Cognition and Behavior, Nijmegen, the Netherlands, Nijmegen, The Netherlands
- Department of Neurology, Radboud University Medical Center, Donders Institute for Brain, Cognition and Behavior, Nijmegen, The Netherlands
- Department of Physiology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Werner J H Koopman
- Department of Pediatrics, Amalia Children's Hospital, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
- Radboud Center for Mitochondrial Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
- Human and Animal Physiology, Wageningen University, Wageningen, The Netherlands
| | - Christiaan G J Saris
- Department of Neurology, Radboud University Medical Center, Donders Institute for Brain, Cognition and Behavior, Nijmegen, The Netherlands
- Radboud Center for Mitochondrial Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Marjan J Meinders
- Center of Expertise for Parkinson and Movement Disorders, Department of Neurology, Donders Institute for Brain, Cognition and Behavior, Nijmegen, the Netherlands, Nijmegen, The Netherlands
| | - Dick H J Thijssen
- Department of Physiology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Bastiaan R Bloem
- Center of Expertise for Parkinson and Movement Disorders, Department of Neurology, Donders Institute for Brain, Cognition and Behavior, Nijmegen, the Netherlands, Nijmegen, The Netherlands
- Department of Neurology, Radboud University Medical Center, Donders Institute for Brain, Cognition and Behavior, Nijmegen, The Netherlands
| |
Collapse
|
8
|
Panza GS, Burtscher J, Zhao F. Intermittent hypoxia: a call for harmonization in terminology. J Appl Physiol (1985) 2023; 135:886-890. [PMID: 37560767 PMCID: PMC10642510 DOI: 10.1152/japplphysiol.00458.2023] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 07/24/2023] [Accepted: 08/03/2023] [Indexed: 08/11/2023] Open
Abstract
Mild intermittent hypoxia may be a potent novel strategy to improve cardiovascular function, motor and cognitive function, and altitude acclimatization. However, there is still a stigma surrounding the field of intermittent hypoxia (IH). Major contributors to this stigma may be due to the overlapping terminology, heterogeneous methodological approaches, and an almost dogmatic focus on different mechanistic underpinnings in different fields of research. Many clinicians and investigators explore the pathophysiological outcomes following long-term exposure to IH in an attempt to improve our understanding of sleep apnea (SA) and develop new treatment plans. However, others use IH as a tool to improve physiological outcomes such as blood pressure, motor function, and altitude acclimatization. Unfortunately, studies investigating the pathophysiology of SA or the potential benefit of IH use similar, unstandardized terminologies facilitating a confusion surrounding IH protocols and the intentions of various studies. In this perspective paper, we aim to highlight IH terminology-related issues with the aim of spurring harmonization of the terminology used in the field of IH research to account for distinct outcomes of hypoxia exposure depending on protocol and individuum.
Collapse
Affiliation(s)
- Gino S Panza
- Department of Research and Development, John D. Dingell Veterans Affairs Medical Center, Detroit, Michigan, United States
- Department of Health Care Sciences, Program of Occupational Therapy, Wayne State University, Detroit, Michigan, United States
| | - Johannes Burtscher
- Institute of Sport Sciences, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Fei Zhao
- Department of Research and Development, John D. Dingell Veterans Affairs Medical Center, Detroit, Michigan, United States
- Department of Health Care Sciences, Program of Occupational Therapy, Wayne State University, Detroit, Michigan, United States
| |
Collapse
|
9
|
Zhang Q, Zhao W, Li S, Ding Y, Wang Y, Ji X. Intermittent Hypoxia Conditioning: A Potential Multi-Organ Protective Therapeutic Strategy. Int J Med Sci 2023; 20:1551-1561. [PMID: 37859700 PMCID: PMC10583178 DOI: 10.7150/ijms.86622] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 09/08/2023] [Indexed: 10/21/2023] Open
Abstract
Severe hypoxia can induce a range of systemic disorders; however, surprising resilience can be obtained through sublethal adaptation to hypoxia, a process termed as hypoxic conditioning. A particular form of this strategy, known as intermittent hypoxia conditioning hormesis, alternates exposure to hypoxic and normoxic conditions, facilitating adaptation to reduced oxygen availability. This technique, originally employed in sports and high-altitude medicine, has shown promise in multiple pathologies when applied with calibrated mild to moderate hypoxia and appropriate hypoxic cycles. Recent studies have extensively investigated the protective role of intermittent hypoxia conditioning and its underlying mechanisms using animal models, demonstrating its potential in organ protection. This involves a range of processes such as reduction of oxidative stress, inflammation, and apoptosis, along with enhancement of hypoxic gene expression, among others. Given that intermittent hypoxia conditioning fosters beneficial physiological responses across multiple organs and systems, this review presents a comprehensive analysis of existing studies on intermittent hypoxia and its potential advantages in various organs. It aims to draw attention to the possibility of clinically applying intermittent hypoxia conditioning as a multi-organ protective strategy. This review comprehensively discusses the protective effects of intermittent hypoxia across multiple systems, outlines potential procedures for implementing intermittent hypoxia, and provides a brief overview of the potential protective mechanisms of intermittent hypoxia.
Collapse
Affiliation(s)
- Qihan Zhang
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Wenbo Zhao
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Hypoxic Conditioning Translational Medicine, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Sijie Li
- Beijing Key Laboratory of Hypoxic Conditioning Translational Medicine, Xuanwu Hospital, Capital Medical University, Beijing, China
- Emergency Department, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Yuchuan Ding
- Department of Neurosurgery, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Yuan Wang
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Xunming Ji
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
10
|
Millet GP, Chamari K. Look to the stars-Is there anything that public health and rehabilitation can learn from elite sports? Front Sports Act Living 2023; 4:1072154. [PMID: 36755563 PMCID: PMC9900137 DOI: 10.3389/fspor.2022.1072154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 12/01/2022] [Indexed: 01/24/2023] Open
Affiliation(s)
- Grégoire P. Millet
- Institute of Sport Sciences, University of Lausanne, Lausanne, Switzerland,Correspondence: Grégoire P. Millet
| | - Karim Chamari
- Aspetar, Orthopedic and Sports Medicine Hospital, FIFA Medical Center of Excellence, Doha, Qatar
| |
Collapse
|
11
|
Dai L, Wang X, Xiao Y. Role of chemosensitivity: Possible pathophysiological mediator of obstructive sleep apnea and type 2 diabetes. Sleep Med 2023; 101:490-496. [PMID: 36527940 DOI: 10.1016/j.sleep.2022.12.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Accepted: 12/05/2022] [Indexed: 12/12/2022]
Abstract
Obstructive sleep apnea (OSA) and type 2 diabetes show some mutual promotion of disease development. Variation in chemosensitivity is a key contributor to the pathophysiological mechanisms causing OSA and type 2 diabetes. According to studies conducted thus far, people with OSA or type 2 diabetes may have higher chemoreflex levels, but it is challenging to identify the precise changes because of variations in participant characteristics, the severity of the disease at the time of recruitment, and the small sample sizes in each study. Lowering chemosensitivity may also be viewed as a new issue for individuals with OSA and type 2 diabetes who require personalized care. The purpose of this review was to give an overview of chemosensitivity changes in OSA and glucose metabolism, as well as prospective therapeutic treatments for patients with OSA and type 2 diabetes.
Collapse
Affiliation(s)
- Lu Dai
- Department of Respiratory and Critical Care Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100730, China
| | - Xiaona Wang
- Department of Respiratory and Critical Care Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100730, China
| | - Yi Xiao
- Department of Respiratory and Critical Care Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100730, China.
| |
Collapse
|
12
|
Yuan H, Liu J, Gu Y, Ji X, Nan G. Intermittent hypoxia conditioning as a potential prevention and treatment strategy for ischemic stroke: Current evidence and future directions. Front Neurosci 2022; 16:1067411. [PMID: 36507357 PMCID: PMC9732261 DOI: 10.3389/fnins.2022.1067411] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 11/11/2022] [Indexed: 11/26/2022] Open
Abstract
Ischemic stroke (IS) is the leading cause of disability and death worldwide. Owing to the aging population and unhealthy lifestyles, the incidence of cerebrovascular disease is high. Vascular risk factors include hypertension, diabetes, dyslipidemia, and obesity. Therefore, in addition to timely and effective reperfusion therapy for IS, it is crucial to actively control these risk factors to reduce the incidence and recurrence rates of IS. Evidence from human and animal studies suggests that moderate intermittent hypoxia (IH) exposure is a promising therapeutic strategy to ameliorate common vascular risk factors and comorbidities. Given the complex pathophysiological mechanisms underlying IS, effective treatment must focus on reducing injury in the acute phase and promoting repair in the recovery phase. Therefore, this review discusses the preclinical perspectives on IH conditioning as a potential treatment for neurovascular injury and highlights IH pre and postconditioning strategies for IS. Hypoxia conditioning reduces brain injury by increasing resistance to acute ischemic and hypoxic stress, exerting neuroprotective effects, and promoting post-injury repair and regeneration. However, whether IH produces beneficial effects depends not only on the hypoxic regimen but also on inter-subject differences. Therefore, we discuss the factors that may influence the effectiveness of IH treatment, including age, sex, comorbidities, and circadian rhythm, which can be used to help identify the optimal intervention population and treatment protocols for more accurate, individualized clinical translation. In conclusion, IH conditioning as a non-invasive, non-pharmacological, systemic, and multi-targeted intervention can not only reduce brain damage after stroke but can also be applied to the prevention and functional recovery of IS, providing brain protection at different stages of the disease. It represents a promising therapeutic strategy. For patients with IS and high-risk groups, IH conditioning is expected to develop as an adjunctive clinical treatment option to reduce the incidence, recurrence, disability, and mortality of IS and to reduce disease burden.
Collapse
Affiliation(s)
- Honghua Yuan
- Department of Neurology, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Jia Liu
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Beijing Advanced Innovation Center for Big Data-based Precision Medicine, Capital Medical University, Beijing, China
| | - Yuhang Gu
- Department of Neurology, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Xunming Ji
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Beijing Advanced Innovation Center for Big Data-based Precision Medicine, Capital Medical University, Beijing, China,Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China,*Correspondence: Xunming Ji,
| | - Guangxian Nan
- Department of Neurology, China-Japan Union Hospital of Jilin University, Changchun, China,Guangxian Nan,
| |
Collapse
|
13
|
Hypoxia as a Double-Edged Sword to Combat Obesity and Comorbidities. Cells 2022; 11:cells11233735. [PMID: 36496995 PMCID: PMC9736735 DOI: 10.3390/cells11233735] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 11/14/2022] [Accepted: 11/17/2022] [Indexed: 11/24/2022] Open
Abstract
The global epidemic of obesity is tightly associated with numerous comorbidities, such as type II diabetes, cardiovascular diseases and the metabolic syndrome. Among the key features of obesity, some studies have suggested the abnormal expansion of adipose-tissue-induced local endogenous hypoxic, while other studies indicated endogenous hyperoxia as the opposite trend. Endogenous hypoxic aggravates dysfunction in adipose tissue and stimulates secretion of inflammatory molecules, which contribute to obesity. In contrast, hypoxic exposure combined with training effectively generate exogenous hypoxic to reduce body weight and downregulate metabolic risks. The (patho)physiological effects in adipose tissue are distinct from those of endogenous hypoxic. We critically assess the latest advances on the molecular mediators of endogenous hypoxic that regulate the dysfunction in adipose tissue. Subsequently we propose potential therapeutic targets in adipose tissues and the small molecules that may reverse the detrimental effect of local endogenous hypoxic. More importantly, we discuss alterations of metabolic pathways in adipose tissue and the metabolic benefits brought by hypoxic exercise. In terms of therapeutic intervention, numerous approaches have been developed to treat obesity, nevertheless durability and safety remain the major concern. Thus, a combination of the therapies that suppress endogenous hypoxic with exercise plans that augment exogenous hypoxic may accelerate the development of more effective and durable medications to treat obesity and comorbidities.
Collapse
|
14
|
Behrendt T, Altorjay AC, Bielitzki R, Behrens M, Glazachev OS, Schega L. Influence of acute and chronic intermittent hypoxic-hyperoxic exposure prior to aerobic exercise on cardiovascular risk factors in geriatric patients-a randomized controlled trial. Front Physiol 2022; 13:1043536. [PMID: 36388103 PMCID: PMC9650443 DOI: 10.3389/fphys.2022.1043536] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 10/11/2022] [Indexed: 04/08/2024] Open
Abstract
Background: Intermittent hypoxic-hyperoxic exposure (IHHE) and aerobic training have been proposed as non-pharmacological interventions to reduce age-related risk factors. However, no study has yet examined the effects of IHHE before aerobic exercise on cardiovascular risk factors in the elderly. Therefore, the aim of this study was to investigate the acute and chronic effects of IHHE prior to aerobic cycling exercise on blood lipid and lipoprotein concentrations as well as blood pressure in geriatric patients. Methods: In a randomized, controlled, and single-blinded trial, thirty geriatric patients (72-94 years) were assigned to two groups: intervention (IG; n = 16) and sham control group (CG; n = 14). Both groups completed 6 weeks of aerobic cycling training, 3 times a week for 20 min per day. The IG and CG were additionally exposed to IHHE or sham IHHE (i.e., normoxia) for 30 min prior to aerobic cycling. Blood samples were taken on three occasions: immediately before the first, ∼10 min after the first, and immediately before the last session. Blood samples were analyzed for total (tCh), high-density (HDL-C), and low-density lipoprotein cholesterol (LDL-C), and triglyceride (Tgl) serum concentration. Resting systolic (SBP) and diastolic blood pressure (DBP) was assessed within 1 week before, during (i.e., at week two and four), and after the interventions. Results: The baseline-adjusted ANCOVA revealed a higher LDL-C concentration in the IG compared to the CG after the first intervention session (ηp 2 = 0.12). For tCh, HDL-C, Tgl, and tCh/HDL-C ratio there were no differences in acute changes between the IG and the CG (ηp 2 ≤ 0.01). With regard to the chronic effects on lipids and lipoproteins, data analysis indicated no differences between groups (ηp 2 ≤ 0.03). The repeated measures ANOVA revealed an interaction effect for SBP (ηp 2 = 0.06) but not for DBP (ηp 2 ≤ 0.01). Within-group post-hoc analysis for the IG indicated a reduction in SBP at post-test (d = 0.05). Conclusion: Applying IHHE prior to aerobic cycling seems to be effective to reduce SBP in geriatric patients after 6 weeks of training. The present study suggests that IHHE prior to aerobic cycling can influence the acute exercise-related responses in LDL-C concentration but did not induce chronic changes in basal lipid or lipoprotein concentrations.
Collapse
Affiliation(s)
- Tom Behrendt
- Department for Sport Science, Chair for Health and Physical Activity, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - Ann-Christin Altorjay
- Department of Internal Medicine, Division of Cardiology and Angiology, University Hospital Magdeburg, Magdeburg, Germany
| | - Robert Bielitzki
- Department for Sport Science, Chair for Health and Physical Activity, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - Martin Behrens
- Department for Sport Science, Chair for Health and Physical Activity, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
- Department of Orthopedics, University Medicine Rostock, Rostock, Germany
| | - Oleg S. Glazachev
- Departement Human Physiology, Institute of Clinical Medicine, I.M. Sechenov First Moscow State Medical University, Moscow, Russia
| | - Lutz Schega
- Department for Sport Science, Chair for Health and Physical Activity, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| |
Collapse
|
15
|
Janssen Daalen JM, Meinders MJ, Giardina F, Roes KCB, Stunnenberg BC, Mathur S, Ainslie PN, Thijssen DHJ, Bloem BR. Multiple N-of-1 trials to investigate hypoxia therapy in Parkinson's disease: study rationale and protocol. BMC Neurol 2022; 22:262. [PMID: 35836147 PMCID: PMC9281145 DOI: 10.1186/s12883-022-02770-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 06/24/2022] [Indexed: 11/30/2022] Open
Abstract
Background Parkinson’s disease (PD) is a neurodegenerative disease, for which no disease-modifying therapies exist. Preclinical and clinical evidence suggest that hypoxia-based therapy might have short- and long-term benefits in PD. We present the contours of the first study to assess the safety, feasibility and physiological and symptomatic impact of hypoxia-based therapy in individuals with PD. Methods/Design In 20 individuals with PD, we will investigate the safety, tolerability and short-term symptomatic efficacy of continuous and intermittent hypoxia using individual, double-blind, randomized placebo-controlled N-of-1 trials. This design allows for dose finding and for including more individualized outcomes, as each individual serves as its own control. A wide range of exploratory outcomes is deployed, including the Movement Disorders Society Unified Parkinson’s Disease Rating scale (MDS-UPDRS) part III, Timed Up & Go Test, Mini Balance Evaluation Systems (MiniBES) test and wrist accelerometry. Also, self-reported impression of overall symptoms, motor and non-motor symptoms and urge to take dopaminergic medication will be assessed on a 10-point Likert scale. As part of a hypothesis-generating part of the study, we also deploy several exploratory outcomes to probe possible underlying mechanisms of action, including cortisol, erythropoietin and platelet-derived growth factor β. Efficacy will be assessed primarily by a Bayesian analysis. Discussion This evaluation of hypoxia therapy could provide insight in novel pathways that may be pursued for PD treatment. This trial also serves as a proof of concept for deploying an N-of-1 design and for including individualized outcomes in PD research, as a basis for personalized treatment approaches. Trial registration ClinicalTrials.gov Identifier: NCT05214287 (registered January 28, 2022).
Supplementary Information The online version contains supplementary material available at 10.1186/s12883-022-02770-7.
Collapse
Affiliation(s)
- Jules M Janssen Daalen
- Center of Expertise for Parkinson & Movement Disorders; Nijmegen, the Netherlands, Department of Neurology, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Marjan J Meinders
- Center of Expertise for Parkinson & Movement Disorders; Nijmegen, the Netherlands, Department of Neurology, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, Nijmegen, The Netherlands.,IQ Healthcare, Radboud Institute for Health Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Federica Giardina
- Department of Health Evidence, Radboud Institute for Health Sciences, Radboud University Medical Center, Section Biostatistics, Nijmegen, The Netherlands
| | - Kit C B Roes
- Department of Health Evidence, Radboud Institute for Health Sciences, Radboud University Medical Center, Section Biostatistics, Nijmegen, The Netherlands
| | - Bas C Stunnenberg
- Department of Neurology, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, Nijmegen, The Netherlands.,Department of Neurology, Rijnstate Hospital, Arnhem, Netherlands
| | | | - Philip N Ainslie
- Center for Heart, Lung and Vascular Health, School of Health and Exercise Sciences, University of British Columbia, Kelowna, Canada
| | - Dick H J Thijssen
- Department of Physiology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Bastiaan R Bloem
- Center of Expertise for Parkinson & Movement Disorders; Nijmegen, the Netherlands, Department of Neurology, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, Nijmegen, The Netherlands.
| |
Collapse
|
16
|
Zhang L, Zhang L, Zhao Z, Liu Y, Wang J, Niu M, Sun X, Zhao X. Metabolic syndrome and its components are associated with hypoxemia after surgery for acute type A aortic dissection: an observational study. J Cardiothorac Surg 2022; 17:151. [PMID: 35698229 PMCID: PMC9195211 DOI: 10.1186/s13019-022-01901-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Accepted: 05/28/2022] [Indexed: 11/10/2022] Open
Abstract
Background The aim of this study was to explore whether or to what extent metabolic syndrome (METs) and its components were associated with hypoxemia in acute type A aortic dissection (ATAAD) patients after surgery. Methods This study involved 271 inpatients who underwent surgery. Demographic and clinical data were collected. Subgroup analysis, mixed model regression analysis, and receiver operating characteristic (ROC) curve analysis were performed, and a scoring system was evaluated. Results The 271 inpatients were assigned to the hypoxemia group (n = 48) or no hypoxemia group (n = 223) regardless of METs status. Compared to the no hypoxemia group, the hypoxemia group had a higher incidence of METs. Hypoxemia was present in 0%, 3.7%, 19.8%, 51.5%, 90.0% and 100% in the groups of individuals who met the diagnostic criteria of MetS 0, 1, 2, 3, 4 and 5 times, respectively. In the multivariable logistic regression analysis, BMI quartile was still a risk factor for hypoxemia after adjustment for other risk factors. After adjustment for potential confounding factors, METs was an independent risk factor for hypoxemia in several models. After assigning a score for each METs component present, the AUCs were 0.852 (95% CI 0.789–0.914) in all patients, 0.728 (95% CI 0.573–0.882) in patients with METs and 0.744 (95% CI 0.636–0.853) in patients without METs according to receiver operating characteristic analysis. Conclusions METs, especially body mass index, confers a greater risk of hypoxemia in ATAAD after surgery.
Collapse
Affiliation(s)
- Like Zhang
- Department of Vascular Surgery, The First Hospital of Hebei Medical University, No. 89 Donggang Street, Yuhua District, Shijiazhuang, 500000, Hebei, China
| | - Lei Zhang
- Department of Vascular Surgery, The First Hospital of Hebei Medical University, No. 89 Donggang Street, Yuhua District, Shijiazhuang, 500000, Hebei, China
| | - Zengren Zhao
- Department of Vascular Surgery, The First Hospital of Hebei Medical University, No. 89 Donggang Street, Yuhua District, Shijiazhuang, 500000, Hebei, China.
| | - Yun Liu
- Department of Vascular Surgery, The First Hospital of Hebei Medical University, No. 89 Donggang Street, Yuhua District, Shijiazhuang, 500000, Hebei, China
| | - Juzeng Wang
- Department of Vascular Surgery, The First Hospital of Hebei Medical University, No. 89 Donggang Street, Yuhua District, Shijiazhuang, 500000, Hebei, China
| | - Mengye Niu
- Department of Vascular Surgery, The First Hospital of Hebei Medical University, No. 89 Donggang Street, Yuhua District, Shijiazhuang, 500000, Hebei, China
| | - Xiansheng Sun
- Department of Vascular Surgery, The First Hospital of Hebei Medical University, No. 89 Donggang Street, Yuhua District, Shijiazhuang, 500000, Hebei, China
| | - Xiansheng Zhao
- Department of Vascular Surgery, The First Hospital of Hebei Medical University, No. 89 Donggang Street, Yuhua District, Shijiazhuang, 500000, Hebei, China
| |
Collapse
|
17
|
Bestavashvili A, Glazachev O, Bestavashvili A, Suvorov A, Zhang Y, Zhang X, Rozhkov A, Kuznetsova N, Pavlov C, Glushenkov D, Kopylov P. Intermittent Hypoxic-Hyperoxic Exposures Effects in Patients with Metabolic Syndrome: Correction of Cardiovascular and Metabolic Profile. Biomedicines 2022; 10:biomedicines10030566. [PMID: 35327372 PMCID: PMC8945352 DOI: 10.3390/biomedicines10030566] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 02/21/2022] [Accepted: 02/22/2022] [Indexed: 02/01/2023] Open
Abstract
The aim of this study was to evaluate efficacy and applicability of the “intermittent hypoxic-hyperoxic exposures at rest” (IHHE) protocol as an adjuvant method for metabolic syndrome (MS) cardiometabolic components. A prospective, single-center, randomized controlled clinical study was conducted on 65 patients with MS subject to optimal pharmacotherapy, who were randomly allocated to IHHE or control (CON) groups. The IHHE group completed a 3-week, 5 days/week program of IHHE, each treatment session lasting for 45 min. The CON group followed the same protocol, but was breathing room air through a facial mask instead. The data were collected 2 days before, and at day 2 after the 3-week intervention. As the primary endpoints, systolic (SBP) and diastolic (DBP) blood pressure at rest, as well as arterial stiffness and hepatic tissue elasticity parameters, were selected. After the trial, the IHHE group had a significant decrease in SBP and DBP (Cohen’s d = 1.15 and 0.7, p < 0.001), which became significantly lower (p < 0.001) than in CON. We have failed to detect any pre-post IHHE changes in the arterial stiffness parameters (judging by the Cohen’s d), but after the intervention, cardio-ankle vascular indexes (RCAVI and LCAVI) were significantly lowered in the IHHE group as compared with the CON. The IHHE group demonstrated a medium effect (0.68; 0.69 and 0.71 Cohen’s d) in pre-post decrease of Total Cholesterol (p = 0.04), LDL (p = 0.03), and Liver Steatosis (p = 0.025). In addition, the IHHE group patients demonstrated a statistically significant decrease in pre-post differences (deltas) of RCAVI, LCAVI, all antropometric indices, NTproBNP, Liver Fibrosis, and Steatosis indices, TC, LDL, ALT, and AST in comparison with CON (p = 0.001). The pre-post shifts in SBP, DBP, and HR were significantly correlated with the reduction degree in arterial stiffness (ΔRCAVI, ΔLCAVI), liver fibrosis and steatosis severity (ΔLFibr, ΔLS), anthropometric parameters, liver enzymes, and lipid metabolism in the IHHE group only. Our results suggested that IHHE is a safe, well-tolerated intervention which could be an effective adjuvant therapy in treatment and secondary prevention of atherosclerosis, obesity, and other components of MS that improve the arterial stiffness lipid profile and liver functional state in MS patients.
Collapse
Affiliation(s)
- Afina Bestavashvili
- Department of Cardiology, Functional and Ultrasound Diagnostics, N.V. Sklifosovsky Institute of Clinical Medicine, I. M. Sechenov First Moscow State Medical University, 119991 Moscow, Russia; (N.K.); (P.K.)
- Correspondence: ; Tel.: +7-916-338-3595
| | - Oleg Glazachev
- Department of Normal Physiology, N.V. Sklifosovsky Institute of Clinical Medicine, I. M. Sechenov First Moscow State Medical University, 119991 Moscow, Russia; (O.G.); (X.Z.)
| | - Alexander Bestavashvili
- Department of Therapy, General Practice and Nuclear Medicine, Pirogov Russian National Research Medical University, 117997 Moscow, Russia;
| | - Alexander Suvorov
- World-Class Research Center “Digital Biodesign and Personalized Healthcare”, I. M. Sechenov First Moscow State Medical University, 119991 Moscow, Russia; (A.S.); (A.R.)
| | - Yong Zhang
- The State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education, Department of Pharmacology, TbalHarbin Medical University, Harbin 150081, China;
| | - Xinliang Zhang
- Department of Normal Physiology, N.V. Sklifosovsky Institute of Clinical Medicine, I. M. Sechenov First Moscow State Medical University, 119991 Moscow, Russia; (O.G.); (X.Z.)
| | - Andrey Rozhkov
- World-Class Research Center “Digital Biodesign and Personalized Healthcare”, I. M. Sechenov First Moscow State Medical University, 119991 Moscow, Russia; (A.S.); (A.R.)
| | - Natalia Kuznetsova
- Department of Cardiology, Functional and Ultrasound Diagnostics, N.V. Sklifosovsky Institute of Clinical Medicine, I. M. Sechenov First Moscow State Medical University, 119991 Moscow, Russia; (N.K.); (P.K.)
- World-Class Research Center “Digital Biodesign and Personalized Healthcare”, I. M. Sechenov First Moscow State Medical University, 119991 Moscow, Russia; (A.S.); (A.R.)
| | - Chavdar Pavlov
- Department of Therapy of the Institute of Professional Education, I. M. Sechenov First Moscow State Medical University, 119991 Moscow, Russia;
- Botkinskaya Hospital, 125284 Moscow, Russia
| | - Dmitriy Glushenkov
- Department of Internal Medicine, Gastroenterology and Hepatology, N.V. Sklifosovsky Institute of Clinical Medicine, I. M. Sechenov First Moscow State Medical University, 119991 Moscow, Russia;
| | - Philippe Kopylov
- Department of Cardiology, Functional and Ultrasound Diagnostics, N.V. Sklifosovsky Institute of Clinical Medicine, I. M. Sechenov First Moscow State Medical University, 119991 Moscow, Russia; (N.K.); (P.K.)
- World-Class Research Center “Digital Biodesign and Personalized Healthcare”, I. M. Sechenov First Moscow State Medical University, 119991 Moscow, Russia; (A.S.); (A.R.)
| |
Collapse
|
18
|
Afina AB, Oleg SG, Alexander AB, Ines D, Alexander Yu S, Nikita VV, Denis ST, Daria GG, Zhang Y, Chavdar SP, Dmitriy VG, Elena AS, Irina VK, Philippe Yu K. The Effects of Intermittent Hypoxic-Hyperoxic Exposures on Lipid Profile and Inflammation in Patients With Metabolic Syndrome. Front Cardiovasc Med 2021; 8:700826. [PMID: 34513946 PMCID: PMC8429814 DOI: 10.3389/fcvm.2021.700826] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 07/23/2021] [Indexed: 12/18/2022] Open
Abstract
Background: Patients with metabolic syndrome (MS) tend to suffer from comorbidities, and are often simultaneously affected by obesity, dysglycemia, hypertension, and dyslipidemia. This syndrome can be reversed if it is timely diagnosed and treated with a combination of risk factors-reducing lifestyle changes and a tailored pharmacological plan. Interval hypoxic-hyperoxic training (IHHT) has been shown as an effective program in reducing cardiovascular risk factors in patients with MS even in the absence of exercise. However, the influence of IHHT on the lipid profile and inflammation in this clinical population remains relatively unknown. Methods: A prospective, single-center, randomized controlled trial was conducted on 65 (33 men) patients with MS aged 29–74 years, who were randomly allocated to the IHHT or control (sham) experimental groups. The IHHT group completed a 3-week, 5 days/week intermittent exposure to hypoxia and hyperoxia. The control (sham) group followed the same protocol but was breathing room air instead. The primary endpoints were the lipid profile (concentrations of total cholesterol [TC], low-density lipoprotein [LDL], high-density lipoprotein [HDL], and triglycerides [TG]) and the inflammatory factors such as high-sensitivity C-reactive protein (hs-CRP), galectin-3, heat shock proteins (Hsp70). The secondary endpoints were alanine aminotransferase (ALT), aspartate aminotransferase (AST), N-terminal pro-hormone of brain natriuretic peptide level (NTproBNP), transforming growth factor beta-1 (TGF-beta1), heart-type fatty acid-binding protein (H-FABP), and nitric oxide synthase 2 (NOS2). Results: There were no differences between the two groups but the different baseline values have affected these results. The IHHT group demonstrated pre-post decrease in total cholesterol (p = 0.001), LDL (p = 0.001), and TG levels (p = 0.001). We have also found a decrease in the CRP-hs (p = 0.015) and Hsp70 (p = 0.006) in IHHT-group after intervention, and a significant decrease in pre-post (delta) differences of NTproBNP (p < 0.0001) in the IHHT group compared to the control group. In addition, the patients of the IHHT group showed a statistically significant decrease in pre-post differences of ALT and AST levels in comparison with the control group (p = 0.001). No significant IHHT complications or serious adverse events were observed. Conclusions: The IHHT appears to improve lipid profile and anti-inflammatory status. It is a safe, well-tolerated procedure, and could be recommended as an auxiliary treatment in patients suffering from MS, however, the experiment results were limited by the baseline group differences. Clinical Trial Registration:ClinicalTrials.gov, identifier [NCT04791397]. Evaluation of the effect of IHHT on vascular stiffness and elasticity of the liver tissue in patients with MS.
Collapse
Affiliation(s)
- A Bestavashvili Afina
- Department of Cardiology, Functional and Ultrasound Diagnostics, N.V. Sklifosofsky, I. M. Sechenov First Moscow State Medical University, Moscow, Russia.,World-Class Research Center "Digital Biodesign and Personalized Healthcare", I. M. Sechenov First Moscow State Medical University, Moscow, Russia
| | - S Glazachev Oleg
- Department of Cardiology, Functional and Ultrasound Diagnostics, N.V. Sklifosofsky, I. M. Sechenov First Moscow State Medical University, Moscow, Russia.,World-Class Research Center "Digital Biodesign and Personalized Healthcare", I. M. Sechenov First Moscow State Medical University, Moscow, Russia
| | - A Bestavashvili Alexander
- Department of Facultative Therapy, A.I. Nesterov of Medical Faculty, Pirogov Russian National Research Medical University, Moscow, Russia
| | - Dhif Ines
- Department of Cardiology, Functional and Ultrasound Diagnostics, N.V. Sklifosofsky, I. M. Sechenov First Moscow State Medical University, Moscow, Russia.,World-Class Research Center "Digital Biodesign and Personalized Healthcare", I. M. Sechenov First Moscow State Medical University, Moscow, Russia
| | - Suvorov Alexander Yu
- Department of Cardiology, Functional and Ultrasound Diagnostics, N.V. Sklifosofsky, I. M. Sechenov First Moscow State Medical University, Moscow, Russia.,World-Class Research Center "Digital Biodesign and Personalized Healthcare", I. M. Sechenov First Moscow State Medical University, Moscow, Russia
| | - V Vorontsov Nikita
- Department of Cardiology, Functional and Ultrasound Diagnostics, N.V. Sklifosofsky, I. M. Sechenov First Moscow State Medical University, Moscow, Russia.,World-Class Research Center "Digital Biodesign and Personalized Healthcare", I. M. Sechenov First Moscow State Medical University, Moscow, Russia
| | - S Tuter Denis
- Department of Cardiology, Functional and Ultrasound Diagnostics, N.V. Sklifosofsky, I. M. Sechenov First Moscow State Medical University, Moscow, Russia.,World-Class Research Center "Digital Biodesign and Personalized Healthcare", I. M. Sechenov First Moscow State Medical University, Moscow, Russia
| | - G Gognieva Daria
- Department of Cardiology, Functional and Ultrasound Diagnostics, N.V. Sklifosofsky, I. M. Sechenov First Moscow State Medical University, Moscow, Russia.,World-Class Research Center "Digital Biodesign and Personalized Healthcare", I. M. Sechenov First Moscow State Medical University, Moscow, Russia
| | - Yong Zhang
- Department of Pharmacology (the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), Harbin Medical University, Harbin, China
| | - S Pavlov Chavdar
- Department of Cardiology, Functional and Ultrasound Diagnostics, N.V. Sklifosofsky, I. M. Sechenov First Moscow State Medical University, Moscow, Russia.,World-Class Research Center "Digital Biodesign and Personalized Healthcare", I. M. Sechenov First Moscow State Medical University, Moscow, Russia
| | - V Glushenkov Dmitriy
- Department of Cardiology, Functional and Ultrasound Diagnostics, N.V. Sklifosofsky, I. M. Sechenov First Moscow State Medical University, Moscow, Russia.,World-Class Research Center "Digital Biodesign and Personalized Healthcare", I. M. Sechenov First Moscow State Medical University, Moscow, Russia
| | - A Sirkina Elena
- Department of Cardiology, Functional and Ultrasound Diagnostics, N.V. Sklifosofsky, I. M. Sechenov First Moscow State Medical University, Moscow, Russia.,World-Class Research Center "Digital Biodesign and Personalized Healthcare", I. M. Sechenov First Moscow State Medical University, Moscow, Russia
| | - V Kaloshina Irina
- Department of Cardiology, Functional and Ultrasound Diagnostics, N.V. Sklifosofsky, I. M. Sechenov First Moscow State Medical University, Moscow, Russia.,World-Class Research Center "Digital Biodesign and Personalized Healthcare", I. M. Sechenov First Moscow State Medical University, Moscow, Russia
| | - Kopylov Philippe Yu
- Department of Cardiology, Functional and Ultrasound Diagnostics, N.V. Sklifosofsky, I. M. Sechenov First Moscow State Medical University, Moscow, Russia.,World-Class Research Center "Digital Biodesign and Personalized Healthcare", I. M. Sechenov First Moscow State Medical University, Moscow, Russia
| |
Collapse
|
19
|
Leon-Abarca JA, Portmann-Baracco A, Bryce-Alberti M, Ruiz-Sánchez C, Accinelli RA, Soliz J, Gonzales GF. Diabetes increases the risk of COVID-19 in an altitude dependent manner: An analysis of 1,280,806 Mexican patients. PLoS One 2021; 16:e0255144. [PMID: 34343179 PMCID: PMC8330906 DOI: 10.1371/journal.pone.0255144] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 07/10/2021] [Indexed: 01/08/2023] Open
Abstract
AIMS The objective of this study is to analyze how the impact of Diabetes Mellitus [DM] in patients with COVID-19 varies according to altitudinal gradient. METHODS We obtained 1,280,806 records from adult patients with COVID-19 and DM to analyze the probability of COVID-19, development of COVID-19 pneumonia, hospitalization, intubation, admission to the Intensive Care Unit [ICU] and case-fatality rates [CFR]. Variables were controlled by age, sex and altitude of residence to calculate adjusted prevalence and prevalence ratios. RESULTS Patients with DM had a 21.8% higher prevalence of COVID-19 and an additional 120.2% higher prevalence of COVID-19 pneumonia. The adjusted prevalence was also higher for these outcomes as well as for hospitalization, intubation and ICU admission. COVID-19 and pneumonia patients with DM had a 97.0% and 19.4% higher CFR, respectively. With increasing altitudes, the probability of being a confirmed COVID-19 case and the development of pneumonia decreased along CFR for patients with and without DM. However, COVID-19 patients with DM were more likely to require intubation when residing at high altitude. CONCLUSIONS The study suggests that patients with DM have a higher probability of being a confirmed COVID-19 case and developing pneumonia. Higher altitude had a protective relationship against SARS-CoV-2 infection; however, it may be associated with more severe cases in patients with and without DM. High altitude decreases CFR for all COVID-19 patients. Our work also shows that women are less affected than men regardless of altitude.
Collapse
Affiliation(s)
- Juan Alonso Leon-Abarca
- Instituto de Investigaciones de la Altura, Universidad Peruana Cayetano Heredia, Lima, Perú
- Facultad de Medicina Albero Hurtado, Universidad Peruana Cayetano Heredia, Lima, Perú
| | - Arianna Portmann-Baracco
- Instituto de Investigaciones de la Altura, Universidad Peruana Cayetano Heredia, Lima, Perú
- Facultad de Medicina Albero Hurtado, Universidad Peruana Cayetano Heredia, Lima, Perú
| | - Mayte Bryce-Alberti
- Instituto de Investigaciones de la Altura, Universidad Peruana Cayetano Heredia, Lima, Perú
- Facultad de Medicina Albero Hurtado, Universidad Peruana Cayetano Heredia, Lima, Perú
| | - Carlos Ruiz-Sánchez
- Instituto de Investigaciones de la Altura, Universidad Peruana Cayetano Heredia, Lima, Perú
- Facultad de Medicina Albero Hurtado, Universidad Peruana Cayetano Heredia, Lima, Perú
| | - Roberto Alfonso Accinelli
- Instituto de Investigaciones de la Altura, Universidad Peruana Cayetano Heredia, Lima, Perú
- Facultad de Medicina Albero Hurtado, Universidad Peruana Cayetano Heredia, Lima, Perú
- Servicio de Neumología, Hospital Cayetano Heredia, Lima, Perú
- * E-mail:
| | - Jorge Soliz
- Institute Universitaire de Cardiologie et de Pneumologie de Québec [IUCPQ], Faculty of Medicine, Université Laval, Québec, QC, Canada
- High Altitude Pulmonary and Pathology Institute (HAPPI-IPPA), La Paz, Bolivia
| | - Gustavo Francisco Gonzales
- Instituto de Investigaciones de la Altura, Universidad Peruana Cayetano Heredia, Lima, Perú
- Laboratorios de Investigación y Desarrollo [LID], Facultad de Ciencias y Filosofía, Alberto Cazorla Tálleri, Universidad Peruana Cayetano Heredia, Lima, Perú
| |
Collapse
|
20
|
Chan JS, Chiew AE, Rimke AN, Chan G, Rampuri ZH, Kozak MD, Boulé NG, Steinback CD, Davenport MH, Day TA. Blood glucose concentration is unchanged during exposure to acute normobaric hypoxia in healthy humans. Physiol Rep 2021; 9:e14932. [PMID: 34337893 PMCID: PMC8327160 DOI: 10.14814/phy2.14932] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 05/24/2021] [Accepted: 05/25/2021] [Indexed: 11/24/2022] Open
Abstract
Normal blood [glucose] regulation is critical to support metabolism, particularly in contexts of metabolic stressors (e.g., exercise, high altitude hypoxia). Data regarding blood [glucose] regulation in hypoxia are inconclusive. We aimed to characterize blood [glucose] over 80 min following glucose ingestion during both normoxia and acute normobaric hypoxia. In a randomized cross-over design, on two separate days, 28 healthy participants (16 females; 21.8 ± 1.6 years; BMI 22.8 ± 2.5 kg/m2 ) were randomly exposed to either NX (room air; fraction of inspired [FI ]O2 ~0.21) or HX (FI O2 ~0.148) in a normobaric hypoxia chamber. Measured FI O2 and peripheral oxygen saturation were both lower at baseline in hypoxia (p < 0.001), which was maintained over 80 min, confirming the hypoxic intervention. Following a 10-min baseline (BL) under both conditions, participants consumed a standardized glucose beverage (75 g, 296 ml) and blood [glucose] and physiological variables were measured at BL intermittently over 80 min. Blood [glucose] was measured from finger capillary samples via glucometer. Initial fasted blood [glucose] was not different between trials (NX:4.8 ± 0.4 vs. HX:4.9 ± 0.4 mmol/L; p = 0.47). Blood [glucose] was sampled every 10 min (absolute, delta, and percent change) following glucose ingestion over 80 min, and was not different between conditions (p > 0.77). In addition, mean, peak, and time-to-peak responses during the 80 min were not different between conditions (p > 0.14). There were also no sex differences in these blood [glucose] responses in hypoxia. We conclude that glucose regulation is unchanged in young, healthy participants with exposure to acute steady-state normobaric hypoxia, likely due to counterbalancing mechanisms underlying blood [glucose] regulation in hypoxia.
Collapse
Affiliation(s)
- Jason S. Chan
- Department of BiologyFaculty of Science and TechnologyMount Royal UniversityCalgaryABCanada
| | - Alexandra E. Chiew
- Department of BiologyFaculty of Science and TechnologyMount Royal UniversityCalgaryABCanada
| | - Alexander N. Rimke
- Department of BiologyFaculty of Science and TechnologyMount Royal UniversityCalgaryABCanada
| | - Garrick Chan
- Department of BiologyFaculty of Science and TechnologyMount Royal UniversityCalgaryABCanada
| | - Zahrah H. Rampuri
- Department of BiologyFaculty of Science and TechnologyMount Royal UniversityCalgaryABCanada
| | - Mackenzie D. Kozak
- Department of BiologyFaculty of Science and TechnologyMount Royal UniversityCalgaryABCanada
| | - Normand G. Boulé
- Alberta Diabetes InstituteFaculty of Kinesiology, Sport, and RecreationUniversity of AlbertaEdmontonABCanada
| | - Craig D. Steinback
- Alberta Diabetes InstituteFaculty of Kinesiology, Sport, and RecreationUniversity of AlbertaEdmontonABCanada
| | - Margie H. Davenport
- Alberta Diabetes InstituteFaculty of Kinesiology, Sport, and RecreationUniversity of AlbertaEdmontonABCanada
| | - Trevor A. Day
- Department of BiologyFaculty of Science and TechnologyMount Royal UniversityCalgaryABCanada
| |
Collapse
|
21
|
van Hulten V, van Meijel RLJ, Goossens GH. The impact of hypoxia exposure on glucose homeostasis in metabolically compromised humans: A systematic review. Rev Endocr Metab Disord 2021; 22:471-483. [PMID: 33851320 PMCID: PMC8087568 DOI: 10.1007/s11154-021-09654-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/06/2021] [Indexed: 02/06/2023]
Abstract
Humans living at a higher altitude are less prone to suffer from impaired glucose homeostasis and type 2 diabetes mellitus (T2DM), which might at least partly be explained by lower oxygen availability at higher altitudes. The present systematic review aimed to provide an overview of the current literature on the effects of hypoxia exposure on glucose homeostasis in metabolically compromised humans. Several databases were searched up to August 10th, 2020. The search strategy identified 368 unique records. Following assessment for eligibility based on the selection criteria, 16 studies were included in this review. Six studies (2 controlled studies; 4 uncontrolled studies) demonstrated beneficial effects of hypoxia exposure on glucose homeostasis, while 10 studies (8 controlled studies; 2 uncontrolled studies) reported no improvement in glucose homeostasis following hypoxia exposure. Notably, passive hypoxia exposure seemed to improve glucose homeostasis, whereas hypoxic exercise training (2-8 weeks) appeared to have no additional/synergistic effects on glucose homeostasis compared to normoxia exposure. Due to the heterogeneity in study populations and intervention duration (acute studies / 2-8 wks training), it is difficult to indicate which factors may explain conflicting study outcomes. Moreover, these results should be interpreted with some caution, as several studies did not include a control group. Taken together, hypoxia exposure under resting and exercise conditions might provide a novel therapeutic strategy to improve glucose homeostasis in metabolically compromised individuals, but more randomized controlled trials are warranted before strong conclusions on the effects of hypoxia exposure on glucose homeostasis can be drawn.
Collapse
Affiliation(s)
- Veerle van Hulten
- Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center, Maastricht, The Netherlands
- Department of Clinical Pharmacology and Toxicology, CARIM School for Cardiovascular Diseases, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Rens L J van Meijel
- Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Gijs H Goossens
- Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center, Maastricht, The Netherlands.
| |
Collapse
|
22
|
Kim SW, Jung WS, Chung S, Park HY. Exercise intervention under hypoxic condition as a new therapeutic paradigm for type 2 diabetes mellitus: A narrative review. World J Diabetes 2021; 12:331-343. [PMID: 33889283 PMCID: PMC8040082 DOI: 10.4239/wjd.v12.i4.331] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Revised: 01/25/2021] [Accepted: 03/08/2021] [Indexed: 02/06/2023] Open
Abstract
This review aims to summarize the health benefits of exposure to hypoxic conditions during exercise in patients with type 2 diabetes mellitus (T2DM). Exposure to hypoxic conditions during exercise training positively changes the physiological response in healthy subjects. Exposure to hypoxic conditions during exercise could markedly increase skeletal muscle glucose uptake compared to that in normoxic conditions. Furthermore, post-exercise insulin sensitivity of T2DM patients increases more when exercising under hypoxic than under normoxic conditions. Regular exercise under short-term hypoxic conditions can improve blood glucose control at lower workloads than in normoxic conditions. Additionally, exercise training under short-term hypoxic conditions can maximize weight loss in overweight and obese patients. Previous studies on healthy subjects have reported that regular exercise under hypoxic conditions had a more positive effect on vascular health than exercising under normoxic conditions. However, currently, evidence indicating that exposure to hypoxic conditions could positively affect T2DM patients in the long-term is lacking. Therefore, further evaluations of the beneficial effects of exercise under hypoxic conditions on the human body, considering different cycle lengths, duration of exposures, sessions per day, and the number of days, are necessary. In this review, we conclude that there is evidence that exercise under hypoxic conditions can yield health benefits, which is potentially valuable in terms of clinical care as a new intervention for T2DM patients.
Collapse
Affiliation(s)
- Sung-Woo Kim
- Physical Activity and Performance Institute (PAPI), Konkuk University, Seoul 05029, South Korea
| | - Won-Sang Jung
- Physical Activity and Performance Institute (PAPI), Konkuk University, Seoul 05029, South Korea
| | - Sochung Chung
- Department of Pediatrics, Konkuk University Medical Center, Research Institute of Medical Science, Konkuk University, School of Medicine, Seoul 05029, South Korea
| | - Hun-Young Park
- Physical Activity and Performance Institute (PAPI), Konkuk University, Seoul 05029, South Korea
- Department of Sports Science and Medicine, Konkuk University, Seoul 05029, South Korea
| |
Collapse
|
23
|
Saik OV, Klimontov VV. Bioinformatic Reconstruction and Analysis of Gene Networks Related to Glucose Variability in Diabetes and Its Complications. Int J Mol Sci 2020; 21:ijms21228691. [PMID: 33217980 PMCID: PMC7698756 DOI: 10.3390/ijms21228691] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 11/06/2020] [Accepted: 11/16/2020] [Indexed: 02/06/2023] Open
Abstract
Glucose variability (GV) has been recognized recently as a promoter of complications and therapeutic targets in diabetes. The aim of this study was to reconstruct and analyze gene networks related to GV in diabetes and its complications. For network analysis, we used the ANDSystem that provides automatic network reconstruction and analysis based on text mining. The network of GV consisted of 37 genes/proteins associated with both hyperglycemia and hypoglycemia. Cardiovascular system, pancreas, adipose and muscle tissues, gastrointestinal tract, and kidney were recognized as the loci with the highest expression of GV-related genes. According to Gene Ontology enrichment analysis, these genes are associated with insulin secretion, glucose metabolism, glycogen biosynthesis, gluconeogenesis, MAPK and JAK-STAT cascades, protein kinase B signaling, cell proliferation, nitric oxide biosynthesis, etc. GV-related genes were found to occupy central positions in the networks of diabetes complications (cardiovascular disease, diabetic nephropathy, retinopathy, and neuropathy) and were associated with response to hypoxia. Gene prioritization analysis identified new gene candidates (THBS1, FN1, HSP90AA1, EGFR, MAPK1, STAT3, TP53, EGF, GSK3B, and PTEN) potentially involved in GV. The results expand the understanding of the molecular mechanisms of the GV phenomenon in diabetes and provide molecular markers and therapeutic targets for future research.
Collapse
Affiliation(s)
- Olga V. Saik
- Laboratory of Endocrinology, Research Institute of Clinical and Experimental Lymphology—Branch of the Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences (RICEL—Branch of IC&G SB RAS), 630060 Novosibirsk, Russia;
- Laboratory of Computer Proteomics, Federal Research Center Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences (ICG SB RAS), 630090 Novosibirsk, Russia
- Correspondence:
| | - Vadim V. Klimontov
- Laboratory of Endocrinology, Research Institute of Clinical and Experimental Lymphology—Branch of the Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences (RICEL—Branch of IC&G SB RAS), 630060 Novosibirsk, Russia;
| |
Collapse
|
24
|
Kang I, Kondo D, Kim J, Lyoo IK, Yurgelun-Todd D, Hwang J, Renshaw PF. Elevating the level of hypoxia inducible factor may be a new potential target for the treatment of depression. Med Hypotheses 2020; 146:110398. [PMID: 33246695 DOI: 10.1016/j.mehy.2020.110398] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 11/09/2020] [Indexed: 12/28/2022]
Abstract
Hypoxia inducible factor-1 (HIF-1) is a transcriptional factor that regulates gene expressions in response to decreased oxygen levels in the tissue, or hypoxia. HIF-1 exerts protective effects against hypoxia by mediating mitochondrial metabolism and consequently reducing oxidative stress. Recently, increased levels of oxidative stress and abnormal energy metabolism in the brain have been suggested to play essential roles in the pathogenesis of depression. Given that HIF-1 activates creatine metabolism and increases phosphocreatine levels in the intestinal epithelial cells, we assume that HIF-1 may induce similar processes in the brain. Elevated phosphocreatine levels in the brain, as measured by magnetic resonance spectroscopy, were associated with better treatment response to the antidepressants in individuals with depression. In addition, oral creatine supplements, which led to increased phosphocreatine levels in the brain, also enhanced the effects of antidepressants in individuals with depression. As such, we hypothesized that increasing the HIF-1, which potentially facilitates creatine metabolism in the brain, might be a new therapeutic target in depression. With this regard, we suggested that interventions to elevate the HIF-1 levels in the brain, including the intermittent hypoxia conditioning and hyperbaric oxygen therapy, might be considered as new additional treatments for depression.
Collapse
Affiliation(s)
- Ilhyang Kang
- Ewha Brain Institute, Ewha W. University, Seoul, South Korea
| | - Douglas Kondo
- Department of Psychiatry, University of Utah, Salt Lake City, USA; The Brian Institute, University of Utah School of Medicine, Salt Lake City, USA
| | - Jungyoon Kim
- Ewha Brain Institute, Ewha W. University, Seoul, South Korea; Department of Brain and Cognitive Sciences, Ewha W. University, Seoul, South Korea
| | - In Kyoon Lyoo
- Ewha Brain Institute, Ewha W. University, Seoul, South Korea; Department of Psychiatry, University of Utah, Salt Lake City, USA; The Brian Institute, University of Utah School of Medicine, Salt Lake City, USA
| | - Deborah Yurgelun-Todd
- Department of Psychiatry, University of Utah, Salt Lake City, USA; The Brian Institute, University of Utah School of Medicine, Salt Lake City, USA; Veterans Integrated Service Network 19 Mental Illness Research Education Clinical, Centers of Excellence, Salt Lake City Veterans Affairs Medical Center, Salt Lake City, Utah, USA
| | - Jaeuk Hwang
- Department of Psychiatry, Soonchunhyang University Hospital, Soonchunhyang University College of Medicine, Seoul, South Korea.
| | - Perry F Renshaw
- Department of Psychiatry, University of Utah, Salt Lake City, USA; The Brian Institute, University of Utah School of Medicine, Salt Lake City, USA; Veterans Integrated Service Network 19 Mental Illness Research Education Clinical, Centers of Excellence, Salt Lake City Veterans Affairs Medical Center, Salt Lake City, Utah, USA.
| |
Collapse
|
25
|
Glazachev OS, Dudnik EN, Zapara MA, Samarceva VG, Kofler WW. Adaptation to Dosed Hypoxia-Hyperoxia as a Factor in the Improvement of Quality of Life for Elderly Patients with Cardiac Pathology. ADVANCES IN GERONTOLOGY 2020. [DOI: 10.1134/s2079057019040052] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
26
|
Chobanyan-Jürgens K, Scheibe RJ, Potthast AB, Hein M, Smith A, Freund R, Tegtbur U, Das AM, Engeli S, Jordan J, Haufe S. Influences of Hypoxia Exercise on Whole-Body Insulin Sensitivity and Oxidative Metabolism in Older Individuals. J Clin Endocrinol Metab 2019; 104:5238-5248. [PMID: 30942862 DOI: 10.1210/jc.2019-00411] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Accepted: 03/28/2019] [Indexed: 12/11/2022]
Abstract
CONTEXT Aging is a primary risk factor for most chronic diseases, including type 2 diabetes. Both exercise and hypoxia regulate pathways that ameliorate age-associated metabolic muscle dysfunction. OBJECTIVE We hypothesized that the combination of hypoxia and exercise would be more effective in improving glucose metabolism than normoxia exercise. DESIGN AND PARTICIPANTS We randomized 29 older sedentary individuals (62 ± 6 years; 14 women, 15 men) to bicycle exercise under normobaric hypoxia (fraction of inspired oxygen = 15%) or normoxia (fraction of inspired oxygen = 21%). INTERVENTION Participants trained thrice weekly for 30 to 40 minutes over 8 weeks at a heart rate corresponding to 60% to 70% of peak oxygen update. MAIN OUTCOME MEASURES Insulin sensitivity measured by hyperinsulinemic-euglycemic glucose clamp and muscle protein expression before and after hyperinsulinemic-euglycemic glucose clamp. RESULTS Heart rate and perceived exertion during training were similar between groups, with lower oxygen saturation when exercising under hypoxia (88.7 ± 1.5 vs 96.2 ± 1.2%, P < 0.01). Glucose infusion rate after 8 weeks increased in both the hypoxia (5.7 ± 1.1 to 6.7 ± 1.3 mg/min/kg; P < 0.01) and the normoxia group (6.2 ± 2.1 to 6.8 ± 2.1 mg/min/kg; P = 0.04), with a mean difference between groups of -0.44 mg/min/kg; 95% CI, -1.22 to 0.34; (P = 0.25). Markers of mitochondrial content and oxidative capacity in skeletal muscle were similar after training in both groups. Changes in Akt phosphorylation and glucose transporter 4 under fasting and insulin-stimulated conditions were not different between groups over time. CONCLUSIONS Eight weeks of hypoxia endurance training led to similar changes in insulin sensitivity and markers of oxidative metabolism compared with normoxia training. Normobaric hypoxia exercise did not enhance metabolic effects in sedentary older women and men beyond exercise alone.
Collapse
Affiliation(s)
- Kristine Chobanyan-Jürgens
- Institute of Clinical Pharmacology, Hannover Medical School, Hannover, Germany
- Department of Clinical Pharmacology and Pharmacoepidemiology, Heidelberg University Hospital, Heidelberg, Germany
| | - Renate J Scheibe
- Institute of Cell Biochemistry, Hannover Medical School, Hannover, Germany
| | - Arne B Potthast
- Department of Pediatrics, Pediatric Metabolic Medicine, Hannover Medical School, Hannover, Germany
| | - Markus Hein
- Institute of Sports Medicine, Hannover Medical School, Hannover, Germany
| | - Andrea Smith
- Institute of Biometry, Hannover Medical School, Hannover, Germany
| | - Robert Freund
- Institute of Cell Biochemistry, Hannover Medical School, Hannover, Germany
| | - Uwe Tegtbur
- Institute of Sports Medicine, Hannover Medical School, Hannover, Germany
| | - Anibh M Das
- Department of Pediatrics, Pediatric Metabolic Medicine, Hannover Medical School, Hannover, Germany
| | - Stefan Engeli
- Institute of Clinical Pharmacology, Hannover Medical School, Hannover, Germany
| | - Jens Jordan
- Institute of Clinical Pharmacology, Hannover Medical School, Hannover, Germany
- Institute of Aerospace Medicine, German Aerospace Center, Cologne, Germany
| | - Sven Haufe
- Institute of Clinical Pharmacology, Hannover Medical School, Hannover, Germany
- Institute of Sports Medicine, Hannover Medical School, Hannover, Germany
| |
Collapse
|
27
|
Koufakis T, Karras SN, Mustafa OG, Zebekakis P, Kotsa K. The Effects of High Altitude on Glucose Homeostasis, Metabolic Control, and Other Diabetes-Related Parameters: From Animal Studies to Real Life. High Alt Med Biol 2018; 20:1-11. [PMID: 30362832 DOI: 10.1089/ham.2018.0076] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Exposure to high altitude activates several complex and adaptive mechanisms aiming to protect human homeostasis from extreme environmental conditions, such as hypoxia and low temperatures. Short-term exposure is followed by transient hyperglycemia, mainly triggered by the activation of the sympathetic system, whereas long-term exposure results in lower plasma glucose concentrations, mediated by improved insulin sensitivity and augmented peripheral glucose disposal. An inverse relationship between altitude, diabetes, and obesity has been well documented. This is the result of genetic and physiological adaptations principally to hypoxia that favorably affect glucose metabolism; however, the contribution of financial, dietary, and other life-style parameters may also be important. According to existing evidence, people with diabetes are capable of undertaking demanding physical challenges even at extreme altitudes. Still, a number of issues should be taken into account, including the increased physical activity leading to changes in insulin demands and resistance, the performance of measurement systems under extreme weather conditions and the potential deterioration of metabolic control during climbing expeditions. The aim of this review is to present available evidence in the field in a comprehensive way, beginning from the physiology of glucose homeostasis adaptation mechanisms to high altitudes and ending to what real life experience has taught us.
Collapse
Affiliation(s)
- Theocharis Koufakis
- 1 Division of Endocrinology and Metabolism and Diabetes Center, First Department of Internal Medicine, Medical School, Aristotle University of Thessaloniki, AHEPA University Hospital , Thessaloniki, Greece
| | - Spyridon N Karras
- 1 Division of Endocrinology and Metabolism and Diabetes Center, First Department of Internal Medicine, Medical School, Aristotle University of Thessaloniki, AHEPA University Hospital , Thessaloniki, Greece
| | - Omar G Mustafa
- 2 Department of Diabetes, King's College Hospital , London, United Kingdom
| | - Pantelis Zebekakis
- 1 Division of Endocrinology and Metabolism and Diabetes Center, First Department of Internal Medicine, Medical School, Aristotle University of Thessaloniki, AHEPA University Hospital , Thessaloniki, Greece
| | - Kalliopi Kotsa
- 1 Division of Endocrinology and Metabolism and Diabetes Center, First Department of Internal Medicine, Medical School, Aristotle University of Thessaloniki, AHEPA University Hospital , Thessaloniki, Greece
| |
Collapse
|
28
|
Wang Y, Wen L, Zhou S, Zhang Y, Wang XH, He YY, Davie A, Broadbent S. Effects of four weeks intermittent hypoxia intervention on glucose homeostasis, insulin sensitivity, GLUT4 translocation, insulin receptor phosphorylation, and Akt activity in skeletal muscle of obese mice with type 2 diabetes. PLoS One 2018; 13:e0203551. [PMID: 30199540 PMCID: PMC6130870 DOI: 10.1371/journal.pone.0203551] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Accepted: 08/22/2018] [Indexed: 01/03/2023] Open
Abstract
AIMS The aims of this study were to determine the effects of four weeks of intermittent exposure to a moderate hypoxia environment (15% oxygen), and compare with the effects of exercise in normoxia or hypoxia, on glucose homeostasis, insulin sensitivity, GLUT4 translocation, insulin receptor phosphorylation, Akt-dependent GSK3 phosphorylation and Akt activity in skeletal muscle of obese mice with type 2 diabetes. METHODS C57BL/6J mice that developed type 2 diabetes with a high-fat-diet (55% fat) (fasting blood glucose, FBG = 13.9 ± 0.69 (SD) mmol/L) were randomly allocated into diabetic control (DC), rest in hypoxia (DH), exercise in normoxia (DE), and exercise in hypoxia (DHE) groups (n = 7, each), together with a normal-diet (4% fat) control group (NC, FBG = 9.1 ± 1.11 (SD) mmol/L). The exercise groups ran on a treadmill at intensities of 75-90% VO2max. The interventions were applied one hour per day, six days per week for four weeks. Venous blood samples were analysed for FBG, insulin (FBI) and insulin sensitivity (QUICKI) pre and post the intervention period. The quadriceps muscle samples were collected 72 hours post the last intervention session for analysis of GLUT4 translocation, insulin receptor phosphorylation, Akt expression and phosphorylated GSK3 fusion protein by western blot. Akt activity was determined by the ratio of the phosphorylated GSK3 fusion protein to the total Akt protein. RESULTS The FBG of the DH, DE and DHE groups returned to normal level (FBG = 9.4 ± 1.50, 8.86 ± 0.94 and 9.0 ± 1.13 (SD) mmol/L for DH, DE and DHE respectively, P < 0.05), with improved insulin sensitivity compared to DC (P < 0.05), after the four weeks treatment, while the NC and DC showed no significant changes, as analysed by general linear model with repeated measures. All three interventions resulted in a significant increase of GLUT4 translocation to cell membrane compared to the DC group (P < 0.05). The DE and DH showed a similar level of insulin receptor phosphorylation compared with NC that was significantly lower than the DC (P < 0.05) post intervention. The DH and DHE groups showed a significantly higher Akt activity compared to the DE, DC and NC (P < 0.05) post intervention, as analysed by one-way ANOVA. CONCLUSIONS This study produced new evidence that intermittent exposure to mild hypoxia (0.15 FiO2) for four weeks resulted in normalisation of FBG, improvement in whole body insulin sensitivity, and a significant increase of GLUT4 translocation in the skeletal muscle, that were similar to the effects of exercise intervention during the same time period, in mice with diet-induced type 2 diabetes. However, exercise in hypoxia for four weeks did not have additive effects on these responses. The outcomes of the research may contribute to the development of effective, alternative and complementary interventions for management of hyperglycaemia and type 2 diabetes, particularly for individuals with limitations in participation of physical activity.
Collapse
Affiliation(s)
- Yun Wang
- School of Health and Human Sciences, Southern Cross University, Lismore, Australia
| | - Li Wen
- Key Laboratory of Exercise Physiology and Sports Medicine, Tianjin University of Sport, Tianjin, China
| | - Shi Zhou
- School of Health and Human Sciences, Southern Cross University, Lismore, Australia
| | - Yong Zhang
- Key Laboratory of Exercise Physiology and Sports Medicine, Tianjin University of Sport, Tianjin, China
| | - Xin-Hao Wang
- Department of Health and Exercise Science, Tianjin University of Sport, Tianjin, China
| | - You-Yu He
- Department of Health and Exercise Science, Tianjin University of Sport, Tianjin, China
| | - Allan Davie
- School of Health and Human Sciences, Southern Cross University, Lismore, Australia
| | - Suzanne Broadbent
- School of Health and Human Sciences, Southern Cross University, Lismore, Australia
| |
Collapse
|
29
|
Intermittent living; the use of ancient challenges as a vaccine against the deleterious effects of modern life - A hypothesis. Med Hypotheses 2018; 120:28-42. [PMID: 30220336 DOI: 10.1016/j.mehy.2018.08.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 07/25/2018] [Accepted: 08/04/2018] [Indexed: 12/19/2022]
Abstract
Chronic non-communicable diseases (CNCD) are the leading cause of mortality in developed countries. They ensue from the sum of modern anthropogenic risk factors, including high calorie nutrition, malnutrition, sedentary lifestyle, social stress, environmental toxins, politics and economic factors. Many of these factors are beyond the span of control of individuals, suggesting that CNCD are inevitable. However, various studies, ours included, show that the use of intermittent challenges with hormetic effects improve subjective and objective wellbeing of individuals with CNCD, while having favourable effects on immunological, metabolic and behavioural indices. Intermittent cold, heat, fasting and hypoxia, together with phytochemicals in multiple food products, have widespread influence on many pathways related with overall health. Until recently, most of the employed challenges with hormetic effects belonged to the usual transient live experiences of our ancestors. Our hypothesis; we conclude that, whereas the total inflammatory load of multi-metabolic and psychological risk factors causes low grade inflammation and aging, the use of intermittent challenges, united in a 7-10 days lasting hormetic intervention, might serve as a vaccine against the deleterious effects of chronic low grade inflammation and it's metabolic and (premature) aging consequences.
Collapse
|
30
|
Mallet RT, Manukhina EB, Ruelas SS, Caffrey JL, Downey HF. Cardioprotection by intermittent hypoxia conditioning: evidence, mechanisms, and therapeutic potential. Am J Physiol Heart Circ Physiol 2018; 315:H216-H232. [PMID: 29652543 DOI: 10.1152/ajpheart.00060.2018] [Citation(s) in RCA: 78] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The calibrated application of limited-duration, cyclic, moderately intense hypoxia-reoxygenation increases cardiac resistance to ischemia-reperfusion stress. These intermittent hypoxic conditioning (IHC) programs consistently produce striking reductions in myocardial infarction and ventricular tachyarrhythmias after coronary artery occlusion and reperfusion and, in many cases, improve contractile function and coronary blood flow. These IHC protocols are fundamentally different from those used to simulate sleep apnea, a recognized cardiovascular risk factor. In clinical studies, IHC improved exercise capacity and decreased arrhythmias in patients with coronary artery or pulmonary disease and produced robust, persistent, antihypertensive effects in patients with essential hypertension. The protection afforded by IHC develops gradually and depends on β-adrenergic, δ-opioidergic, and reactive oxygen-nitrogen signaling pathways that use protein kinases and adaptive transcription factors. In summary, adaptation to intermittent hypoxia offers a practical, largely unrecognized means of protecting myocardium from impending ischemia. The myocardial and perhaps broader systemic protection provided by IHC clearly merits further evaluation as a discrete intervention and as a potential complement to conventional pharmaceutical and surgical interventions.
Collapse
Affiliation(s)
- Robert T Mallet
- Department of Integrative Physiology and Anatomy, University of North Texas Health Science Center , Fort Worth, Texas
| | - Eugenia B Manukhina
- Department of Integrative Physiology and Anatomy, University of North Texas Health Science Center , Fort Worth, Texas.,Institute of General Pathology and Pathophysiology, Russian Academy of Medical Sciences , Moscow , Russian Federation.,School of Medical Biology South Ural State University , Chelyabinsk , Russian Federation
| | - Steven Shea Ruelas
- Department of Integrative Physiology and Anatomy, University of North Texas Health Science Center , Fort Worth, Texas
| | - James L Caffrey
- Department of Integrative Physiology and Anatomy, University of North Texas Health Science Center , Fort Worth, Texas
| | - H Fred Downey
- Department of Integrative Physiology and Anatomy, University of North Texas Health Science Center , Fort Worth, Texas.,School of Medical Biology South Ural State University , Chelyabinsk , Russian Federation
| |
Collapse
|
31
|
Brinkmann C, Bloch W, Brixius K. Exercise during short-term exposure to hypoxia or hyperoxia - novel treatment strategies for type 2 diabetic patients?! Scand J Med Sci Sports 2017. [PMID: 28649714 DOI: 10.1111/sms.12937] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Both hypoxia (decreased oxygen availability) and hyperoxia (increased oxygen availability) have been shown to alter exercise adaptations in healthy subjects. This review aims to clarify the possible benefits of exercise during short-term exposure to hypoxia or hyperoxia for patients with type 2 diabetes mellitus (T2DM). There is evidence that exercise during short-term exposure to hypoxia can acutely increase skeletal muscle glucose uptake more than exercise in normoxia, and that post-exercise insulin sensitivity in T2DM patients is more increased when exercise is performed under hypoxic conditions. Furthermore, interventional studies show that glycemic control can be improved through regular physical exercise in short-term hypoxia at a lower workload than in normoxia, and that exercise training in short-term hypoxia can contribute to increased weight loss in overweight/obese (insulin-resistant) subjects. While numerous studies involving healthy subjects report that regular exercise in hypoxia can increase vascular health (skeletal muscle capillarization and vascular dilator function) to a higher extent than exercise training in normoxia, there is no convincing evidence yet that hypoxia has such additive effects in T2DM patients in the long term. Some studies indicate that the use of hyperoxia during exercise can decrease lactate concentrations and subjective ratings of perceived exertion. Thus, there are interesting starting points for future studies to further evaluate possible beneficial effects of exercise in short-term hypoxia or hyperoxia at different oxygen concentrations and exposure durations. In general, exposure to hypoxia/hyperoxia should be considered with caution. Possible health risks-especially for T2DM patients-are also analyzed in this review.
Collapse
Affiliation(s)
- C Brinkmann
- Institute of Cardiovascular Research and Sport Medicine, Department of Molecular and Cellular Sport Medicine, German Sport University Cologne, Cologne, Germany.,Institute of Cardiovascular Research and Sport Medicine, Department of Preventive and Rehabilitative Sport Medicine, German Sport University Cologne, Cologne, Germany
| | - W Bloch
- Institute of Cardiovascular Research and Sport Medicine, Department of Molecular and Cellular Sport Medicine, German Sport University Cologne, Cologne, Germany
| | - K Brixius
- Institute of Cardiovascular Research and Sport Medicine, Department of Molecular and Cellular Sport Medicine, German Sport University Cologne, Cologne, Germany
| |
Collapse
|
32
|
Intermittent hypoxia revisited: a promising non-pharmaceutical strategy to reduce cardio-metabolic risk factors? Sleep Breath 2017; 22:267-271. [DOI: 10.1007/s11325-017-1459-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Revised: 12/06/2016] [Accepted: 01/05/2017] [Indexed: 10/20/2022]
|
33
|
Leone RJ, Lalande S. Intermittent hypoxia as a means to improve aerobic capacity in type 2 diabetes. Med Hypotheses 2017; 100:59-63. [PMID: 28236850 DOI: 10.1016/j.mehy.2017.01.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Revised: 12/15/2016] [Accepted: 01/21/2017] [Indexed: 11/18/2022]
Abstract
Physical inactivity and a low maximal aerobic capacity (VO2max) strongly predict morbidity and mortality in patients with type 2 diabetes (T2D). Patients with T2D have a reduced VO2max when compared with healthy individuals of similar age, weight, and physical activity levels, and this lower aerobic capacity is usually attributed to a reduced oxygen delivery to the working muscles. The oxygen carrying capacity of the blood, as well as increases in cardiac output and blood flow, contribute to the delivery of oxygen to the active muscles during exercise. Hemoglobin mass (Hb mass), a key determinant of oxygen carrying capacity, is suggested to be reduced in patients with T2D following the observation of a lower blood volume (BV) in combination with normal hematocrit levels in this population. Therefore, a lower Hb mass, in addition to a reported lower BV and impaired cardiovascular response to exercise, likely contributes to the reduced oxygen delivery and VO2max in patients with T2D. While exercise training increases Hb mass, BV, and consequently VO2max, the majority of patients with T2D are not physically active, highlighting the need for alternative methods to improve VO2max in this population. Exposure to hypoxia triggers the release of erythropoietin, the hormone regulating red blood cell production, which increases Hb mass and consequently BV. Exposure to mild intermittent hypoxia (IH), characterized by few and short episodes of hypoxia at a fraction of inspired oxygen ranging between 10 and 14% interspersed with cycles of normoxia, increased red blood cell volume, Hb mass, and plasma volume in patients with coronary artery disease or chronic obstructive pulmonary disease, which resulted in an improved VO2max in both populations. We hypothesize that 12 exposures to mild IH over a period of 4weeks will increase Hb mass, BV, cardiac function, and VO2max in patients with T2D. Therefore, exposures to mild IH may increase oxygen delivery and VO2max without the need to perform exercise in patients with T2D.
Collapse
Affiliation(s)
- R J Leone
- School of Exercise and Rehabilitation Sciences, College of Health and Human Services, University of Toledo, Toledo, OH, USA.
| | - S Lalande
- School of Exercise and Rehabilitation Sciences, College of Health and Human Services, University of Toledo, Toledo, OH, USA
| |
Collapse
|
34
|
Abstract
Autonomic dysfunction is a frequent and relevant complication of diabetes mellitus, as it is associated with increased morbidity and mortality. In addition, it is today considered as predictive of the most severe diabetic complications, like nephropathy and retinopathy. The classical methods of screening are the cardiovascular reflex tests and were originally interpreted as evidence of nerve damage. A more modern approach, based on the integrated control of cardiovascular and respiratory function, reveals that these abnormalities are to a great extent functional, at least in the early stage of the disease, thus suggesting new potential interventions. Therefore, this review aims to go further investigating how the imbalance of the autonomic nervous system is altered and can be influenced in many chronic pathologies through a global view of cardio-respiratory and metabolic interactions and how the same mechanisms are applicable to diabetes.
Collapse
Affiliation(s)
- Luciano Bernardi
- Folkhälsan Institute of Genetics, Folkhälsan Research Center, University of Helsinki, Helsinki, Finland.
- Research Program Unit, Diabetes and Obesity, University of Helsinki, Helsinki, Finland.
- , Villaggio dei Pioppi 2, 27020, Torre d'Isola, Italy.
| | - Lucio Bianchi
- Department of Endocrinology-Diabetology-Nutrition, Jean Verdier Hospital, AP-HP, CRNH-IdF, Paris-Nord University, Bondy, France
| |
Collapse
|
35
|
Faramoushi M, Amir Sasan R, Sari Sarraf V, Karimi P. Cardiac fibrosis and down regulation of GLUT4 in experimental diabetic cardiomyopathy are ameliorated by chronic exposures to intermittent altitude. J Cardiovasc Thorac Res 2016; 8:26-33. [PMID: 27069564 PMCID: PMC4827136 DOI: 10.15171/jcvtr.2016.05] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Accepted: 03/03/2016] [Indexed: 12/15/2022] Open
Abstract
Introduction: Chronic intermittent hypoxia is considered as a preconditioning status in cardiovascular health to inducing resistance to the low oxygen supply. Diabetic cardiomyopathy leads to inability of the heart to effective circulation of blood preventing of consequent tissue damages so; the aim of this study was elucidation of effect of chronic exposure to hypoxia on Cardiac fibrosis and expression of GLUT4 in experimental diabetic cardiomyopathy.
Methods: A total number of 30 rats were randomly divided into three groups; 1: Normoxia control group (NN, n = 10). 2: Normoxia diabetic group (ND, n = 10) that took fat diet for 2 weeks then were injected by streptozotocin (37 mg/kg) and 3: Hypoxia diabetic group (HD, n = 10): that were exposed to chronic intermittent hypoxia (CIH) (altitude ≈3400 m, 14% oxygen for 8 weeks). After hypoxia challenge, plasma metabolic parameters including: fasting blood glucose (FBS), triglyceride (TG) and total cholesterol (TC) were measured by colorimetric assay. Cardiac expression of GLUT4 protein and cardiac collagen accumulation were determined in the excised left ventricle by western blotting, and Masson trichrome staining respectively.
Results: Based on resultant data, FBS, TG and TC were significantly (P < 0.05) decreased in HD vs. ND. Homeostasis Model Assessment (HOMA) were also significantly attenuated after exposed to CIH in HD group compared to ND group (P < 0.05). Significant increase in packed cell volume and hemoglobin concentration was observed in HD group compared to ND group (P < 0.05). Comparison of heart wet weight between three groups showed a significant difference (P < 0.05) with lower amount in HD and ND versus NN. Myocardial fibrosis was significantly more pronounced in ND when compared to NN. Eight weeks exposure to hypoxia ameliorated this increase in HD group. Intermittent hypoxia significantly increased GLUT4 protein expression in HD compared to ND group (P < 0.05).
Conclusion: Data suggested that CIH might potentiate to improve glucose homeostasis and cardiac tissue structural damages created in type 2 diabetes (T2D).
Collapse
Affiliation(s)
- Mahdi Faramoushi
- Department of Physical Education and Sport, Tabriz Islamic Art University, Tabriz, Iran
| | - Ramin Amir Sasan
- Faculty of Physical Education and Sport Sciences, University of Tabriz, Tabriz, Iran
| | - Vahid Sari Sarraf
- Faculty of Physical Education and Sport Sciences, University of Tabriz, Tabriz, Iran
| | - Pouran Karimi
- Neuroscience Research Center (NSRC), Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
36
|
Mackenzie RWA, Watt P. A Molecular and Whole Body Insight of the Mechanisms Surrounding Glucose Disposal and Insulin Resistance with Hypoxic Treatment in Skeletal Muscle. J Diabetes Res 2016; 2016:6934937. [PMID: 27274997 PMCID: PMC4871980 DOI: 10.1155/2016/6934937] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Revised: 04/04/2016] [Accepted: 04/12/2016] [Indexed: 12/22/2022] Open
Abstract
Although the mechanisms are largely unidentified, the chronic or intermittent hypoxic patterns occurring with respiratory diseases, such as chronic pulmonary disease or obstructive sleep apnea (OSA) and obesity, are commonly associated with glucose intolerance. Indeed, hypoxia has been widely implicated in the development of insulin resistance either via the direct action on insulin receptor substrate (IRS) and protein kinase B (PKB/Akt) or indirectly through adipose tissue expansion and systemic inflammation. Yet hypoxia is also known to encourage glucose transport using insulin-dependent mechanisms, largely reliant on the metabolic master switch, 5' AMP-activated protein kinase (AMPK). In addition, hypoxic exposure has been shown to improve glucose control in type 2 diabetics. The literature surrounding hypoxia-induced changes to glycemic control appears to be confusing and conflicting. How is it that the same stress can seemingly cause insulin resistance while increasing glucose uptake? There is little doubt that acute hypoxia increases glucose metabolism in skeletal muscle and does so using the same pathway as muscle contraction. The purpose of this review paper is to provide an insight into the mechanisms underpinning the observed effects and to open up discussions around the conflicting data surrounding hypoxia and glucose control.
Collapse
Affiliation(s)
- R. W. A. Mackenzie
- Department of Life Science, Whitelands College, University of Roehampton, Holybourne Avenue, London SW15 4DJ, UK
- *R. W. A. Mackenzie:
| | - P. Watt
- University of Brighton, Hillbrow, Denton Road, Eastbourne BN20 7SP, UK
| |
Collapse
|
37
|
Yamakoshi K, Yagishita K, Tsuchimochi H, Inagaki T, Shirai M, Poole DC, Kano Y. Microvascular oxygen partial pressure during hyperbaric oxygen in diabetic rat skeletal muscle. Am J Physiol Regul Integr Comp Physiol 2015; 309:R1512-20. [PMID: 26468263 DOI: 10.1152/ajpregu.00380.2015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Accepted: 10/10/2015] [Indexed: 11/22/2022]
Abstract
Hyperbaric oxygen (HBO) is a major therapeutic treatment for ischemic ulcerations that perforate skin and underlying muscle in diabetic patients. These lesions do not heal effectively, in part, because of the hypoxic microvascular O2 partial pressures (PmvO2 ) resulting from diabetes-induced cardiovascular dysfunction, which alters the dynamic balance between O2 delivery (Q̇o2) and utilization (V̇o2) rates. We tested the hypothesis that HBO in diabetic muscle would exacerbate the hyperoxic PmvO2 dynamics due, in part, to a reduction or slowing of the cardiovascular, sympathetic nervous, and respiratory system responses to acute HBO exposure. Adult male Wistar rats were divided randomly into diabetic (DIA: streptozotocin ip) and healthy (control) groups. A small animal hyperbaric chamber was pressurized with oxygen (100% O2) to 3.0 atmospheres absolute (ATA) at 0.2 ATA/min. Phosphorescence quenching techniques were used to measure PmvO2 in tibialis anterior muscle of anesthetized rats during HBO. Lumbar sympathetic nerve activity (LSNA), heart rate (HR), and respiratory rate (RR) were measured electrophysiologically. During the normobaric hyperoxia and HBO, DIA tibialis anterior PmvO2 increased faster (mean response time, CONT 78 ± 8, DIA 55 ± 8 s, P < 0.05) than CONT. Subsequently, PmvO2 remained elevated at similar levels in CONT and DIA muscles until normobaric normoxic recovery where the DIA PmvO2 retained its hyperoxic level longer than CONT. Sympathetic nervous system and cardiac and respiratory responses to HBO were slower in DIA vs. CONT. Specifically the mean response times for RR (CONT: 6 ± 1 s, DIA: 29 ± 4 s, P < 0.05), HR (CONT: 16 ± 1 s, DIA: 45 ± 5 s, P < 0.05), and LSNA (CONT: 140 ± 16 s, DIA: 247 ± 34 s, P < 0.05) were greater following HBO onset in DIA than CONT. HBO treatment increases tibialis anterior muscle PmvO2 more rapidly and for a longer duration in DIA than CONT, but not to a greater level. Whereas respiratory, cardiovascular, and LSNA responses to HBO are profoundly slowed in DIA, only the cardiovascular arm (via HR) may contribute to the muscle vascular incompetence and these faster PmvO2 kinetics.
Collapse
Affiliation(s)
- Kohei Yamakoshi
- Department of Engineering Science, Bioscience and Technology Program, University of Electro-Communications, Tokyo, Japan
| | - Kazuyoshi Yagishita
- Clinical Center for Sports Medicine and Sports Dentistry, Hyperbaric Medical Center/Sports Medicine Clinical Center, Medical Hospital of Tokyo Medical and Dental University, Tokyo, Japan
| | - Hirotsugu Tsuchimochi
- Department of Cardiac Physiology, National Cerebral and Cardiovascular Center Research Institute, Osaka, Japan; and
| | - Tadakatsu Inagaki
- Department of Cardiac Physiology, National Cerebral and Cardiovascular Center Research Institute, Osaka, Japan; and
| | - Mikiyasu Shirai
- Department of Cardiac Physiology, National Cerebral and Cardiovascular Center Research Institute, Osaka, Japan; and
| | - David C Poole
- Departments of Anatomy & Physiology and Kinesiology, Kansas State University, Manhattan, Kansas
| | - Yutaka Kano
- Department of Engineering Science, Bioscience and Technology Program, University of Electro-Communications, Tokyo, Japan;
| |
Collapse
|
38
|
Trzepizur W, Gaceb A, Arnaud C, Ribuot C, Levy P, Martinez MC, Gagnadoux F, Andriantsitohaina R. Vascular and hepatic impact of short-term intermittent hypoxia in a mouse model of metabolic syndrome. PLoS One 2015; 10:e0124637. [PMID: 25993257 PMCID: PMC4436258 DOI: 10.1371/journal.pone.0124637] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2014] [Accepted: 03/17/2015] [Indexed: 01/25/2023] Open
Abstract
Background Experimental models of intermittent hypoxia (IH) have been developed during the last decade to investigate the consequences of obstructive sleep apnea. IH is usually associated with detrimental metabolic and vascular outcomes. However, paradoxical protective effects have also been described depending of IH patterns and durations applied in studies. We evaluated the impact of short-term IH on vascular and metabolic function in a diet-induced model of metabolic syndrome (MS). Methods Mice were fed either a standard diet or a high fat diet (HFD) for 8 weeks. During the final 14 days of each diet, animals were exposed to either IH (1 min cycle, FiO2 5% for 30s, FiO2 21% for 30s; 8 h/day) or intermittent air (FiO2 21%). Ex-vivo vascular reactivity in response to acetylcholine was assessed in aorta rings by myography. Glucose, insulin and leptin levels were assessed, as well as serum lipid profile, hepatic mitochondrial activity and tissue nitric oxide (NO) release. Results Mice fed with HFD developed moderate markers of dysmetabolism mimicking MS, including increased epididymal fat, dyslipidemia, hepatic steatosis and endothelial dysfunction. HFD decreased mitochondrial complex I, II and IV activities and increased lactate dehydrogenase (LDH) activity in liver. IH applied to HFD mice induced a major increase in insulin and leptin levels and prevented endothelial dysfunction by restoring NO production. IH also restored mitochondrial complex I and IV activities, moderated the increase in LDH activity and liver triglyceride accumulation in HFD mice. Conclusion In a mouse model of MS, short-term IH increases insulin and leptin levels, restores endothelial function and mitochondrial activity and limits liver lipid accumulation.
Collapse
Affiliation(s)
- Wojciech Trzepizur
- INSERM U1063, Sopam, Angers University, F-49045, Angers, France
- Department of Respiratory Diseases, Angers University hospital, Angers, France
- * E-mail:
| | - Abderahim Gaceb
- INSERM U1063, Sopam, Angers University, F-49045, Angers, France
| | - Claire Arnaud
- INSERM U1042, HP2 laboratory, Joseph Fourier University, Grenoble, France
| | - Christophe Ribuot
- INSERM U1042, HP2 laboratory, Joseph Fourier University, Grenoble, France
| | - Patrick Levy
- INSERM U1042, HP2 laboratory, Joseph Fourier University, Grenoble, France
- Laboratoires du Sommeil et EFCR, A. Michallon University Hospital, Grenoble, France
| | | | - Frédéric Gagnadoux
- INSERM U1063, Sopam, Angers University, F-49045, Angers, France
- Department of Respiratory Diseases, Angers University hospital, Angers, France
| | | |
Collapse
|
39
|
Woolcott OO, Ader M, Bergman RN. Glucose homeostasis during short-term and prolonged exposure to high altitudes. Endocr Rev 2015; 36:149-73. [PMID: 25675133 PMCID: PMC4399271 DOI: 10.1210/er.2014-1063] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Most of the literature related to high altitude medicine is devoted to the short-term effects of high-altitude exposure on human physiology. However, long-term effects of living at high altitudes may be more important in relation to human disease because more than 400 million people worldwide reside above 1500 m. Interestingly, individuals living at higher altitudes have a lower fasting glycemia and better glucose tolerance compared with those who live near sea level. There is also emerging evidence of the lower prevalence of both obesity and diabetes at higher altitudes. The mechanisms underlying improved glucose control at higher altitudes remain unclear. In this review, we present the most current evidence about glucose homeostasis in residents living above 1500 m and discuss possible mechanisms that could explain the lower fasting glycemia and lower prevalence of obesity and diabetes in this population. Understanding the mechanisms that regulate and maintain the lower fasting glycemia in individuals who live at higher altitudes could lead to new therapeutics for impaired glucose homeostasis.
Collapse
Affiliation(s)
- Orison O Woolcott
- Diabetes and Obesity Research Institute, Cedars-Sinai Medical Center, Los Angeles, California 90048
| | | | | |
Collapse
|
40
|
Faulhaber M, Gatterer H, Haider T, Linser T, Netzer N, Burtscher M. Heart rate and blood pressure responses during hypoxic cycles of a 3-week intermittent hypoxia breathing program in patients at risk for or with mild COPD. Int J Chron Obstruct Pulmon Dis 2015; 10:339-45. [PMID: 25709428 PMCID: PMC4334311 DOI: 10.2147/copd.s75749] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
The aim of this study was to provide information on heart rate and blood pressure responses during a 3-week intermittent hypoxia breathing program in COPD patients. Sixteen participants with COPD symptoms were randomly assigned to a hypoxia or control group and completed a 3-week intermittent hypoxia breathing program (five sessions per week, each consisting of three to five breathing cycles, each cycle lasting 3–5 minutes with 3-minute breaks between cycles). During the breathing cycles, the hypoxia group received hypoxic air (inspired fraction of oxygen 15%–12%), whereas the control group received normal air (sham hypoxia). During the breaks, all participants breathed normoxic room air. Arterial oxygen saturation, systolic and diastolic blood pressure, and heart rate were measured during the normoxic and hypoxic/sham hypoxic periods. For each breathing cycle, changes from normoxia to hypoxia/sham hypoxia were calculated, and changes were averaged for each of the 15 sessions and for each week. Changes in arterial oxygen saturation were significantly different between groups in the course of the 3 weeks (two-way analysis of variance for repeated measures), with post hoc differences in weeks 1, 2, and 3. During the course of the intermittent hypoxia application, no between-group differences were detected for blood pressure or rate pressure product values. Changes in heart rate were significantly different between groups in the course of the 3 weeks (two-way analysis of variance for repeated measures), with post hoc differences only in week 3. Averages over all 15 sessions were significantly higher in the hypoxia group for heart rate and rate pressure product, and tended to be increased for systolic blood pressure. The applied intermittent hypoxia breathing program resulted in specific and moderate heart rate and blood pressure responses, and did not provoke a progressive increase in blood pressure during the hypoxic cycles in the course of the application.
Collapse
Affiliation(s)
- Martin Faulhaber
- Department of Sport Science, University of Innsbruck, Innsbruck, Austria
| | - Hannes Gatterer
- Department of Sport Science, University of Innsbruck, Innsbruck, Austria
| | - Thomas Haider
- Institute of Veterinary Physiology, University of Zurich, Zurich, Switzerland
| | - Tobias Linser
- Department of Sport Science, University of Innsbruck, Innsbruck, Austria
| | - Nikolaus Netzer
- Department of Sport Science, University of Innsbruck, Innsbruck, Austria
| | - Martin Burtscher
- Department of Sport Science, University of Innsbruck, Innsbruck, Austria
| |
Collapse
|