1
|
Zhou X, Yang N, Xu W, Li X, Spiliopoulou A, Theodoratou E. Associations of genetic factors with vascular diabetes complications: an umbrella review. J Glob Health 2025; 15:04081. [PMID: 40116328 PMCID: PMC11927039 DOI: 10.7189/jogh.15.04081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2025] Open
Abstract
Background To comprehensively assess evidence from published systematic review and meta-analyses (SRMAs) on the genetics of vascular diabetes complications. Methods A systematic literature search conducted in Medline and Embase identified 63 non-overlapping SRMAs. We re-conducted meta-analyses to compare diabetes with and without complications using multiple genetic models; evaluated associations using Venice criteria and Bayesian false-discovery probability (BFDP); and graded as highly credible, credible, and not credible. We also contrasted highly credible and credible associations to recent genome-wide association studies (GWASs). Results Highly credible evidence was discovered for single nucleotide polymorphisms (SNPs) rs1024611 at MCP-1 gene and SNP rs3025039 at VEGF gene with diabetic retinopathy (DR) in type 2 diabetes; SNP rs2268388 at ACACB gene, insertion/deletion (Ins/Del) variant at ACE gene, SNP rs1801133 at MTHFR gene, and SNP rs7903146 at TCF7L2 gene with diabetic kidney disease (DKD) in type 2 diabetes; and SNP rs4880 at SOD2 gene with diabetic peripheral neuropathy (DPN) in type 1 diabetes. Combining type 1 and 2 diabetes, highly credible evidence was discovered for insertion/deletion variant at ACE gene, SNP rs759853 at AKR1B1 gene, SNP rs1044498 at ENPP1 gene and DKD, and SNP rs1617640 at EPO gene for the combined endpoint of DR and DKD. None of these associations was directly replicated in the latest GWASs for DR and DKD, however, another SNP, rs55853916 at TCF7L2 gene had been detected as a GWAS hit for DKD. Conclusions This umbrella review rigorously assessed evidence on the genetics of vascular diabetes complications, complemented findings in recent GWASs and yielded insight into the optimal selection of genetic models for the design of GWASs on vascular diabetes complications. Mechanistic or bioinformatic studies are warranted to further assess the role of these genes in the pathology of vascular diabetes complications and their potential as drug targets. Registration PROSPERO: CRD42022384423.
Collapse
Affiliation(s)
- Xuan Zhou
- Usher Institute, College of Medicine and Veterinary Medicine, University of Edinburgh, Edinburgh, UK
| | - Nan Yang
- Department of Big Data in Health Science School of Public Health, and Centre of Clinical Big Data and Analytics of The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Wei Xu
- Usher Institute, College of Medicine and Veterinary Medicine, University of Edinburgh, Edinburgh, UK
| | - Xue Li
- Department of Big Data in Health Science School of Public Health, and Centre of Clinical Big Data and Analytics of The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Athina Spiliopoulou
- Usher Institute, College of Medicine and Veterinary Medicine, University of Edinburgh, Edinburgh, UK
| | - Evropi Theodoratou
- Usher Institute, College of Medicine and Veterinary Medicine, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
2
|
Vandewalle J, Desouter AK, Van der Auwera BJ, Chapaza KB, Nobels F, Abrams P, Lebrethon MC, Lapauw B, Keymeulen B, Gorus FK, Van de Casteele M. The stage- and subgroup-specific impact of non-HLA polymorphisms on preclinical type 1 diabetes progression. Heliyon 2025; 11:e42156. [PMID: 40196768 PMCID: PMC11947702 DOI: 10.1016/j.heliyon.2025.e42156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 10/28/2024] [Accepted: 01/20/2025] [Indexed: 04/09/2025] Open
Abstract
Besides variation within the HLA gene complex determining a major part of genetic susceptibility to Type 1 diabetes, genome-wide association studies have identified over 60 non-HLA loci also contributing to disease risk. While individual single nucleotide polymorphisms (SNPs) have limited predictive power, genetic risk scores (GRS) can identify at-risk individuals. However, current models do not fully capture the heterogeneous progression of asymptomatic islet autoimmunity, especially in autoantibody-positive subjects. In this study, we investigated the additional stage-specific impact of 17 non-HLA loci on previously established prediction models in 448 persistently autoantibody-positive first-degree relatives. Cox regression and Kaplan Meier survival analysis were used to assess their influence on progression from single to multiple autoantibody-positivity, and from there to clinical onset. FUT2 and CTSH significantly accelerated progression of single to multiple autoAb-positivity, but only in presence of insulin autoantibodies and HLA-DQ2/DQ8, respectively. At the stage of multiple autoantibody-positivity, progression to clinical onset was impacted by various non-HLA SNPs either as independent predictors (GLIS3, CENPW, IL2, GSDM, MEG3A, and NRP-1) or through interaction with HLA class I alleles (CLEC16A, NRP-1, TCF7L2), maternal diabetes status (CTSH), or a high-risk autoantibody-profile (CD226). Our data indicate that, unlike for GRS, the weight of distinct non-HLA polymorphisms varies significantly among individuals at risk, depending on disease stage and other stage-specific risk factors. They refine our previous stage-specific prediction models including age, autoantibody-profile, HLA genotype, and other non-HLA SNPs, and emphasize the importance of stratifying accordingly to personalize time-to-event prediction in risk groups, or for preparing or interpreting prevention trials.
Collapse
Affiliation(s)
- Julie Vandewalle
- Diabetes Research Center, Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | - Aster K. Desouter
- Diabetes Research Center, Vrije Universiteit Brussel (VUB), Brussels, Belgium
- Department of Diabetes and Endocrinology, Universitair Ziekenhuis Brussel (UZ Brussel), Brussels, Belgium
| | | | - Kaven B. Chapaza
- Diabetes Research Center, Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | - Frank Nobels
- Department of Endocrinology, OLV Hospital Aalst, Aalst, Belgium
| | - Pascale Abrams
- Department of Endocrinology and Diabetology, GZA Hospitals Antwerp, Wilrijk, Antwerp, Belgium
| | | | - Bruno Lapauw
- Department of Endocrinology, University Hospital Ghent–UGent, Ghent, Belgium
| | - Bart Keymeulen
- Diabetes Research Center, Vrije Universiteit Brussel (VUB), Brussels, Belgium
- Department of Diabetes and Endocrinology, Universitair Ziekenhuis Brussel (UZ Brussel), Brussels, Belgium
| | - Frans K. Gorus
- Diabetes Research Center, Vrije Universiteit Brussel (VUB), Brussels, Belgium
- Department of Diabetes and Endocrinology, Universitair Ziekenhuis Brussel (UZ Brussel), Brussels, Belgium
| | | | | |
Collapse
|
3
|
Jacobsen LM, Atkinson MA, Sosenko JM, Gitelman SE. Time to reframe the disease staging system for type 1 diabetes. Lancet Diabetes Endocrinol 2024; 12:924-933. [PMID: 39608963 PMCID: PMC12019770 DOI: 10.1016/s2213-8587(24)00239-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 06/16/2024] [Accepted: 07/25/2024] [Indexed: 11/30/2024]
Abstract
In 2015, introduction of a disease staging system offered a framework for benchmarking progression to clinical type 1 diabetes. This model, based on islet autoantibodies (stage 1) and dysglycaemia (stage 2) before type 1 diabetes diagnosis (stage 3), has facilitated screening and identification of people at risk. Yet, there are many limitations to this model as the stages combine a very heterogeneous group of individuals; do not have high specificity for type 1 diabetes; can occur without persistence (ie, reversion to an earlier risk stage); and exclude age and other influential risk factors. The current staging system also infers that individuals at risk of type 1 diabetes progress linearly from stage 1 to stage 2 and subsequently stage 3, whereas such movements are often more complex. With the approval of teplizumab by the US Food and Drug Administration in 2022 to delay type 1 diabetes in people at stage 2, there is a need to refine the definition and accuracy of type 1 diabetes staging. Theoretically, we propose that a type 1 diabetes risk calculator should incorporate any available demographic, genetic, autoantibody, metabolic, and immune data that could be continuously updated. Additionally, we call to action for the field to increase the breadth of knowledge regarding type 1 diabetes risk in non-relatives, adults, and individuals from minority populations.
Collapse
Affiliation(s)
- Laura M Jacobsen
- Department of Paediatrics and Department of Pathology, Immunology and Laboratory Medicine, Diabetes Institute, College of Medicine, University of Florida, Gainesville, FL, USA.
| | - Mark A Atkinson
- Department of Paediatrics and Department of Pathology, Immunology and Laboratory Medicine, Diabetes Institute, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Jay M Sosenko
- Division of Endocrinology, University of Miami, Miami, FL, USA
| | - Stephen E Gitelman
- Department of Paediatrics, Diabetes Center, University of California San Francisco, San Francisco, California, USA
| |
Collapse
|
4
|
Chi D, Zhu M, Dong G, Gao H, Xiang W, Ye Q, Fu J. Family History of Type 2 Diabetes and Its Association with Beta Cell Function and Lipid Profile in Newly Diagnosed Pediatric Patients with Type 1 Diabetes. Endocr Res 2024; 49:117-123. [PMID: 38676343 DOI: 10.1080/07435800.2024.2339934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 04/02/2024] [Indexed: 04/28/2024]
Abstract
OBJECTIVE The objective of this study was to explore the associations between a family history of type 2 diabetes (T2D) and beta-cell function, as well as lipid profile, in pediatric patients newly diagnosed with type 1 diabetes (T1D). METHODS A retrospective analysis was conducted on children under 14 years of age who were newly diagnosed with T1D at the Children's Hospital of Zhejiang University between August 2018 and August 2022. Clinical features, metabolic profiles, beta-cell function, and lipid profile were evaluated. RESULTS A total of 316 children were diagnosed with new-onset T1D. Among them, 28.2% had a family history of T2D. Patients with T1D who had a family history of T2D experienced a later onset of the disease (p = 0.016), improved HOMA2-%B levels (p = 0.003), and increased concentrations of HDL-C (p = 0.005). In addition, no statistically significant differences in age at onset, HOMA2-%B levels, or HDL-C were found when assessing the interaction between family history of T2D and type of diabetes mellitus (autoimmune T1D/idiopathic T1D). CONCLUSION A family history of T2D may contribute to the heterogeneity of T1D patients in terms of HOMA2-%B levels and lipid profile. This highlights the significance of taking into account T2D-related factors in the diagnosis and treatment of T1D.
Collapse
Affiliation(s)
- Dan Chi
- Department of Laboratory Medicine, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Mingqiang Zhu
- Department of Endocrinology, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Guanping Dong
- Department of Endocrinology, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Hui Gao
- Department of Laboratory Medicine, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Wenqing Xiang
- Department of Laboratory Medicine, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Qing Ye
- Department of Laboratory Medicine, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Junfen Fu
- Department of Endocrinology, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| |
Collapse
|
5
|
Leslie RD, Ma RCW, Franks PW, Nadeau KJ, Pearson ER, Redondo MJ. Understanding diabetes heterogeneity: key steps towards precision medicine in diabetes. Lancet Diabetes Endocrinol 2023; 11:848-860. [PMID: 37804855 DOI: 10.1016/s2213-8587(23)00159-6] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 04/30/2023] [Accepted: 05/27/2023] [Indexed: 10/09/2023]
Abstract
Diabetes is a highly heterogeneous condition; yet, it is diagnosed by measuring a single blood-borne metabolite, glucose, irrespective of aetiology. Although pragmatically helpful, disease classification can become complex and limit advances in research and medical care. Here, we describe diabetes heterogeneity, highlighting recent approaches that could facilitate management by integrating three disease models across all forms of diabetes, namely, the palette model, the threshold model and the gradient model. Once diabetes has developed, further worsening of established diabetes and the subsequent emergence of diabetes complications are kept in check by multiple processes designed to prevent or circumvent metabolic dysfunction. The impact of any given disease risk factor will vary from person-to-person depending on their background, diabetes-related propensity, and environmental exposures. Defining the consequent heterogeneity within diabetes through precision medicine, both in terms of diabetes risk and risk of complications, could improve health outcomes today and shine a light on avenues for novel therapy in the future.
Collapse
Affiliation(s)
| | - Ronald Ching Wan Ma
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong SAR, China; Chinese University of Hong Kong-Shanghai Jiao Tong University Joint Research Centre in Diabetes Genomics and Precision Medicine, Hong Kong Institute of Diabetes and Obesity, The Chinese University of Hong Kong, Hong Kong SAR, China; Laboratory for Molecular Epidemiology in Diabetes, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Paul W Franks
- Novo Nordisk Foundation, Hellerup, Denmark; Lund University Diabetes Centre, Department of Clinical Sciences, Lund University, Malmo, Sweden; Oxford Centre for Diabetes, Endocrinology and Metabolism, Radcliffe Department of Medicine, University of Oxford, Oxford, UK; Harvard T H Chan School of Public Health, Boston, MA, USA
| | - Kristen J Nadeau
- Anschutz Medical Campus, University of Colorado, Aurora, CO, USA
| | - Ewan R Pearson
- Population Health & Genomics, School of Medicine, University of Dundee, Dundee, UK
| | | |
Collapse
|
6
|
Abstract
Despite major advances over the past decade, prevention and treatment of type 1 diabetes mellitus (T1DM) remain suboptimal, with large and unexplained variations in individual responses to interventions. The current classification schema for diabetes mellitus does not capture the complexity of this disease or guide clinical management effectively. One of the approaches to achieve the goal of applying precision medicine in diabetes mellitus is to identify endotypes (that is, well-defined subtypes) of the disease each of which has a distinct aetiopathogenesis that might be amenable to specific interventions. Here, we describe epidemiological, clinical, genetic, immunological, histological and metabolic differences within T1DM that, together, suggest heterogeneity in its aetiology and pathogenesis. We then present the emerging endotypes and their impact on T1DM prediction, prevention and treatment.
Collapse
Affiliation(s)
- Maria J Redondo
- Paediatric Diabetes & Endocrinology, Texas Children's Hospital, Baylor College of Medicine, Houston, TX, USA.
| | - Noel G Morgan
- Exeter Centre of Excellence for Diabetes Research (EXCEED), Department of Clinical and Biomedical and Science, University of Exeter Medical School, Exeter, UK
| |
Collapse
|
7
|
Mameli C, Triolo TM, Chiarelli F, Rewers M, Zuccotti G, Simmons KM. Lessons and Gaps in the Prediction and Prevention of Type 1 Diabetes. Pharmacol Res 2023; 193:106792. [PMID: 37201589 DOI: 10.1016/j.phrs.2023.106792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 05/01/2023] [Accepted: 05/08/2023] [Indexed: 05/20/2023]
Abstract
Type 1 diabetes (T1D) is a serious chronic autoimmune condition. Even though the root cause of T1D development has yet to be determined, enough is known about the natural history of T1D pathogenesis to allow study of interventions that may delay or even prevent the onset of hyperglycemia and clinical T1D. Primary prevention aims to prevent the onset of beta cell autoimmunity in asymptomatic people at high genetic risk for T1D. Secondary prevention strategies aim to preserve functional beta cells once autoimmunity is present, and tertiary prevention aims to initiate and extend partial remission of beta cell destruction after the clinical onset of T1D. The approval of teplizumab in the United States to delay the onset of clinical T1D marks an impressive milestone in diabetes care. This treatment opens the door to a paradigm shift in T1D care. People with T1D risk need to be identified early by measuring T1D related islet autoantibodies. Identifying people with T1D before they have symptoms will facilitate better understanding of pre-symptomatic T1D progression and T1D prevention strategies that may be effective.
Collapse
Affiliation(s)
- Chiara Mameli
- Department of Pediatrics, V. Buzzi Children's Hospital, Milan, Italy; Department of Biomedical and Clinical Sciences, University of Milan, Milan, Italy.
| | - Taylor M Triolo
- Barbara Davis Center for Diabetes, Department of Pediatrics, University of Colorado School of Medicine, Aurora, CO 80045
| | | | - Marian Rewers
- Barbara Davis Center for Diabetes, Department of Pediatrics, University of Colorado School of Medicine, Aurora, CO 80045
| | - Gianvincenzo Zuccotti
- Department of Pediatrics, V. Buzzi Children's Hospital, Milan, Italy; Department of Biomedical and Clinical Sciences, University of Milan, Milan, Italy
| | - Kimber M Simmons
- Barbara Davis Center for Diabetes, Department of Pediatrics, University of Colorado School of Medicine, Aurora, CO 80045
| |
Collapse
|
8
|
Royer-Bertrand B, Lebon S, Craig A, Maeder J, Mittaz-Crettol L, Fodstad H, Superti-Furga A, Good JM. Developmental disorder and spastic paraparesis in two sisters with a TCF7L2 truncating variant inherited from a mosaic mother. Am J Med Genet A 2023; 191:1658-1663. [PMID: 36905089 DOI: 10.1002/ajmg.a.63173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 02/01/2023] [Accepted: 02/21/2023] [Indexed: 03/12/2023]
Affiliation(s)
- Beryl Royer-Bertrand
- Division of Genetic Medicine, Lausanne University Hospital (CHUV) and University of Lausanne, Lausanne, Switzerland
| | - Sébastien Lebon
- Unit of Pediatric Neurology and Neurorehabilitation, Department of Pediatrics, Lausanne University Hospital (CHUV) and University of Lausanne, Lausanne, Switzerland
| | - Ailsa Craig
- Division of Genetic Medicine, Lausanne University Hospital (CHUV) and University of Lausanne, Lausanne, Switzerland
| | - Johanna Maeder
- Unit of Pediatric Neurology and Neurorehabilitation, Department of Pediatrics, Lausanne University Hospital (CHUV) and University of Lausanne, Lausanne, Switzerland
| | - Laureane Mittaz-Crettol
- Division of Genetic Medicine, Lausanne University Hospital (CHUV) and University of Lausanne, Lausanne, Switzerland
| | - Heidi Fodstad
- Division of Genetic Medicine, Lausanne University Hospital (CHUV) and University of Lausanne, Lausanne, Switzerland
| | - Andrea Superti-Furga
- Division of Genetic Medicine, Lausanne University Hospital (CHUV) and University of Lausanne, Lausanne, Switzerland
| | - Jean-Marc Good
- Division of Genetic Medicine, Lausanne University Hospital (CHUV) and University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
9
|
Ergür E, Ergür E, Alnek K, Metsküla K, Peet A, Lubi M, Heilman K, Uibo R. Clinical signs of type 1 diabetes are associated with type 2 diabetes marker transcription factor 7-like 2 polymorphism. J Diabetes Investig 2022; 14:221-229. [PMID: 36300877 PMCID: PMC9889689 DOI: 10.1111/jdi.13933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 09/22/2022] [Accepted: 10/11/2022] [Indexed: 02/04/2023] Open
Abstract
AIMS/INTRODUCTION We aimed to assess the distribution of transcription factor 7-like 2 gene TCF7L2 (rs7903146) polymorphism and to find possible associations between TCF7L2 and the characteristics of type 1 diabetes. MATERIALS AND METHODS We studied 190 newly diagnosed type 1 diabetes patients (median age 12.7 years, range 2.0-72.5) and 246 controls (median age 23.8 years, range 1.4-81.5) for TCF7L2 single nucleotide polymorphism. We determined anti-islet autoantibodies, random C-peptide levels, diabetes associated HLA DR/DQ haplotypes and genotypes in all patients. RESULTS There were no differences in the distribution of TCF7L2 single nucleotide polymorphism between patients and controls. However, patients with in type 1 diabetes, after adjusting for age and sex, subjects carrying C allele were at risk for a C-peptide level lower than 0.5 nmol/L (OR 5.65 [95% CI: 1.14-27.92]) and for zinc transporter 8 autoantibody positivity (5.22 [1.34-20.24]). Participants without T allele were associated with a higher level of islet antigen-2 autoantibodies (3.51 [1.49-8.27]) and zinc transporter 8 autoantibodies (2.39 [1.14-4.99]). CONCLUSIONS The connection of TCF7L2 polymorphism with zinc transporter 8 and islet antigen-2 autoantibodies and C-peptide levels in patients supports the viewpoint that TCF7L2 is associated with the clinical signs and autoimmune characteristics of type 1 diabetes. The mechanisms of the interaction between the TCF7L2 risk genotype and anti-islet autoantibodies need to be studied further.
Collapse
Affiliation(s)
- Efe Ergür
- Department of Immunology, Institute of Bio‐ and Translational MedicineUniversity of TartuTartuEstonia
| | - Ege Ergür
- Department of Immunology, Institute of Bio‐ and Translational MedicineUniversity of TartuTartuEstonia
| | - Kristi Alnek
- Department of Immunology, Institute of Bio‐ and Translational MedicineUniversity of TartuTartuEstonia
| | - Kaja Metsküla
- Department of Immunology, Institute of Bio‐ and Translational MedicineUniversity of TartuTartuEstonia
| | - Aleksandr Peet
- Department of Pediatrics, Institute of Clinical MedicineUniversity of TartuTartuEstonia,Children's Clinic of Tartu University HospitalTartuEstonia
| | - Maire Lubi
- Department of Internal Medicine, Institute of Clinical MedicineUniversity of TartuTartuEstonia,Internal Medicine Clinic of Tartu University HospitalTartuEstonia
| | | | - Raivo Uibo
- Department of Immunology, Institute of Bio‐ and Translational MedicineUniversity of TartuTartuEstonia
| |
Collapse
|
10
|
Redondo MJ, Gignoux CR, Dabelea D, Hagopian WA, Onengut-Gumuscu S, Oram RA, Rich SS. Type 1 diabetes in diverse ancestries and the use of genetic risk scores. Lancet Diabetes Endocrinol 2022; 10:597-608. [PMID: 35724677 PMCID: PMC10024251 DOI: 10.1016/s2213-8587(22)00159-0] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 04/16/2022] [Accepted: 05/06/2022] [Indexed: 02/06/2023]
Abstract
Over 75 genetic loci within and outside of the HLA region influence type 1 diabetes risk. Genetic risk scores (GRS), which facilitate the integration of complex genetic information, have been developed in type 1 diabetes and incorporated into models and algorithms for classification, prognosis, and prediction of disease and response to preventive and therapeutic interventions. However, the development and validation of GRS across different ancestries is still emerging, as is knowledge on type 1 diabetes genetics in populations of diverse genetic ancestries. In this Review, we provide a summary of the current evidence on the evolutionary genetic variation in type 1 diabetes and the racial and ethnic differences in type 1 diabetes epidemiology, clinical characteristics, and preclinical course. We also discuss the influence of genetics on type 1 diabetes with differences across ancestries and the development and validation of GRS in various populations.
Collapse
Affiliation(s)
- Maria J Redondo
- Division of Diabetes and Endocrinology, Texas Children's Hospital, Baylor College of Medicine, Houston, TX, USA.
| | - Christopher R Gignoux
- Department of Medicine and Colorado Center for Personalized Medicine, Anschutz Medical Campus, University of Colorado, Aurora, CO, USA
| | - Dana Dabelea
- Lifecourse Epidemiology of Adiposity and Diabetes (LEAD) Center, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - William A Hagopian
- Division of Diabetes Programs, Pacific Northwest Research Institute, Seattle, WA, USA
| | - Suna Onengut-Gumuscu
- Department of Public Health Sciences, University of Virginia, Charlottesville, VA, USA
| | - Richard A Oram
- Institute of Biomedical and Clinical Science, University of Exeter Medical School, University of Exeter, Exeter, UK; The Academic Kidney Unit, Royal Devon and Exeter NHS Foundation Trust, Exeter, UK
| | - Stephen S Rich
- Department of Public Health Sciences, University of Virginia, Charlottesville, VA, USA
| |
Collapse
|
11
|
Cefalu WT, Andersen DK, Arreaza-Rubín G, Pin CL, Sato S, Verchere CB, Woo M, Rosenblum ND. Heterogeneity of Diabetes: β-Cells, Phenotypes, and Precision Medicine: Proceedings of an International Symposium of the Canadian Institutes of Health Research's Institute of Nutrition, Metabolism and Diabetes and the U.S. National Institutes of Health's National Institute of Diabetes and Digestive and Kidney Diseases. Diabetes Care 2022; 45:3-22. [PMID: 34782355 PMCID: PMC8753760 DOI: 10.2337/dci21-0051] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 09/23/2021] [Indexed: 02/03/2023]
Abstract
One hundred years have passed since the discovery of insulin-an achievement that transformed diabetes from a fatal illness into a manageable chronic condition. The decades since that momentous achievement have brought ever more rapid innovation and advancement in diabetes research and clinical care. To celebrate the important work of the past century and help to chart a course for its continuation into the next, the Canadian Institutes of Health Research's Institute of Nutrition, Metabolism and Diabetes and the U.S. National Institutes of Health's National Institute of Diabetes and Digestive and Kidney Diseases recently held a joint international symposium, bringing together a cohort of researchers with diverse interests and backgrounds from both countries and beyond to discuss their collective quest to better understand the heterogeneity of diabetes and thus gain insights to inform new directions in diabetes treatment and prevention. This article summarizes the proceedings of that symposium, which spanned cutting-edge research into various aspects of islet biology, the heterogeneity of diabetic phenotypes, and the current state of and future prospects for precision medicine in diabetes.
Collapse
Affiliation(s)
- William T. Cefalu
- Division of Diabetes, Endocrinology and Metabolic Diseases, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD
| | - Dana K. Andersen
- Division of Digestive Diseases and Nutrition, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD
| | - Guillermo Arreaza-Rubín
- Division of Diabetes, Endocrinology and Metabolic Diseases, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD
| | - Christopher L. Pin
- Departments of Physiology and Pharmacology, Paediatrics, and Oncology, University of Western Ontario, and Genetics and Development Division, Children’s Health Research Institute, Lawson Health Research Institute, London, Ontario, Canada
| | - Sheryl Sato
- Division of Diabetes, Endocrinology and Metabolic Diseases, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD
| | - C. Bruce Verchere
- Departments of Surgery and Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada
- BC Children’s Hospital, Vancouver, British Columbia, Canada
- UBC Centre for Molecular Medicine and Therapeutics, Vancouver, British Columbia, Canada
| | - Minna Woo
- Departments of Medicine and Immunology, University of Toronto, Toronto, Ontario, Canada
- Division of Endocrinology and Metabolism, University Health Network and Sinai Health System, Toronto, Ontario, Canada
- Toronto General Hospital Research Institute, Toronto, Ontario, Canada
| | - Norman D. Rosenblum
- Canadian Institutes of Health Research Institute of Nutrition, Metabolism and Diabetes, Toronto, Ontario, Canada
- Division of Nephrology, Department of Paediatrics, University of Toronto, Toronto, Ontario, Canada
- Program in Stem Cell and Developmental Biology, Research Institute, The Hospital for Sick Children Research Institute, Toronto, Ontario, Canada
| |
Collapse
|
12
|
Cefalu WT, Andersen DK, Arreaza-Rubín G, Pin CL, Sato S, Verchere CB, Woo M, Rosenblum ND. Heterogeneity of Diabetes: β-Cells, Phenotypes, and Precision Medicine: Proceedings of an International Symposium of the Canadian Institutes of Health Research's Institute of Nutrition, Metabolism and Diabetes and the U.S. National Institutes of Health's National Institute of Diabetes and Digestive and Kidney Diseases. Can J Diabetes 2021; 45:697-713. [PMID: 34794897 DOI: 10.1016/j.jcjd.2021.09.126] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 09/23/2021] [Indexed: 10/19/2022]
Abstract
One hundred years have passed since the discovery of insulin-an achievement that transformed diabetes from a fatal illness into a manageable chronic condition. The decades since that momentous achievement have brought ever more rapid innovation and advancement in diabetes research and clinical care. To celebrate the important work of the past century and help to chart a course for its continuation into the next, the Canadian Institutes of Health Research's Institute of Nutrition, Metabolism and Diabetes and the U.S. National Institutes of Health's National Institute of Diabetes and Digestive and Kidney Diseases recently held a joint international symposium, bringing together a cohort of researchers with diverse interests and backgrounds from both countries and beyond to discuss their collective quest to better understand the heterogeneity of diabetes and thus gain insights to inform new directions in diabetes treatment and prevention. This article summarizes the proceedings of that symposium, which spanned cutting-edge research into various aspects of islet biology, the heterogeneity of diabetic phenotypes, and the current state of and future prospects for precision medicine in diabetes.
Collapse
Affiliation(s)
- William T Cefalu
- Division of Diabetes, Endocrinology and Metabolic Diseases, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, United States.
| | - Dana K Andersen
- Division of Digestive Diseases and Nutrition, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, United States
| | - Guillermo Arreaza-Rubín
- Division of Diabetes, Endocrinology and Metabolic Diseases, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, United States
| | - Christopher L Pin
- Departments of Physiology and Pharmacology, Paediatrics, and Oncology, University of Western Ontario, and Genetics and Development Division, Children's Health Research Institute, Lawson Health Research Institute, London, Ontario, Canada
| | - Sheryl Sato
- Division of Diabetes, Endocrinology and Metabolic Diseases, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, United States
| | - C Bruce Verchere
- Departments of Surgery and Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada; BC Children's Hospital, Vancouver, British Columbia, Canada; UBC Centre for Molecular Medicine and Therapeutics, Vancouver, British Columbia, Canada
| | - Minna Woo
- Departments of Medicine and Immunology, University of Toronto, Toronto, Ontario, Canada; Division of Endocrinology and Metabolism, University Health Network and Sinai Health System, Toronto, Ontario, Canada; Toronto General Hospital Research Institute, Toronto, Ontario, Canada
| | - Norman D Rosenblum
- Canadian Institutes of Health Research's Institute of Nutrition, Metabolism and Diabetes, Toronto, Ontario, Canada; Division of Nephrology, Department of Paediatrics, University of Toronto, Toronto, Ontario, Canada; Program in Stem Cell and Developmental Biology, Research Institute, The Hospital for Sick Children Research Institute, Toronto, Ontario, Canada
| |
Collapse
|
13
|
Cefalu WT, Andersen DK, Arreaza-Rubín G, Pin CL, Sato S, Verchere CB, Woo M, Rosenblum ND. Heterogeneity of Diabetes: β-Cells, Phenotypes, and Precision Medicine: Proceedings of an International Symposium of the Canadian Institutes of Health Research's Institute of Nutrition, Metabolism and Diabetes and the U.S. National Institutes of Health's National Institute of Diabetes and Digestive and Kidney Diseases. Diabetes 2021; 71:db210777. [PMID: 34782351 PMCID: PMC8763877 DOI: 10.2337/db21-0777] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 09/23/2021] [Indexed: 11/13/2022]
Abstract
One hundred years have passed since the discovery of insulin-an achievement that transformed diabetes from a fatal illness into a manageable chronic condition. The decades since that momentous achievement have brought ever more rapid innovation and advancement in diabetes research and clinical care. To celebrate the important work of the past century and help to chart a course for its continuation into the next, the Canadian Institutes of Health Research's Institute of Nutrition, Metabolism and Diabetes and the U.S. National Institutes of Health's National Institute of Diabetes and Digestive and Kidney Diseases recently held a joint international symposium, bringing together a cohort of researchers with diverse interests and backgrounds from both countries and beyond to discuss their collective quest to better understand the heterogeneity of diabetes and thus gain insights to inform new directions in diabetes treatment and prevention. This article summarizes the proceedings of that symposium, which spanned cutting-edge research into various aspects of islet biology, the heterogeneity of diabetic phenotypes, and the current state of and future prospects for precision medicine in diabetes.
Collapse
Affiliation(s)
- William T Cefalu
- Division of Diabetes, Endocrinology and Metabolic Diseases, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD
| | - Dana K Andersen
- Division of Digestive Diseases and Nutrition, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD
| | - Guillermo Arreaza-Rubín
- Division of Diabetes, Endocrinology and Metabolic Diseases, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD
| | - Christopher L Pin
- Departments of Physiology and Pharmacology, Paediatrics, and Oncology, University of Western Ontario, and Genetics and Development Division, Children's Health Research Institute, Lawson Health Research Institute, London, Ontario, Canada
| | - Sheryl Sato
- Division of Diabetes, Endocrinology and Metabolic Diseases, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD
| | - C Bruce Verchere
- Departments of Surgery and Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada
- BC Children's Hospital, Vancouver, British Columbia, Canada
- UBC Centre for Molecular Medicine and Therapeutics, Vancouver, British Columbia, Canada
| | - Minna Woo
- Departments of Medicine and Immunology, University of Toronto, Toronto, Ontario, Canada
- Division of Endocrinology and Metabolism, University Health Network and Sinai Health System, Toronto, Ontario, Canada
- Toronto General Hospital Research Institute, Toronto, Ontario, Canada
| | | |
Collapse
|
14
|
Del Bosque-Plata L, Hernández-Cortés EP, Gragnoli C. The broad pathogenetic role of TCF7L2 in human diseases beyond type 2 diabetes. J Cell Physiol 2021; 237:301-312. [PMID: 34612510 PMCID: PMC9292842 DOI: 10.1002/jcp.30581] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Revised: 08/16/2021] [Accepted: 08/18/2021] [Indexed: 12/20/2022]
Abstract
The TCF7L2 protein is a key transcriptional effector of the Wnt/β‐catenin signaling pathway, regulating gene expression. It was initially identified in cancer research and embryologic developmental studies. Later, the TCF7L2 gene was linked to type 2 diabetes (T2D), implicating TCF7L2 and Wnt‐signaling in metabolic disorders and homeostasis. In fact, TCF7L2‐T2D variants confer the greatest relative risk for T2D, unquestionably predicting conversion to T2D in individuals with impaired glucose tolerance. We aim to describe the relevance of TCF7L2 in other human disorders. The TCF7L2‐single nucleotide polymorphisms (SNPs) and T2D‐risk association have been replicated in numerous follow‐up studies, and research has now been performed in several other diseases. In this article, we discuss common TCF7L2‐T2D variants within the framework of their association with human diseases. The TCF7L2 functional regions need to be further investigated because the molecular and cellular mechanisms through which TCF7L2 contributes to risk associations with different diseases are still not fully elucidated. In this review, we show the association of common TCF7L2‐T2D variants with many types of diseases. However, the role of rare genetic variations in the TCF7L2 gene in distinct diseases and ethnic groups has not been explored, and understanding their impact on specific phenotypes will be of clinical relevance. This offers an excellent opportunity to gain a clearer picture of the role that the TCF7L2 gene plays in the pathophysiology of human diseases. The potential pleiotropic role of TCF7L2 may underlie a possible pathway for comorbidity in human disorders.
Collapse
Affiliation(s)
- Laura Del Bosque-Plata
- Laboratorio de Nutrigenética y Nutrigenómica, Instituto Nacional de Medicina Genómica, Mexico City, Mexico
| | | | - Claudia Gragnoli
- Department of Medicine, Division of Endocrinology, Diabetes, and Metabolic Disease, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania.,Division of Endocrinology, Creighton University School of Medicine, Omaha, Nebraska, USA.,Department of Public Health Sciences, Penn State College of Medicine, Hershey, Pennsylvania, USA.,Molecular Biology Laboratory, Bios Biotech Multi-Diagnostic Health Center, Rome, Italy
| |
Collapse
|
15
|
Liu Y, Cui ZY, Bao J, Zhang XL, Guo Y, Su MJ, Han JW. Metabolic syndrome-related SNPs in HLA and TNF7L2 may be risk factors for generalized pustular psoriasis in Chinese Han population. SKIN HEALTH AND DISEASE 2021; 1:e18. [PMID: 35664972 PMCID: PMC9060112 DOI: 10.1002/ski2.18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 01/28/2021] [Accepted: 01/28/2021] [Indexed: 11/09/2022]
Abstract
Background Generalized pustular psoriasis (GPP) is a rare and severe type of psoriasis. Previous studies have reported that metabolic syndrome and its components have been associated with psoriasis. Objective To investigate the association of metabolic syndrome‐related single‐nucleotide polymorphisms (SNPs) and GPP in Chinese Han population. Materials and Methods One hundred and thirty‐six (136) GPP patients and 965 healthy controls were recruited in the study. Approximately, 4 ml peripheral venous blood was collected from each participant. After collection, second‐generation sequencing was used to detect genetic polymorphism of 15 SNPs. The plink 1.07 software package was used for statistical analysis. Results Rs805303 (p = 0.01, OR = 0.70) and rs3177928 (p = 3.18E−07, OR = 2.66) in HLA were significantly different between the two groups. Moreover, rs4506565 (p = 1.41E−03, OR = 2.72) and rs7901695 (p = 9.39E−04, OR = 2.82) in TCF7L2 were significantly associated with GPP in patients without a previous history of PsV. Genotype analysis of rs4506565 and rs7901695 showed that under the recessive model, genotype frequencies of rs4506565 (p = 0.00, OR = 18.52) and rs7901695 (p = 0.00, OR = 18.44) were significantly different between GPP patients and healthy controls. Conclusion Rs805303 and rs3177928 in HLA may increase the risk of GPP in the Chinese Han population. TCF7L2 may be a risk factor for GPP in patients without a previous history of PsV.
Collapse
Affiliation(s)
- Y Liu
- Department of Dermatology Affiliated Hospital of Inner Mongolia Medical University Hohhot Inner Mongolia China
| | - Z-Y Cui
- Department of Dermatology Affiliated Hospital of Inner Mongolia Medical University Hohhot Inner Mongolia China
| | - J Bao
- Department of Dermatology Affiliated Hospital of Inner Mongolia Medical University Hohhot Inner Mongolia China
| | - X-L Zhang
- Department of Dermatology Affiliated Hospital of Inner Mongolia Medical University Hohhot Inner Mongolia China
| | - Y Guo
- Department of Dermatology Affiliated Hospital of Inner Mongolia Medical University Hohhot Inner Mongolia China
| | - M-J Su
- Department of Dermatology Affiliated Hospital of Inner Mongolia Medical University Hohhot Inner Mongolia China
| | - J-W Han
- Department of Dermatology Affiliated Hospital of Inner Mongolia Medical University Hohhot Inner Mongolia China
| |
Collapse
|
16
|
Zhang Z, Xu L, Xu X. The role of transcription factor 7-like 2 in metabolic disorders. Obes Rev 2021; 22:e13166. [PMID: 33615650 DOI: 10.1111/obr.13166] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 10/08/2020] [Accepted: 10/08/2020] [Indexed: 12/13/2022]
Abstract
Transcription factor 7-like 2 (TCF7L2), a member of the T cell factor/lymphoid enhancer factor family, generally forms a complex with β-catenin to regulate the downstream target genes as an effector of the canonical Wnt signalling pathway. TCF7L2 plays a vital role in various biological processes and functions in many organs and tissues, including the liver, islet and adipose tissues. Further, TCF7L2 down-regulates hepatic gluconeogenesis and promotes lipid accumulation. In islets, TCF7L2 not only affects the insulin secretion of the β-cells but also has an impact on other cells. In addition, TCF7L2 influences adipogenesis in adipose tissues. Thus, an out-of-control TCF7L2 expression can result in metabolic disorders. The TCF7L2 gene is composed of 17 exons, generating 13 different transcripts, and has many single-nucleotide polymorphisms (SNPs). The discovery that these SNPs have an impact on the risk of type 2 diabetes (T2D) has attracted thorough investigations in the study of TCF7L2. Apart from T2D, TCF7L2 SNPs are also associated with type 1, posttransplant and other types of diabetes. Furthermore, TCF7L2 variants affect the progression of other disorders, such as obesity, cancers, metabolic syndrome and heart diseases. Finally, the interaction between TCF7L2 variants and diet also needs to be investigated.
Collapse
Affiliation(s)
- Zhensheng Zhang
- Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Department of Hepatobiliary and Pancreatic Surgery, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,NHC Key Laboratory of Combined Multi-organ Transplantation, Hangzhou, China.,Zhejiang University School of Medicine, Hangzhou, China
| | - Li Xu
- Department of Hepatobiliary and Pancreatic Surgery, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Zhejiang University Cancer Center, Hangzhou, China.,NHC Key Laboratory of Combined Multi-organ Transplantation, Hangzhou, China.,Zhejiang University School of Medicine, Hangzhou, China
| | - Xiao Xu
- Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Department of Hepatobiliary and Pancreatic Surgery, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Zhejiang University Cancer Center, Hangzhou, China
| |
Collapse
|
17
|
Redondo MJ, Nathan BM, Jacobsen LM, Sims E, Bocchino LE, Pugliese A, Schatz DA, Atkinson MA, Skyler J, Palmer J, Geyer S, Sosenko JM. Index60 as an additional diagnostic criterion for type 1 diabetes. Diabetologia 2021; 64:836-844. [PMID: 33496819 PMCID: PMC7940596 DOI: 10.1007/s00125-020-05365-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 10/28/2020] [Indexed: 12/12/2022]
Abstract
AIMS/HYPOTHESIS We aimed to compare characteristics of individuals identified in the peri-diagnostic range by Index60 (composite glucose and C-peptide measure) ≥2.00, 2 h OGTT glucose ≥11.1 mmol/l, or both. METHODS We studied autoantibody-positive participants in the Type 1 Diabetes TrialNet Pathway to Prevention study who, at their baseline OGTT, had 2 h blood glucose ≥11.1 mmol/l and/or Index60 ≥2.00 (n = 354, median age = 11.2 years, age range = 1.7-46.6; 49% male, 83% non-Hispanic White). Type 1 diabetes-relevant characteristics (e.g., age, C-peptide, autoantibodies, BMI) were compared among three mutually exclusive groups: 2 h glucose ≥11.1 mmol/l and Index60 <2.00 [Glu(+), n = 76], 2 h glucose <11.1 mmol/l and Index60 ≥2.00 [Ind(+), n = 113], or both 2 h glucose ≥11.1 mmol/l and Index60 ≥2.00 [Glu(+)/Ind(+), n = 165]. RESULTS Participants in Glu(+), vs those in Ind(+) or Glu(+)/Ind(+), were older (mean ages = 22.9, 11.8 and 14.7 years, respectively), had higher early (30-0 min) C-peptide response (1.0, 0.50 and 0.43 nmol/l), higher AUC C-peptide (2.33, 1.13 and 1.10 nmol/l), higher percentage of overweight/obesity (58%, 16% and 30%) (all comparisons, p < 0.0001), and a lower percentage of multiple autoantibody positivity (72%, 92% and 93%) (p < 0.001). OGTT-stimulated C-peptide and glucose patterns of Glu(+) differed appreciably from Ind(+) and Glu(+)/Ind(+). Progression to diabetes occurred in 61% (46/76) of Glu(+) and 63% (71/113) of Ind(+). Even though Index60 ≥2.00 was not a Pathway to Prevention diagnostic criterion, Ind(+) had a 4 year cumulative diabetes incidence of 95% (95% CI 86%, 98%). CONCLUSIONS/INTERPRETATION Participants in the Ind(+) group had more typical characteristics of type 1 diabetes than participants in the Glu(+) did and were as likely to be diagnosed. However, unlike Glu(+) participants, Ind(+) participants were not identified at the baseline OGTT.
Collapse
Affiliation(s)
- Maria J Redondo
- Texas Children's Hospital, Baylor College of Medicine, Houston, TX, USA.
| | - Brandon M Nathan
- Division of Pediatric Endocrinology, University of Minnesota, Minneapolis, MN, USA
| | | | - Emily Sims
- Indiana University School of Medicine, Indiana University, Indianapolis, IN, USA
| | - Laura E Bocchino
- University of South Florida, Tampa, FL, USA
- Jaeb Center for Health Research, Tampa, FL, USA
| | - Alberto Pugliese
- Diabetes Research Institute, Miller School of Medicine, University of Miami, Miami, FL, USA
| | | | - Mark A Atkinson
- University of Florida Diabetes Institute, Gainesville, FL, USA
| | - Jay Skyler
- Diabetes Research Institute, Miller School of Medicine, University of Miami, Miami, FL, USA
| | | | - Susan Geyer
- University of South Florida, Tampa, FL, USA
- Division of Biomedical Statistics and Informatics, Mayo Clinic, Rochester, MN, USA
| | - Jay M Sosenko
- Diabetes Research Institute, Miller School of Medicine, University of Miami, Miami, FL, USA
| | | |
Collapse
|
18
|
March CA, Becker DJ, Libman IM. Nutrition and Obesity in the Pathogenesis of Youth-Onset Type 1 Diabetes and Its Complications. Front Endocrinol (Lausanne) 2021; 12:622901. [PMID: 33828529 PMCID: PMC8021094 DOI: 10.3389/fendo.2021.622901] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 02/15/2021] [Indexed: 12/15/2022] Open
Abstract
Since the 1980s, there has been a dramatic rise in the prevalence of overweight and obesity in pediatric populations, in large part driven by sedentary lifestyles and changing dietary patterns with more processed foods. In parallel with the rise in pediatric obesity in the general population, the prevalence of overweight and obesity has increased among children and adolescents with type 1 diabetes. Adiposity has been implicated in a variety of mechanisms both potentiating the risk for type 1 diabetes as well as exacerbating long-term complications, particularly cardiovascular disease. Treatment options targeting the unique needs of obese pediatric patients, both before and after diagnosis of type 1 diabetes, are limited. In this review, we discuss the history of the epidemiology of the obesity epidemic in the context of pediatric type 1 diabetes, highlight the possible role of obesity in type 1 diabetes pathogenesis and review the concept of "double diabetes". The impact of obesity at and after diagnosis will be discussed, including noted differences in clinical and biochemical markers, lipid abnormalities, and long-term cardiovascular complications. Finally, we will review the existing literature on pharmacologic and nutritional interventions as potential treatment strategies for youth with coexisting type 1 diabetes and obesity.
Collapse
|
19
|
Cousminer DL, Grant SFA. Insights into the Genetic Underpinnings of Endocrine Traits from Large-Scale Genome-Wide Association Studies. Endocrinol Metab Clin North Am 2020; 49:725-739. [PMID: 33153676 DOI: 10.1016/j.ecl.2020.07.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Great strides have been made in genetic association studies of endocrine traits and diseases, with hundreds or thousands of variants associated with height, body mass index, bone density, pubertal timing, and diabetes in recent years. The common variants associated with these traits explain up to half of the trait variation owing to genetic factors, and when aggregated into polygenic risk scores, can also impact clinically relevant phenotypes at the tail ends of the trait distributions. However, pediatric studies tend to lag behind, and it is often unclear how adult-associated variants behave across life.
Collapse
Affiliation(s)
- Diana L Cousminer
- Center for Spatial and Functional Genomics, Division of Human Genetics, Department of Pediatrics, Children's Hospital of Philadelphia, 3615 Civic Center Boulevard, Philadelphia, PA 19104, USA; Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Clinical Research Building 500, 415 Curie Boulevard, Philadelphia, PA 19104, USA
| | - Struan F A Grant
- Center for Spatial and Functional Genomics, Division of Human Genetics, Department of Pediatrics, Children's Hospital of Philadelphia, 3615 Civic Center Boulevard, Philadelphia, PA 19104, USA; Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Clinical Research Building 500, 415 Curie Boulevard, Philadelphia, PA 19104, USA.
| |
Collapse
|
20
|
Ferrara-Cook C, Geyer SM, Evans-Molina C, Libman IM, Becker DJ, Gitelman SE, Redondo MJ. Excess BMI Accelerates Islet Autoimmunity in Older Children and Adolescents. Diabetes Care 2020; 43:580-587. [PMID: 31937610 PMCID: PMC7035590 DOI: 10.2337/dc19-1167] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Accepted: 12/14/2019] [Indexed: 02/03/2023]
Abstract
OBJECTIVE Sustained excess BMI increases the risk of type 1 diabetes (T1D) in autoantibody-positive relatives without diabetes of patients. We tested whether elevated BMI also accelerates the progression of islet autoimmunity before T1D diagnosis. RESEARCH DESIGN AND METHODS We studied 706 single autoantibody-positive pediatric TrialNet participants (ages 1.6-18.6 years at baseline). Cumulative excess BMI (ceBMI) was calculated for each participant based on longitudinally accumulated BMI ≥85th age- and sex-adjusted percentile. Recursive partitioning analysis and multivariable modeling defined the age cut point differentiating the risk for progression to multiple positive autoantibodies. RESULTS At baseline, 175 children (25%) had a BMI ≥85th percentile. ceBMI range was -9.2 to 15.6 kg/m2 (median -1.91), with ceBMI ≥0 kg/m2 corresponding to persistently elevated BMI ≥85th percentile. Younger age increased the progression to multiple autoantibodies, with age cutoff of 9 years defined by recursive partitioning analysis. Although ceBMI was not significantly associated with progression from single to multiple autoantibodies overall, there was an interaction with ceBMI ≥0 kg/m2, age, and HLA (P = 0.009). Among children ≥9 years old without HLA DR3-DQ2 and DR4-DQ8, ceBMI ≥0 kg/m2 increased the rate of progression from single to multiple positive autoantibodies (hazard ratio 7.32, P = 0.004) and conferred a risk similar to that in those with T1D-associated HLA haplotypes. In participants <9 years old, the effect of ceBMI on progression to multiple autoantibodies was not significant regardless of HLA type. CONCLUSIONS These data support that elevated BMI may exacerbate islet autoimmunity prior to clinical T1D, particularly in children with lower risk based on age and HLA. Interventions to maintain normal BMI may prevent or delay the progression of islet autoimmunity.
Collapse
Affiliation(s)
| | | | | | - Ingrid M Libman
- Children's Hospital of Pittsburgh, University of Pittsburgh Medical Center, Pittsburgh, PA
| | - Dorothy J Becker
- Children's Hospital of Pittsburgh, University of Pittsburgh Medical Center, Pittsburgh, PA
| | | | | | | |
Collapse
|
21
|
Battaglia M, Ahmed S, Anderson MS, Atkinson MA, Becker D, Bingley PJ, Bosi E, Brusko TM, DiMeglio LA, Evans-Molina C, Gitelman SE, Greenbaum CJ, Gottlieb PA, Herold KC, Hessner MJ, Knip M, Jacobsen L, Krischer JP, Long SA, Lundgren M, McKinney EF, Morgan NG, Oram RA, Pastinen T, Peters MC, Petrelli A, Qian X, Redondo MJ, Roep BO, Schatz D, Skibinski D, Peakman M. Introducing the Endotype Concept to Address the Challenge of Disease Heterogeneity in Type 1 Diabetes. Diabetes Care 2020; 43:5-12. [PMID: 31753960 PMCID: PMC6925574 DOI: 10.2337/dc19-0880] [Citation(s) in RCA: 230] [Impact Index Per Article: 46.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Accepted: 10/14/2019] [Indexed: 02/06/2023]
Abstract
The clinical diagnosis of new-onset type 1 diabetes has, for many years, been considered relatively straightforward. Recently, however, there is increasing awareness that within this single clinical phenotype exists considerable heterogeneity: disease onset spans the complete age range; genetic susceptibility is complex; rates of progression differ markedly, as does insulin secretory capacity; and complication rates, glycemic control, and therapeutic intervention efficacy vary widely. Mechanistic and immunopathological studies typically show considerable patchiness across subjects, undermining conclusions regarding disease pathways. Without better understanding, type 1 diabetes heterogeneity represents a major barrier both to deciphering pathogenesis and to the translational effort of designing, conducting, and interpreting clinical trials of disease-modifying agents. This realization comes during a period of unprecedented change in clinical medicine, with increasing emphasis on greater individualization and precision. For complex disorders such as type 1 diabetes, the option of maintaining the "single disease" approach appears untenable, as does the notion of individualizing each single patient's care, obliging us to conceptualize type 1 diabetes less in terms of phenotypes (observable characteristics) and more in terms of disease endotypes (underlying biological mechanisms). Here, we provide our view on an approach to dissect heterogeneity in type 1 diabetes. Using lessons from other diseases and the data gathered to date, we aim to delineate a roadmap through which the field can incorporate the endotype concept into laboratory and clinical practice. We predict that such an effort will accelerate the implementation of precision medicine and has the potential for impact on our approach to translational research, trial design, and clinical management.
Collapse
Affiliation(s)
- Manuela Battaglia
- San Raffaele Diabetes Research Institute, IRCCS San Raffaele Hospital, Milan, Italy
| | | | - Mark S Anderson
- Diabetes Center, University of California, San Francisco, San Francisco, CA
| | - Mark A Atkinson
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida, Gainesville, FL
| | - Dorothy Becker
- Division of Endocrinology and Diabetes, UPMC Children's Hospital of Pittsburgh, Pittsburgh, PA
| | - Polly J Bingley
- Translational Health Sciences, Bristol Medical School, University of Bristol, Bristol, U.K
| | - Emanuele Bosi
- San Raffaele Diabetes Research Institute, IRCCS San Raffaele Hospital, Milan, Italy.,Vita-Salute San Raffaele University, Milan, Italy, and Department of Internal Medicine, IRCCS San Raffaele Hospital, Milan, Italy
| | - Todd M Brusko
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida, Gainesville, FL
| | - Linda A DiMeglio
- Division of Pediatric Endocrinology and Diabetology and Wells Center for Pediatric Research, Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN
| | - Carmella Evans-Molina
- Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN
| | - Stephen E Gitelman
- Division of Pediatric Endocrinology and Diabetes, University of California, San Francisco, San Francisco, CA
| | | | - Peter A Gottlieb
- Barbara Davis Center for Childhood Diabetes, University of Colorado School of Medicine, Aurora, CO
| | - Kevan C Herold
- Department of Immunobiology, Yale University, New Haven, CT
| | - Martin J Hessner
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI
| | - Mikael Knip
- Children's Hospital, University of Helsinki and Helsinki University Hospital, Clinical and Molecular Metabolism Research Program, University of Helsinki, Helsinki, Finland
| | - Laura Jacobsen
- Department of Pediatrics, University of Florida, Gainesville, FL
| | - Jeffrey P Krischer
- Health Informatics Institute, Morsani College of Medicine, University of South Florida, Tampa, FL
| | - S Alice Long
- Diabetes Program, Benaroya Research Institute, Seattle, WA
| | - Markus Lundgren
- Department of Clinical Sciences, Clinical Research Centre, Faculty of Medicine, Lund University, and Skåne University Hospital, Malmö, Sweden
| | - Eoin F McKinney
- Department of Medicine, University of Cambridge School of Clinical Medicine, Addenbrooke's Hospital, Cambridge, U.K
| | - Noel G Morgan
- Institute of Biomedical and Clinical Science, University of Exeter Medical School, Exeter, U.K.,University of Exeter Medical School and Royal Devon and Exeter Hospital, Exeter, U.K
| | - Richard A Oram
- Institute of Biomedical and Clinical Science, University of Exeter Medical School, Royal Devon and Exeter Hospital, Exeter, U.K.,NIHR Exeter Clinical Research Facility, University of Exeter Medical School, Exeter, U.K.,Academic Renal Unit, Royal Devon and Exeter NHS Foundation Trust, Exeter, U.K
| | - Tomi Pastinen
- Center for Pediatric Genomic Medicine, Children's Mercy Kansas City, Kansas City, MO
| | - Michael C Peters
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, and Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA
| | - Alessandra Petrelli
- San Raffaele Diabetes Research Institute, IRCCS San Raffaele Hospital, Milan, Italy
| | - Xiaoning Qian
- Department of Electrical and Computer Engineering, TEES-AgriLife Center for Bioinformatics and Genomic Systems Engineering, Texas A&M University, College Station, TX
| | - Maria J Redondo
- Baylor College of Medicine, Texas Children's Hospital, Houston, TX
| | - Bart O Roep
- Department of Diabetes Immunology, Diabetes & Metabolism Research Institute, Beckman Research Institute, National Medical Center, City of Hope, Duarte, CA.,Department of Immunohaematology and Blood Transfusion, Leiden University Medical Center, Leiden, the Netherlands
| | - Desmond Schatz
- Department of Pediatrics, University of Florida, Gainesville, FL
| | | | - Mark Peakman
- Peter Gorer Department of Immunobiology, Faculty of Life Sciences and Medicine, King's College London, London, U.K. .,King's Health Partners Institute of Diabetes, Obesity and Endocrinology, London, U.K
| |
Collapse
|
22
|
Abstract
PURPOSE OF REVIEW To provide an updated summary of discoveries made to date resulting from genome-wide association study (GWAS) and sequencing studies, and to discuss the latest loci added to the growing repertoire of genetic signals predisposing to type 1 diabetes (T1D). RECENT FINDINGS Genetic studies have identified over 60 loci associated with T1D susceptibility. GWAS alone does not specifically inform on underlying mechanisms, but in combination with other sequencing and omics-data, advances are being made in our understanding of T1D genetic etiology and pathogenesis. Current knowledge indicates that genetic variation operating in both pancreatic β cells and in immune cells is central in mediating T1D risk. One of the main challenges is to determine how these recently discovered GWAS-implicated variants affect the expression and function of gene products. Once we understand the mechanism of action for disease-causing variants, we will be well placed to apply targeted genomic approaches to impede the premature activation of the immune system in an effort to ultimately prevent the onset of T1D.
Collapse
Affiliation(s)
- Marina Bakay
- The Center for Applied Genomics, Division of Human Genetics, The Children's Hospital of Philadelphia, 3615 Civic Center Boulevard, Abramson Research Center, Suite 1216B, Philadelphia, PA, 19104-4318, USA
| | - Rahul Pandey
- The Center for Applied Genomics, Division of Human Genetics, The Children's Hospital of Philadelphia, 3615 Civic Center Boulevard, Abramson Research Center, Suite 1216B, Philadelphia, PA, 19104-4318, USA
| | - Struan F A Grant
- The Center for Applied Genomics, Division of Human Genetics, The Children's Hospital of Philadelphia, 3615 Civic Center Boulevard, Abramson Research Center, Suite 1216B, Philadelphia, PA, 19104-4318, USA
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Center for Spatial and Functional Genomics, The Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - Hakon Hakonarson
- The Center for Applied Genomics, Division of Human Genetics, The Children's Hospital of Philadelphia, 3615 Civic Center Boulevard, Abramson Research Center, Suite 1216B, Philadelphia, PA, 19104-4318, USA.
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.
| |
Collapse
|
23
|
Bonifacio E, Achenbach P. Birth and coming of age of islet autoantibodies. Clin Exp Immunol 2019; 198:294-305. [PMID: 31397889 PMCID: PMC6857083 DOI: 10.1111/cei.13360] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/06/2019] [Indexed: 12/20/2022] Open
Abstract
This review takes the reader through 45 years of islet autoantibody research, from the discovery of islet‐cell antibodies in 1974 to today’s population‐based screening for presymptomatic early‐stage type 1 diabetes. The review emphasizes the current practical value of, and factors to be considered in, the measurement of islet autoantibodies.
Collapse
Affiliation(s)
- E Bonifacio
- Technische Universität Dresden, DFG Center for Regenerative Therapies Dresden, Dresden, Germany.,Paul Langerhans Institute Dresden of the Helmholtz Center Munich at University Hospital Carl Gustav Carus and Faculty of Medicine, TU Dresden, Dresden, Germany
| | - P Achenbach
- Institute of Diabetes Research, Helmholtz Zentrum München, German Research Center for Environmental Health, Munich-Neuherberg, Germany.,Technical University of Munich, School of Medicine, Klinikum rechts der Isar, Forschergruppe Diabetes, Munich, Germany
| |
Collapse
|
24
|
Grant SFA. The TCF7L2 Locus: A Genetic Window Into the Pathogenesis of Type 1 and Type 2 Diabetes. Diabetes Care 2019; 42:1624-1629. [PMID: 31409726 PMCID: PMC6702598 DOI: 10.2337/dci19-0001] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Accepted: 06/12/2019] [Indexed: 02/03/2023]
Abstract
Over the past ∼15 years there has been great progress in our understanding of the genetics of both type 1 diabetes and type 2 diabetes. This has been driven principally by genome-wide association studies (GWAS) in increasingly larger sample sizes, where many distinct loci have now been reported for both traits. One of the loci that dominates these studies is the TCF7L2 locus for type 2 diabetes. This genetic signal has been leveraged to explore multiple aspects of disease risk, including developments in genetic risk scores, genetic commonalities with cancer, and for gaining insights into diabetes-related molecular pathways. Furthermore, the TCF7L2 locus has aided in providing insights into the genetics of both latent autoimmune diabetes in adults and various presentations of type 1 diabetes. This review outlines the knowledge gained to date and highlights how work with this locus leads the way in guiding how many other genetic loci could be similarly used to gain insights into the pathogenesis of diabetes.
Collapse
Affiliation(s)
- Struan F A Grant
- Divisions of Human Genetics and Endocrinology, Children's Hospital of Philadelphia, Philadelphia, PA
- Center for Spatial and Functional Genomics, Children's Hospital of Philadelphia, Philadelphia, PA
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
- Institute for Diabetes, Obesity and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| |
Collapse
|
25
|
Redondo MJ, Evans-Molina C, Steck AK, Atkinson MA, Sosenko J. The Influence of Type 2 Diabetes-Associated Factors on Type 1 Diabetes. Diabetes Care 2019; 42:1357-1364. [PMID: 31167894 PMCID: PMC6647039 DOI: 10.2337/dc19-0102] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 04/27/2019] [Indexed: 02/03/2023]
Abstract
Current efforts to prevent progression from islet autoimmunity to type 1 diabetes largely focus on immunomodulatory approaches. However, emerging data suggest that the development of diabetes in islet autoantibody-positive individuals may also involve factors such as obesity and genetic variants associated with type 2 diabetes, and the influence of these factors increases with age at diagnosis. Although these factors have been linked with metabolic outcomes, particularly through their impact on β-cell function and insulin sensitivity, growing evidence suggests that they might also interact with the immune system to amplify the autoimmune response. The presence of factors shared by both forms of diabetes contributes to disease heterogeneity and thus has important implications. Characteristics that are typically considered to be nonimmune should be incorporated into predictive algorithms that seek to identify at-risk individuals and into the designs of trials for disease prevention. The heterogeneity of diabetes also poses a challenge in diagnostic classification. Finally, after clinically diagnosing type 1 diabetes, addressing nonimmune elements may help to prevent further deterioration of β-cell function and thus improve clinical outcomes. This Perspectives in Care article highlights the role of type 2 diabetes-associated genetic factors (e.g., gene variants at transcription factor 7-like 2 [TCF7L2]) and obesity (via insulin resistance, inflammation, β-cell stress, or all three) in the pathogenesis of type 1 diabetes and their impacts on age at diagnosis. Recognizing that type 1 diabetes might result from the sum of effects from islet autoimmunity and type 2 diabetes-associated factors, their interactions, or both affects disease prediction, prevention, diagnosis, and treatment.
Collapse
Affiliation(s)
- Maria J Redondo
- Baylor College of Medicine, Texas Children's Hospital, Houston, TX
| | - Carmella Evans-Molina
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN.,Department of Medicine, Indiana University School of Medicine, Indianapolis, IN.,Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN.,Richard L. Roudebush VA Medical Center, Indianapolis, IN
| | - Andrea K Steck
- Barbara Davis Center for Childhood Diabetes, University of Colorado School of Medicine, Aurora, CO
| | - Mark A Atkinson
- Departments of Pathology and Pediatrics, University of Florida Diabetes Institute, Gainesville, FL
| | | |
Collapse
|
26
|
Abstract
PURPOSE OF REVIEW The genetic risk for type 1 diabetes has been studied for over half a century, with the strong genetic associations of type 1 diabetes forming critical evidence for the role of the immune system in pathogenesis. In this review, we discuss some of the original research leading to recent developments in type 1 diabetes genetics. RECENT FINDINGS We examine the translation of polygenic scores for type 1 diabetes into tools for prediction and diagnosis of type 1 diabetes, in particular, when used in combination with other biomarkers and clinical features, such as age and islet-specific autoantibodies. Furthermore, we review the description of age associations with type 1 diabetes genetic risk, and the investigation of loci linked to type 2 diabetes in progression of type 1 diabetes. Finally, we consider current limitations, including the scarcity of data from racial and ethnic minorities, and future directions. SUMMARY The development of polygenic risk scores has allowed the integration of type 1 diabetes genetics into diagnosis and prediction. Emerging information on the role of specific genes in subgroups of individuals with the disease, for example, early-onset, mild autoimmunity, and so forth, is facilitating our understanding of the heterogeneity of type 1 diabetes, with the ultimate goal of using genetic information in research and clinical practice.
Collapse
Affiliation(s)
- Richard A Oram
- RILD Level 3, Institute of Biomedical and Clinical Science, University of Exeter Medical School, Royal Devon and Exeter Hospital
- NIHR Exeter Clinical Research Facility, University of Exeter Medical School
- The Academic Renal Unit, Royal Devon and Exeter NHS Foundation Trust, Exeter, UK
| | - Maria J Redondo
- Pediatric Diabetes and Endocrinology, Texas Children's Hospital, Baylor College of Medicine, Houston, Texas, USA
| |
Collapse
|
27
|
Affiliation(s)
- R David Leslie
- Department of Immunobiology, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, U.K.
| | - Struan F A Grant
- Divisions of Human Genetics and Endocrinology and Diabetes, Children's Hospital of Philadelphia, Philadelphia, PA .,Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA.,Institute for Diabetes, Obesity and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA.,Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| |
Collapse
|