1
|
Loh WJ, Dacay LM, Tan CSH, Ang SF, Yap F, Lim SC, Khoo J. Glucokinase activating mutation causing hypoglycaemia diagnosed late in adult who fasts for Ramadhan. Endocrinol Diabetes Metab Case Rep 2021; 2021:EDM210043. [PMID: 34184638 PMCID: PMC8240715 DOI: 10.1530/edm-21-0043] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Accepted: 05/25/2021] [Indexed: 11/08/2022] Open
Abstract
SUMMARY Activating mutation of glucokinase gene (GCK) causes resetting of insulin inhibition at a lower glucose threshold causing hyperinsulinaemic hypoglycaemia (GCK-HH). This is the first reported case who tolerated years of regular fasting during Ramadhan, presenting only with seizure and syncope now. We describe a case with GCK gene variant p.T65I diagnosed in a 51-year-old woman with hypoglycaemia unawareness even at glucose level of 1.6 mmol/L. Insulin and C-peptide levels during hypoglycaemia were suggestive of hyperinsulinism, but at a day after intravenous glucagon, hypoglycaemia occurred with low insulin and C-peptide levels, pointing against insulinoma as the underlying aetiology. Imaging studies of the pancreas and calcium arterial stimulation venous sampling were unremarkable. A review of old medical records revealed asymptomatic hypoglycaemia years ago. Genetic testing confirmed activating mutation of GCK. Hypoglycaemia was successfully controlled with a somatostatin analogue. This case highlights the importance of consideration of genetic causes of hypoglycaemia in adulthood, especially when imaging is uninformative. LEARNING POINTS Consider genetic causes of endogenous hyperinsulinism hypoglycaemia in adulthood, especially when imaging is uninformative. Late presentation of activating mutation of GCK can occur because of hypoglycaemia unawareness. Long-acting somatostatin analogue may be useful for the treatment of activating mutation of GCK causing hypoglycaemia. Depending on the glucose level when the blood was taken, and the threshold of glucose-stimulated insulin release (GSIR), the serum insulin and C-peptide levels may be raised (hyperinsulinaemic) or low (hypoinsulinaemic) in patients with activating mutation of GCK. Glucagon may be useful to hasten the process of unmasking the low insulin level during hypoglycaemia below the GSIR level of which insulin released is suppressed.
Collapse
Affiliation(s)
- Wann Jia Loh
- Department of Endocrinology, Changi General Hospital, Singapore, Singapore
| | - Lily Mae Dacay
- Department of Endocrinology, Changi General Hospital, Singapore, Singapore
| | - Clara Si Hua Tan
- Clinical Research Unit, Khoo Teck Puat Hospital, Singapore, Singapore
| | - Su Fen Ang
- Clinical Research Unit, Khoo Teck Puat Hospital, Singapore, Singapore
| | - Fabian Yap
- Department of Paediatric Endocrinology, KK Women’s and Children’s Hospital, Singapore, Singapore
| | - Su Chi Lim
- Clinical Research Unit, Khoo Teck Puat Hospital, Singapore, Singapore
- Diabetes Centre, Admiralty Medical Centre, Singapore, Singapore
- Saw Swee Hock School of Public Health, National University Hospital, Singapore, Singapore
| | - Joan Khoo
- Department of Endocrinology, Changi General Hospital, Singapore, Singapore
| |
Collapse
|
2
|
Hyperinsulinemic hypoglycemia, clinical considerations and a case report of a novel GCK mutation. JOURNAL OF CLINICAL AND TRANSLATIONAL ENDOCRINOLOGY CASE REPORTS 2021. [DOI: 10.1016/j.jecr.2021.100084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
3
|
Ahmed S, Soliman A, De Sanctis V, Alyafie F, Alaaraj N, Hamed N, Ali HA, Kamal A. Defective Cortisol Secretion in Response to Spontaneous Hypoglycemia but Normal Cortisol Response to ACTH stimulation in neonates with Hyperinsulinemic Hypoglycemia (HH). ACTA BIO-MEDICA : ATENEI PARMENSIS 2021; 92:e2021182. [PMID: 33988135 PMCID: PMC8182578 DOI: 10.23750/abm.v92i2.11396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 02/28/2021] [Indexed: 12/04/2022]
Abstract
Introduction: Hyperinsulinemic Hypoglycaemia (HH) is the most common cause of recurrent and persistent hypoglycemia in the neonatal period. Cortisol and GH play an important role as a counterregulatory hormone during hypoglycemia. Both antagonize the peripheral effects of insulin and directly influence glucose metabolism Patients and Methods: We studied cortisol and GH secretion in newborn infants with HH during spontaneous hypoglycemia. In addition, their basal ACTH level was measured and cortisol response to a standard dose ACTH test was performed. Results: Nine newborns with HH were studied during the first 2 weeks of life. During HH, their mean glucose concentration was 1.42 ± 0.7 mmol/L, mean beta hydroxybutyrate level was 0.08 ± 0.04 mmol/L, and mean serum insulin level was 17.78 ± 9.7 μU/mL. Their cortisol and GH levels at the time of spontaneous hypoglycemia were 94.7 ± 83.1 nmol/L and 82.4 ± 29 m IU/L respectively. They had relatively low level of ACTH (range: 14 :72 pg/ml, mean: 39.4 ± 20 pg/mL) during hypoglycemia. All infants had GH concentration > 20 mIU/L at the time of hypoglycemia. All infants underwent ACTH test. Their basal serum cortisol levels did not differ compared to cortisol levels during hypoglycemia, and all had a normal peak cortisol response (> 500 nmol/L) in response to i.v. ACTH stimulation test. Conclusion: Infants with HH have low cortisol response to spontaneous hypoglycemia with normal response to exogenous standard-dose ACTH. Checking hypothalamic-pituitary axis (HPA) axis later in infancy using low dose ACTH may be useful to diagnose persistent HPA abnormalities in these infants. All HH infants had appropriate elevation of GH during hypoglycemia. (www.actabiomedica.it)
Collapse
Affiliation(s)
- Shayma Ahmed
- Departments of Pediatrics, Hamad General Hospital, Doha, Qatar.
| | - Ashraf Soliman
- Departments of Pediatrics, Hamad General Hospital, Doha, Qatar.
| | | | - Fawzia Alyafie
- Departments of Pediatrics, Hamad General Hospital, Doha, Qatar.
| | - Nada Alaaraj
- Departments of Pediatrics, Hamad General Hospital, Doha, Qatar.
| | - Noor Hamed
- Departments of Pediatrics, Hamad General Hospital, Doha, Qatar.
| | - Hamdy A Ali
- Departments of Neonatology, Hamad General Hospital, Doha, Qatar.
| | - Abdulla Kamal
- Departments of Pharmacology, Hamad General Hospital, Doha, Qatar.
| |
Collapse
|
4
|
Drachmann D, Hoffmann E, Carrigg A, Davis-Yates B, Weaver V, Thornton P, Weinstein DA, Petersen JS, Shah P, Christesen HT. Towards enhanced understanding of idiopathic ketotic hypoglycemia: a literature review and introduction of the patient organization, Ketotic Hypoglycemia International. Orphanet J Rare Dis 2021; 16:173. [PMID: 33849624 PMCID: PMC8045369 DOI: 10.1186/s13023-021-01797-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 03/30/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Idiopathic Ketotic hypoglycemia (IKH) is a diagnosis of exclusion. Although considered as the most frequent cause of hypoglycemia in childhood, little progress has been made to advance the understanding of IKH since the medical term was coined in 1964. We aimed to review the literature on ketotic hypoglycemia (KH) and introduce a novel patient organization, Ketotic Hypoglycemia International (KHI). RESULTS IKH may be diagnosed after the exclusion of various metabolic and hormonal diseases with KH. Although often mild and self-limiting, more severe and long-lasting IKH occurs. We therefore divide IKH in physiological KH and pathological KH, the latter defined as recurrent symptomatic, or occasionally symptomatic, episodes with beta-hydroxybutyrate ≥ 1.0 mmol/L and blood glucose < 70 mg/dL (3.9 mol/L), in the absence of prolonged fasting, acute infections and chronic diseases known to cause KH. Pathological KH may represent undiscovered diseases, e.g. glycogen storage disease IXa, Silver-Russel syndrome, and ketone transporter defects, or suggested novel disease entities identified by exome sequencing. The management of KH aims to prevent hypoglycemia, fatty acid oxidation and protein deficiency by supplying adequate amounts of carbohydrates and protein, including nutritional therapy, uncooked cornstarch, and sometimes continuous tube feeding by night. Still, intravenous dextrose may be needed in acute KH episodes. Failure to acknowledge that IKH can be more than normal variation may lead to under-treatment. KHI is a non-profit, patient-centric, global organization established in 2020. The organization was created by adult IKH patients, patient family members, and volunteers. The mission of KHI is to enhance the understanding of IKH while advocating for patients, their families and the continued research into KH. CONCLUSION IKH is a heterogeneous disorder including physiological KH and pathological KH. IKH may represent missed diagnoses or novel disease entities, but shares common management principles to prevent fatty acid oxygenation. KHI, a novel patient organization, aims to enhance the understanding of IKH by supporting IKH families and research into IKH.
Collapse
Affiliation(s)
| | - Erica Hoffmann
- Ketotic Hypoglycemia International (KHI), Skanderborg, Denmark
| | - Austin Carrigg
- Ketotic Hypoglycemia International (KHI), Skanderborg, Denmark
| | - Beccie Davis-Yates
- Ketotic Hypoglycemia International (KHI), Skanderborg, Denmark.,School of Social Science, Nottingham Institute of Education, Nottingham, UK
| | - Valerie Weaver
- Ketotic Hypoglycemia International (KHI), Skanderborg, Denmark
| | | | - David A Weinstein
- Glycogen Storage Disease Program, University of Connecticut, Farmington, CT, USA
| | | | - Pratik Shah
- Endocrinology Department, The Royal London Children's Hospital, Barts Health NHS Trust and Queen Mary University London, London, UK
| | - Henrik Thybo Christesen
- Department of Clinical Research, University of Southern Denmark, Odense, Denmark. .,Hans Christian Andersen Children's Hospital and Steno Diabetes Centre Odense, Odense University Hospital, JB Windsloews Vej 4, 5000, Odense C, Denmark.
| |
Collapse
|
5
|
Wolfsdorf JI, Stanley CA. Hypoglycemia in the Toddler and Child. SPERLING PEDIATRIC ENDOCRINOLOGY 2021:904-938. [DOI: 10.1016/b978-0-323-62520-3.00023-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
6
|
Cook S, McKenna M, Glanemann B, Sandhu R, Scudder C. Suspected congenital hyperinsulinism in a Shiba Inu dog. J Vet Intern Med 2020; 34:2086-2090. [PMID: 32592436 PMCID: PMC7517843 DOI: 10.1111/jvim.15834] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 05/31/2020] [Accepted: 06/03/2020] [Indexed: 12/02/2022] Open
Abstract
A 3‐month‐old male intact Shiba Inu dog was evaluated for a seizure disorder initially deemed idiopathic in origin. Seizure frequency remained unchanged despite therapeutic serum phenobarbital concentration and use of levetiracetam. The dog was documented to be markedly hypoglycemic during a seizure episode on reevaluation at 6 months of age. Serum insulin concentrations during hypoglycemia were 41 U/μL (reference range, 10‐29 U/μL). The dog was transitioned to 4 times per day feeding, diazoxide was started at 3.5 mg/kg PO q8h, and antiepileptic drugs were discontinued. No clinically relevant abnormalities were identified on bicavitary arterial and venous phase contrast computed tomographic imaging. The dog remained seizure‐free and clinically normal at 3 years of age while receiving 5.5 mg/kg diazoxide PO q12h and twice daily feeding. Seizures later occurred approximately twice per year and after exertion, with or without vomiting of a diazoxide dose. Blood glucose curves and interstitial glucose monitoring were used to titrate diazoxide dose and dosing interval. Congenital hyperinsulinism is well recognized in people but has not been reported in veterinary medicine.
Collapse
Affiliation(s)
- Simon Cook
- Department of Clinical Science and Services Royal Veterinary College London United Kingdom
| | - Myles McKenna
- Department of Clinical Science and Services Royal Veterinary College London United Kingdom
| | - Barbara Glanemann
- Department of Clinical Science and Services Royal Veterinary College London United Kingdom
| | | | - Chris Scudder
- Department of Comparative Biomedical Sciences Royal Veterinary College London United Kingdom
- Southfields Veterinary Specialists Laindon, Essex United Kingdom
| |
Collapse
|
7
|
Soundarapandian MM, Juliana CA, Chai J, Haslett PA, Fitzgerald K, De León DD. Activation of Protein Kinase A (PKA) signaling mitigates congenital hyperinsulinism associated hypoglycemia in the Sur1-/- mouse model. PLoS One 2020; 15:e0236892. [PMID: 32735622 PMCID: PMC7394442 DOI: 10.1371/journal.pone.0236892] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Accepted: 07/15/2020] [Indexed: 12/26/2022] Open
Abstract
There is a significant unmet need for a safe and effective therapy for the treatment of children with congenital hyperinsulinism. We hypothesized that amplification of the glucagon signaling pathway could ameliorate hyperinsulinism associated hypoglycemia. In order to test this we evaluated the effects of loss of Prkar1a, a negative regulator of Protein Kinase A in the context of hyperinsulinemic conditions. With reduction of Prkar1a expression, we observed a significant upregulation of hepatic gluconeogenic genes. In wild type mice receiving a continuous infusion of insulin by mini-osmotic pump, we observed a 2-fold increase in the level of circulating ketones and a more than 40-fold increase in Kiss1 expression with reduction of Prkar1a. Loss of Prkar1a in the Sur1-/- mouse model of KATP hyperinsulinism significantly attenuated fasting induced hypoglycemia, decreased the insulin/glucose ratio, and also increased the hepatic expression of Kiss1 by more than 10-fold. Together these data demonstrate that amplification of the hepatic glucagon signaling pathway is able to rescue hypoglycemia caused by hyperinsulinism.
Collapse
Affiliation(s)
| | - Christine A. Juliana
- Division of Endocrinology and Diabetes, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, United States of America
| | - Jinghua Chai
- Division of Endocrinology and Diabetes, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, United States of America
| | - Patrick A. Haslett
- Alnylam Pharmaceuticals, Cambridge, Massachusetts, United States of America
| | - Kevin Fitzgerald
- Alnylam Pharmaceuticals, Cambridge, Massachusetts, United States of America
| | - Diva D. De León
- Division of Endocrinology and Diabetes, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, United States of America
- Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- * E-mail: (MMS); (DDDL)
| |
Collapse
|
8
|
Salomon-Estebanez M, Yau D, Dunne MJ, Worth C, Birch S, Walewski JL, Banerjee I. Efficacy of Dose-Titrated Glucagon Infusions in the Management of Congenital Hyperinsulinism: A Case Series. Front Endocrinol (Lausanne) 2020; 11:441. [PMID: 33013678 PMCID: PMC7494759 DOI: 10.3389/fendo.2020.00441] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 06/04/2020] [Indexed: 11/13/2022] Open
Abstract
Background: Congenital hyperinsulinism (CHI), a rare disease of excessive and dysregulated insulin secretion, can lead to prolonged and severe hypoglycemia. Dextrose infusions are a mainstay of therapy to restore normal glycemia, but can be associated with volume overload, especially in infants. By releasing intrahepatic glucose stores, glucagon infusions can reduce dependency on dextrose infusions. Recent studies have reported positive outcomes with glucagon infusions in patients with CHI; however, to date, there are no reports describing the clinical utility of titrated doses of infused glucagon to achieve glycemic stability. Objective: To assess the potential clinical utility of dose-titrated glucagon infusions in stabilizing glycemic status in pediatric patients with CHI, who were managed by medical and/or surgical approaches. Methods: Patients with CHI (N = 33), with or without mutations in the ATP-sensitive K+ channel genes, ABCC8, and KCNJ11 requiring glucagon by dose titration in addition to intravenous dextrose and medical therapy with diazoxide/octreotide to achieve glycemic stability were recruited. Following glucagon titration and a 24-h glucose stable period, glucose infusion rate (GIR) was reduced over a 24-h period. Achievement of glycemic stability and decrease in GIR were considered end points of the study. Results: All patients achieved glycemic stability with glucagon infusion, demonstrating clinical benefit. GIR reduced from 15.6 (4.5) to 13.4 (4.6) mg/kg/min mean (SD) (p = 0.00019 for difference; n = 32; paired t-test) over 24 h. By univariate analysis, no individual baseline characteristic was associated with changes in the GIR. However, by baseline-adjusted modeling, mutational status of the patient (p = 0.011) was inversely associated with a reduction in GIR. Adverse events were infrequent with diarrhea possibly attributed to glucagon treatment in 1 patient. With long-term treatment following GIR reduction, necrolytic migratory erythema was observed in another patient. Conclusion: These data suggest that dose-titrated glucagon infusion therapy aids hypoglycemia prevention and reduction in GIR in the clinical management of patients with CHI.
Collapse
Affiliation(s)
- Maria Salomon-Estebanez
- Department of Paediatric Endocrinology, Royal Manchester Children's Hospital, Manchester, United Kingdom
| | - Daphne Yau
- Department of Paediatric Endocrinology, Royal Manchester Children's Hospital, Manchester, United Kingdom
| | - Mark J. Dunne
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Chris Worth
- Department of Paediatric Endocrinology, Royal Manchester Children's Hospital, Manchester, United Kingdom
| | - Sune Birch
- Department of Statistics, Zealand Pharma A/S, Søborg, Denmark
| | - José L. Walewski
- Medical Publications, rareLife Solutions, Norwalk, CT, United States
| | - Indraneel Banerjee
- Department of Paediatric Endocrinology, Royal Manchester Children's Hospital, Manchester, United Kingdom
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
- *Correspondence: Indraneel Banerjee
| |
Collapse
|
9
|
Abstract
PURPOSE OF REVIEW New more stable formulations of glucagon have recently become available, and these provide an opportunity to expand the clinical roles of this hormone in the prevention and management of insulin-induced hypoglycemia. This is applicable in type 1 diabetes, hyperinsulinism, and alimentary hypoglycemia. The aim of this review is to describe these new formulations of glucagon and to provide an overview of current and future therapeutic opportunities that these may provide. RECENT FINDINGS Four main categories of glucagon formulation have been studied: intranasal glucagon, biochaperone glucagon, dasiglucagon, and non-aqueous soluble glucagon. All four have demonstrated similar glycemic responses to standard glucagon formulations when administered during hypoglycemia. In addition, potential roles of these formulations in the management of congenital hyperinsulinism, alimentary hypoglycemia, and exercise-induced hypoglycemia in type 1 diabetes have been described. As our experience with newer glucagon preparations increases, the role of glucagon is likely to expand beyond the emergency use that this medication has been limited to in the past. The innovations described in this review likely represent early examples of a pending large repertoire of indications for stable glucagon.
Collapse
Affiliation(s)
- Colin P Hawkes
- Division of Endocrinology and Diabetes, Department of Pediatrics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Diva D De Leon
- Division of Endocrinology and Diabetes, Department of Pediatrics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Institute for Diabetes, Obesity & Metabolism, Perelman School of Medicine, University of Pennsylvania, 12-134 Smilow Center for Translational Research, 3400 Civic Center Blvd, Philadelphia, PA, 19104, USA
| | - Michael R Rickels
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
- Institute for Diabetes, Obesity & Metabolism, Perelman School of Medicine, University of Pennsylvania, 12-134 Smilow Center for Translational Research, 3400 Civic Center Blvd, Philadelphia, PA, 19104, USA.
- Division of Endocrinology, Diabetes & Metabolism, Department of Medicine, Hospital of the University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
10
|
The Effect of Continuous Intravenous Glucagon on Glucose Requirements in Infants with Congenital Hyperinsulinism. JIMD Rep 2018; 45:45-50. [PMID: 30311139 DOI: 10.1007/8904_2018_140] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Revised: 08/17/2018] [Accepted: 08/28/2018] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND/AIMS Continuous intravenous glucagon is frequently used in the management of severe congenital hyperinsulinism (HI), but its efficacy in these patients has not been systematically evaluated. The aim of this study was to describe the use of continuous intravenous glucagon and to evaluate its effect on the glucose infusion rate (GIR) requirement in infants with HI. METHODS Retrospective chart review of children with HI who received continuous intravenous glucagon for prevention of hypoglycemia at the Children's Hospital of Philadelphia between 2003 and 2013. RESULTS Forty (22 male) infants were included, and median (IQR) age at glucagon treatment was 29 (23, 54) days. Median glucagon dose was 205 (178, 235) mcg/kg/day and duration of treatment was 5 (3, 9) days. GIR reduced from 18.5 (12.9, 22.8) to 11 (6.6, 17.5) mg/kg/min 24 h after starting glucagon (p < 0.001), and hypoglycemia frequency reduced from 1.9 (1.3, 2.9) to 0.7 (0.3, 1.2) episodes per day. Vomiting (n = 11, 13%), rash (n = 2, 2%), and respiratory distress (n = 15, 19%) were seen during glucagon treatment. CONCLUSION An intravenous glucagon infusion reduces the required GIR to maintain euglycemia, decreasing the risks associated with the administration of high fluid volume or fluids with high-glucose concentrations.
Collapse
|
11
|
Abstract
Hyperinsulinaemic hypoglycaemia (HH) is a heterogeneous condition with dysregulated insulin secretion which persists in the presence of low blood glucose levels. It is the most common cause of severe and persistent hypoglycaemia in neonates and children. Recent advances in genetics have linked congenital HH to mutations in 14 different genes that play a key role in regulating insulin secretion (ABCC8, KCNJ11, GLUD1, GCK, HADH, SLC16A1, UCP2, HNF4A, HNF1A, HK1, PGM1, PPM2, CACNA1D, FOXA2). Histologically, congenital HH can be divided into 3 types: diffuse, focal and atypical. Due to the biochemical basis of this condition, it is essential to diagnose and treat HH promptly in order to avoid the irreversible hypoglycaemic brain damage. Recent advances in the field of HH include new rapid molecular genetic testing, novel imaging methods (18F-DOPA PET/CT), novel medical therapy (long-acting octreotide formulations, mTOR inhibitors, GLP-1 receptor antagonists) and surgical approach (laparoscopic surgery). The review article summarizes the current diagnostic methods and management strategies for HH in children.
Collapse
Affiliation(s)
- Sonya Galcheva
- Dept. of Paediatrics, Varna Medical University/University Hospital "St. Marina", Varna, Bulgaria
| | - Sara Al-Khawaga
- Dept. of Paediatric Medicine, Division of Endocrinology, Sidra Medical & Research Center, Doha, Qatar
| | - Khalid Hussain
- Dept. of Paediatric Medicine, Division of Endocrinology, Sidra Medical & Research Center, Doha, Qatar.
| |
Collapse
|
12
|
Nessa A, Rahman SA, Hussain K. Hyperinsulinemic Hypoglycemia - The Molecular Mechanisms. Front Endocrinol (Lausanne) 2016; 7:29. [PMID: 27065949 PMCID: PMC4815176 DOI: 10.3389/fendo.2016.00029] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Accepted: 03/21/2016] [Indexed: 12/14/2022] Open
Abstract
Under normal physiological conditions, pancreatic β-cells secrete insulin to maintain fasting blood glucose levels in the range 3.5-5.5 mmol/L. In hyperinsulinemic hypoglycemia (HH), this precise regulation of insulin secretion is perturbed so that insulin continues to be secreted in the presence of hypoglycemia. HH may be due to genetic causes (congenital) or secondary to certain risk factors. The molecular mechanisms leading to HH involve defects in the key genes regulating insulin secretion from the β-cells. At this moment, in time genetic abnormalities in nine genes (ABCC8, KCNJ11, GCK, SCHAD, GLUD1, SLC16A1, HNF1A, HNF4A, and UCP2) have been described that lead to the congenital forms of HH. Perinatal stress, intrauterine growth retardation, maternal diabetes mellitus, and a large number of developmental syndromes are also associated with HH in the neonatal period. In older children and adult's insulinoma, non-insulinoma pancreatogenous hypoglycemia syndrome and post bariatric surgery are recognized causes of HH. This review article will focus mainly on describing the molecular mechanisms that lead to unregulated insulin secretion.
Collapse
Affiliation(s)
- Azizun Nessa
- Genetics and Genomic Medicine Programme, Department of Paediatric Endocrinology, UCL Institute of Child Health, Great Ormond Street Hospital for Children NHS, London, UK
| | - Sofia A. Rahman
- Genetics and Genomic Medicine Programme, Department of Paediatric Endocrinology, UCL Institute of Child Health, Great Ormond Street Hospital for Children NHS, London, UK
| | - Khalid Hussain
- Genetics and Genomic Medicine Programme, Department of Paediatric Endocrinology, UCL Institute of Child Health, Great Ormond Street Hospital for Children NHS, London, UK
- *Correspondence: Khalid Hussain,
| |
Collapse
|
13
|
Thornton PS, Stanley CA, De Leon DD, Harris D, Haymond MW, Hussain K, Levitsky LL, Murad MH, Rozance PJ, Simmons RA, Sperling MA, Weinstein DA, White NH, Wolfsdorf JI. Recommendations from the Pediatric Endocrine Society for Evaluation and Management of Persistent Hypoglycemia in Neonates, Infants, and Children. J Pediatr 2015; 167:238-45. [PMID: 25957977 PMCID: PMC11891912 DOI: 10.1016/j.jpeds.2015.03.057] [Citation(s) in RCA: 356] [Impact Index Per Article: 35.6] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2014] [Revised: 03/03/2015] [Accepted: 03/31/2015] [Indexed: 01/01/2023]
Affiliation(s)
- Paul S Thornton
- Division of Endocrinology, Cook Children's Medical Center, Fort Worth, TX.
| | - Charles A Stanley
- Division of Endocrinology, The Children's Hospital of Philadelphia, Philadelphia, PA
| | - Diva D De Leon
- Division of Endocrinology, The Children's Hospital of Philadelphia, Philadelphia, PA
| | - Deborah Harris
- Newborn Intensive Care Unit, Waikato District Health Board, Hamilton, New Zealand
| | - Morey W Haymond
- Children's Nutrition Research Center, Texas Children's Hospital, Houston, TX
| | - Khalid Hussain
- Department of Endocrinology, Great Ormond Street Hospital for Children NHS Foundation Trust, London, United Kingdom
| | - Lynne L Levitsky
- Pediatric Endocrine Unit, Massachusetts General Hospital, Boston, MA
| | | | - Paul J Rozance
- Division of Neonatology, University of Colorado School of Medicine, Aurora, CO
| | - Rebecca A Simmons
- Division of Neonatology, The Children's Hospital of Philadelphia, Philadelphia, PA
| | - Mark A Sperling
- Division of Endocrinology, Diabetes and Metabolism, Children's Hospital of Pittsburgh, Pittsburgh, PA
| | - David A Weinstein
- Glycogen Storage Disease Program, University of Florida College of Medicine, Gainesville, FL
| | - Neil H White
- Department of Pediatrics and Medicine, Washington University in St Louis, St Louis, MO
| | | |
Collapse
|
14
|
Abstract
In hyperinsulinemic hypoglycemia (HH) there is dysregulation of insulin secretion from pancreatic β-cells. Insulin secretion becomes inappropriate for the level of blood glucose leading to severe hypoglycemia. HH is associated with a high risk of brain injury because insulin inhibits lipolysis and ketogenesis thus preventing the generation of alternative brain substrates (such as ketone bodies). Hence HH must be diagnosed as soon as possible and the management instituted appropriately to prevent brain damage. This article reviews the mechanisms of glucose physiology in the newborn, the mechanisms of insulin secretion, the etiologic types of HH, and its management.
Collapse
Affiliation(s)
- Maria Güemes
- Developmental Endocrinology Research Group, Molecular Genetics Unit, Institute of Child Health, University College London, 30 Guilford Street, London WC1N 1EH, UK
| | - Khalid Hussain
- Developmental Endocrinology Research Group, Molecular Genetics Unit, Institute of Child Health, University College London, 30 Guilford Street, London WC1N 1EH, UK.
| |
Collapse
|
15
|
Nessa A, Rahman SA, Hussain K. Molecular mechanisms of congenital hyperinsulinism and prospective therapeutic targets. Expert Opin Orphan Drugs 2015. [DOI: 10.1517/21678707.2015.1064819] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
16
|
Su C, Gong C, Sanger P, Li W, Wu D, Gu Y, Cao B. Long-term follow-up and mutation analysis of 27 chinese cases of congenital hyperinsulinism. Horm Res Paediatr 2014; 81:169-76. [PMID: 24434300 DOI: 10.1159/000356911] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2013] [Accepted: 09/24/2013] [Indexed: 11/19/2022] Open
Abstract
OBJECTIVES Long-term clinical follow-up and mutation analysis were performed in 27 Chinese congenital hyperinsulinism patients. METHOD 27 hypoglycemia patients were diagnosed with CHI within 2 years of age. The long-term clinical outcome was analyzed and mutation analysis of 5 hyperinsulinism candidate genes was performed. RESULTS The median onset age of hypoglycemia in the patients was 60 days; 11 patients showed hypoglycemic symptoms in the neonatal stage, and hypoglycemia in most of the patients was first expressed as a seizure. Blood was collected during the hypoglycemic episode and insulin levels were significantly elevated. ABCC8, KCNJ11, GCK, HNF4a and GLUD1 genes were screened for mutation analysis. 14 mutations in ABCC8 or KCNJ11 genes in 12 cases were identified (44%). 57% (8/14) of the mutations have not been reported before. 83% (10/12) of the patients have a monoallelic mutation. 58% of these 12 patients were predicted to be focal. 73% of the patients without KATP channel mutations were sensitive to diazoxide. 26 patients were followed over a period of 1-13 years. 50% of all 27 patients showed brain impairment. CONCLUSIONS Chinese CHI patients are similar to other ethnic groups in terms of prevalence of KATP-HI, onset age, severity of hypoglycemia and treatment. Mutations in ABCC8 and KCNJ11 are common causes of CHI in Chinese patients. Mutation analysis showed more novel and monoallele mutations in KATP genes.
Collapse
Affiliation(s)
- Chang Su
- Department of Endocrinology, Genetics and Metabolism, Beijing Children's Hospital, Capital Medical University, Beijing, China
| | | | | | | | | | | | | |
Collapse
|
17
|
Kibbey RG, Choi CS, Lee HY, Cabrera O, Pongratz RL, Zhao X, Birkenfeld AL, Li C, Berggren PO, Stanley C, Shulman GI. Mitochondrial GTP insensitivity contributes to hypoglycemia in hyperinsulinemia hyperammonemia by inhibiting glucagon release. Diabetes 2014; 63:4218-29. [PMID: 25024374 PMCID: PMC4237996 DOI: 10.2337/db14-0783] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Mitochondrial GTP (mtGTP)-insensitive mutations in glutamate dehydrogenase (GDH(H454Y)) result in fasting and amino acid-induced hypoglycemia in hyperinsulinemia hyperammonemia (HI/HA). Surprisingly, hypoglycemia may occur in this disorder despite appropriately suppressed insulin. To better understand the islet-specific contribution, transgenic mice expressing the human activating mutation in β-cells (H454Y mice) were characterized in vivo. As in the humans with HI/HA, H454Y mice had fasting hypoglycemia, but plasma insulin concentrations were similar to the controls. Paradoxically, both glucose- and glutamine-stimulated insulin secretion were severely impaired in H454Y mice. Instead, lack of a glucagon response during hypoglycemic clamps identified impaired counterregulation. Moreover, both insulin and glucagon secretion were impaired in perifused islets. Acute pharmacologic inhibition of GDH restored both insulin and glucagon secretion and normalized glucose tolerance in vivo. These studies support the presence of an mtGTP-dependent signal generated via β-cell GDH that inhibits α-cells. As such, in children with activating GDH mutations of HI/HA, this insulin-independent glucagon suppression may contribute importantly to symptomatic hypoglycemia. The identification of a human mutation causing congenital hypoglucagonemic hypoglycemia highlights a central role of the mtGTP-GDH-glucagon axis in glucose homeostasis.
Collapse
Affiliation(s)
- Richard G Kibbey
- Department of Internal Medicine, Yale University School of Medicine, New Haven, CT Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT
| | - Cheol Soo Choi
- Department of Internal Medicine, Yale University School of Medicine, New Haven, CT
| | - Hui-Young Lee
- Department of Internal Medicine, Yale University School of Medicine, New Haven, CT
| | - Over Cabrera
- Diabetes Research Institute, Miller School of Medicine, University of Miami, Miami, FL Department of Molecular Medicine and Surgery, The Rolf Luft Research Center for Diabetes and Endocrinology, Karolinska Institutet, Stockholm, Sweden
| | - Rebecca L Pongratz
- Department of Internal Medicine, Yale University School of Medicine, New Haven, CT
| | - Xiaojian Zhao
- Department of Internal Medicine, Yale University School of Medicine, New Haven, CT
| | - Andreas L Birkenfeld
- Department of Internal Medicine, Yale University School of Medicine, New Haven, CT
| | - Changhong Li
- Division of Endocrinology, The Children's Hospital of Philadelphia, Philadelphia, PA
| | - Per-Olof Berggren
- Diabetes Research Institute, Miller School of Medicine, University of Miami, Miami, FL Department of Molecular Medicine and Surgery, The Rolf Luft Research Center for Diabetes and Endocrinology, Karolinska Institutet, Stockholm, Sweden
| | - Charles Stanley
- Division of Endocrinology, The Children's Hospital of Philadelphia, Philadelphia, PA
| | - Gerald I Shulman
- Department of Internal Medicine, Yale University School of Medicine, New Haven, CT Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, CT
| |
Collapse
|
18
|
Arnoux JB, Saint-Martin C, Montravers F, Verkarre V, Galmiche L, Télion C, Capito C, Robert JJ, Hussain K, Aigrain Y, Bellanné-Chantelot C, de Lonlay P. An update on congenital hyperinsulinism: advances in diagnosis and management. Expert Opin Orphan Drugs 2014. [DOI: 10.1517/21678707.2014.925392] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
19
|
Mathur S, Boparai J, Mediwala SN, Garcia JM, Cunningham GR, Marcelli M, Vasudevan MM. Reversible Adrenal Insufficiency in Three Patients With Post-Roux-en-Y Gastric Bypass Noninsulinoma Pancreatogenous Hypoglycemia Syndrome. J Investig Med High Impact Case Rep 2014; 2:2324709614526992. [PMID: 26425596 PMCID: PMC4528859 DOI: 10.1177/2324709614526992] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Objective. Noninsulinoma pancreatogenous hypoglycemia syndrome (NIPHS) is a disorder of endogenous hyperinsulinemia that is clinically distinguishable from insulinoma, with a greater preponderance after Roux-en-Y gastric bypass (RYBG). Hyperinsulinemic hypoglycemia can predispose to attenuation of counterregulatory hormone responses to hypoglycemia, and consequent suppression of the hypothalamic-pituitary-adrenal (HPA) axis. This case series describes 3 individuals who were diagnosed with adrenal insufficiency (AI) after undergoing RYGB, complicated by NIPHS. Methods. A retrospective chart review was performed for each individual. Chart review applied particular attention to the onset of hyperinsulinemic hypoglycemia following bariatric surgery and the dynamic testing leading to the diagnoses of NIPHS and AI. Results. In each case, reactive hypoglycemia ensued within months to years after RYGB. Cosyntropin stimulation testing confirmed the diagnosis of AI. Hydrocortisone therapy reduced the frequency and severity of hypoglycemia and was continued until successful medical and/or surgical management of hyperinsulinism occurred. Follow-up testing of the HPA axis demonstrated resolution of AI. In all cases, hydrocortisone therapy was finally discontinued without incident. Conclusion. We speculate that transient AI is a potential complication in patients who experience recurrent hyperinsulinemic hypoglycemia after RYGB. The putative mechanism for this observation may be attenuation of the HPA axis after prolonged exposure to severe, recurrent hypoglycemia. We conclude that biochemical screening for AI should be considered in individuals who develop post-RYGB hyperinsulinemic hypoglycemia. If AI is diagnosed, supportive treatment should be maintained until hyperinsulinemic hypoglycemia has been managed effectively.
Collapse
Affiliation(s)
- Shelly Mathur
- Baylor College of Medicine, Houston, TX, USA ; Michael E. DeBakey VA Medical Center, Houston, TX, USA
| | | | - Sanjay N Mediwala
- Baylor College of Medicine, Houston, TX, USA ; Michael E. DeBakey VA Medical Center, Houston, TX, USA
| | - Jose M Garcia
- Baylor College of Medicine, Houston, TX, USA ; Michael E. DeBakey VA Medical Center, Houston, TX, USA
| | | | - Marco Marcelli
- Baylor College of Medicine, Houston, TX, USA ; Michael E. DeBakey VA Medical Center, Houston, TX, USA
| | - Madhuri M Vasudevan
- Baylor College of Medicine, Houston, TX, USA ; Michael E. DeBakey VA Medical Center, Houston, TX, USA
| |
Collapse
|
20
|
Abstract
ATP-sensitive potassium channels (K(ATP) channels) link cell metabolism to electrical activity by controlling the cell membrane potential. They participate in many physiological processes but have a particularly important role in systemic glucose homeostasis by regulating hormone secretion from pancreatic islet cells. Glucose-induced closure of K(ATP) channels is crucial for insulin secretion. Emerging data suggest that K(ATP) channels also play a key part in glucagon secretion, although precisely how they do so remains controversial. This Review highlights the role of K(ATP) channels in insulin and glucagon secretion. We discuss how K(ATP) channels might contribute not only to the initiation of insulin release but also to the graded stimulation of insulin secretion that occurs with increasing glucose concentrations. The various hypotheses concerning the role of K(ATP) channels in glucagon release are also reviewed. Furthermore, we illustrate how mutations in K(ATP) channel genes can cause hyposecretion or hypersecretion of insulin, as in neonatal diabetes mellitus and congenital hyperinsulinism, and how defective metabolic regulation of the channel may underlie the hypoinsulinaemia and the hyperglucagonaemia that characterize type 2 diabetes mellitus. Finally, we outline how sulphonylureas, which inhibit K(ATP) channels, stimulate insulin secretion in patients with neonatal diabetes mellitus or type 2 diabetes mellitus, and suggest their potential use to target the glucagon secretory defects found in diabetes mellitus.
Collapse
Affiliation(s)
- Frances M Ashcroft
- Henry Wellcome Centre for Gene Function, Department of Physiology, Anatomy and Genetics, Parks Road, Oxford OX1 3PT, UK
| | | |
Collapse
|
21
|
Senniappan S, Hussain K. An Evaluation of Growth Hormone and IGF-1 Responses in Neonates with Hyperinsulinaemic Hypoglycaemia. Int J Endocrinol 2013; 2013:638257. [PMID: 24228030 PMCID: PMC3817718 DOI: 10.1155/2013/638257] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2013] [Revised: 08/16/2013] [Accepted: 09/02/2013] [Indexed: 11/19/2022] Open
Abstract
Background. Hyperinsulinaemic Hypoglycaemia (HH) is the most common cause of severe and persistent hypoglycemia in the neonatal period. It has been shown that the neonates with HH fail to generate adequate serum cortisol counterregulatory response to symptomatic hypoglycemia. However the role played by growth hormone (GH) and Insulin-like Growth Factor 1 (IGF-1) is not clear. Objectives. To compare the serum GH, IGF-1, and IGFBP3 responses to HH in neonates undergoing diagnostic fasting studies. Population and Methods. Data was retrospectively collected on full-term neonates who presented with severe and persistent hypoglycemia and were confirmed to have HH. Neonates born with intrauterine growth retardation or those on medical therapy (diazoxide or octreotide) were excluded. Results. 31 neonates with HH (mean gestational age: 38 weeks and mean birth weight: 3.9 kg) were included in the study. The mean age at the time of diagnostic fast was 4 weeks, the mean glucose concentration during the fast was 2.2 mmol/L (SEM ± 0.09), and the mean insulin level was 11.9 mU/L (±2.12). The mean serum GH concentration during the hypoglycaemia was 12.5 µg/L (±1.53). The mean serum IGF-1 and Insulin-like Growth Factor Binding Protein 3 (IGFBP3) levels were 29.2 ng/ml (±7.8) and 1.21 mg/L (±0.13), respectively. The mean cortisol concentration was 201 nmol/L (±33). Conclusions. Whilst the serum IGF-1 and IGFBP3 levels are relatively low during hypoglycaemia, the serum GH level does reflect an appropriate counterregulatory response to HH. The serum cortisol counterregulatory hormonal responses are blunted. Further studies are required to understand the mechanism(s) of these hormonal alterations in neonates with HH.
Collapse
Affiliation(s)
- Senthil Senniappan
- Department of Paediatric Endocrinology, Great Ormond Street Hospital for Children, NHS Trust, WC1N 3JH, UK
- Developmental Endocrinology Research Group, Molecular Genetics Unit, Institute of Child Health, University College London, 30 Guilford Street, London WC1N 1EH, UK
| | - Khalid Hussain
- Department of Paediatric Endocrinology, Great Ormond Street Hospital for Children, NHS Trust, WC1N 3JH, UK
- Developmental Endocrinology Research Group, Molecular Genetics Unit, Institute of Child Health, University College London, 30 Guilford Street, London WC1N 1EH, UK
- *Khalid Hussain:
| |
Collapse
|
22
|
Neylon OM, Moran MM, Pellicano A, Nightingale M, O'Connell MA. Successful subcutaneous glucagon use for persistent hypoglycaemia in congenital hyperinsulinism. J Pediatr Endocrinol Metab 2013; 26:1157-61. [PMID: 23813352 DOI: 10.1515/jpem-2013-0115] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2013] [Accepted: 06/03/2013] [Indexed: 11/15/2022]
Abstract
Abstract Congenital hyperinsulinism (CHI) results from inappropriate excessive insulin secretion by the beta cells in the pancreas. A wide clinical spectrum of disease exists and a genetic diagnosis is now possible for approximately 50% of affected children. We describe a patient with atypical diffuse CHI caused by mosaic ABCC8 mutation inheritance, unmasked by paternal uniparental disomy. Hypoglycaemia persisted despite two subtotal pancreatectomies and trials of diazoxide and nifedipine were unsuccessful. Octreotide resulted in anaphylaxis, precluding its use. Continuous subcutaneous glucagon infusion was successful in restoring normoglycaemia and attenuating weight gain, with concomitant improvement of developmental milestones. No adverse effects have been encountered after >12 months of therapy. Administration problems (e.g., line crystallisation) may complicate continuous glucagon therapy; hence a practical description of infusion constitution is included. We recommend consideration of continuous subcutaneous glucagon infusion as a therapeutic option for persistent refractory hypoglycaemia in CHI.
Collapse
|
23
|
Calabria AC, Li C, Gallagher PR, Stanley CA, De León DD. GLP-1 receptor antagonist exendin-(9-39) elevates fasting blood glucose levels in congenital hyperinsulinism owing to inactivating mutations in the ATP-sensitive K+ channel. Diabetes 2012; 61:2585-91. [PMID: 22855730 PMCID: PMC3447900 DOI: 10.2337/db12-0166] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Infants with congenital hyperinsulinism owing to inactivating mutations in the K(ATP) channel (K(ATP)HI) who are unresponsive to medical therapy will require pancreatectomy to control the hypoglycemia. In preclinical studies, we showed that the GLP-1 receptor antagonist exendin-(9-39) suppresses insulin secretion and corrects fasting hypoglycemia in SUR-1(-/-) mice. The aim of this study was to examine the effects of exendin-(9-39) on fasting blood glucose in subjects with K(ATP)HI. This was a randomized, open-label, two-period crossover pilot clinical study. Nine subjects with K(ATP)HI received either exendin-(9-39) or vehicle on two different days. The primary outcome was blood glucose; secondary outcomes were insulin, glucagon, and GLP-1. In all subjects, mean nadir blood glucose and glucose area under the curve were significantly increased by exendin-(9-39). Insulin-to-glucose ratios were significantly lower during exendin-(9-39) infusion compared with vehicle. Fasting glucagon and intact GLP-1 were not affected by treatment. In addition, exendin-(9-39) significantly inhibited amino acid-stimulated insulin secretion in pancreatic islets isolated from neonates with K(ATP)HI. Our findings have two important implications: 1) GLP-1 and its receptor play a role in the regulation of fasting glycemia in K(ATP)HI; and 2) the GLP-1 receptor may be a therapeutic target for the treatment of children with K(ATP)HI.
Collapse
Affiliation(s)
- Andrew C. Calabria
- Division of Endocrinology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Changhong Li
- Division of Endocrinology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
- Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Paul R. Gallagher
- Clinical and Translational Research Center, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Charles A. Stanley
- Division of Endocrinology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
- Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Diva D. De León
- Division of Endocrinology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
- Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
- Corresponding author: Diva D. De León,
| |
Collapse
|
24
|
Christesen HT, Brusgaard K, Hussain K. Recurrent spontaneous hypoglycaemia causes loss of neurogenic and neuroglycopaenic signs in infants with congenital hyperinsulinism. Clin Endocrinol (Oxf) 2012; 76:548-54. [PMID: 21981106 DOI: 10.1111/j.1365-2265.2011.04250.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
OBJECTIVE Hypoglycaemia-associated autonomic failure (HAAF) with impaired neurogenic and neuroglycopaenic responses occurs in adults following recent, repeated hypoglycaemia. We aimed to evaluate whether HAAF also occurs in patients with infant-onset congenital hyperinsulinism (CHI). DESIGN, PATIENTS A controlled fast was performed in (i) seven CHI infants with initial symptomatic hypoglycaemia and three recent episodes of spontaneous recurrent hypoglycaemia each lasting <5 min and in (ii) seven infants with idiopathic ketotic hypoglycaemia for control. MEASUREMENTS At the time of hypoglycaemia (blood glucose <3 mmol/l or clinical signs), blood was drawn for serum insulin, cortisol, glucagon, adrenalin and nor-adrenalin. Signs of hypoglycaemia were documented. In CHI patients, the ABCC8 and KCNJ11 genes were analysed by denaturing high performance liquid chromatography (DHPLC) and/or direct bidirectional sequencing. RESULTS Two CHI patients had a paternal ABCC8 mutation, five had no mutations. When repeated hypoglycaemia was provoked, all CHI patients exhibited a complete loss of clinical signs of hypoglycaemia, along with a global blunting of the counter-regulatory hormones cortisol, glucagon, growth hormone, adrenalin and nor-adrenalin responses (median values 256 nmol/l, 23 pmol/l, 5·6 mU/l, 390 pmol/l and 2·9 nmol/l, respectively), irrespective of mutational status. In the controls, hypoglycaemia was always clinically overt with normal counter-regulatory cortisol, glucagon, adrenalin and nor-adrenalin responses (530 nmol/l, 60, 920 pmol/l and 4·0 nmol/l, respectively). CONCLUSION Recurrent hyperinsulinaemic hypoglycaemia even of short duration blunts the autonomic, neuroglycopaenic and glucose counter-regulatory hormonal responses in patients with infant-onset CHI resulting in clinically silent hypoglycaemia. Tight, or continuous, glucose monitoring is therefore recommended, especially in conservatively treated patients.
Collapse
|
25
|
McTaggart JS, Clark RH, Ashcroft FM. The role of the KATP channel in glucose homeostasis in health and disease: more than meets the islet. J Physiol 2010; 588:3201-9. [PMID: 20519313 PMCID: PMC2976015 DOI: 10.1113/jphysiol.2010.191767] [Citation(s) in RCA: 125] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2010] [Accepted: 06/01/2010] [Indexed: 12/25/2022] Open
Abstract
ATP-sensitive potassium (K(ATP)) channels are critical for the maintenance of glucose homeostasis. They are essential for glucose-stimulated insulin secretion from pancreatic beta-cells, contribute to the mechanisms by which hypoglycaemia stimulates glucagon release from pancreatic alpha-cells, and are involved in glucose uptake into skeletal muscle, glucose production and release from the liver, and feeding behaviour. Not surprisingly, loss- or gain-of-function mutations in K(ATP) channel genes have profound effects, giving rise to congenital hyperinsulinaemia and neonatal diabetes respectively. This symposium review focuses on our current understanding of the role of the K(ATP) channel in glucose homeostasis in health and disease.
Collapse
Affiliation(s)
- James S McTaggart
- Henry Wellcome Centre for Gene Function, Department of Physiology, Anatomy and Genetics, and OXION Centre for Ion Channel Studies, Sherrington Building, Parks Road, Oxford OX1 3PT, UK
| | | | | |
Collapse
|
26
|
Kapoor RR, James C, Hussain K. Advances in the diagnosis and management of hyperinsulinemic hypoglycemia. ACTA ACUST UNITED AC 2009; 5:101-12. [PMID: 19165222 DOI: 10.1038/ncpendmet1046] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2008] [Accepted: 11/12/2008] [Indexed: 12/16/2022]
Abstract
Hyperinsulinemic hypoglycemia (HH) is a consequence of unregulated insulin secretion by pancreatic beta-cells and is a major cause of hypoglycemic brain injury and mental retardation. Congenital HH is caused by mutations in genes involved in regulation of insulin secretion, seven of which have been identified (ABCC8, KCNJ11, GLUD1, CGK, HADH, SLC16A1 and HNF4A). Severe forms of congenital HH are caused by mutations in ABCC8 and KCNJ11, which encode the two components of the pancreatic beta-cell ATP-sensitive potassium channel. Mutations in HNF4A, GLUD1, CGK, and HADH lead to transient or persistent HH, whereas mutations in SLC16A1 cause exercise-induced HH. Rapid genetic analysis combined with an understanding of the histological features (focal or diffuse disease) of congenital HH and the introduction of (18)F-L-3,4-dihydroxyphenylalanine PET-CT to guide laparoscopic surgery have totally transformed the clinical approach to this complex disease. Adult-onset HH is mostly caused by an insulinoma; however, it has also been reported to present as postprandial HH in patients with noninsulinoma pancreatogenous hypoglycemia syndrome, in those who have undergone gastric-bypass surgery for morbid obesity, and in those with mutations in the insulin-receptor gene.
Collapse
Affiliation(s)
- Ritika R Kapoor
- Institute of Child Health, University College London and Great Ormond Street Hospital for Children National Health Services Trust, London, UK
| | | | | |
Collapse
|
27
|
Christesen HBT, Tribble ND, Molven A, Siddiqui J, Sandal T, Brusgaard K, Ellard S, Njølstad PR, Alm J, Brock Jacobsen B, Hussain K, Gloyn AL. Activating glucokinase (GCK) mutations as a cause of medically responsive congenital hyperinsulinism: prevalence in children and characterisation of a novel GCK mutation. Eur J Endocrinol 2008; 159:27-34. [PMID: 18450771 DOI: 10.1530/eje-08-0203] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
OBJECTIVE Activating glucokinase (GCK) mutations are a rarely reported cause of congenital hyperinsulinism (CHI), but the prevalence of GCK mutations is not known. METHODS From a pooled cohort of 201 non-syndromic children with CHI from three European referral centres (Denmark, n=141; Norway, n=26; UK, n=34), 108 children had no K(ATP)-channel (ABCC8/KCNJ11) gene abnormalities and were screened for GCK mutations. Novel GCK mutations were kinetically characterised. RESULTS In five patients, four heterozygous GCK mutations (S64Y, T65I, W99R and A456V) were identified, out of which S64Y was novel. Two of the mutations arose de novo, three were dominantly inherited. All the five patients were medically responsive. In the combined Danish and Norwegian cohort, the prevalence of GCK-CHI was estimated to be 1.2% (2/167, 95% confidence interval (CI) 0-2.8%) of all the CHI patients. In the three centre combined cohort of 72 medically responsive children without K(ATP)-channel mutations, the prevalence estimate was 6.9% (5/72, 95% CI 1.1-12.8%). All activating GCK mutations mapped to the allosteric activator site. The novel S64Y mutation resulted in an increased affinity for the substrate glucose (S(0.5) 1.49+/-0.08 and 7.39+/-0.05 mmol/l in mutant and wild-type proteins respectively), extrapolating to a relative activity index of approximately 22 compared with the wild type. CONCLUSION In the largest study performed to date on GCK in children with CHI, GCK mutations were found only in medically responsive children who were negative for ABCC8 and KCNJ11 mutations. The estimated prevalence (approximately 7%) suggests that screening for activating GCK mutations is warranted in those patients.
Collapse
Affiliation(s)
- Henrik B T Christesen
- HC Andersen Children's Hospital, Odense University Hospital, DK-5000 Odense C, Denmark
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Abstract
An explosion of work over the last decade has produced insight into the multiple hereditary causes of a nonimmunological form of diabetes diagnosed most frequently within the first 6 months of life. These studies are providing increased understanding of genes involved in the entire chain of steps that control glucose homeostasis. Neonatal diabetes is now understood to arise from mutations in genes that play critical roles in the development of the pancreas, of beta-cell apoptosis and insulin processing, as well as the regulation of insulin release. For the basic researcher, this work is providing novel tools to explore fundamental molecular and cellular processes. For the clinician, these studies underscore the need to identify the genetic cause underlying each case. It is increasingly clear that the prognosis, therapeutic approach, and genetic counseling a physician provides must be tailored to a specific gene in order to provide the best medical care.
Collapse
Affiliation(s)
- Lydia Aguilar-Bryan
- Pacific Northwest Diabetes Research Institute, 720 Broadway, Seattle, Washington 98122, USA.
| | | |
Collapse
|
29
|
Christesen HBT, Brusgaard K, Beck Nielsen H, Brock Jacobsen B. Non-insulinoma persistent hyperinsulinaemic hypoglycaemia caused by an activating glucokinase mutation: hypoglycaemia unawareness and attacks. Clin Endocrinol (Oxf) 2008; 68:747-55. [PMID: 18208578 DOI: 10.1111/j.1365-2265.2008.03184.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
OBJECTIVE Adult-onset non-insulinoma persistent hyperinsulinaemic hypoglycaemia (NI-PHH) and the variant NI-pancreatogenous hypoglycaemia syndrome (NIPHS) are genetically unexplained diseases, without reports of hypoglycaemia unawareness or familial inheritance. DESIGN AND PATIENTS In a prospective 8-year follow-up, a boy (i) with NI-PHH since age 14 years, his mother (ii), the mother's brother (iii) and his daughter (iv) were studied. RESULTS Patient (i) was characterized by especially postprandial hypoglycaemia down to 1.6 mmol/l and pronounced variability in diazoxide need with obesity; (ii) had asymptomatic blood glucose down to 2.9 mmol/l, but a severe hypoglycaemic postprandial attack after a slimming diet; (iii) had moderate hypoglycaemic symptoms since childhood and need of frequent eating; and (iv) was asymptomatic until a hypoglycaemic accident in the age of 24. After a slimming diet, symptomatic fasting, but especially postprandial hypoglycaemia occurred (blood glucose 1.9 mmol/l after 19 h fasting; 1.6 mmol/l 3.5 h after OGTT). By CT-scan/endoscopic ultrasound in three of the individuals, insulinoma could not be detected. In all four individuals, an activating glucokinase (GCK) mutation A456V was found. No mutations were found in the ABCC8 or KCNJ11 genes. The patients responded to treatment with diazoxide or octreotide long acting release. CONCLUSION This is the first report to highlight a genetic cause to adult-onset NI-PHH/NIPHS. The activating GCK mutation was dominantly inherited, but only after year-long follow-up and investigations, other family members were diagnosed symptomatic. Hypoglycaemia unawareness seems to be a prominent feature, but hypoglycaemic attacks occur after slimming, especially postprandially. PHH-GCK was medical responsive.
Collapse
|
30
|
Hussain K. Diagnosis and Management of Hyperinsulinaemic Hypoglycaemia of Infancy. Horm Res Paediatr 2007; 69:2-13. [PMID: 18059080 DOI: 10.1159/000111789] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2006] [Accepted: 07/27/2007] [Indexed: 11/19/2022] Open
Affiliation(s)
- Khalid Hussain
- London Centre for Paediatric Endocrinology and Metabolism, Great Ormond Street Hospital for Children NHS Trust, Institute of Child Health, University College London, London, UK.
| |
Collapse
|
31
|
MacDonald PE, De Marinis YZ, Ramracheya R, Salehi A, Ma X, Johnson PRV, Cox R, Eliasson L, Rorsman P. A K ATP channel-dependent pathway within alpha cells regulates glucagon release from both rodent and human islets of Langerhans. PLoS Biol 2007; 5:e143. [PMID: 17503968 PMCID: PMC1868042 DOI: 10.1371/journal.pbio.0050143] [Citation(s) in RCA: 182] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2006] [Accepted: 03/20/2007] [Indexed: 12/18/2022] Open
Abstract
Glucagon, secreted from pancreatic islet α cells, stimulates gluconeogenesis and liver glycogen breakdown. The mechanism regulating glucagon release is debated, and variously attributed to neuronal control, paracrine control by neighbouring β cells, or to an intrinsic glucose sensing by the α cells themselves. We examined hormone secretion and Ca2+ responses of α and β cells within intact rodent and human islets. Glucose-dependent suppression of glucagon release persisted when paracrine GABA or Zn2+ signalling was blocked, but was reversed by low concentrations (1–20 μM) of the ATP-sensitive K+ (KATP) channel opener diazoxide, which had no effect on insulin release or β cell responses. This effect was prevented by the KATP channel blocker tolbutamide (100 μM). Higher diazoxide concentrations (≥30 μM) decreased glucagon and insulin secretion, and α- and β-cell Ca2+ responses, in parallel. In the absence of glucose, tolbutamide at low concentrations (<1 μM) stimulated glucagon secretion, whereas high concentrations (>10 μM) were inhibitory. In the presence of a maximally inhibitory concentration of tolbutamide (0.5 mM), glucose had no additional suppressive effect. Downstream of the KATP channel, inhibition of voltage-gated Na+ (TTX) and N-type Ca2+ channels (ω-conotoxin), but not L-type Ca2+ channels (nifedipine), prevented glucagon secretion. Both the N-type Ca2+ channels and α-cell exocytosis were inactivated at depolarised membrane potentials. Rodent and human glucagon secretion is regulated by an α-cell KATP channel-dependent mechanism. We propose that elevated glucose reduces electrical activity and exocytosis via depolarisation-induced inactivation of ion channels involved in action potential firing and secretion. Glucagon is a critical regulator of glucose homeostasis. Its major action is to mobilize glucose from the liver. Glucagon secretion from α cells of the pancreatic islets of Langerhans is suppressed by elevated blood sugar, a response that is often perturbed in diabetes. Much work has focused on the regulation of α-cell glucagon secretion by neuronal factors and by paracrine factors from neighbouring cells, including the important islet hormone insulin. In contrast, we provide evidence in support of a direct effect of glucose on α cells within intact rodent and human islets. Notably, our work implicates an α-cell glucose-sensing pathway similar to that found in insulin-secreting β cells, involving closure of ATP-dependent K+ channels in the presence of glucose. Furthermore, we find that membrane depolarisation results in inhibition of Na+ and Ca2+ channel activity and α-cell exocytosis. Thus, we propose that elevated blood glucose reduces α-cell electrical activity and glucagon secretion by inactivating the ion channels involved in action potential firing and secretion. Elevated glucose levels reduce electrical activity and the release of glucagon via inactivation of ion channels in pancreatic islet cells.
Collapse
Affiliation(s)
- Patrick E MacDonald
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Oxford, United Kingdom.
| | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Ribeiro MJ, Boddaert N, Bellanné-Chantelot C, Bourgeois S, Valayannopoulos V, Delzescaux T, Jaubert F, Nihoul-Fékété C, Brunelle F, De Lonlay P. The added value of [18F]fluoro-L-DOPA PET in the diagnosis of hyperinsulinism of infancy: a retrospective study involving 49 children. Eur J Nucl Med Mol Imaging 2007; 34:2120-8. [PMID: 17661030 DOI: 10.1007/s00259-007-0498-y] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2007] [Accepted: 05/17/2007] [Indexed: 11/28/2022]
Abstract
PURPOSE Neuroendocrine diseases are a heterogeneous group of entities with the ability to take up amine precursors, such as L-DOPA, and convert them into biogenic amines, such as dopamine. Congenital hyperinsulinism of infancy (HI) is a neuroendocrine disease secondary to either focal adenomatous hyperplasia or a diffuse abnormal pancreatic insulin secretion. While focal hyperinsulinism may be reversed by selective surgical resection, diffuse forms require near-total pancreatectomy when resistant to medical treatment. Here, we report the diagnostic value of PET with [(18)F]fluoro-L-DOPA in distinguishing focal from diffuse HI. METHODS Forty-nine children were studied with [(18)F]fluoro-L-DOPA. A thoraco-abdominal scan was acquired 45-65 min after the injection of 4.2 +/- 1.0 MBq/kg of [(18)F]fluoro-L-DOPA. Additionally, 12 of the 49 children were submitted to pancreatic venous catheterisation for blood samples (PVS) and 31 were also investigated using MRI. RESULTS We identified abnormal focal pancreatic uptake of [(18)F]fluoro-L-DOPA in 15 children, whereas diffuse radiotracer uptake was observed in the pancreatic area in the other 34 patients. In children studied with both PET and PVS, the results were concordant in 11/12 cases. All patients with focal radiotracer uptake and nine of the patients with diffuse pancreatic radiotracer accumulation, unresponsive to medical treatment, were submitted to surgery. In 21 of these 24 patients, the histopathological results confirmed the PET findings. In focal forms, selective surgery was followed by clinical remission without carbohydrate intolerance. CONCLUSION These data demonstrate that PET with [(18)F]fluoro-L-DOPA is an accurate non-invasive technique allowing differential diagnosis between focal and diffuse forms of HI.
Collapse
Affiliation(s)
- Maria-João Ribeiro
- Biomedical Imaging Institute, Life Sciences Division, Commissariat à l'Energie Atomique, Frédéric Joliot Hospital, 4 place du Général Leclerc, Orsay, France.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Hussain K, Blankenstein O, De Lonlay P, Christesen HT. Hyperinsulinaemic hypoglycaemia: biochemical basis and the importance of maintaining normoglycaemia during management. Arch Dis Child 2007; 92:568-70. [PMID: 17588969 PMCID: PMC2083756 DOI: 10.1136/adc.2006.115543] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
In patients with suspected hyperinsulinaemic hypoglycaemia, blood glucose concentrations should be maintained within the normal range during routine management
Collapse
Affiliation(s)
- Khalid Hussain
- London Centre for Paediatric Endocrinology and Metabolism, Great Ormond Street Hospital for Children NHS Trust, London, UK.
| | | | | | | |
Collapse
|
34
|
Zhou H, Zhang T, Harmon JS, Bryan J, Robertson RP. Zinc, not insulin, regulates the rat alpha-cell response to hypoglycemia in vivo. Diabetes 2007; 56:1107-12. [PMID: 17317764 DOI: 10.2337/db06-1454] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The intra-islet insulin hypothesis proposes that the decrement in beta-cell insulin secretion during hypoglycemia provides an activation signal for alpha-cells to release glucagon. A more recent hypothesis proposes that zinc atoms suppress glucagon secretion via their ability to open alpha-cell ATP-sensitive K(+) channels. Since insulin binds zinc, and zinc is co-secreted with insulin, we tested whether decreased zinc delivery to the alpha-cell activates glucagon secretion. In streptozotocin-induced diabetic Wistar rats, we observed that switching off intrapancreatic artery insulin infusions in vivo during hypoglycemia greatly improved glucagon secretion (area under the curve [AUC]: control group 240 +/- 261 and experimental group 4,346 +/- 1,259 pg x ml(-1) x 90 min(-1); n = 5, P < 0.02). Switching off pancreatic artery infusions of zinc chloride during hypoglycemia also improved the glucagon response (AUC: control group 817 +/- 107 and experimental group 3,445 +/- 573 pg x ml(-1) x 90 min(-1); n = 6, P < 0.01). However, switching off zinc-free insulin infusions had no effect. Studies of glucose uptake in muscle and liver cell lines verified that the zinc-free insulin was biologically active. We conclude that zinc atoms, not the insulin molecule itself, provide the switch-off signal from the beta-cell to the alpha-cell to initiate glucagon secretion during hypoglycemia.
Collapse
Affiliation(s)
- Huarong Zhou
- Pacific Northwest Research Institute, 720 Broadway, Seattle, WA 98122, USA
| | | | | | | | | |
Collapse
|
35
|
Gromada J, Franklin I, Wollheim CB. Alpha-cells of the endocrine pancreas: 35 years of research but the enigma remains. Endocr Rev 2007; 28:84-116. [PMID: 17261637 DOI: 10.1210/er.2006-0007] [Citation(s) in RCA: 424] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Glucagon, a hormone secreted from the alpha-cells of the endocrine pancreas, is critical for blood glucose homeostasis. It is the major counterpart to insulin and is released during hypoglycemia to induce hepatic glucose output. The control of glucagon secretion is multifactorial and involves direct effects of nutrients on alpha-cell stimulus-secretion coupling as well as paracrine regulation by insulin and zinc and other factors secreted from neighboring beta- and delta-cells within the islet of Langerhans. Glucagon secretion is also regulated by circulating hormones and the autonomic nervous system. In this review, we describe the components of the alpha-cell stimulus secretion coupling and how nutrient metabolism in the alpha-cell leads to changes in glucagon secretion. The islet cell composition and organization are described in different species and serve as a basis for understanding how the numerous paracrine, hormonal, and nervous signals fine-tune glucagon secretion under different physiological conditions. We also highlight the pathophysiology of the alpha-cell and how hyperglucagonemia represents an important component of the metabolic abnormalities associated with diabetes mellitus. Therapeutic inhibition of glucagon action in patients with type 2 diabetes remains an exciting prospect.
Collapse
Affiliation(s)
- Jesper Gromada
- Novartis Institutes for BioMedical Research, 100 Technology Square, Cambridge, Massachusetts 02139, USA.
| | | | | |
Collapse
|
36
|
Affiliation(s)
- Bassem H Dekelbab
- Department of Pediatrics, Division of Endocrinology, St. John Hospital and Medical Center, 22101 Moross Road, Detroit, MI 48236, USA
| | | |
Collapse
|