1
|
Smith JD, Redfern R, Burhans L, Zderic TW, Hamilton MT, Harrison WW. Relationship between fasted insulin levels and mfERG implicit times in patients with type 2 diabetes and prediabetes. Doc Ophthalmol 2025; 150:65-72. [PMID: 39969714 DOI: 10.1007/s10633-025-10004-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Accepted: 01/29/2025] [Indexed: 02/20/2025]
Abstract
PURPOSE It is established that the mfERG is altered in type 2 diabetes (T2DM). The P1 implicit time (IT) becomes delayed even before retinopathy is present. This has been associated with the duration of damage to retinal cells from hyperglycemia. However, patients withT2DM and prediabetes also have changes in insulin values. The impact of elevated or reduced blood insulin on retinal function using mfERG has not been explored. Here we evaluate the the relationship between blood insulin levels and mfERG parameters in patients with and without T2DM and prediabetes. METHODS 66 subjects (age 50.4 ± 10.5) were included in this cross-sectional study. Subjects were asked if fasted upon presentation. HbA1c was taken and used to categorize subjects into groups as controls (< 5.7%), prediabetes (5.7-6.4%) or T2DM (> 6.4% or previously diagnosed). Insulin was collected from finger stick and was analyzed via ELISA. A mfERG (103 hexagons) was performed (VERIS 6.3) with 4-min m-sequence at near 100% contrast. Data was evaluated for ring hexagons, as well as averaged together for P1 IT. No subjects had retinopathy or were taking exogenous insulin. Data were evaluated through ANOVA for comparisons of groups and as well as with multivariate regression analysis. RESULTS There was a strong positive correlation between fasting blood glucose and mfERG IT (P < 0.002) in all subjects. There was also a negative relationship between averaged mfERG IT and fasted blood insulin concentration (P = 0.035) after age, T2DM duration and blood glucose were controlled for in a multivariate regression. There was a significant difference in mfERG IT between the groups (p = 0.008) with T2DM exhibiting the longest IT, but no difference between controls and prediabetes. There was no difference in insulin levels between groups, nor were there any significant relationships between insulin and mfERG IT for those who were not fasted. CONCLUSIONS Reduced blood insulin is associated with IT delays under overnight fasted conditions, which suggests a lack of insulin may impair retinal function. Future work should examine these associations of retinal function with insulin under well controlled and standardized postprandial conditions such as during oral glucose tolerance testing.
Collapse
Affiliation(s)
| | - Rachel Redfern
- University of Houston College of Optometry, Houston, TX, USA
| | - Liam Burhans
- University of Houston College of Optometry, Houston, TX, USA
| | - Theodore W Zderic
- Department of Health and Human Performance, University of Houston, Houston, TX, USA
| | - Marc T Hamilton
- Department of Health and Human Performance, University of Houston, Houston, TX, USA
- Department of Biology and Biochemisttry, University of Houston, Houston, TX, USA
| | | |
Collapse
|
2
|
Li L, Wang Y. Advancements in Injectable Hydrogels for Controlled Insulin Delivery: A Comprehensive Review of the Design, Properties and Therapeutic Applications for Diabetes and Its Complications. Polymers (Basel) 2025; 17:780. [PMID: 40292663 PMCID: PMC11944538 DOI: 10.3390/polym17060780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2025] [Revised: 03/09/2025] [Accepted: 03/12/2025] [Indexed: 04/30/2025] Open
Abstract
Glycemic management in diabetes patients remains heavily reliant on multiple daily insulin injections, which often leads to poor patient compliance and an elevated risk of hypoglycemia. To overcome these limitations, injectable hydrogels capable of encapsulating insulin within polymeric networks have emerged as a promising alternative. Ideally, a single injection can form an in situ depot that allows prolonged glycemic control and lower injection frequency. This review summarizes recent advances in injectable hydrogels for controlled insulin delivery, focusing on the polymer sources, crosslinking strategies, and stimuli-responsive release mechanisms. Synthetic polymers such as PEG, PNIPAM, and Pluronics dominate the current research due to their highly tunable properties, whereas naturally derived polysaccharides and proteins generally require further modifications for enhanced functionality. The crosslinking types, ranging from relatively weak physical interactions (hydrogen bonds, hydrophobic interactions, etc.) to dynamic covalent bonds with higher binding strength (e.g., Schiff base, phenylboronate ester), significantly influence the shear-thinning behavior and stimuli-responsiveness of hydrogel systems. Hydrogels' responsiveness to temperature, glucose, pH, and reactive oxygen species has enabled more precise insulin release, offering new options for improved diabetic management. Beyond glycemic regulation, this review also explores insulin-loaded hydrogels for treating complications. Despite the progress, challenges such as burst release, long-term biocompatibility, and scalability remain. Future research should focus on optimizing hydrogel design, supported by robust and comprehensive data.
Collapse
Affiliation(s)
| | - Ya Wang
- Guangdong Provincial/Zhuhai Key Laboratory of IRADS, and Department of Life Sciences, BNU-HKBU United International College, Zhuhai 519087, China;
| |
Collapse
|
3
|
Li R, Du S, Ye Z, Yang W, Liu Y. Blueberry Anthocyanin Extracts (BAEs) Protect Retinal and Retinal Pigment Epithelium Function from High-Glucose-Induced Apoptosis by Activating GLP-1R/Akt Signaling. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:5886-5898. [PMID: 40017023 DOI: 10.1021/acs.jafc.4c08978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/01/2025]
Abstract
Diabetic retinopathy is a severe diabetes complication leading to vision impairment and blindness primarily due to the disruption of insulin signaling in the retina. This study investigated the protective effects of blueberry anthocyanin extracts (BAEs) and its main component, anthocyanin-3-glucoside (C3G), in the retinas of diabetic mice and ARPE-19 cells under high-glucose (HG) conditions. The results showed that diabetic mice suffered significant weight loss, elevated glycemic levels, and increased retinal cell apoptosis after 10 weeks. Treatment with various doses of BAEs resulted in a significant reduction in glycemic levels, weight stabilization, decreased levels of inflammatory cytokines, and inhibition of retinal cell apoptosis. These findings suggested that BAEs possess hypoglycemic properties, potentially mitigating diabetes-induced retinal damage by modulating associated signaling pathways. Immunoblotting analysis revealed that persistent hyperglycemia impaired the Akt/GSK3β signaling pathway in diabetic mice, while high doses of BAEs significantly restored the function of these pathways and promoted GLP-1 release, enhancing GLP-1R expression in the retina and potentially mitigating retinal injury. Finally, studies on the effects of C3G on ARPE-19 cell models deficient in REDD1 under HG conditions showed that C3G protected cells from HG damage through the GLP-1R/Akt signaling pathway. In conclusion, this research provides valuable insights into the therapeutic potential of BAEs and C3G for managing diabetes-related ocular complications.
Collapse
Affiliation(s)
- Rui Li
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Jiangnan University, No. 1800, Lihu Road, Wuxi , Jiangsu 214122, P. R. China
| | - Shumeng Du
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Jiangnan University, No. 1800, Lihu Road, Wuxi , Jiangsu 214122, P. R. China
| | - Zhan Ye
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Jiangnan University, No. 1800, Lihu Road, Wuxi , Jiangsu 214122, P. R. China
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, National Engineering Research Center for Functional Food, Jiangnan University, 1800 Lihu Road, Wuxi , Jiangsu 214122, P. R. China
| | - Wei Yang
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Jiangnan University, No. 1800, Lihu Road, Wuxi , Jiangsu 214122, P. R. China
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, National Engineering Research Center for Functional Food, Jiangnan University, 1800 Lihu Road, Wuxi , Jiangsu 214122, P. R. China
| | - Yuanfa Liu
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Jiangnan University, No. 1800, Lihu Road, Wuxi , Jiangsu 214122, P. R. China
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, National Engineering Research Center for Functional Food, Jiangnan University, 1800 Lihu Road, Wuxi , Jiangsu 214122, P. R. China
- Wuxi Shihezi Future Food Research Institute Ltd, Wuxi , Jiangsu 214000, P. R. China
- Future Food (Bai Ma) Research Institute, Nanjing , Jiangsu 211200, P. R. China
| |
Collapse
|
4
|
Zhang W, Wang X, Tian S, Wang J, Zhou A. Fetuin-B Interacts With Insulin Receptor-β and Promotes Insulin Resistance in Retina Cells. Invest Ophthalmol Vis Sci 2024; 65:16. [PMID: 39382879 PMCID: PMC11469143 DOI: 10.1167/iovs.65.12.16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 09/19/2024] [Indexed: 10/10/2024] Open
Abstract
Purpose The purpose of this study was to investigate the correlation between insulin and Fetuin-B (FETUB) and the influence of FETUB on insulin signaling pathway in diabetic retinopathy (DR). Methods Enzyme-linked immunosorbent assay (ELISA) was used to analyze FETUB and insulin levels in the serum and aqueous fluid of patients with DR and healthy controls. Quantitative PCR (q-PCR), Western blotting, and ELISA were used to examine FETUB expression in ARPE-19, BV2, and Müller cells under insulin stimulation. Co-immunoprecipitation was used to investigate the interaction of FETUB with insulin receptor-β (IRβ). Insulin resistance (IR)-BV2 and IR-Müller cells were treated with FETUB recombinant protein or FETUB short hairpin RNA (shRNA) to explore the influence of FETUB on insulin signaling pathway in DR. LY294002 (a PI3K pathway inhibitor) was used to determine whether FETUB affects glucose metabolism via the PI3K/Akt pathway. Results In aqueous fluid, FETUB concentrations were positively correlated with insulin levels. FETUB expression increased in Müller and BV2 cells under insulin regulation, and FETUB interacted with IRβ in retinal cells and mice retina. The interaction between IRβ and FETUB increased in BV2 and Müller cells under high-glucose than in controls. Insulin signaling pathway activation was suppressed in FETUB recombinant protein-treated BV2 and Müller cells but increased in FETUB shRNA-transfected cells. FETUB shRNA could not reverse LY294002-mediated inhibition of glucose transporter-4 expression. Conclusions Retinal cells are the source of insulin-regulated FETUB. The FETUB interacts with IRβ and affects insulin signaling pathway in BV2 and Müller cells. FETUB may aggravate IR in BV2 and Müller cells via the PI3K/Akt pathway.
Collapse
Affiliation(s)
- Wenyi Zhang
- Department of Ophthalmology, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Xin Wang
- Department of Ophthalmology, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Shuwei Tian
- Department of Ophthalmology, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Jianming Wang
- Department of Ophthalmology, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Aiyi Zhou
- Department of Ophthalmology, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
5
|
Besirli CG, Nath M, Yao J, Pawar M, Myers AM, Zacks D, Fort PE. HSPB4/CRYAA Protect Photoreceptors during Retinal Detachment in Part through FAIM2 Regulation. Neurol Int 2024; 16:905-917. [PMID: 39311341 PMCID: PMC11417767 DOI: 10.3390/neurolint16050068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 08/19/2024] [Accepted: 08/22/2024] [Indexed: 09/26/2024] Open
Abstract
Our previous study discussed crystallin family induction in an experimental rat model of retinal detachment. Therefore, we attempted to evaluate the role of α-crystallin in photoreceptor survival in an experimental model of retinal detachment, as well as its association with the intrinsically neuroprotective protein Fas-apoptotic inhibitory molecule 2 (FAIM2). Separation of retina and RPE was induced in rat and mouse eyes by subretinal injection of hyaluronic acid. Retinas were subsequently analyzed for the presence αA-crystallin (HSPB4) and αB-crystallin (HSPB5) proteins using immunohistochemistry and immunoblotting. Photoreceptor death was analyzed using terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate nick end labeling (TUNEL) staining and cell counts. The 661W cells subjected to FasL were used as a cell model of photoreceptor degeneration to assess the mechanisms of the protective effect of αA-crystallin and its dependence on its phosphorylation on T148. We further evaluated the interaction between FAIM2 and αA-crystallin using a co-immunoprecipitation assay. Our results showed that α-crystallin protein levels were rapidly induced in response to retinal detachment, with αA-crystallin playing a particularly important role in protecting photoreceptors during retinal detachment. Our data also show that the photoreceptor intrinsically neuroprotective protein FAIM2 is induced and interacts with α-crystallins following retinal detachment. Mechanistically, our work also demonstrated that the phosphorylation of αA-crystallin is important for the interaction of αA-crystallin with FAIM2 and their neuroprotective effect. Thus, αA-crystallin is involved in the regulation of photoreceptor survival during retinal detachment, playing a key role in the stabilization of FAIM2, serving as an important modulator of photoreceptor cell survival under chronic stress conditions.
Collapse
Affiliation(s)
- Cagri G. Besirli
- Department of Ophthalmology and Visual Sciences, W.K. Kellogg Eye Center, University of Michigan, Ann Arbor, MI 48105, USA; (C.G.B.)
| | - Madhu Nath
- Department of Ophthalmology and Visual Sciences, W.K. Kellogg Eye Center, University of Michigan, Ann Arbor, MI 48105, USA; (C.G.B.)
| | - Jingyu Yao
- Department of Ophthalmology and Visual Sciences, W.K. Kellogg Eye Center, University of Michigan, Ann Arbor, MI 48105, USA; (C.G.B.)
| | - Mercy Pawar
- Department of Ophthalmology and Visual Sciences, W.K. Kellogg Eye Center, University of Michigan, Ann Arbor, MI 48105, USA; (C.G.B.)
| | - Angela M. Myers
- Department of Ophthalmology and Visual Sciences, W.K. Kellogg Eye Center, University of Michigan, Ann Arbor, MI 48105, USA; (C.G.B.)
| | - David Zacks
- Department of Ophthalmology and Visual Sciences, W.K. Kellogg Eye Center, University of Michigan, Ann Arbor, MI 48105, USA; (C.G.B.)
| | - Patrice E. Fort
- Department of Ophthalmology and Visual Sciences, W.K. Kellogg Eye Center, University of Michigan, Ann Arbor, MI 48105, USA; (C.G.B.)
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI 48105, USA
| |
Collapse
|
6
|
Li J, Chen K, Li X, Zhang X, Zhang L, Yang Q, Xia Y, Xie C, Wang X, Tong J, Shen Y. Mechanistic insights into the alterations and regulation of the AKT signaling pathway in diabetic retinopathy. Cell Death Discov 2023; 9:418. [PMID: 37978169 PMCID: PMC10656479 DOI: 10.1038/s41420-023-01717-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 11/05/2023] [Accepted: 11/08/2023] [Indexed: 11/19/2023] Open
Abstract
In the early stages of diabetic retinopathy (DR), diabetes-related hyperglycemia directly inhibits the AKT signaling pathway by increasing oxidative stress or inhibiting growth factor expression, which leads to retinal cell apoptosis, nerve proliferation and fundus microvascular disease. However, due to compensatory vascular hyperplasia in the late stage of DR, the vascular endothelial growth factor (VEGF)/phosphatidylinositol 3 kinase (PI3K)/AKT cascade is activated, resulting in opposite levels of AKT regulation compared with the early stage. Studies have shown that many factors, including insulin, insulin-like growth factor-1 (IGF-1), VEGF and others, can regulate the AKT pathway. Disruption of the insulin pathway decreases AKT activation. IGF-1 downregulation decreases the activation of AKT in DR, which abrogates the neuroprotective effect, upregulates VEGF expression and thus induces neovascularization. Although inhibiting VEGF is the main treatment for neovascularization in DR, excessive inhibition may lead to apoptosis in inner retinal neurons. AKT pathway substrates, including mammalian target of rapamycin (mTOR), forkhead box O (FOXO), glycogen synthase kinase-3 (GSK-3)/nuclear factor erythroid 2-related factor 2 (Nrf2), and nuclear factor kappa-B (NF-κB), are a research focus. mTOR inhibitors can delay or prevent retinal microangiopathy, whereas low mTOR activity can decrease retinal protein synthesis. Inactivated AKT fails to inhibit FOXO and thus causes apoptosis. The GSK-3/Nrf2 cascade regulates oxidation and inflammation in DR. NF-κB is activated in diabetic retinas and is involved in inflammation and apoptosis. Many pathways or vital activities, such as the Janus kinase (JAK)/signal transducer and activator of transcription (STAT) and mitogen-activated protein kinase (MAPK) signaling pathways, interact with the AKT pathway to influence DR development. Numerous regulatory methods can simultaneously impact the AKT pathway and other pathways, and it is essential to consider both the connections and interactions between these pathways. In this review, we summarize changes in the AKT signaling pathway in DR and targeted drugs based on these potential sites.
Collapse
Affiliation(s)
- Jiayuan Li
- Department of Ophthalmology, The First Affiliated Hospital of Zhejiang University, Hangzhou, Zhejiang, China
- Department of Cardiology, The Second Affiliated Hospital of Zhejiang University, Hangzhou, Zhejiang, China
| | - Kuangqi Chen
- Department of Ophthalmology, The First Affiliated Hospital of Zhejiang University, Hangzhou, Zhejiang, China
| | - Xiang Li
- Department of Ophthalmology, The First Affiliated Hospital of Zhejiang University, Hangzhou, Zhejiang, China
| | - Xuhong Zhang
- Department of Ophthalmology, The First Affiliated Hospital of Zhejiang University, Hangzhou, Zhejiang, China
| | - Liyue Zhang
- Department of Ophthalmology, The First Affiliated Hospital of Zhejiang University, Hangzhou, Zhejiang, China
| | - Qianjie Yang
- Department of Ophthalmology, The First Affiliated Hospital of Zhejiang University, Hangzhou, Zhejiang, China
| | - Yutong Xia
- Department of Ophthalmology, The First Affiliated Hospital of Zhejiang University, Hangzhou, Zhejiang, China
| | - Chen Xie
- Department of Ophthalmology, The First Affiliated Hospital of Zhejiang University, Hangzhou, Zhejiang, China
| | - Xiawei Wang
- Department of Ophthalmology, The First Affiliated Hospital of Zhejiang University, Hangzhou, Zhejiang, China
| | - Jianping Tong
- Department of Ophthalmology, The First Affiliated Hospital of Zhejiang University, Hangzhou, Zhejiang, China.
| | - Ye Shen
- Department of Ophthalmology, The First Affiliated Hospital of Zhejiang University, Hangzhou, Zhejiang, China.
| |
Collapse
|
7
|
Ebrahimi M, Thompson P, Lauer AK, Sivaprasad S, Perry G. The retina-brain axis and diabetic retinopathy. Eur J Ophthalmol 2023; 33:2079-2095. [PMID: 37259525 DOI: 10.1177/11206721231172229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Diabetic retinopathy (DR) is a major contributor to permanent vision loss and blindness. Changes in retinal neurons, glia, and microvasculature have been the focus of intensive study in the quest to better understand DR. However, the impact of diabetes on the rest of the visual system has received less attention. There are reports of associations of changes in the visual system with preclinical and clinical manifestations of diabetes. Simultaneous investigation of the retina and the brain may shed light on the mechanisms underlying neurodegeneration in diabetics. Additionally, investigating the links between DR and other neurodegenerative disorders of the brain including Alzheimer's and Parkinson's disease may reveal shared mechanisms for neurodegeneration and potential therapy options.
Collapse
Affiliation(s)
- Moein Ebrahimi
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Network of Immunity in Infection, Malignancy, and Autoimmunity, Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Paul Thompson
- Imaging Genetics Center, Mark and Mary Stevens Institute for Neuroimaging and Informatics, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Andreas K Lauer
- Department of Ophthalmology, Casey Eye Institute, Oregon Health & Science University, Portland, Oregon, USA
| | - Sobha Sivaprasad
- National Institute of Health and Care Research Moorfields Biomedical Research Centre, Moorfields Eye Hospital, London, UK
| | - George Perry
- Department of Neuroscience, Developmental and Regenerative Biology, University of Texas and San Antonio, San Antonio, TX, USA
| |
Collapse
|
8
|
Sienkiewicz-Szłapka E, Fiedorowicz E, Król-Grzymała A, Kordulewska N, Rozmus D, Cieślińska A, Grzybowski A. The Role of Genetic Polymorphisms in Diabetic Retinopathy: Narrative Review. Int J Mol Sci 2023; 24:15865. [PMID: 37958858 PMCID: PMC10650381 DOI: 10.3390/ijms242115865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 10/23/2023] [Accepted: 10/27/2023] [Indexed: 11/15/2023] Open
Abstract
Diabetic retinopathy (DR) is renowned as a leading cause of visual loss in working-age populations with its etiopathology influenced by the disturbance of biochemical metabolic pathways and genetic factors, including gene polymorphism. Metabolic pathways considered to have an impact on the development of the disease, as well as genes and polymorphisms that can affect the gene expression, modify the quantity and quality of the encoded product (protein), and significantly alter the metabolic pathway and its control, and thus cause changes in the functioning of metabolic pathways. In this article, the screening of chromosomes and the most important genes involved in the etiology of diabetic retinopathy is presented. The common databases with manuscripts published from January 2000 to June 2023 have been taken into consideration and chosen. This article indicates the role of specific genes in the development of diabetic retinopathy, as well as polymorphic changes within the indicated genes that may have an impact on exacerbating the symptoms of the disease. The collected data will allow for a broader look at the disease and help to select candidate genes that can become markers of the disease.
Collapse
Affiliation(s)
- Edyta Sienkiewicz-Szłapka
- Department of Biochemistry, Faculty of Biology and Biotechnology, University of Warmia and Mazury, 10-719 Olsztyn, Poland; (E.S.-S.); (E.F.); (A.K.-G.); (N.K.); (D.R.)
| | - Ewa Fiedorowicz
- Department of Biochemistry, Faculty of Biology and Biotechnology, University of Warmia and Mazury, 10-719 Olsztyn, Poland; (E.S.-S.); (E.F.); (A.K.-G.); (N.K.); (D.R.)
| | - Angelika Król-Grzymała
- Department of Biochemistry, Faculty of Biology and Biotechnology, University of Warmia and Mazury, 10-719 Olsztyn, Poland; (E.S.-S.); (E.F.); (A.K.-G.); (N.K.); (D.R.)
| | - Natalia Kordulewska
- Department of Biochemistry, Faculty of Biology and Biotechnology, University of Warmia and Mazury, 10-719 Olsztyn, Poland; (E.S.-S.); (E.F.); (A.K.-G.); (N.K.); (D.R.)
| | - Dominika Rozmus
- Department of Biochemistry, Faculty of Biology and Biotechnology, University of Warmia and Mazury, 10-719 Olsztyn, Poland; (E.S.-S.); (E.F.); (A.K.-G.); (N.K.); (D.R.)
| | - Anna Cieślińska
- Department of Biochemistry, Faculty of Biology and Biotechnology, University of Warmia and Mazury, 10-719 Olsztyn, Poland; (E.S.-S.); (E.F.); (A.K.-G.); (N.K.); (D.R.)
| | - Andrzej Grzybowski
- Institute for Research in Ophthalmology, Foundation for Ophthalmology Development, Gorczyczewskiego 2/3, 61-553 Poznań, Poland;
| |
Collapse
|
9
|
Ramos H, Hernández C, Simó R, Simó-Servat O. Inflammation: The Link between Neural and Vascular Impairment in the Diabetic Retina and Therapeutic Implications. Int J Mol Sci 2023; 24:ijms24108796. [PMID: 37240138 DOI: 10.3390/ijms24108796] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 04/25/2023] [Accepted: 05/12/2023] [Indexed: 05/28/2023] Open
Abstract
The etiology of diabetic retinopathy (DR) is complex, multifactorial and compromises all the elements of the retinal neurovascular unit (NVU). This diabetic complication has a chronic low-grade inflammatory component involving multiple inflammatory mediators and adhesion molecules. The diabetic milieu promotes reactive gliosis, pro-inflammatory cytokine production and leukocyte recruitment, which contribute to the disruption of the blood retinal barrier. The understanding and the continuous research of the mechanisms behind the strong inflammatory component of the disease allows the design of new therapeutic strategies to address this unmet medical need. In this context, the aim of this review article is to recapitulate the latest research on the role of inflammation in DR and to discuss the efficacy of currently administered anti-inflammatory treatments and those still under development.
Collapse
Affiliation(s)
- Hugo Ramos
- Diabetes and Metabolism Research Unit, Vall d'Hebron Research Institute, Universitat Autònoma de Barcelona, 08035 Barcelona, Spain
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III (ICSIII), 28029 Madrid, Spain
| | - Cristina Hernández
- Diabetes and Metabolism Research Unit, Vall d'Hebron Research Institute, Universitat Autònoma de Barcelona, 08035 Barcelona, Spain
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III (ICSIII), 28029 Madrid, Spain
| | - Rafael Simó
- Diabetes and Metabolism Research Unit, Vall d'Hebron Research Institute, Universitat Autònoma de Barcelona, 08035 Barcelona, Spain
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III (ICSIII), 28029 Madrid, Spain
| | - Olga Simó-Servat
- Diabetes and Metabolism Research Unit, Vall d'Hebron Research Institute, Universitat Autònoma de Barcelona, 08035 Barcelona, Spain
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III (ICSIII), 28029 Madrid, Spain
| |
Collapse
|
10
|
Patel C, Pande S, Sagathia V, Ranch K, Beladiya J, Boddu SHS, Jacob S, Al-Tabakha MM, Hassan N, Shahwan M. Nanocarriers for the Delivery of Neuroprotective Agents in the Treatment of Ocular Neurodegenerative Diseases. Pharmaceutics 2023; 15:837. [PMID: 36986699 PMCID: PMC10052766 DOI: 10.3390/pharmaceutics15030837] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 02/25/2023] [Accepted: 03/02/2023] [Indexed: 03/08/2023] Open
Abstract
Retinal neurodegeneration is considered an early event in the pathogenesis of several ocular diseases, such as diabetic retinopathy, age-related macular degeneration, and glaucoma. At present, there is no definitive treatment to prevent the progression or reversal of vision loss caused by photoreceptor degeneration and the death of retinal ganglion cells. Neuroprotective approaches are being developed to increase the life expectancy of neurons by maintaining their shape/function and thus prevent the loss of vision and blindness. A successful neuroprotective approach could prolong patients' vision functioning and quality of life. Conventional pharmaceutical technologies have been investigated for delivering ocular medications; however, the distinctive structural characteristics of the eye and the physiological ocular barriers restrict the efficient delivery of drugs. Recent developments in bio-adhesive in situ gelling systems and nanotechnology-based targeted/sustained drug delivery systems are receiving a lot of attention. This review summarizes the putative mechanism, pharmacokinetics, and mode of administration of neuroprotective drugs used to treat ocular disorders. Additionally, this review focuses on cutting-edge nanocarriers that demonstrated promising results in treating ocular neurodegenerative diseases.
Collapse
Affiliation(s)
- Chirag Patel
- Department of Pharmacology, L. M. College of Pharmacy, Ahmedabad 380009, India
| | - Sonal Pande
- Department of Pharmacology, L. M. College of Pharmacy, Ahmedabad 380009, India
| | - Vrunda Sagathia
- Department of Pharmacology, L. M. College of Pharmacy, Ahmedabad 380009, India
| | - Ketan Ranch
- Department of Pharmaceutics, L. M. College of Pharmacy, Ahmedabad 380009, India
| | - Jayesh Beladiya
- Department of Pharmacology, L. M. College of Pharmacy, Ahmedabad 380009, India
| | - Sai H. S. Boddu
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, Ajman University, Ajman P.O. Box 346, United Arab Emirates
- Center of Medical and Bio-Allied Health Sciences Research, Ajman University, Ajman P.O. Box 346, United Arab Emirates
| | - Shery Jacob
- Department of Pharmaceutical Sciences, College of Pharmacy, Gulf Medical University, Ajman P.O. Box 4184, United Arab Emirates
| | - Moawia M. Al-Tabakha
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, Ajman University, Ajman P.O. Box 346, United Arab Emirates
- Center of Medical and Bio-Allied Health Sciences Research, Ajman University, Ajman P.O. Box 346, United Arab Emirates
| | - Nageeb Hassan
- Center of Medical and Bio-Allied Health Sciences Research, Ajman University, Ajman P.O. Box 346, United Arab Emirates
- Department of Clinical Sciences, College of Pharmacy & Health Science, Ajman University, Ajman P.O. Box 346, United Arab Emirates
| | - Moyad Shahwan
- Center of Medical and Bio-Allied Health Sciences Research, Ajman University, Ajman P.O. Box 346, United Arab Emirates
- Department of Clinical Sciences, College of Pharmacy & Health Science, Ajman University, Ajman P.O. Box 346, United Arab Emirates
| |
Collapse
|
11
|
Invernizzi A, Chhablani J, Viola F, Gabrielle PH, Zarranz-Ventura J, Staurenghi G. Diabetic retinopathy in the pediatric population: Pathophysiology, screening, current and future treatments. Pharmacol Res 2023; 188:106670. [PMID: 36681366 DOI: 10.1016/j.phrs.2023.106670] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 01/16/2023] [Accepted: 01/17/2023] [Indexed: 01/20/2023]
Abstract
Diabetic retinopathy (DR) is a sight threatening complication of diabetes mellitus (DM). The incidence of DR in the pediatric population has increased in the last two decades and it is expected to further rise in the future, following the increase in DM prevalence and obesity in youth. As early stages of the retinal disease are asymptomatic, screening programs are of extreme importance to guarantee a prompt diagnosis and avoid progression to more advanced, sight threatening stages. The management of DR comprises a wide range of actions starting from glycemic control, continuing with systemic and local medical treatments, up to para-surgical and surgical approaches to deal with the more aggressive complications. In this review we will describe the pathophysiology of DR trying to understand all the possible targets for currently available or future treatments. We will briefly consider the impact of screening techniques, screening strategies and their social and economic impact. Finally a large part of the review will be dedicated to medical and surgical treatments for DR including both currently available and under development therapies. Most of the available data in the literature on DR are focused on the adult population. The aim of our work is to provide clinicians and researchers with a comprehensive overview of the state of the art regarding DR in the pediatric population, considering the increasing numbers of this diseases in youth and the inevitable consequences that such a chronic disease could have if poorly managed in children.
Collapse
Affiliation(s)
- Alessandro Invernizzi
- Eye Clinic, Department of Biomedical and Clinical Science "Luigi Sacco", Luigi Sacco Hospital, University of Milan, Milan, Italy; The University of Sydney, Save Sight Institute, Discipline of Ophthalmology, Sydney Medical School, Sydney, New South Wales, Australia.
| | - Jay Chhablani
- UPMC Eye Center, University of Pittsburgh, Pittsburgh, PA, USA
| | - Francesco Viola
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy; Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Pierre Henry Gabrielle
- Department of Ophthalmology, University Hospital, 14 rue Paul Gaffarel, 21079 Dijon, France
| | - Javier Zarranz-Ventura
- Institut Clínic of Ophthalmology (ICOF), Hospital Clínic, Barcelona, Spain; August Pi i Sunyer Biomedical Research Institute (IDIBAPS), Barcelona, Spain
| | - Giovanni Staurenghi
- Eye Clinic, Department of Biomedical and Clinical Science "Luigi Sacco", Luigi Sacco Hospital, University of Milan, Milan, Italy
| |
Collapse
|
12
|
Liu H, Stepicheva NA, Ghosh S, Shang P, Chowdhury O, Daley RA, Yazdankhah M, Gupta U, Hose SL, Valapala M, Fitting CS, Strizhakova A, Shan Y, Feenstra D, Sahel JA, Jayagopal A, Handa JT, Zigler JS, Fort PE, Sodhi A, Sinha D. Reducing Akt2 in retinal pigment epithelial cells causes a compensatory increase in Akt1 and attenuates diabetic retinopathy. Nat Commun 2022; 13:6045. [PMID: 36229454 PMCID: PMC9561713 DOI: 10.1038/s41467-022-33773-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 10/03/2022] [Indexed: 01/14/2023] Open
Abstract
The retinal pigment epithelium (RPE) plays an important role in the development of diabetic retinopathy (DR), a leading cause of blindness worldwide. Here we set out to explore the role of Akt2 signaling-integral to both RPE homeostasis and glucose metabolism-to DR. Using human tissue and genetically manipulated mice (including RPE-specific conditional knockout (cKO) and knock-in (KI) mice), we investigate whether Akts in the RPE influences DR in models of diabetic eye disease. We found that Akt1 and Akt2 activities were reciprocally regulated in the RPE of DR donor tissue and diabetic mice. Akt2 cKO attenuated diabetes-induced retinal abnormalities through a compensatory upregulation of phospho-Akt1 leading to an inhibition of vascular injury, inflammatory cytokine release, and infiltration of immune cells mediated by the GSK3β/NF-κB signaling pathway; overexpression of Akt2 has no effect. We propose that targeting Akt1 activity in the RPE may be a novel therapy for treating DR.
Collapse
Affiliation(s)
- Haitao Liu
- grid.21925.3d0000 0004 1936 9000Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA USA
| | - Nadezda A. Stepicheva
- grid.21925.3d0000 0004 1936 9000Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA USA
| | - Sayan Ghosh
- grid.21925.3d0000 0004 1936 9000Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA USA
| | - Peng Shang
- grid.21925.3d0000 0004 1936 9000Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA USA ,grid.280881.b0000 0001 0097 5623Present Address: Doheny Eye Institute, Pasadena, CA USA
| | - Olivia Chowdhury
- grid.21925.3d0000 0004 1936 9000Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA USA
| | - Rachel A. Daley
- grid.21925.3d0000 0004 1936 9000Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA USA
| | - Meysam Yazdankhah
- grid.21925.3d0000 0004 1936 9000Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA USA ,grid.443945.b0000 0004 0566 7998Present Address: Neural Stem Cell Institute, Rensselaer, NY USA
| | - Urvi Gupta
- grid.21925.3d0000 0004 1936 9000Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA USA
| | - Stacey L. Hose
- grid.21925.3d0000 0004 1936 9000Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA USA
| | - Mallika Valapala
- grid.411377.70000 0001 0790 959XSchool of Optometry, Indiana University, Bloomington, IN USA
| | - Christopher Scott Fitting
- grid.21925.3d0000 0004 1936 9000Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA USA
| | - Anastasia Strizhakova
- grid.21925.3d0000 0004 1936 9000Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA USA
| | - Yang Shan
- grid.214458.e0000000086837370Kellogg Eye Center, University of Michigan School of Medicine, Ann Arbor, MI USA
| | - Derrick Feenstra
- grid.417570.00000 0004 0374 1269Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche, Ltd., Basel, Switzerland
| | - José-Alain Sahel
- grid.21925.3d0000 0004 1936 9000Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA USA ,grid.462844.80000 0001 2308 1657Institut de la Vision, INSERM, CNRS, Sorbonne Université, Paris, France
| | | | - James T. Handa
- grid.21107.350000 0001 2171 9311The Wilmer Eye Institute, The Johns Hopkins University School of Medicine, Baltimore, MD USA
| | - J. Samuel Zigler
- grid.21107.350000 0001 2171 9311The Wilmer Eye Institute, The Johns Hopkins University School of Medicine, Baltimore, MD USA
| | - Patrice E. Fort
- grid.214458.e0000000086837370Kellogg Eye Center, University of Michigan School of Medicine, Ann Arbor, MI USA
| | - Akrit Sodhi
- grid.21107.350000 0001 2171 9311The Wilmer Eye Institute, The Johns Hopkins University School of Medicine, Baltimore, MD USA
| | - Debasish Sinha
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA. .,The Wilmer Eye Institute, The Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
13
|
Jones MA, Jadeja RN, Flandrin O, Abdelrahman AA, Thounojam MC, Thomas S, Dai C, Xiao H, Chen JK, Smith SB, Bartoli M, Martin PM, Powell FL. Autonomous regulation of retinal insulin biosynthesis in diabetes. Neuropeptides 2022; 94:102258. [PMID: 35660758 PMCID: PMC10440820 DOI: 10.1016/j.npep.2022.102258] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 05/08/2022] [Accepted: 05/15/2022] [Indexed: 10/18/2022]
Abstract
Diabetic retinopathy (DR) is a neurodegenerative disease that results as a complication of dysregulated glucose metabolism, or diabetes. The signaling of insulin is lost or dampened in diabetes, but this hormone has also been shown to be an important neurotrophic factor which supports neurons of the brain. The role of local insulin synthesis and secretion in the retina, however, is unclear. We have investigated whether changes in local insulin synthesis occur in the diabetic retina and in response to stressors known to initiate retinal neurodegenerative processes. The expression of insulin and its cleavage product, c-peptide, were examined in retinas of a Type I diabetes animal model and human postmortem donors with DR. We detected mRNAs for insulin I (Ins1), insulin II (Ins2) and human insulin (Ins) by quantitative real-time polymerase chain reaction (qRT-PCR) and in situ hybridization. Using an ex-vivo system, isolated neuroretinas and retinal pigmented epithelium (RPE) layers were exposed to glycemic, oxidative and inflammatory environments to measure insulin gene transcripts produced de novo in the retina under disease-relevant conditions. The expression of insulin in the retina was altered with the progression of diabetes in STZ mice and donors with DR. Transcription factors for insulin, were simultaneously expressed in a pattern matching insulin genes. Furthermore, de novo insulin mRNA in isolated retinas was induced by acute stress. RPE explants displayed the most pronounced changes in Ins1 and Ins2. This data reveals that the retina, like the brain, is an organ capable of producing local insulin and this synthesis is altered in diabetes.
Collapse
Affiliation(s)
- Malita A Jones
- Department of Biochemistry and Molecular Biology, Medical College of Georgia at Augusta University, Augusta, GA 30912, USA
| | - Ravirajsinh N Jadeja
- Department of Biochemistry and Molecular Biology, Medical College of Georgia at Augusta University, Augusta, GA 30912, USA
| | - Orneika Flandrin
- UC Berkeley School of Optometry, University of California, Berkeley, CA, USA
| | - Ammar A Abdelrahman
- Department of Pharmacology, Medical College of Georgia at Augusta University, Augusta, GA 30912, USA; Department of Clinical Pharmacy, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Menaka C Thounojam
- Department of Ophthalmology, Medical College of Georgia at Augusta University, Augusta, GA 30912, USA
| | - Shakera Thomas
- Department of Biochemistry and Molecular Biology, Medical College of Georgia at Augusta University, Augusta, GA 30912, USA
| | - Caihong Dai
- Department of Cell Biology and Anatomy, Medical College of Georgia at Augusta University, Augusta, GA 30912, USA
| | - Haiyan Xiao
- Department of Cell Biology and Anatomy, Medical College of Georgia at Augusta University, Augusta, GA 30912, USA
| | - Jian-Kang Chen
- Department of Cell Biology and Anatomy, Medical College of Georgia at Augusta University, Augusta, GA 30912, USA
| | - Sylvia B Smith
- Department of Cell Biology and Anatomy, Medical College of Georgia at Augusta University, Augusta, GA 30912, USA
| | - Manuela Bartoli
- Department of Ophthalmology, Medical College of Georgia at Augusta University, Augusta, GA 30912, USA
| | - Pamela M Martin
- Department of Biochemistry and Molecular Biology, Medical College of Georgia at Augusta University, Augusta, GA 30912, USA; Department of Cell Biology and Anatomy, Medical College of Georgia at Augusta University, Augusta, GA 30912, USA; Georgia Cancer Center, Medical College of Georgia at Augusta University, Augusta, GA 30912, USA
| | - Folami L Powell
- Department of Biochemistry and Molecular Biology, Medical College of Georgia at Augusta University, Augusta, GA 30912, USA.
| |
Collapse
|
14
|
Nath M, Fort PE. αA-Crystallin Mediated Neuroprotection in the Retinal Neurons Is Independent of Protein Kinase B. Front Neurosci 2022; 16:912757. [PMID: 35669493 PMCID: PMC9163390 DOI: 10.3389/fnins.2022.912757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 04/27/2022] [Indexed: 11/13/2022] Open
Abstract
Phosphatidylinositol 3-kinase (PI3K)/Akt signal pathway mediates pro-survival function in neurons. In the retina, PI3K/AKT/mTOR signaling pathway is related to the early pathogenesis of diabetic retinopathy. Signaling molecules in the membrane-initiated signaling pathway exhibiting neuroprotective function interacts with the PI3K/Akt pathway as an important survival pathway. Molecular chaperone α-crystallins are known to potentially interact and/or regulate various pro-survival and pro-apoptotic proteins to regulate cell survival. Among these demonstrated mechanisms, they are well-reported to regulate and inhibit apoptosis by interacting and sequestrating the proapoptotic proteins such as Bax and Bcl-Xs. We studied the importance of metabolic stress-induced enhanced Akt signaling and αA-crystallin interdependence for exhibiting neuroprotection in metabolically challenged retinal neurons. For the first time, this study has revealed that αA-crystallin and activated Akt are significantly neuroprotective in the stressed retinal neurons, independent of each other. Furthermore, the study also highlighted that significant inhibition of the PI3K-Akt pathway does not alter the neuroprotective ability of αA-crystallin in stressed retinal neurons. Interestingly, our study also demonstrated that in the absence of Akt activation, αA-crystallin inhibits the translocation of Bax in the mitochondria during metabolic stress, and this function is regulated by the phosphorylation of αA-crystallin on residue 148.
Collapse
Affiliation(s)
- Madhu Nath
- Department of Ophthalmology and Visual Sciences, University of Michigan, Ann Arbor, MI, United States
| | - Patrice Elie Fort
- Department of Ophthalmology and Visual Sciences, University of Michigan, Ann Arbor, MI, United States
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, United States
| |
Collapse
|
15
|
Hirano T. Small Dense LDL Tied to Diabetic Retinopathy-Similarity to Atherosclerosis. J Atheroscler Thromb 2022; 29:577-578. [PMID: 34053966 PMCID: PMC9135653 DOI: 10.5551/jat.ed174] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 04/22/2021] [Indexed: 11/18/2022] Open
Affiliation(s)
- Tsutomu Hirano
- Diabetes Center, Ebina General Hospital, Kanagawa, Japan
| |
Collapse
|
16
|
Mounirou BAM, Adam ND, Yakoura AKH, Aminou MSM, Liu YT, Tan LY. Diabetic Retinopathy: An Overview of Treatments. Indian J Endocrinol Metab 2022; 26:111-118. [PMID: 35873941 PMCID: PMC9302419 DOI: 10.4103/ijem.ijem_480_21] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Revised: 03/04/2022] [Accepted: 03/16/2022] [Indexed: 11/21/2022] Open
Abstract
Diabetic retinopathy (DR), substantially impacts the quality of life of diabetic patients, it remains, in developed countries, the leading cause of vision loss in working-age adults (20-65 years). Currently, about 90 million diabetics suffer from DR. DR is a silent complication that in its early stages is asymptomatic. However, over time, chronic hyperglycemia can lead to sensitive retinal damage, leading to fluid accumulation and retinal haemorrhage (HM), resulting in cloudy or blurred vision. It can, therefore, lead to severe visual impairment or even blindness if left untreated. It can be classified into nonproliferative diabetic retinopathy (NPDR) and proliferative diabetic retinopathy (PDR). NPDR is featured with intraretinal microvasculature changes and can be further divided into mild, moderate, and severe stages that may associate with diabetic macular oedema (DME). PDR involves the formation and growth of new blood vessels (retinal neovascularisation) under low oxygen conditions. Early identification and treatment are key priorities for reducing the morbidity of diabetic eye disease. In the early stages of DR, a tight control of glycemia, blood pressure, plasma lipids, and regular monitoring can help prevent its progression to more advanced stages. In advanced stages, the main treatments of DR include intraocular injections of anti-vascular endothelial growth factor (VEGF) antibodies, laser treatments, and vitrectomy. The aim of this review is to provide a comprehensive overview of the published literature pertaining to the latest progress in the treatment of DR.
Collapse
Affiliation(s)
- Bassirou A. M. Mounirou
- Department of Endocrinology and Metabolic Diseases, First Affiliated Hospital of Jiamusi University, Jiamusi, China
| | - Nouhou D. Adam
- Department of Ophthalmology, Lamorde National Hospital, Niamey, Niger
| | | | - Mahamane S. M. Aminou
- Department of Endocrinology and Metabolic Diseases, General Reference Hospital of Niamey, Niger
| | - Yu T. Liu
- Department of Ophthalmology, Lamorde National Hospital, Niamey, Niger
| | - Li Y. Tan
- Department of Endocrinology and Metabolic Diseases, First Affiliated Hospital of Jiamusi University, Jiamusi, China
| |
Collapse
|
17
|
It is time for a moonshot to find “Cures” for diabetic retinal disease. Prog Retin Eye Res 2022; 90:101051. [DOI: 10.1016/j.preteyeres.2022.101051] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 01/19/2022] [Accepted: 01/31/2022] [Indexed: 12/13/2022]
|
18
|
Pitale PM, Gorbatyuk MS. Diabetic Retinopathy: From Animal Models to Cellular Signaling. Int J Mol Sci 2022; 23:ijms23031487. [PMID: 35163410 PMCID: PMC8835767 DOI: 10.3390/ijms23031487] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 01/24/2022] [Accepted: 01/26/2022] [Indexed: 12/24/2022] Open
Abstract
Diabetic retinopathy (DR) is an ocular complication of diabetes mellitus (DM), a metabolic disorder characterized by elevation in blood glucose level. The pathogenesis of DR includes vascular, neuronal, and inflammatory components leading to activation of complex cellular molecular signaling. If untreated, the disease can culminate in vision loss that eventually leads to blindness. Animal models mimicking different aspects of DM complications have been developed to study the development and progression of DR. Despite the significant contribution of the developed DR models to discovering the mechanisms of DR and the recent achievements in the research field, the sequence of cellular events in diabetic retinas is still under investigation. Partially, this is due to the complexity of molecular mechanisms, although the lack of availability of models that adequately mimic all the neurovascular pathobiological features observed in patients has also contributed to the delay in determining a precise molecular trigger. In this review, we provide an update on the status of animal models of DR to help investigators choose an appropriate system to validate their hypothesis. We also discuss the key cellular and physiological events of DR in these models.
Collapse
Affiliation(s)
- Priyamvada M. Pitale
- Department of Ophthalmology, Baylor College of Medicine, Houston, TX 77030, USA;
| | - Marina S. Gorbatyuk
- Department of Optometry and Vision Science, School of Optometry, University of Alabama at Birmingham, Birmingham, AL 35294, USA
- Correspondence: ; Tel.: +1-205-934-6762; Fax: +1-205-934-3425
| |
Collapse
|
19
|
Teimouri M, Hosseini H, ArabSadeghabadi Z, Babaei-Khorzoughi R, Gorgani-Firuzjaee S, Meshkani R. The role of protein tyrosine phosphatase 1B (PTP1B) in the pathogenesis of type 2 diabetes mellitus and its complications. J Physiol Biochem 2022; 78:307-322. [PMID: 34988903 DOI: 10.1007/s13105-021-00860-7] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 11/16/2021] [Indexed: 01/16/2023]
Abstract
Insulin resistance, the most important characteristic of the type 2 diabetes mellitus (T2DM), is mostly caused by impairment in the insulin receptor (IR) signal transduction pathway. Protein tyrosine phosphatase 1B (PTP1B), one of the main negative regulators of the IR signaling pathway, is broadly expressed in various cells and tissues. PTP1B decreases the phosphorylation of the IR resulting in insulin resistance in various tissues. The evidence for the physiological role of PTP1B in regulation of metabolic pathways came from whole-body PTP1B-knockout mice. Whole-body and tissue-specific PTP1B-knockout mice showed improvement in adiposity, insulin resistance, and glucose tolerance. In addition, the key role of PTP1B in the pathogenesis of T2DM and its complications was further investigated in mice models of PTP1B deficient/overexpression. In recent years, targeting PTP1B using PTP1B inhibitors is being considered an attractive target to treat T2DM. PTP1B inhibitors improve the sensitivity of the insulin receptor and have the ability to cure insulin resistance-related diseases. We herein summarized the biological functions of PTP1B in different tissues in vivo and in vitro. We also describe the effectiveness of potent PTP1B inhibitors as pharmaceutical agents to treat T2DM.
Collapse
Affiliation(s)
- Maryam Teimouri
- Department of Clinical Biochemistry, School of Allied Medical Sciences, Shahroud University of Medical Sciences, Shahroud, Iran
| | - Hossein Hosseini
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Zahra ArabSadeghabadi
- Department of Clinical Sciences, Faculty of Veterinary Science, Bu-Ali Sina University, Hamedan, Iran
| | - Reyhaneh Babaei-Khorzoughi
- Department of Clinical Biochemistry, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Sattar Gorgani-Firuzjaee
- Department of Medical Laboratory Sciences, School of Allied Health Medicine, AJA University of Medical Sciences, Tehran, Iran
| | - Reza Meshkani
- Department of Clinical Biochemistry, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
20
|
Dierschke SK, Dennis MD. Retinal Protein O-GlcNAcylation and the Ocular Renin-angiotensin System: Signaling Cross-roads in Diabetic Retinopathy. Curr Diabetes Rev 2022; 18:e011121190177. [PMID: 33430751 PMCID: PMC8272735 DOI: 10.2174/1573399817999210111205933] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 11/14/2020] [Accepted: 11/16/2020] [Indexed: 01/23/2023]
Abstract
It is well established that diabetes and its associated hyperglycemia negatively impact retinal function, yet we know little about the role played by augmented flux through the Hexosamine Biosynthetic Pathway (HBP). This offshoot of the glycolytic pathway produces UDP-Nacetyl- glucosamine, which serves as the substrate for post-translational O-linked modification of proteins in a process referred to as O-GlcNAcylation. HBP flux and subsequent protein O-GlcNAcylation serve as nutrient sensors, enabling cells to integrate metabolic information to appropriately modulate fundamental cellular processes including gene expression. Here we summarize the impact of diabetes on retinal physiology, highlighting recent studies that explore the role of O-GlcNAcylation- induced variation in mRNA translation in retinal dysfunction and the pathogenesis of Diabetic Retinopathy (DR). Augmented O-GlcNAcylation results in wide variation in the selection of mRNAs for translation, in part, due to O-GlcNAcylation of the translational repressor 4E-BP1. Recent studies demonstrate that 4E-BP1 plays a critical role in regulating O-GlcNAcylation-induced changes in the translation of the mRNAs encoding Vascular Endothelial Growth Factor (VEGF), a number of important mitochondrial proteins, and CD40, a key costimulatory molecule involved in diabetes-induced retinal inflammation. Remarkably, 4E-BP1/2 ablation delays the onset of diabetes- induced visual dysfunction in mice. Thus, pharmacological interventions to prevent the impact of O-GlcNAcylation on 4E-BP1 may represent promising therapeutics to address the development and progression of DR. In this regard, we discuss the potential interplay between retinal O-GlcNAcylation and the ocular renin-angiotensin system as a potential therapeutic target of future interventions.
Collapse
Affiliation(s)
- Sadie K. Dierschke
- Department of Cellular and Molecular Physiology, Penn State College of Medicine
| | - Michael D. Dennis
- Department of Cellular and Molecular Physiology, Penn State College of Medicine
- Department of Ophthalmology, Penn State College of Medicine
- Address correspondence to this author at the Department of Cellular and Molecular Physiology, H166, Penn State College of Medicine, 500 University Drive Hershey, PA 17033; Tel: (717)531-0003 Ext-282596; Fax: (717)531-7667;
| |
Collapse
|
21
|
Starace V, Battista M, Brambati M, Cavalleri M, Bertuzzi F, Amato A, Lattanzio R, Bandello F, Cicinelli MV. The role of inflammation and neurodegeneration in diabetic macular edema. Ther Adv Ophthalmol 2021; 13:25158414211055963. [PMID: 34901746 PMCID: PMC8652911 DOI: 10.1177/25158414211055963] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 10/08/2021] [Indexed: 12/14/2022] Open
Abstract
The pathogenesis of diabetic macular edema (DME) is complex. Persistently high blood glucose activates multiple cellular pathways and induces inflammation, oxidation stress, and vascular dysfunction. Retinal ganglion cells, macroglial and microglial cells, endothelial cells, pericytes, and retinal pigment epithelium cells are involved. Neurodegeneration, characterized by dysfunction or apoptotic loss of retinal neurons, occurs early and independently from the vascular alterations. Despite the increasing knowledge on the pathways involved in DME, only limited therapeutic strategies are available. Besides antiangiogenic drugs and intravitreal corticosteroids, alternative therapeutic options tackling inflammation, oxidative stress, and neurodegeneration have been considered, but none of them has been currently approved.
Collapse
Affiliation(s)
- Vincenzo Starace
- Department of Ophthalmology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Marco Battista
- Department of Ophthalmology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Maria Brambati
- Department of Ophthalmology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Michele Cavalleri
- Department of Ophthalmology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Federico Bertuzzi
- Department of Ophthalmology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Alessia Amato
- Department of Ophthalmology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Rosangela Lattanzio
- Department of Ophthalmology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Francesco Bandello
- Department of Ophthalmology, IRCCS San Raffaele Scientific Institute, Milan, ItalySchool of Medicine, Vita-Salute San Raffaele University, Milan, Italy
| | - Maria Vittoria Cicinelli
- Department of Ophthalmology, University Vita-Salute, IRCCS Ospedale San Raffaele, via Olgettina 60, 20132 Milan, ItalySchool of Medicine, Vita-Salute San Raffaele University, Milan, Italy
| |
Collapse
|
22
|
Mei W, Zhu B, Shu Y, Liang Y, Lin M, He M, Luo H, Ye J. GDF11 protects against glucotoxicity-induced mice retinal microvascular endothelial cell dysfunction and diabetic retinopathy disease. Mol Cell Endocrinol 2021; 537:111422. [PMID: 34391845 DOI: 10.1016/j.mce.2021.111422] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 08/08/2021] [Accepted: 08/10/2021] [Indexed: 10/20/2022]
Abstract
Growth differentiation factor 11 (GDF11) has been implicated in the regulation of embryonic development and age-related dysfunction, including the regulation of retinal progenitor cells. However, little is known about the functions of GDF11 in diabetic retinopathy. In this study, we demonstrated that GDF11 treatment improved diabetes-induced retinal cell death, capillary degeneration, pericyte loss, inflammation, and blood-retinal barrier breakdown in mice. Treatment of isolated mouse retinal microvascular endothelial cells with recombinant GDF11 in vitro attenuated glucotoxicity-induced retinal endothelial apoptosis and the inflammatory response. The protective mechanisms exerted are associated with TGF-β/Smad2, PI3k-Akt-FoxO1 activation,and NF-κB pathway inhibition. This study indicated that GDF11 is a novel therapeutic target for diabetic retinopathy.
Collapse
Affiliation(s)
- Wen Mei
- Department of Endocrinology, Nanhai District People's Hospital of Foshan, Foping Road 40, Foshan, 528200, Guangdong Province, China; Department of Endocrinology, Wuhan Fourth Hospital, Puai Hospital, Tongji Medical College, Huazhong University of Science and Technology, Hanzheng Road 473, Wuhan, 430070, Hubei Province, China
| | - Biao Zhu
- Department of Stomatology, Fuxing Hospital, Capital Medical University, Fuxingmen Wai Street A 20, Beijing, 100038, China
| | - Yi Shu
- Department of Endocrinology, Nanhai District People's Hospital of Foshan, Foping Road 40, Foshan, 528200, Guangdong Province, China
| | - Yanhua Liang
- Department of Ophthalmology, People's Hospital of Jiangmen, Penglai Road 19, Jiangmen, 529000, Guangdong Province, China
| | - Mei Lin
- Department of Endocrinology, Wuhan Fourth Hospital, Puai Hospital, Tongji Medical College, Huazhong University of Science and Technology, Hanzheng Road 473, Wuhan, 430070, Hubei Province, China.
| | - Mingjuan He
- Department of Endocrinology, Wuhan Fourth Hospital, Puai Hospital, Tongji Medical College, Huazhong University of Science and Technology, Hanzheng Road 473, Wuhan, 430070, Hubei Province, China
| | - Haizhao Luo
- Department of Endocrinology, Nanhai District People's Hospital of Foshan, Foping Road 40, Foshan, 528200, Guangdong Province, China
| | - Jingwen Ye
- Department of Endocrinology, Nanhai District People's Hospital of Foshan, Foping Road 40, Foshan, 528200, Guangdong Province, China
| |
Collapse
|
23
|
Liu C, Zhu T, Zhang J, Wang J, Gao F, Ou Q, Jin C, Xu JY, Zhang J, Tian H, Xu GT, Lu L. Identification of novel key molecular signatures in the pathogenesis of experimental diabetic retinopathy. IUBMB Life 2021; 73:1307-1324. [PMID: 34405947 DOI: 10.1002/iub.2544] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 08/03/2021] [Indexed: 12/11/2022]
Abstract
Deep mining of the molecular mechanisms underlying diabetic retinopathy (DR) is critical for the development of novel therapeutic targets. This study aimed to identify key molecular signatures involved in experimental DR on the basis of integrated bioinformatics analysis. Four datasets consisting of 37 retinal samples were downloaded from the National Center of Biotechnology Information Gene Expression Omnibus. After batch-effect adjustment, bioinformatics tools such as Networkanalyst, Enrichr, STRING, and Metascape were used to evaluate the differentially expressed genes (DEGs), perform enrichment analysis, and construct protein-protein interaction networks. The hub genes were identified using Cytoscape software. The DEGs of interest from the meta-analysis were confirmed by quantitative reverse transcription-polymerase chain reaction in diabetic rats and a high-glucose-treated retinal cell model, respectively. A total of 743 DEGs related to lens differentiation, insulin resistance, and high-density lipoprotein (HDL) cholesterol metabolism were obtained using the meta-analysis. Alterations of dynamic gene expression in the chloride ion channel, retinol metabolism, and fatty acid metabolism were involved in the course of DR in rats. Importantly, H3K27m3 modifications regulated the expression of most DEGs at the early stage of DR. Using an integrated bioinformatics approach, novel molecular signatures were obtained for different stages of DR progression, and the findings may represent distinct therapeutic strategies for DR patients.
Collapse
Affiliation(s)
- Caiying Liu
- Department of Ophthalmology of Shanghai Tenth People's Hospital, Laboratory of Clinical Visual Science of Tongji Eye Institute, School of Medicine, Tongji University, Shanghai, China
- Department of Pharmacology, School of Medicine, Tongji University, Shanghai, China
- Department of Biochemistry and Molecular Biology, School of Medicine, Tongji University, Shanghai, China
| | - Tong Zhu
- Department of Ophthalmology of Shanghai Tenth People's Hospital, Laboratory of Clinical Visual Science of Tongji Eye Institute, School of Medicine, Tongji University, Shanghai, China
- Department of Pharmacology, School of Medicine, Tongji University, Shanghai, China
- Department of Biochemistry and Molecular Biology, School of Medicine, Tongji University, Shanghai, China
| | - Jieping Zhang
- Department of Ophthalmology of Shanghai Tenth People's Hospital, Laboratory of Clinical Visual Science of Tongji Eye Institute, School of Medicine, Tongji University, Shanghai, China
- Department of Pharmacology, School of Medicine, Tongji University, Shanghai, China
- Department of Biochemistry and Molecular Biology, School of Medicine, Tongji University, Shanghai, China
| | - Juan Wang
- Department of Ophthalmology of Shanghai Tenth People's Hospital, Laboratory of Clinical Visual Science of Tongji Eye Institute, School of Medicine, Tongji University, Shanghai, China
- Department of Pharmacology, School of Medicine, Tongji University, Shanghai, China
- Department of Biochemistry and Molecular Biology, School of Medicine, Tongji University, Shanghai, China
| | - Furong Gao
- Department of Ophthalmology of Shanghai Tenth People's Hospital, Laboratory of Clinical Visual Science of Tongji Eye Institute, School of Medicine, Tongji University, Shanghai, China
- Department of Pharmacology, School of Medicine, Tongji University, Shanghai, China
- Department of Biochemistry and Molecular Biology, School of Medicine, Tongji University, Shanghai, China
| | - Qingjian Ou
- Department of Ophthalmology of Shanghai Tenth People's Hospital, Laboratory of Clinical Visual Science of Tongji Eye Institute, School of Medicine, Tongji University, Shanghai, China
- Department of Pharmacology, School of Medicine, Tongji University, Shanghai, China
- Department of Biochemistry and Molecular Biology, School of Medicine, Tongji University, Shanghai, China
| | - Caixia Jin
- Department of Ophthalmology of Shanghai Tenth People's Hospital, Laboratory of Clinical Visual Science of Tongji Eye Institute, School of Medicine, Tongji University, Shanghai, China
- Department of Pharmacology, School of Medicine, Tongji University, Shanghai, China
- Department of Biochemistry and Molecular Biology, School of Medicine, Tongji University, Shanghai, China
| | - Jing-Ying Xu
- Department of Ophthalmology of Shanghai Tenth People's Hospital, Laboratory of Clinical Visual Science of Tongji Eye Institute, School of Medicine, Tongji University, Shanghai, China
- Department of Pharmacology, School of Medicine, Tongji University, Shanghai, China
- Department of Biochemistry and Molecular Biology, School of Medicine, Tongji University, Shanghai, China
| | - Jingfa Zhang
- Department of Ophthalmology, Shanghai General Hospital (Shanghai First People's Hospital), Shanghai Jiao Tong University, Shanghai, China
| | - Haibin Tian
- Department of Ophthalmology of Shanghai Tenth People's Hospital, Laboratory of Clinical Visual Science of Tongji Eye Institute, School of Medicine, Tongji University, Shanghai, China
- Department of Pharmacology, School of Medicine, Tongji University, Shanghai, China
- Department of Biochemistry and Molecular Biology, School of Medicine, Tongji University, Shanghai, China
| | - Guo-Tong Xu
- Department of Ophthalmology of Shanghai Tenth People's Hospital, Laboratory of Clinical Visual Science of Tongji Eye Institute, School of Medicine, Tongji University, Shanghai, China
- Department of Pharmacology, School of Medicine, Tongji University, Shanghai, China
- Department of Biochemistry and Molecular Biology, School of Medicine, Tongji University, Shanghai, China
- The Collaborative Innovation Center for Brain Science, Tongji University, Shanghai, China
| | - Lixia Lu
- Department of Ophthalmology of Shanghai Tenth People's Hospital, Laboratory of Clinical Visual Science of Tongji Eye Institute, School of Medicine, Tongji University, Shanghai, China
- Department of Pharmacology, School of Medicine, Tongji University, Shanghai, China
- Department of Biochemistry and Molecular Biology, School of Medicine, Tongji University, Shanghai, China
| |
Collapse
|
24
|
Pitale PM, Saltykova IV, Adu-Agyeiwaah Y, Li Calzi S, Satoh T, Akira S, Gorbatyuk O, Boulton ME, Pardue MT, Garvey WT, Athar M, Grant MB, Gorbatyuk MS. Tribbles Homolog 3 Mediates the Development and Progression of Diabetic Retinopathy. Diabetes 2021; 70:1738-1753. [PMID: 33975909 PMCID: PMC8385618 DOI: 10.2337/db20-1268] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 05/04/2021] [Indexed: 11/21/2022]
Abstract
The current understanding of the molecular pathogenesis of diabetic retinopathy does not provide a mechanistic link between early molecular changes and the subsequent progression of the disease. In this study, we found that human diabetic retinas overexpressed TRIB3 and investigated the role of TRIB3 in diabetic retinal pathobiology in mice. We discovered that TRIB3 controlled major molecular events in early diabetic retinas via HIF1α-mediated regulation of retinal glucose flux, reprogramming cellular metabolism, and governing of inflammatory gene expression. These early molecular events further defined the development of neurovascular deficit observed in mice with diabetic retinopathy. TRIB3 ablation in the streptozotocin-induced mouse model led to significant retinal ganglion cell survival and functional restoration accompanied by a dramatic reduction in pericyte loss and acellular capillary formation. Under hypoxic conditions, TRIB3 contributed to advanced proliferative stages by significant upregulation of GFAP and VEGF expression, thus controlling gliosis and aberrant vascularization in oxygen-induced retinopathy mouse retinas. Overall, our data reveal that TRIB3 is a master regulator of diabetic retinal pathophysiology that may accelerate the onset and progression of diabetic retinopathy to proliferative stages in humans and present TRIB3 as a potentially novel therapeutic target for diabetic retinopathy.
Collapse
Affiliation(s)
- Priyamvada M Pitale
- Department of Optometry and Vision Science, School of Optometry, University of Alabama at Birmingham, Birmingham, AL
| | - Irina V Saltykova
- Department of Optometry and Vision Science, School of Optometry, University of Alabama at Birmingham, Birmingham, AL
| | - Yvonne Adu-Agyeiwaah
- Department of Ophthalmology and Visual Sciences, University of Alabama at Birmingham, Birmingham, AL
| | - Sergio Li Calzi
- Department of Ophthalmology and Visual Sciences, University of Alabama at Birmingham, Birmingham, AL
| | - Takashi Satoh
- Department of Immune Regulation, Tokyo Medical and Dental University, Tokyo, Japan
| | - Shizuo Akira
- WPI Immunology Frontier Research Center, Osaka University, Osaka, Japan
| | - Oleg Gorbatyuk
- Department of Optometry and Vision Science, School of Optometry, University of Alabama at Birmingham, Birmingham, AL
| | - Michael E Boulton
- Department of Ophthalmology and Visual Sciences, University of Alabama at Birmingham, Birmingham, AL
| | - Machelle T Pardue
- Department of Biomedical Engineering, Georgia Institute of Technology, and Atlanta VA Center of Excellence for Visual and Neurocognitive Rehabilitation
| | - W Timothy Garvey
- Department of Nutrition Sciences and Department of Dermatology, University of Alabama at Birmingham, Birmingham, AL
| | - Mohammad Athar
- School of Medicine, University of Alabama at Birmingham, Birmingham, AL
| | - Maria B Grant
- Department of Ophthalmology and Visual Sciences, University of Alabama at Birmingham, Birmingham, AL
| | - Marina S Gorbatyuk
- Department of Optometry and Vision Science, School of Optometry, University of Alabama at Birmingham, Birmingham, AL
| |
Collapse
|
25
|
Tonade D, Kern TS. Photoreceptor cells and RPE contribute to the development of diabetic retinopathy. Prog Retin Eye Res 2021; 83:100919. [PMID: 33188897 PMCID: PMC8113320 DOI: 10.1016/j.preteyeres.2020.100919] [Citation(s) in RCA: 111] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Revised: 10/27/2020] [Accepted: 10/31/2020] [Indexed: 12/26/2022]
Abstract
Diabetic retinopathy (DR) is a leading cause of blindness. It has long been regarded as vascular disease, but work in the past years has shown abnormalities also in the neural retina. Unfortunately, research on the vascular and neural abnormalities have remained largely separate, instead of being integrated into a comprehensive view of DR that includes both the neural and vascular components. Recent evidence suggests that the most predominant neural cell in the retina (photoreceptors) and the adjacent retinal pigment epithelium (RPE) play an important role in the development of vascular lesions characteristic of DR. This review summarizes evidence that the outer retina is altered in diabetes, and that photoreceptors and RPE contribute to retinal vascular alterations in the early stages of the retinopathy. The possible molecular mechanisms by which cells of the outer retina might contribute to retinal vascular damage in diabetes also are discussed. Diabetes-induced alterations in the outer retina represent a novel therapeutic target to inhibit DR.
Collapse
Affiliation(s)
- Deoye Tonade
- Department of Pharmacology, Case Western Reserve University, Cleveland, OH, USA
| | - Timothy S Kern
- Department of Pharmacology, Case Western Reserve University, Cleveland, OH, USA; Veterans Administration Medical Center Research Service, Cleveland, OH, USA; Gavin Herbert Eye Institute, University of California Irvine, Irvine, CA, USA; Veterans Administration Medical Center Research Service, Long Beach, CA, USA.
| |
Collapse
|
26
|
Diabetic retinal neurodegeneration as a form of diabetic retinopathy. Int Ophthalmol 2021; 41:3223-3248. [PMID: 33954860 DOI: 10.1007/s10792-021-01864-4] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 04/08/2021] [Indexed: 12/11/2022]
Abstract
PURPOSE To review the evidence supporting diabetic retinal neurodegeneration (DRN) as a form of diabetic retinopathy. METHOD Review of literature. RESULTS DRN is recognized to be a part of retinopathy in patients with diabetes mellitus (DM), in addition to the well-established diabetic retinal vasculopathy (DRV). DRN has been noted in the early stages of DM, before the onset of clinically evident diabetic retinopathy. The occurrence of DRN has been confirmed in animal models of DM, histopathological examination of donor's eyes from diabetic individuals and assessment of neural structure and function in humans. DRN involves alterations in retinal ganglion cells, photoreceptors, amacrine cells and bipolar cells, and is thought to be driven by glutamate, oxidative stress and dysregulation of neuroprotective factors in the retina. Potential therapeutic options for DRN are under evaluation. CONCLUSIONS Literature is divided on the temporal relation between DRN and DRV, with evidence of both precedence and simultaneous occurrence. The relationship between DRN and multi-system neuropathy in DM is yet to be evaluated critically.
Collapse
|
27
|
Nian S, Lo ACY, Mi Y, Ren K, Yang D. Neurovascular unit in diabetic retinopathy: pathophysiological roles and potential therapeutical targets. EYE AND VISION 2021; 8:15. [PMID: 33931128 PMCID: PMC8088070 DOI: 10.1186/s40662-021-00239-1] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 04/02/2021] [Indexed: 02/06/2023]
Abstract
Diabetic retinopathy (DR), one of the common complications of diabetes, is the leading cause of visual loss in working-age individuals in many industrialized countries. It has been traditionally regarded as a purely microvascular disease in the retina. However, an increasing number of studies have shown that DR is a complex neurovascular disorder that affects not only vascular structure but also neural tissue of the retina. Deterioration of neural retina could precede microvascular abnormalities in the DR, leading to microvascular changes. Furthermore, disruption of interactions among neurons, vascular cells, glia and local immune cells, which collectively form the neurovascular unit, is considered to be associated with the progression of DR early on in the disease. Therefore, it makes sense to develop new therapeutic strategies to prevent or reverse retinal neurodegeneration, neuroinflammation and impaired cell-cell interactions of the neurovascular unit in early stage DR. Here, we present current perspectives on the pathophysiology of DR as a neurovascular disease, especially at the early stage. Potential novel treatments for preventing or reversing neurovascular injuries in DR are discussed as well.
Collapse
Affiliation(s)
- Shen Nian
- Department of Pathology, Xi'an Medical University, Xi'an, Shaanxi Province, China.
| | - Amy C Y Lo
- Department of Ophthalmology, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, Hong Kong
| | - Yajing Mi
- Institute of Basic Medicine Science, Xi'an Medical University, Xi'an, Shaanxi Province, China
| | - Kai Ren
- Department of Biochemistry and Molecular Biology, Xi'an Medical University, Xi'an, Shaanxi Province, China
| | - Di Yang
- Department of Ophthalmology, First Affiliated Hospital of Kunming Medical University, Kunming Medical University, Kunming, Yunnan Province, China.
| |
Collapse
|
28
|
Zolov SN, Imai H, Losiewicz MK, Singh RSJ, Fort PE, Gardner TW. Insulin-like growth factor-2 regulates basal retinal insulin receptor activity. J Biol Chem 2021; 296:100712. [PMID: 33915127 PMCID: PMC8138762 DOI: 10.1016/j.jbc.2021.100712] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 04/15/2021] [Accepted: 04/23/2021] [Indexed: 11/14/2022] Open
Abstract
The retinal insulin receptor (IR) exhibits basal kinase activity equivalent to that of the liver of fed animals, but unlike the liver, does not fluctuate with feeding and fasting; it also declines rapidly after the onset of insulin-deficient diabetes. The ligand(s) that determine basal IR activity in the retina has not been identified. Using a highly sensitive insulin assay, we found that retinal insulin concentrations remain constant in fed versus fasted rats and in diabetic versus control rats; vitreous fluid insulin levels were undetectable. Neutralizing antibodies against insulin-like growth factor 2 (IGF-2), but not insulin-like growth factor 1 (IGF-1) or insulin, decreased IR kinase activity in normal rat retinas, and depletion of IGF-2 from serum specifically reduced IR phosphorylation in retinal cells. Immunoprecipitation studies demonstrated that IGF-2 induced greater phosphorylation of the retinal IR than the IGF-1 receptor. Retinal IGF-2 mRNA content was 10-fold higher in adults than pups and orders of magnitude higher than in liver. Diabetes reduced retinal IGF-2, but not IGF-1 or IR, mRNA levels, and reduced IGF-2 and IGF-1 content in vitreous fluid. Finally, intravitreal administration of IGF-2 (mature and pro-forms) increased retinal IR and Akt kinase activity in diabetic rats. Collectively, these data reveal that IGF-2 is the primary ligand that defines basal retinal IR activity and suggest that reduced ocular IGF-2 may contribute to reduced IR activity in response to diabetes. These findings may have importance for understanding the regulation of metabolic and prosurvival signaling in the retina.
Collapse
Affiliation(s)
- Sergey N Zolov
- Department of Ophthalmology & Visual Sciences, University of Michigan Medical School, Ann Arbor, Michigan, USA; Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan, USA; The Division of Pulmonary & Critical Care Medicine, University of Michigan Medical School, Ann Arbor, Michigan, USA.
| | - Hisanori Imai
- Department of Ophthalmology, Kobe University Medical School, Kobe, Japan
| | - Mandy K Losiewicz
- Department of Ophthalmology & Visual Sciences, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | | | - Patrice E Fort
- Department of Ophthalmology & Visual Sciences, University of Michigan Medical School, Ann Arbor, Michigan, USA; Department of Molecular & Integrative Physiology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Thomas W Gardner
- Department of Ophthalmology & Visual Sciences, University of Michigan Medical School, Ann Arbor, Michigan, USA; Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan, USA; Department of Molecular & Integrative Physiology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| |
Collapse
|
29
|
Miller WP, Sunilkumar S, Dennis MD. The stress response protein REDD1 as a causal factor for oxidative stress in diabetic retinopathy. Free Radic Biol Med 2021; 165:127-136. [PMID: 33524531 PMCID: PMC7956244 DOI: 10.1016/j.freeradbiomed.2021.01.041] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 01/19/2021] [Accepted: 01/21/2021] [Indexed: 12/12/2022]
Abstract
Diabetic Retinopathy (DR) is a major cause of visual dysfunction, yet much remains unknown regarding the specific molecular events that contribute to diabetes-induced retinal pathophysiology. Herein, we review the impact of oxidative stress on DR, and explore evidence that supports a key role for the stress response protein regulated in development and DNA damage (REDD1) in the development of diabetes-induced oxidative stress and functional defects in vision. It is well established that REDD1 mediates the cellular response to a number of diverse stressors through repression of the central metabolic regulator known as mechanistic target of rapamycin complex 1 (mTORC1). A growing body of evidence also supports that REDD1 acts independent of mTORC1 to promote oxidative stress by both enhancing the production of reactive oxygen species and suppressing the antioxidant response. Collectively, there is strong preclinical data to support a key role for REDD1 in the development and progression of retinal complications caused by diabetes. Furthermore, early proof-of-concept clinical trials have found a degree of success in combating ischemic retinal disease through intravitreal delivery of an siRNA targeting the REDD1 mRNA. Overall, REDD1-associated signaling represents an intriguing target for novel clinical therapies that go beyond addressing the symptoms of diabetes by targeting the underlying molecular mechanisms that contribute to DR.
Collapse
Affiliation(s)
- William P Miller
- Department of Cellular and Molecular Physiology, Penn State College of Medicine, Hershey, PA, 17033, USA
| | - Siddharth Sunilkumar
- Department of Cellular and Molecular Physiology, Penn State College of Medicine, Hershey, PA, 17033, USA
| | - Michael D Dennis
- Department of Cellular and Molecular Physiology, Penn State College of Medicine, Hershey, PA, 17033, USA; Department of Ophthalmology, Penn State College of Medicine, Hershey, PA, 17033, USA.
| |
Collapse
|
30
|
Abstract
The field of phosphoinositide signaling has expanded significantly in recent years. Phosphoinositides (also known as phosphatidylinositol phosphates or PIPs) are universal signaling molecules that directly interact with membrane proteins or with cytosolic proteins containing domains that directly bind phosphoinositides and are recruited to cell membranes. Through the activities of phosphoinositide kinases and phosphoinositide phosphatases, seven distinct phosphoinositide lipid molecules are formed from the parent molecule, phosphatidylinositol. PIP signals regulate a wide range of cellular functions, including cytoskeletal assembly, membrane budding and fusion, ciliogenesis, vesicular transport, and signal transduction. Given the many excellent reviews on phosphoinositide kinases, phosphoinositide phosphatases, and PIPs in general, in this review, we discuss recent studies and advances in PIP lipid signaling in the retina. We specifically focus on PIP lipids from vertebrate (e.g., bovine, rat, mouse, toad, and zebrafish) and invertebrate (e.g., Drosophila, horseshoe crab, and squid) retinas. We also discuss the importance of PIPs revealed from animal models and human diseases, and methods to study PIP levels both in vitro and in vivo. We propose that future studies should investigate the function and mechanism of activation of PIP-modifying enzymes/phosphatases and further unravel PIP regulation and function in the different cell types of the retina.
Collapse
Affiliation(s)
- Raju V S Rajala
- Departments of Ophthalmology, Physiology, and Cell Biology, and Dean McGee Eye Institute, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104.
| |
Collapse
|
31
|
Delmas D, Cornebise C, Courtaut F, Xiao J, Aires V. New Highlights of Resveratrol: A Review of Properties against Ocular Diseases. Int J Mol Sci 2021; 22:1295. [PMID: 33525499 PMCID: PMC7865717 DOI: 10.3390/ijms22031295] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 01/22/2021] [Accepted: 01/24/2021] [Indexed: 02/06/2023] Open
Abstract
Eye diseases are currently a major public health concern due to the growing number of cases resulting from both an aging of populations and exogenous factors linked to our lifestyles. Thus, many treatments including surgical pharmacological approaches have emerged, and special attention has been paid to prevention, where diet plays a preponderant role. Recently, potential antioxidants such as resveratrol have received much attention as potential tools against various ocular diseases. In this review, we focus on the mechanisms of resveratrol against ocular diseases, in particular age-related macular degeneration, glaucoma, cataract, diabetic retinopathy, and vitreoretinopathy. We analyze, in relation to the different steps of each disease, the resveratrol properties at multiple levels, such as cellular and molecular signaling as well as physiological effects. We show and discuss the relationship to reactive oxygen species, the regulation of inflammatory process, and how resveratrol can prevent ocular diseases through a potential epigenetic action by the activation of sirtuin-1. Lastly, various new forms of resveratrol delivery are emerging at the same time as some clinical trials are raising more questions about the future of resveratrol as a potential tool for prevention or in therapeutic strategies against ocular diseases. More preclinical studies are required to provide further insights into RSV's potential adjuvant activity.
Collapse
Affiliation(s)
- Dominique Delmas
- Université de Bourgogne Franche-Comté, F-21000 Dijon, France; (C.C.); (F.C.); (V.A.)
- INSERM Research Center U1231, Cancer and Adaptive Immune Response Team, Bioactive Molecules and Health Research Group, F-21000 Dijon, France
- Centre Anticancéreux Georges François Leclerc, F-21000 Dijon, France
| | - Clarisse Cornebise
- Université de Bourgogne Franche-Comté, F-21000 Dijon, France; (C.C.); (F.C.); (V.A.)
- INSERM Research Center U1231, Cancer and Adaptive Immune Response Team, Bioactive Molecules and Health Research Group, F-21000 Dijon, France
| | - Flavie Courtaut
- Université de Bourgogne Franche-Comté, F-21000 Dijon, France; (C.C.); (F.C.); (V.A.)
- INSERM Research Center U1231, Cancer and Adaptive Immune Response Team, Bioactive Molecules and Health Research Group, F-21000 Dijon, France
| | - Jianbo Xiao
- Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Faculty of Food Science and Technology, University of Vigo-Ourense Campus, E-32004 Ourense, Spain;
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China
- International Research Center for Food Nutrition and Safety, Jiangsu University, Zhenjiang 212013, China
| | - Virginie Aires
- Université de Bourgogne Franche-Comté, F-21000 Dijon, France; (C.C.); (F.C.); (V.A.)
- INSERM Research Center U1231, Cancer and Adaptive Immune Response Team, Bioactive Molecules and Health Research Group, F-21000 Dijon, France
| |
Collapse
|
32
|
Gorbatyuk OS, Pitale PM, Saltykova IV, Dorofeeva IB, Zhylkibayev AA, Athar M, Fuchs PA, Samuels BC, Gorbatyuk MS. A Novel Tree Shrew Model of Diabetic Retinopathy. Front Endocrinol (Lausanne) 2021; 12:799711. [PMID: 35046899 PMCID: PMC8762304 DOI: 10.3389/fendo.2021.799711] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 12/10/2021] [Indexed: 01/03/2023] Open
Abstract
Existing animal models with rod-dominant retinas have shown that hyperglycemia injures neurons, but it is not yet clearly understood how blue cone photoreceptors and retinal ganglion cells (RGCs) deteriorate in patients because of compromised insulin tolerance. In contrast, northern tree shrews (Tupaia Belangeri), one of the closest living relatives of primates, have a cone-dominant retina with short wave sensitivity (SWS) and long wave sensitivity (LWS) cones. Therefore, we injected animals with a single streptozotocin dose (175 mg/kg i.p.) to investigate whether sustained hyperglycemia models the features of human diabetic retinopathy (DR). We used the photopic electroretinogram (ERG) to measure the amplitudes of A and B waves and the photopic negative responses (PhNR) to evaluate cone and RGC function. Retinal flat mounts were prepared for immunohistochemical analysis to count the numbers of neurons with antibodies against cone opsins and RGC specific BRN3a proteins. The levels of the proteins TRIB3, ISR-1, and p-AKT/p-mTOR were measured with western blot. The results demonstrated that tree shrews manifested sustained hyperglycemia leading to a slight but significant loss of SWS cones (12%) and RGCs (20%) 16 weeks after streptozotocin injection. The loss of BRN3a-positive RGCs was also reflected by a 30% decline in BRN3a protein expression. These were accompanied by reduced ERG amplitudes and PhNRs. Importantly, the diabetic retinas demonstrated increased expression of TRIB3 and level of p-AKT/p-mTOR axis but reduced level of IRS-1 protein. Therefore, a new non-primate model of DR with SWS cone and RGC dysfunction lays the foundation to better understand retinal pathophysiology at the molecular level and opens an avenue for improving the research on the treatment of human eye diseases.
Collapse
Affiliation(s)
- Oleg S Gorbatyuk
- Department of Optometry and Vision Science, School of Optometry, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Priyamvada M Pitale
- Department of Optometry and Vision Science, School of Optometry, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Irina V Saltykova
- Department of Optometry and Vision Science, School of Optometry, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Iuliia B Dorofeeva
- Department of Optometry and Vision Science, School of Optometry, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Assylbek A Zhylkibayev
- Department of Optometry and Vision Science, School of Optometry, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Mohammad Athar
- Department of Dermatology, School of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Preston A Fuchs
- Department of Ophthalmology and Visual Sciences, School of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Brian C Samuels
- Department of Ophthalmology and Visual Sciences, School of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Marina S Gorbatyuk
- Department of Optometry and Vision Science, School of Optometry, University of Alabama at Birmingham, Birmingham, AL, United States
| |
Collapse
|
33
|
Sirakaya E, Sirakaya HA, Vural E, Duru Z, Aksoy H. Determination of Neurodegeneration in Polycystic Ovary Syndrome with Retinal Segmentation Analysis. Curr Eye Res 2020; 46:831-838. [PMID: 33356631 DOI: 10.1080/02713683.2020.1842460] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Purpose: To compare the thickness of each retinal layer in patients with polycystic ovary syndrome (PCOS) versus healthy, age-matched controls by using retinal segmentation analysis.Methods: In our cross-sectional study, 37 patients with PCOS (i.e., patient group) and 35 healthy individuals (i.e., control group) underwent spectral-domain optical coherence tomography imaging. Using built-in automatic retinal segmentation software to analyze the images collected, we compared the thickness of the retinal nerve fiber layer (RNFL), ganglion cell layer (GCL), inner plexiform layer (IPL), inner nuclear layer, outer plexiform layer, outer nuclear layer, photoreceptor layer (PRL), retinal pigment epithelium (RPE), inner retinal layers, and outer retinal layers between the groups. To analyze the measurements, we used a traditional Early Treatment Diabetic Retinopathy Study (ETDRS) grid.Results: In ETDRS subfields, 6-mm nasal RNFL thickness; 3- and 6-mm nasal GCL thickness; 3-mm superior and 6-mm nasal IPL thickness; 1-mm central, 3-mm nasal, superior, and inferior, and 6-mm nasal and inferior PRL thickness; and 6-mm inferior RPE thickness were significantly thinner in patients with PCOS than that of healthy controls.Conclusion: The results of our retinal segmentation analysis indicate that patients with PCOS tend to have thinner GCL, IPL, and PRL than healthy, age-matched controls due to neurodegeneration likely caused by insulin resistance, or subclinical retinal inflammation.
Collapse
Affiliation(s)
- Ender Sirakaya
- Department of Ophthalmology, Health Science University, The Kayseri City Hospital, Kayseri, Turkey
| | - Hatice Aslan Sirakaya
- Department of Internal Medicine, Health Science University, The Kayseri City Hospital, Kayseri, Turkey
| | - Esra Vural
- Department of Ophthalmology, Health Science University, The Kayseri City Hospital, Kayseri, Turkey
| | - Zeynep Duru
- Department of Ophthalmology, Health Science University, The Kayseri City Hospital, Kayseri, Turkey
| | - Hüseyin Aksoy
- Department of Obstetrics and Gynecology, Health Science University, The Kayseri City Hospital, Kayseri, Turkey
| |
Collapse
|
34
|
Becker S, Carroll LS, Vinberg F. Diabetic photoreceptors: Mechanisms underlying changes in structure and function. Vis Neurosci 2020; 37:E008. [PMID: 33019947 PMCID: PMC8694110 DOI: 10.1017/s0952523820000097] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Based on clinical findings, diabetic retinopathy (DR) has traditionally been defined as a retinal microvasculopathy. Retinal neuronal dysfunction is now recognized as an early event in the diabetic retina before development of overt DR. While detrimental effects of diabetes on the survival and function of inner retinal cells, such as retinal ganglion cells and amacrine cells, are widely recognized, evidence that photoreceptors in the outer retina undergo early alterations in diabetes has emerged more recently. We review data from preclinical and clinical studies demonstrating a conserved reduction of electrophysiological function in diabetic retinas, as well as evidence for photoreceptor loss. Complementing in vivo studies, we discuss the ex vivo electroretinography technique as a useful method to investigate photoreceptor function in isolated retinas from diabetic animal models. Finally, we consider the possibility that early photoreceptor pathology contributes to the progression of DR, and discuss possible mechanisms of photoreceptor damage in the diabetic retina, such as enhanced production of reactive oxygen species and other inflammatory factors whose detrimental effects may be augmented by phototransduction.
Collapse
Affiliation(s)
- Silke Becker
- John A. Moran Eye Center, University of Utah, Salt Lake City, Utah
| | - Lara S Carroll
- John A. Moran Eye Center, University of Utah, Salt Lake City, Utah
| | - Frans Vinberg
- John A. Moran Eye Center, University of Utah, Salt Lake City, Utah
| |
Collapse
|
35
|
Abstract
Vision loss, among the most feared complications of diabetes, is primarily caused by diabetic retinopathy, a disease that manifests in well-recognized, characteristic microvascular lesions. The reasons for retinal susceptibility to damage in diabetes are unclear, especially considering that microvascular networks are found in all tissues. However, the unique metabolic demands of retinal neurons could account for their vulnerability in diabetes. Photoreceptors are the first neurons in the visual circuit and are also the most energy-demanding cells of the retina. Here, we review experimental and clinical evidence linking photoreceptors to the development of diabetic retinopathy. We then describe the influence of retinal illumination on photoreceptor metabolism, effects of light modulation on the severity of diabetic retinopathy, and recent clinical trials testing the treatment of diabetic retinopathy with interventions that impact photoreceptor metabolism. Finally, we introduce several possible mechanisms that could link photoreceptor responses to light and the development of retinal vascular disease in diabetes. Collectively, these concepts form the basis for a growing body of investigative efforts aimed at developing novel pharmacologic and nonpharmacologic tools that target photoreceptor physiology to treat a very common cause of blindness across the world.
Collapse
|
36
|
Britto FA, Dumas K, Giorgetti-Peraldi S, Ollendorff V, Favier FB. Is REDD1 a metabolic double agent? Lessons from physiology and pathology. Am J Physiol Cell Physiol 2020; 319:C807-C824. [PMID: 32877205 DOI: 10.1152/ajpcell.00340.2020] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The Akt/mechanistic target of rapamycin (mTOR) signaling pathway governs macromolecule synthesis, cell growth, and metabolism in response to nutrients and growth factors. Regulated in development and DNA damage response (REDD)1 is a conserved and ubiquitous protein, which is transiently induced in response to multiple stimuli. Acting like an endogenous inhibitor of the Akt/mTOR signaling pathway, REDD1 protein has been shown to regulate cell growth, mitochondrial function, oxidative stress, and apoptosis. Recent studies also indicate that timely REDD1 expression limits Akt/mTOR-dependent synthesis processes to spare energy during metabolic stresses, avoiding energy collapse and detrimental consequences. In contrast to this beneficial role for metabolic adaptation, REDD1 chronic expression appears involved in the pathogenesis of several diseases. Indeed, REDD1 expression is found as an early biomarker in many pathologies including inflammatory diseases, cancer, neurodegenerative disorders, depression, diabetes, and obesity. Moreover, prolonged REDD1 expression is associated with cell apoptosis, excessive reactive oxygen species (ROS) production, and inflammation activation leading to tissue damage. In this review, we decipher several mechanisms that make REDD1 a likely metabolic double agent depending on its duration of expression in different physiological and pathological contexts. We also discuss the role played by REDD1 in the cross talk between the Akt/mTOR signaling pathway and the energetic metabolism.
Collapse
Affiliation(s)
| | - Karine Dumas
- Université Cote d'Azur, INSERM, UMR1065, C3M, Nice, France
| | | | | | | |
Collapse
|
37
|
Losiewicz MK, Elghazi L, Fingar DC, Rajala RVS, Lentz SI, Fort PE, Abcouwer SF, Gardner TW. mTORC1 and mTORC2 expression in inner retinal neurons and glial cells. Exp Eye Res 2020; 197:108131. [PMID: 32622801 DOI: 10.1016/j.exer.2020.108131] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 06/09/2020] [Accepted: 06/24/2020] [Indexed: 02/06/2023]
Abstract
The retina is one of the most metabolically active tissues, yet the processes that control retinal metabolism remains poorly understood. The mTOR complex (mTORC) that drives protein and lipid biogenesis and autophagy has been studied extensively in regards to retinal development and responses to optic nerve injury but the processes that regulate homeostasis in the adult retina have not been determined. We previously demonstrated that normal adult retina has high rates of protein synthesis compared to skeletal muscle, associated with high levels of mechanistic target of rapamycin (mTOR), a kinase that forms multi-subunit complexes that sense and integrate diverse environmental cues to control cell and tissue physiology. This study was undertaken to: 1) quantify expression of mTOR complex 1 (mTORC1)- and mTORC2-specific partner proteins in normal adult rat retina, brain and liver; and 2) to localize these components in normal human, rat, and mouse retinas. Immunoblotting and immunoprecipitation studies revealed greater expression of raptor (exclusive to mTORC1) and rictor (exclusive for mTORC2) in normal rat retina relative to liver or brain, as well as the activating mTORC components, pSIN1 and pPRAS40. By contrast, liver exhibits greater amounts of the mTORC inhibitor, DEPTOR. Immunolocalization studies for all three species showed that mTOR, raptor, and rictor, as well as most other known components of mTORC1 and mTORC2, were primarily localized in the inner retina with mTORC1 primarily in retinal ganglion cells (RGCs) and mTORC2 primarily in glial cells. In addition, phosphorylated ribosomal protein S6, a direct target of the mTORC1 substrate ribosomal protein S6 kinase beta-1 (S6K1), was readily detectable in RGCs, indicating active mTORC1 signaling, and was preserved in human donor eyes. Collectively, this study demonstrates that the inner retina expresses high levels of mTORC1 and mTORC2 and possesses active mTORC1 signaling that may provide cell- and tissue-specific regulation of homeostatic activity. These findings help to define the physiology of the inner retina, which is key for understanding the pathophysiology of optic neuropathies, glaucoma and diabetic retinopathy.
Collapse
Affiliation(s)
| | | | | | - Raju V S Rajala
- Departments of Ophthalmology and Physiology, University of Oklahoma Health Sciences Center, United States
| | - Stephen I Lentz
- Internal Medicine, Division of Metabolism, Endocrinology and Diabetes, United States
| | - Patrice E Fort
- Ophthalmology & Visual Sciences, United States; Molecular and Integrative Physiology, University of Michigan Medical School, United States
| | | | - Thomas W Gardner
- Ophthalmology & Visual Sciences, United States; Internal Medicine, Division of Metabolism, Endocrinology and Diabetes, United States; Molecular and Integrative Physiology, University of Michigan Medical School, United States.
| |
Collapse
|
38
|
Hoshi A, Nagai N, Daigaku R, Motoyama R, Saijo S, Kaji H, Abe T. Effect of sustained insulin-releasing device made of poly(ethylene glycol) dimethacrylates on retinal function in streptozotocin-induced diabetic rats. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2020; 31:52. [PMID: 32462459 DOI: 10.1007/s10856-020-06392-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Accepted: 05/15/2020] [Indexed: 06/11/2023]
Abstract
In this study, we developed a subcutaneous insulin-releasing device consisting of a disk-shaped capsule and drug formulation comprised of poly(ethylene glycol) dimethacrylates, then evaluated its efficacy on retinal function in streptozotocin (STZ)-induced diabetic rats. In vitro release studies showed that recombinant human insulin was released with a constant rate for more than 30 days. The device was able to maintain a basal level of blood glucose in diabetic rats for a prolonged period of more than 30 days, simultaneously preventing a decrease in body weight. For assessing the pharmacological effect of the device on retinal function in diabetic rats, electroretinograms were conducted for 12 weeks. The reduction in amplitude and delay in implicit time were attenuated by the device during the initial 4 weeks of application. The increase in gene expression of protein kinase C (PKC)-γ and caspase-3 in the diabetic retina was also attenuated by the device. Immunohistochemistry showed that the increase in glial fibrillary acidic protein expression in the diabetic retina was attenuated by the device. Histological evaluation of subcutaneous tissue around the device showed the biocompatibility of the device. In conclusion, the insulin-releasing device attenuated the reduction of retinal function in STZ-induced diabetic conditions for 4 weeks and the efficacy of the device might be partially related to PKC signaling in the retina. The long-term ability to control the blood glucose level might help to reduce the daily frequency of insulin injections.
Collapse
Affiliation(s)
- Ayako Hoshi
- Division of Clinical Cell Therapy, United Centers for Advanced Research and Translational Medicine (ART), Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai, 980-8575, Japan
| | - Nobuhiro Nagai
- Division of Clinical Cell Therapy, United Centers for Advanced Research and Translational Medicine (ART), Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai, 980-8575, Japan
| | - Reiko Daigaku
- Division of Clinical Cell Therapy, United Centers for Advanced Research and Translational Medicine (ART), Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai, 980-8575, Japan
| | - Remi Motoyama
- Division of Clinical Cell Therapy, United Centers for Advanced Research and Translational Medicine (ART), Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai, 980-8575, Japan
| | - Saaya Saijo
- Division of Clinical Cell Therapy, United Centers for Advanced Research and Translational Medicine (ART), Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai, 980-8575, Japan
| | - Hirokazu Kaji
- Department of Finemechanics, Graduate School of Engineering, Tohoku University, 6-6-01 Aramaki, Aoba-ku, Sendai, 980-8579, Japan
| | - Toshiaki Abe
- Division of Clinical Cell Therapy, United Centers for Advanced Research and Translational Medicine (ART), Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai, 980-8575, Japan.
| |
Collapse
|
39
|
Miller WP, Sunilkumar S, Giordano JF, Toro AL, Barber AJ, Dennis MD. The stress response protein REDD1 promotes diabetes-induced oxidative stress in the retina by Keap1-independent Nrf2 degradation. J Biol Chem 2020; 295:7350-7361. [PMID: 32295843 PMCID: PMC7247303 DOI: 10.1074/jbc.ra120.013093] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 04/09/2020] [Indexed: 12/21/2022] Open
Abstract
The transcription factor nuclear factor erythroid-2-related factor 2 (Nrf2) plays a critical role in reducing oxidative stress by promoting the expression of antioxidant genes. Both individuals with diabetes and preclinical diabetes models exhibit evidence of a defect in retinal Nrf2 activation. We recently demonstrated that increased expression of the stress response protein regulated in development and DNA damage 1 (REDD1) is necessary for the development of oxidative stress in the retina of streptozotocin-induced diabetic mice. In the present study, we tested the hypothesis that REDD1 suppresses the retinal antioxidant response to diabetes by repressing Nrf2 function. We found that REDD1 ablation enhances Nrf2 DNA-binding activity in the retina and that the suppressive effect of diabetes on Nrf2 activity is absent in the retina of REDD1-deficient mice compared with WT. In human MIO-M1 Müller cell cultures, REDD1 deletion prevented oxidative stress in response to hyperglycemic conditions, and this protective effect required Nrf2. REDD1 suppressed Nrf2 stability by promoting its proteasomal degradation independently of Nrf2's interaction with Kelch-like ECH-associated protein 1 (Keap1), but REDD1-mediated Nrf2 degradation required glycogen synthase kinase 3 (GSK3) activity and Ser-351/Ser-356 of Nrf2. Diabetes diminished inhibitory phosphorylation of glycogen synthase kinase 3β (GSK3β) at Ser-9 in the retina of WT mice but not in REDD1-deficient mice. Pharmacological inhibition of GSK3 enhanced Nrf2 activity and prevented oxidative stress in the retina of diabetic mice. The findings support a model wherein hyperglycemia-induced REDD1 blunts the Nrf2 antioxidant response to diabetes by activating GSK3, which, in turn, phosphorylates Nrf2 to promote its degradation.
Collapse
Affiliation(s)
- William P Miller
- Department of Cellular and Molecular Physiology, Penn State College of Medicine, Hershey, Pennsylvania 17033
| | - Siddharth Sunilkumar
- Department of Cellular and Molecular Physiology, Penn State College of Medicine, Hershey, Pennsylvania 17033
| | - Joseph F Giordano
- Department of Cellular and Molecular Physiology, Penn State College of Medicine, Hershey, Pennsylvania 17033
| | - Allyson L Toro
- Department of Cellular and Molecular Physiology, Penn State College of Medicine, Hershey, Pennsylvania 17033
| | - Alistair J Barber
- Department of Cellular and Molecular Physiology, Penn State College of Medicine, Hershey, Pennsylvania 17033; Department of Ophthalmology, Penn State College of Medicine, Hershey, Pennsylvania 17033
| | - Michael D Dennis
- Department of Cellular and Molecular Physiology, Penn State College of Medicine, Hershey, Pennsylvania 17033; Department of Ophthalmology, Penn State College of Medicine, Hershey, Pennsylvania 17033.
| |
Collapse
|
40
|
Ramírez-Pérez G, Sánchez-Chávez G, Salceda R. Mitochondrial bound hexokinase type I in normal and streptozotocin diabetic rat retina. Mitochondrion 2020; 52:212-217. [DOI: 10.1016/j.mito.2020.04.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 02/24/2020] [Accepted: 04/07/2020] [Indexed: 12/19/2022]
|
41
|
Chung YW, Lee JH, Lee JY, Ju HH, Lee YJ, Jee DH, Ko SH, A Choi J. The Anti-Inflammatory Effects of Glucagon-Like Peptide Receptor Agonist Lixisenatide on the Retinal Nuclear and Nerve Fiber Layers in an Animal Model of Early Type 2 Diabetes. THE AMERICAN JOURNAL OF PATHOLOGY 2020; 190:1080-1094. [PMID: 32354571 DOI: 10.1016/j.ajpath.2020.01.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2019] [Revised: 01/11/2020] [Accepted: 01/17/2020] [Indexed: 12/30/2022]
Abstract
This study explored the anti-inflammatory effects of a glucagon-like peptide-1 receptor agonist (GLP-1RA), known as lixisenatide, on the eyes of early type 2 diabetic mice. Diabetic (db/db) mice were divided into three groups: GLP-1RA [lixisenatide (LIX)], insulin (INS) with controlled hyperglycemia based on the glucose concentration of lixisenatide, and diabetic control (D-CON). Nondiabetic control mice (db/dm) were also characterized for comparison. After 8 weeks of treatment, mRNA levels of inflammatory markers, terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling, immunohistochemical staining; Western blot of glial fibrillary acidic protein (GFAP) and thioredoxin-interacting protein; and retinal thickness were assessed in the central and peripheral neurosensory retina. LIX showed decreased immunohistochemical staining for both thioredoxin-interacting protein and GFAP in the central and peripheral neurosensory retina compared with D-CON and INS, and decreased expression of these proteins in the neurosensory retina and immunohistochemical staining in the optic nerve head for GFAP compared with D-CON. The inner nuclear layer in the peripheral retina in LIX was only thinner than those of D-CON and INS. In an early type 2 diabetic mouse model, lixisenatide treatment showed superior anti-inflammatory effects on the retina and optic nerve head independent of hyperglycemia. Thus, the neuroprotective effects of lixisenatide treatment in the peripheral inner nuclear layer should be evaluated in early type 2 diabetic retinopathy.
Collapse
Affiliation(s)
- Yeon Woong Chung
- Department of Ophthalmology and Visual Science, St. Vincent's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Jae Hyung Lee
- Department of Ophthalmology and Visual Science, St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Ji Young Lee
- Department of Ophthalmology and Visual Science, St. Vincent's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Hyun Hee Ju
- Clinical Research Center, St. Vincent's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Ye-Jee Lee
- Division of Endocrinology & Metabolism, Department of Internal Medicine, St. Vincent's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Dong Hyun Jee
- Department of Ophthalmology and Visual Science, St. Vincent's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Seung-Hyun Ko
- Division of Endocrinology & Metabolism, Department of Internal Medicine, St. Vincent's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Jin A Choi
- Department of Ophthalmology and Visual Science, St. Vincent's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea.
| |
Collapse
|
42
|
Bao YK, Yan Y, Gordon M, McGill JB, Kass M, Rajagopal R. Visual Field Loss in Patients With Diabetes in the Absence of Clinically-Detectable Vascular Retinopathy in a Nationally Representative Survey. Invest Ophthalmol Vis Sci 2020; 60:4711-4716. [PMID: 31725170 PMCID: PMC6855391 DOI: 10.1167/iovs.19-28063] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
Purpose Neuroretinopathy is increasingly being recognized as an independent cause of vision loss in diabetes. Visual field loss, as detected by frequency doubling technology (FDT)-based visual perimetry, is a sign of neuroretinopathy and occurs in early stages of diabetic retinopathy (DR). Here, we hypothesized that FDT visual field testing could identify patients with diabetic neuroretinopathy in the absence of clinically detectable microvascular DR. Methods All National Health and Nutrition Examination Survey (NHANES) 2005–2008 participants receiving fundus photography and visual field screening by FDT were included in this study. Participants with self-reported glaucoma, use of glaucoma medications, or determination of glaucoma based on disk features were excluded. Visual fields were screened using FDT protocol in which participants underwent a 19-subfield suprathreshold test. Results Patients with diabetes but no DR were more likely to have ≥1 subfield defects at 5%, 2%, and 1% probability levels than patients without diabetes (41.3% vs. 28.6%; 27.4% vs. 17.5%; 15.9% vs. 9.4%; all P < 0.0008). Multivariable regression showed that each additional glycated hemoglobin % (HbA1c) was associated with 19% greater odds of having ≥1 visual subfield defects in those with diabetes without DR (odds ratio: 1.19, 95% confidence interval: 1.07–1.33; P = 0.0020). Conclusions Patients with diabetes have visual field defects in the absence of clinically detectable DR, suggesting neuroretinopathy precedes classical microvascular disease. These defects become more frequent with the onset of visible retinopathy and worsen as the retinopathy becomes more severe. Longitudinal studies are required to understand the pathogenesis of diabetic neuroretinopathy in relation to classic DR.
Collapse
Affiliation(s)
- Yicheng K Bao
- Department of Medicine, University of Missouri-Kansas City School of Medicine, Kansas City, Missouri, United States
| | - Yan Yan
- Division of Public Health Sciences, Department of Surgery, Washington University School of Medicine, St. Louis, Missouri, United States
| | - Mae Gordon
- Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, St. Louis, Missouri, United States
| | - Janet B McGill
- Division of Metabolism, Endocrinology and Lipid Research, Department of Medicine, Washington University School of Medicine, Missouri, United States
| | - Michael Kass
- Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, St. Louis, Missouri, United States
| | - Rithwick Rajagopal
- Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, St. Louis, Missouri, United States
| |
Collapse
|
43
|
Thebeau C, Zhang S, Kolesnikov AV, Kefalov VJ, Semenkovich CF, Rajagopal R. Light deprivation reduces the severity of experimental diabetic retinopathy. Neurobiol Dis 2020; 137:104754. [PMID: 31978605 DOI: 10.1016/j.nbd.2020.104754] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 01/13/2020] [Accepted: 01/20/2020] [Indexed: 12/30/2022] Open
Abstract
Illumination of the retina is a major determinant of energy expenditure by its neurons. However, it remains unclear whether light exposure significantly contributes to the pathophysiology of common retinal disease. Driven by the premise that light exposure reduces the metabolic demand of the retina, recent clinical trials failed to demonstrate a benefit for constant illumination in the treatment of diabetic retinopathy. Here, we instead ask whether light deprivation or blockade of visual transduction could modulate the severity of this common cause of blindness. We randomized adult mice with two different models of diabetic retinopathy to 1-3 months of complete dark housing. Unexpectedly, we find that diabetic mice exposed to short or prolonged light deprivation have reduced diabetes-induced retinal pathology, using measures of visual function, compared to control animals in standard lighting conditions. To corroborate these results, we performed assays of retinal vascular health in diabetic Gnat1-/- and Rpe65-/- mice, which lack phototransduction. Both mutants displayed less diabetes-associated retinal vascular disease compared to respective wild-type controls. Collectively, these results suggest that light-induced visual transduction promotes the development of diabetic retinopathy and implicate photoreceptors as an early source of visual pathology in diabetes.
Collapse
Affiliation(s)
- Christina Thebeau
- Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Sheng Zhang
- Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Alexander V Kolesnikov
- Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Vladimir J Kefalov
- Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Clay F Semenkovich
- Division of Endocrinology, Metabolism, and Lipid Research, Washington University School of Medicine, Saint Louis, MO 63110, USA; Department of Cell Biology and Physiology, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Rithwick Rajagopal
- Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, Saint Louis, MO 63110, USA.
| |
Collapse
|
44
|
Fathalipour M, Eghtedari M, Borges F, Silva T, Moosavi F, Firuzi O, Mirkhani H. Caffeic Acid Alkyl Amide Derivatives Ameliorate Oxidative Stress and Modulate ERK1/2 and AKT Signaling Pathways in a Rat Model of Diabetic Retinopathy. Chem Biodivers 2019; 16:e1900405. [PMID: 31566891 DOI: 10.1002/cbdv.201900405] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2019] [Accepted: 07/21/2019] [Indexed: 12/14/2022]
Abstract
The purpose of this study was to examine the neuroprotective effects of caffeic acid hexyl (CAF6) and dodecyl (CAF12) amide derivatives on the early stage of retinopathy in streptozotocin-induced diabetic rats. Animals were divided in five groups (n=8/group); one group consisted of non-diabetic rats as control, while the other four were diabetic animals either non-treated or treated with CAF6, CAF12 or resveratrol intravitreally for four weeks. Retinal superoxide dismutase (SOD) activity and 8-iso-prostaglandin F2α (iPF2α ) levels were evaluated by an ELISA assay. Phosphorylation of ERK1/2 and AKT was determined by immunoblotting in retinal homogenates. Retinal morphology was also examined using light microscopy. Treatment with CAF6 and CAF12 increased retinal SOD activity, while it decreased iPF2α levels in diabetic rats. Phosphorylation of ERK1/2 was increased, while AKT phosphorylation was decreased in diabetic rats compared to normal control and these alterations were significantly reversed in diabetic rats treated with CAF6 and CAF12. Furthermore, thickness of the whole retinal layer, outer nuclear layer, and ganglion cell count were decreased in diabetic rats compared to control and CAF6 and CAF12 treatments prevented these changes. CAF6 and CAF12 seem to be effective agents for treatment of diabetic retinopathy via attenuation of retinal oxidative stress and improvement of neuronal survival signaling.
Collapse
Affiliation(s)
- Mohammad Fathalipour
- Department of Pharmacology, Faculty of Medicine, Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences, Shiraz, 71348-45794, Iran.,Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences, Shiraz, 71348-53734, Iran
| | - Masoomeh Eghtedari
- Department of Ophthalmology, Shiraz University of Medical Sciences, Shiraz, 71348-14336, Iran
| | - Fernanda Borges
- CIQUP/Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, Porto, 4169-007, Portugal
| | - Tiago Silva
- CIQUP/Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, Porto, 4169-007, Portugal
| | - Fatemeh Moosavi
- Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences, Shiraz, 71348-53734, Iran
| | - Omidreza Firuzi
- Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences, Shiraz, 71348-53734, Iran
| | - Hossein Mirkhani
- Department of Pharmacology, Faculty of Medicine, Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences, Shiraz, 71348-45794, Iran.,Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences, Shiraz, 71348-53734, Iran
| |
Collapse
|
45
|
Gholami S, Kamali Y, Reza Rostamzad M. Glycine Supplementation Ameliorates Retinal Neuronal Damage in an Experimental Model of Diabetes in Rats: A Light and Electron Microscopic Study. J Ophthalmic Vis Res 2019; 14:448-456. [PMID: 31875100 PMCID: PMC6825695 DOI: 10.18502/jovr.v14i4.5449] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2018] [Accepted: 06/15/2019] [Indexed: 11/24/2022] Open
Abstract
Purpose To investigate the potential neuroprotective effect of glycine supplementation on the retinal ultrastructure of streptozocin (STZ)-induced diabetic rats. Methods Adult male Wistar rats weighing 200–250 g (n = 40) were randomly divided into four groups of 10 each: normal group (C), glycine + normal group (G), STZ group (D), and glycine + STZ group (DG). The G and DG groups received glycine (130 mM and 1% w/v) freely in their drinking water seven days after the induction of diabetes for up to 16 weeks. Retinal samples for histopathology were examined using light and electron microscopy. Results Diabetes-induced histological changes were attenuated in the retinas of rats in the DG group. The ultrastructural alterations produced by experimental diabetes in the inner nuclear layer, outer nuclear layer, and ganglion cell layer were significantly ameliorated by glycine supplementation. Conclusion Our findings suggest that glycine supplementation effectively attenuates retinal neuronal damage in experimental diabetic rats, and thus may be a potential candidate to protect retinal ultrastructure against diabetes.
Collapse
Affiliation(s)
- Soghra Gholami
- Department of Basic Sciences, School of Veterinary Medicine, Shiraz University, Shiraz, Iran
| | - Younes Kamali
- Department of Basic Sciences, School of Veterinary Medicine, Shiraz University, Shiraz, Iran
| | - Mohammad Reza Rostamzad
- Department of Basic Sciences, School of Veterinary Medicine, Shiraz University, International Division, Shiraz, Iran
| |
Collapse
|
46
|
Luo Q, Xiao Y, Alex A, Cummins TR, Bhatwadekar AD. The Diurnal Rhythm of Insulin Receptor Substrate-1 (IRS-1) and Kir4.1 in Diabetes: Implications for a Clock Gene Bmal1. Invest Ophthalmol Vis Sci 2019; 60:1928-1936. [PMID: 31042800 PMCID: PMC6735779 DOI: 10.1167/iovs.18-26045] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Purpose Diabetes leads to the downregulation of the retinal Kir4.1 channels and Müller cell dysfunction. The insulin receptor substrate-1 (IRS-1) is a critical regulator of insulin signaling in Müller cells. Circadian rhythms play an integral role in normal physiology; however, diabetes leads to a circadian dysrhythmia. We hypothesize that diabetes will result in a circadian dysrhythmia of IRS-1 and Kir4.1 and disturbed clock gene function will have a critical role in regulating Kir4.1 channels. Methods We assessed a diurnal rhythm of retinal IRS-1 and Kir4.1 in db/db mice. The Kir4.1 function was evaluated using a whole-cell recording of Müller cells. The rat Müller cells (rMC-1) were used to undertake in vitro studies using a siRNA. Results The IRS-1 exhibited a diurnal rhythm in control mice; however, with diabetes, this natural rhythm was lost. The Kir4.1 levels peaked and troughed at times similar to the IRS-1 rhythm. The IRS-1 silencing in the rMC-1 led to a decrease in Kir4.1 and BMAL1. The insulin treatment of retinal explants upregulated Kir4.1 possibly via upregulation of BMAL1 and phosphorylation of IRS-1 and Akt-1. Conclusions Our studies highlight that IRS-1, by regulating BMAL1, is an important regulator of Kir4.1 in Müller cells and the dysfunctional signaling mediated by IRS-1 may be detrimental to Kir4.1.
Collapse
Affiliation(s)
- Qianyi Luo
- Department of Ophthalmology, Eugene and Marilyn Glick Eye Institute, Indiana University School of Medicine, Indianapolis, Indiana, United States
| | - Yucheng Xiao
- Department of Biology, Indiana University-Purdue University, Indianapolis, Indiana, United States
| | - Alpha Alex
- Department of Ophthalmology, Eugene and Marilyn Glick Eye Institute, Indiana University School of Medicine, Indianapolis, Indiana, United States
| | - Theodore R Cummins
- Department of Biology, Indiana University-Purdue University, Indianapolis, Indiana, United States
| | - Ashay D Bhatwadekar
- Department of Ophthalmology, Eugene and Marilyn Glick Eye Institute, Indiana University School of Medicine, Indianapolis, Indiana, United States
| |
Collapse
|
47
|
Abstract
PURPOSE OF REVIEW To introduce recent advances in the understanding of diabetic retinopathy and to summarize current and emerging strategies to treat this common and complex cause of vision loss. RECENT FINDINGS Advances in retinal imaging and functional analysis indicate that retinal vascular and neural pathologies exist long before the development of clinically visible retinopathy. Such diagnostics could facilitate risk stratification and selective early intervention in high-risk patients. Antagonists of the vascular endothelial growth factor pathway effectively reduce vision loss in diabetes and promote regression of disease severity. Promising new strategies to treat diabetic retinopathy involve novel systemic diabetes therapy and ocular therapies that antagonize angiogenic growth factor signaling, improve blood-retina barrier function and neurovascular coupling, modulate neuroretinal metabolism, or provide neuroprotection. Long considered a pure microvasculopathy, diabetic retinopathy in fact affects the neural and vascular retina as well as neurovascular communication. Emerging therapies include those that target neuroretinal dysfunction in addition to those modulating vascular biology.
Collapse
Affiliation(s)
- Avinash Honasoge
- Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, 660 S. Euclid Ave. 8096, St. Louis, MO, 63108, USA
| | - Eric Nudleman
- Shiley Eye Institute, University of California, San Diego, La Jolla, CA, USA
| | - Morton Smith
- Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, 660 S. Euclid Ave. 8096, St. Louis, MO, 63108, USA
| | - Rithwick Rajagopal
- Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, 660 S. Euclid Ave. 8096, St. Louis, MO, 63108, USA.
| |
Collapse
|
48
|
Bao YK, Yan Y, Wilson B, Gordon MO, Semenkovich CF, Rajagopal R. Association of Retinopathy and Insulin Resistance: NHANES 2005-2008. Curr Eye Res 2019; 45:173-176. [PMID: 31460803 DOI: 10.1080/02713683.2019.1659977] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Purpose: In animal models, insulin resistance without severe hyperglycemia is associated with retinopathy; however, corroborating data in humans are lacking. This study aims to investigate the prevalence of retinopathy in a population without diabetes and evaluate the association of insulin resistance and retinopathy within this group.Methods: The study population included 1914 adults age ≥40 without diabetes who were assigned to the morning, fasted group in the National Health and Nutrition Examination Survey 2005-2008, conducted by the Centers for Disease Control. Retinopathy was determined using fundus photos independently graded by a reading center and insulin resistance was determined using the homeostatic model of insulin resistance.Results: Prevalence of retinopathy in those without diabetes was survey design adjusted 9.4% (174/1914). In multivariable analyses, retinopathy was associated with insulin resistance (HOMA-IR OR: 1.09, 95% CI: 1.03, 1.16; p = .0030), male gender (OR: 1.39, 95% CI: 1.04, 1.85; p = .0267), and age (OR: 1.03, 95% CI: 1.01, 1.05; p = .0203).Conclusions: Insulin resistance in the absence of overt hyperglycemia could be an early driver of retinopathy.
Collapse
Affiliation(s)
- Yicheng K Bao
- Department of Medicine, University of Missouri - Kansas City School of Medicine, Kansas City, MO, USA
| | - Yan Yan
- Division of Public Health Sciences, Department of Surgery, Washington University School of Medicine, St. Louis, MO, USA
| | - Bradley Wilson
- Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, Saint Louis, MO, USA
| | - Mae O Gordon
- Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, Saint Louis, MO, USA
| | - Clay F Semenkovich
- Division of Metabolism, Endocrinology and Lipid Research, Department of Medicine, Washington University School of Medicine, Saint Louis, MO, USA
| | - Rithwick Rajagopal
- Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, Saint Louis, MO, USA
| |
Collapse
|
49
|
Kim D, Mecham RP, Nguyen NH, Roy S. Decreased lysyl oxidase level protects against development of retinal vascular lesions in diabetic retinopathy. Exp Eye Res 2019; 184:221-226. [PMID: 31022398 DOI: 10.1016/j.exer.2019.04.019] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Revised: 02/19/2019] [Accepted: 04/16/2019] [Indexed: 12/14/2022]
Abstract
Retinal capillary basement membrane (BM) thickening is closely associated with the development of vascular lesions in diabetic retinopathy. Thickened capillary BM can compromise blood-retinal-barrier characteristics and contribute to retinal vascular permeability, a significant clinical manifestation of diabetic retinopathy. We have previously shown that high glucose increases the expression and activity of lysyl oxidase (LOX), a crosslinking enzyme, in retinal endothelial cells. Additionally, concomitant with overexpression of LOX, increased vascular permeability was observed in diabetic rat retinas. However, it is unknown whether decreasing LOX overexpression may have protective effects against development of retinal vascular lesions in diabetes. To investigate whether reduced LOX level protects against diabetes-induced development of retinal vascular lesions characteristic of diabetic retinopathy, four groups of mice: wild type (WT) control mice, streptozotocin (STZ)-induced diabetic mice, LOX +/- mice, and STZ-induced diabetic LOX +/- mice were used for this study. Diabetes was maintained for 16 weeks; at the end of the study, retinas were assessed for LOX protein level by Western Blot (WB) analysis, and retinal capillary networks were isolated using retinal trypsin digestion and stained with hematoxylin and periodic acid Schiff to identify the number of acellular capillaries (AC) and pericyte loss (PL). In parallel, TUNEL assay was performed on retinal trypsin digests (RTDs) to detect cells undergoing apoptosis in the retinal capillary networks. Retinal vascular permeability was analyzed following FITC-dextran injection in retinal whole mounts. A significant increase in LOX expression was detected in the diabetic retinas compared to those of the WT control retinas, and as expected, a significant decrease in LOX expression in the diabetic LOX +/- retinas was observed compared to those of the diabetic retinas. RTD images showed significantly increased AC and PL counts in the retinas of diabetic mice compared to those of the WT control mice. Importantly, the number of AC and PL was significantly decreased, as was retinal vascular permeability in the retinas of the diabetic LOX +/- mice compared to those of the diabetic mice. Results suggest that decreasing diabetes-induced LOX overexpression may have protective effects against the development of vascular lesions characteristic of diabetic retinopathy. Therefore, LOX overexpression may be a potential target in preventing retinal vascular cell loss and excess permeability associated with diabetic retinopathy.
Collapse
Affiliation(s)
- Dongjoon Kim
- Department of Medicine, Boston University School of Medicine, Boston, MA, USA; Department of Ophthalmology, Boston University School of Medicine, Boston, MA, USA
| | - Robert P Mecham
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Ngan-Ha Nguyen
- Department of Medicine, Boston University School of Medicine, Boston, MA, USA; Department of Ophthalmology, Boston University School of Medicine, Boston, MA, USA
| | - Sayon Roy
- Department of Medicine, Boston University School of Medicine, Boston, MA, USA; Department of Ophthalmology, Boston University School of Medicine, Boston, MA, USA.
| |
Collapse
|
50
|
Kida T, Oku H, Horie T, Osuka S, Fukumoto M, Ikeda T. Protein kinase C-mediated insulin receptor phosphorylation in diabetic rat retina. Graefes Arch Clin Exp Ophthalmol 2019; 257:1427-1434. [PMID: 31025213 DOI: 10.1007/s00417-019-04324-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2018] [Revised: 03/06/2019] [Accepted: 04/08/2019] [Indexed: 11/29/2022] Open
Abstract
PURPOSE Diabetic retinopathy (DR) involves a proliferation of vascular endothelial cells and loss of pericytes. There is a link among the action of protein kinase C (PKC) and insulin signaling. Thus, we investigated the differences between these cells in insulin receptor (IR) phosphorylation in DR. METHODS Retinas were removed from streptozotocin-induced diabetic or healthy rats, and IR expression levels were compared by immunoblot and immunohistochemistry. In vitro assays also were performed in order to determine the expressions of phosphorylated IR in both cells cultured under 5.5 or 25 mM glucose by immunoblot. Cell viability was determined in both cells cultured under different concentrations of phorbol myristate acetate (PMA), a PKC activator. To determine the involvement of the PI3 kinase pathway of IR, PMA with or without wortmannin-induced changes in Akt was also analyzed. RESULTS Immunoreactivity to the IR was decreased in diabetic retina. High glucose (25 mM) increased phosphorylated IR levels in endothelial cells but not in pericytes. PMA (1 nM or higher) induced death of pericytes, while endothelial cells were increased. PMA increased phosphorylated Akt in endothelial cells and decreased in pericytes. Wortmannin suppressed the PMA-induced phosphorylation of Akt in endothelial cells. CONCLUSIONS The different responses to 25 mM glucose and PMA were observed between retinal endothelial cells and pericytes. Thus, IR phosphorylation is likely important for retinal vascular cells to survive in diabetic retina.
Collapse
Affiliation(s)
- Teruyo Kida
- Department of Ophthalmology, Osaka Medical College, 2-7 Daigaku-machi, Takatsuki, 569-8686, Japan.
| | - Hidehiro Oku
- Department of Ophthalmology, Osaka Medical College, 2-7 Daigaku-machi, Takatsuki, 569-8686, Japan
| | - Taeko Horie
- Department of Ophthalmology, Osaka Medical College, 2-7 Daigaku-machi, Takatsuki, 569-8686, Japan
| | - Sho Osuka
- Department of Ophthalmology, Osaka Medical College, 2-7 Daigaku-machi, Takatsuki, 569-8686, Japan
| | - Masanori Fukumoto
- Department of Ophthalmology, Osaka Medical College, 2-7 Daigaku-machi, Takatsuki, 569-8686, Japan
| | - Tsunehiko Ikeda
- Department of Ophthalmology, Osaka Medical College, 2-7 Daigaku-machi, Takatsuki, 569-8686, Japan
| |
Collapse
|