1
|
Heguedusch D, Carvalho GL, Tomo S, Aguiar EMG, Custódio M, Siqueira JM, da Cunha Mercante AM, Cury PM, Tajara EH, De Cicco R, Nunes FD. The Patterns of P53, E-Cadherin, β-Catenin, CXCR4 and Podoplanin Expression in Oral Squamous Cell Carcinoma Suggests a Hybrid Invasion Model: an Immunohistochemical Study on Tissue Microarrays. Head Neck Pathol 2025; 19:6. [PMID: 39776043 PMCID: PMC11707092 DOI: 10.1007/s12105-024-01745-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Accepted: 12/15/2024] [Indexed: 01/11/2025]
Abstract
PURPOSE Oral squamous cell carcinoma (OSCC) is a significant public health challenge associated with high mortality rates primarily due to its invasive and metastatic behavior. This study aimed to evaluate the expression patterns of five critical biomarkers: β-catenin, E-cadherin, podoplanin (PDPN), CXCR4, and p53 in OSCC tissues and to investigate their correlations with clinicopathologic features and patient outcomes. METHODS We conducted an immunohistochemical analysis utilizing tissue microarrays (TMAs) from 95 patients diagnosed with primary OSCC. The expression levels of the five biomarkers were quantified using H-scores. Statistical analyses, including Kruskal-Wallis tests, Dunn's post-hoc tests, and correlation analyses, were performed to explore the associations between biomarker expression, clinicopathologic parameters, and overall patient survival. RESULTS The study found that loss of E-cadherin and β-catenin expression was significantly associated with increased tumor depth and lymphatic invasion, corroborating their role in the process of epithelial-mesenchymal transition (EMT). High levels of PDPN were noted in both early and late-stage OSCC, indicating its potential involvement in initiating invasive behaviors. Notably, CXCR4 expression exhibited positive correlations with E-cadherin and β-catenin, suggesting a hybrid invasion phenotype incorporating both EMT and collective invasion strategies. Although Cox regression analysis did not reveal significant associations between biomarker expression and overall survival (OS) or disease-specific survival (DSS), factors such as alcohol consumption, tumor size, lymph node involvement, and advanced clinical stage emerged as significant negative predictors of both OS and DSS. CONCLUSION The expression profiles of β-catenin, E-cadherin, PDPN, CXCR4, and p53 in OSCC tissues provide valuable insights into a hybrid model of invasion that integrates mechanisms of EMT with an important rule in the tumor invasion. This nuanced understanding of OSCC progression highlights the potential of PDPN and CXCR4 as novel therapeutic targets, emphasizing the need for further investigation into their roles in OSCC biology and the development of targeted treatments that could improve patient outcomes and survival rates.
Collapse
Affiliation(s)
- Daniele Heguedusch
- Department of Oral Pathology, School of Dentistry, University of São Paulo, São Paulo, Brazil
| | - Giovanna Lopes Carvalho
- Department of Oral Pathology, School of Dentistry, University of São Paulo, São Paulo, Brazil
| | - Saygo Tomo
- Department of Oral Pathology, School of Dentistry, University of São Paulo, São Paulo, Brazil
| | | | - Marcos Custódio
- School of Medicine, Universidade Federal Do Maranhão, Imperatriz, MA, Brazil
| | - Juliana Mota Siqueira
- Department of Oral Pathology, School of Dentistry, University of São Paulo, São Paulo, Brazil
| | - Ana Maria da Cunha Mercante
- Department of Pathology, Instituto do Cancer do Estado de Sao Paulo ICESP, Hospital das Clinicas da Faculdade de Medicina da Universidade de São Paulo FMUSP HC, Sao Paulo, Brazil
| | - Patricia Maluf Cury
- Department of Pathology and Legal Medicine, Faculdade de Medicina de São José do Rio Preto, São José do Rio Preto, SP, Brazil
| | - Eloiza Helena Tajara
- Department of Molecular Biology, School of Medicine of São José do Rio Preto/FAMERP, São José do Rio Preto, SP, Brazil
| | - Rafael De Cicco
- Arnaldo Vieira de Carvalho Cancer Institute, São Paulo, Brazil
| | - Fabio Daumas Nunes
- Department of Oral Pathology, School of Dentistry, University of São Paulo, São Paulo, Brazil.
- Department of Oral Pathology, School of Dentistry, University of São Paulo (USP), Avenida Professor Lineu Prestes 2227, São Paulo, Brazil.
| |
Collapse
|
2
|
Patel KR, Espinoza AF, Urbicain M, Patel RH, Major A, Sarabia SF, Lopez-Terrada D, Vasudevan SA, Woodfield SE. Histopathologic and immunophenotypic characterization of patient-derived pediatric malignant hepatocellular tumor xenografts (PDXs). Pathol Res Pract 2024; 255:155163. [PMID: 38394806 DOI: 10.1016/j.prp.2024.155163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Accepted: 01/20/2024] [Indexed: 02/25/2024]
Abstract
Advances in targeted therapies for pediatric hepatocellular tumors have been limited due to a paucity of clinically relevant models. Establishment and validation of intrahepatic patient-derived xenograft (PDX) models would help bridging this gap. The aim of this study is to compare the histomorphologic and immunophenotypic fidelity of patient tumors and their corresponding intrahepatic PDX models. Murine PDX models were established by intrahepatic implantation of patient tumors. Pathology slides from both patients and their corresponding PDX models were reviewed and quantitatively assessed for various histologic components and immunophenotypic markers. Ten PDX models were successfully established from nine patients with pre- (n=3) and post- (n=6) chemotherapy samples; diagnosed of hepatoblastoma (n=8) and hepatocellular neoplasm, not otherwise specified (n=1). Two of nine (22.2%) patients showed ≥75% fetal component; however, the corresponding PDX models did not maintain this fetal differentiation. High grade histology was seen in three patients (33.3%) and overrepresented in six PDX models (60%). Within the subset of three PDXs that were further characterized, significant IHC concordance was seen in all 3 models for CK7, CK19, Ki-67, and p53; and 2 of 3 models for Sox9 and Beta-catenin. GPC-3 and GS showed variable to moderate concordance, while Hepar was the least concordant. Our study shows that in general, the PDX models appear to represent the higher-grade component of the original tumor and show significant concordance for Ki-67, making them appropriate tools for testing new therapies for the most aggressive, therapy-resistant tumors.
Collapse
Affiliation(s)
- Kalyani R Patel
- Department of Pathology and Immunology, Anatomic Pathology Division, Texas Children's Hospital and Baylor College of Medicine, Houston, TX, USA.
| | - Andres F Espinoza
- Department of General Surgery, Division of Pediatric Surgery, Texas Children's Hospital and Baylor College of Medicine, Houston, TX, USA
| | - Martin Urbicain
- Department of Pathology and Immunology, Genomic Medicine Division, Texas Children's Hospital and Baylor College of Medicine, Houston, TX, USA
| | - Roma H Patel
- Department of General Surgery, Division of Pediatric Surgery, Texas Children's Hospital and Baylor College of Medicine, Houston, TX, USA
| | - Angela Major
- Department of Pathology and Immunology, Anatomic Pathology Division, Texas Children's Hospital and Baylor College of Medicine, Houston, TX, USA
| | - Stephen F Sarabia
- Department of Pathology and Immunology, Genomic Medicine Division, Texas Children's Hospital and Baylor College of Medicine, Houston, TX, USA
| | - Dolores Lopez-Terrada
- Department of Pathology and Immunology, Genomic Medicine Division, Texas Children's Hospital and Baylor College of Medicine, Houston, TX, USA
| | - Sanjeev A Vasudevan
- Department of General Surgery, Division of Pediatric Surgery, Texas Children's Hospital and Baylor College of Medicine, Houston, TX, USA
| | - Sarah E Woodfield
- Department of General Surgery, Division of Pediatric Surgery, Texas Children's Hospital and Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|
3
|
de Assis ALEM, Archanjo AB, Maranhão RC, Mendes SO, de Souza RP, de Cicco R, de Oliveira MM, Borçoi AR, de L Maia L, Nunes FD, Dos Santos M, Trivilin LO, Pinheiro CJG, Álvares-da-Silva AM, Nogueira BV. Chlorine, chromium, proteins of oxidative stress and DNA repair pathways are related to prognosis in oral cancer. Sci Rep 2021; 11:22314. [PMID: 34785721 PMCID: PMC8595368 DOI: 10.1038/s41598-021-01753-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Accepted: 11/02/2021] [Indexed: 12/24/2022] Open
Abstract
The comparison of chemical and histopathological data obtained from the analysis of excised tumor fragments oral squamous cell carcinoma (OSCC) with the demographic and clinical evolution data is an effective strategy scarcely explored in OSCC studies. The aim was to analyze OSCC tissues for protein expression of enzymes related to oxidative stress and DNA repair and trace elements as candidates as markers of tumor aggressiveness and prognosis. Tumor fragments from 78 OSCC patients that had undergone ablative surgery were qualitatively analyzed by synchrotron micro-X-ray fluorescence for trace elements. Protein expression of SOD-1, Trx, Ref-1 and OGG1/2 was performed by immunohistochemistry. Sociodemographic, clinical, and histopathological data were obtained from 4-year follow-up records. Disease relapse was highest in patients with the presence of chlorine and chromium and lowest in those with tumors with high OGG1/2 expression. High expression of SOD-1, Trx, and Ref-1 was determinant of the larger tumor. Presence of trace elements can be markers of disease prognosis. High expression of enzymes related to oxidative stress or to DNA repair can be either harmful by stimulating tumor growth or beneficial by diminishing relapse rates. Interference on these players may bring novel strategies for the therapeutic management of OSCC patients.
Collapse
Affiliation(s)
| | - Anderson Barros Archanjo
- Biotechnology Graduate Program/RENORBIO, Federal Univerty of Espírito Santo, Vitória, 29040090, Brazil
| | - Raul C Maranhão
- Heart Institute (InCor), Medical School Hospital, University of São Paulo, São Paulo, 05403900, Brazil
| | - Suzanny O Mendes
- Biotechnology Graduate Program/RENORBIO, Federal Univerty of Espírito Santo, Vitória, 29040090, Brazil
| | - Rafael P de Souza
- Cancer Institute Arnaldo Vieira de Carvalho, São Paulo, 01219010, Brazil
| | - Rafael de Cicco
- Cancer Institute Arnaldo Vieira de Carvalho, São Paulo, 01219010, Brazil
| | - Mayara M de Oliveira
- Biotechnology Graduate Program/RENORBIO, Federal Univerty of Espírito Santo, Vitória, 29040090, Brazil
| | - Aline R Borçoi
- Biotechnology Graduate Program/RENORBIO, Federal Univerty of Espírito Santo, Vitória, 29040090, Brazil
| | - Lucas de L Maia
- Biotechnology Graduate Program/RENORBIO, Federal Univerty of Espírito Santo, Vitória, 29040090, Brazil
| | - Fabio D Nunes
- Department of Stomatology, Faculty of Dentistry, University of São Paulo, São Paulo, 05508000, Brazil
| | - Marcelo Dos Santos
- Multicampi School of Medical Sciences of Rio Grando Do Norte, Federal University of Rio Grande Do Norte, Caicó, 59300000, Brazil
| | - Leonardo O Trivilin
- Department of Veterinary Medicine, Center for Agricultural Sciences and Engineering, Federal University of Espírito Santo, Alegre, 29500000, Brazil
| | - Christiano J G Pinheiro
- Department of Rural Engineering, Center for Agricultural Sciences and Engineering, Federal University of Espírito Santo, Alegre, 29500000, Brazil
| | - Adriana M Álvares-da-Silva
- Biotechnology Graduate Program/RENORBIO, Federal Univerty of Espírito Santo, Vitória, 29040090, Brazil.,Department of Morphology, Health Sciences Center, Federal University of Espírito Santo, Vitória, 29047105, Brazil
| | - Breno Valentim Nogueira
- Biotechnology Graduate Program/RENORBIO, Federal Univerty of Espírito Santo, Vitória, 29040090, Brazil. .,Department of Morphology, Health Sciences Center, Federal University of Espírito Santo, Vitória, 29047105, Brazil.
| |
Collapse
|
4
|
Menz A, Weitbrecht T, Gorbokon N, Büscheck F, Luebke AM, Kluth M, Hube-Magg C, Hinsch A, Höflmayer D, Weidemann S, Fraune C, Möller K, Bernreuther C, Lebok P, Clauditz T, Sauter G, Uhlig R, Wilczak W, Steurer S, Minner S, Burandt E, Krech R, Dum D, Krech T, Marx A, Simon R. Diagnostic and prognostic impact of cytokeratin 18 expression in human tumors: a tissue microarray study on 11,952 tumors. Mol Med 2021; 27:16. [PMID: 33588765 PMCID: PMC7885355 DOI: 10.1186/s10020-021-00274-7] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 01/18/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Cytokeratin 18 (CK18) is an intermediate filament protein of the cytokeratin acidic type I group and is primarily expressed in single-layered or "simple" epithelial tissues and carcinomas of different origin. METHODS To systematically determine CK18 expression in normal and cancerous tissues, 11,952 tumor samples from 115 different tumor types and subtypes (including carcinomas, mesenchymal and biphasic tumors) as well as 608 samples of 76 different normal tissue types were analyzed by immunohistochemistry in a tissue microarray format. RESULTS CK18 was expressed in normal epithelial cells of most organs but absent in normal squamous epithelium. At least an occasional weak CK18 positivity was seen in 90 of 115 (78.3%) tumor types. Wide-spread CK18 positivity was seen in 37 (31.9%) of tumor entities, including adenocarcinomas of the lung, prostate, colon and pancreas as well as ovarian cancer. Tumor categories with variable CK18 immunostaining included cancer types arising from CK18 positive precursor cells but show CK18 downregulation in a fraction of cases, tumor types arising from CK18 negative precursor cells occasionally exhibiting CK18 neo-expression, tumors derived from normal tissues with variable CK18 expression, and tumors with a mixed differentiation. CK18 downregulation was for example seen in renal cell cancers and breast cancers, whereas CK18 neo-expression was found in squamous cell carcinomas of various origins. Down-regulation of CK18 in invasive breast carcinomas of no special type and clear cell renal cell carcinomas (ccRCC) was related to adverse tumor features in both tumors (p ≤ 0.0001) and poor patient prognosis in ccRCC (p = 0.0088). Up-regulation of CK18 in squamous cell carcinomas was linked to high grade and lymph node metastasis (p < 0.05). In summary, CK18 is consistently expressed in various epithelial cancers, especially adenocarcinomas. CONCLUSIONS Down-regulation or loss of CK18 expression in cancers arising from CK18 positive tissues as well as CK18 neo-expression in cancers originating from CK18 negative tissues is linked to cancer progression and may reflect tumor dedifferentiation.
Collapse
Affiliation(s)
- Anne Menz
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246, Hamburg, Germany
| | - Timo Weitbrecht
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246, Hamburg, Germany
| | - Natalia Gorbokon
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246, Hamburg, Germany
| | - Franziska Büscheck
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246, Hamburg, Germany
| | - Andreas M Luebke
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246, Hamburg, Germany
| | - Martina Kluth
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246, Hamburg, Germany
| | - Claudia Hube-Magg
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246, Hamburg, Germany
| | - Andrea Hinsch
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246, Hamburg, Germany
| | - Doris Höflmayer
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246, Hamburg, Germany
| | - Sören Weidemann
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246, Hamburg, Germany
| | - Christoph Fraune
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246, Hamburg, Germany
| | - Katharina Möller
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246, Hamburg, Germany
| | - Christian Bernreuther
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246, Hamburg, Germany
| | - Patrick Lebok
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246, Hamburg, Germany
| | - Till Clauditz
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246, Hamburg, Germany
| | - Guido Sauter
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246, Hamburg, Germany
| | - Ria Uhlig
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246, Hamburg, Germany
| | - Waldemar Wilczak
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246, Hamburg, Germany
| | - Stefan Steurer
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246, Hamburg, Germany
| | - Sarah Minner
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246, Hamburg, Germany
| | - Eike Burandt
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246, Hamburg, Germany
| | - Rainer Krech
- Institute of Pathology, Clinical Center Osnabrueck, Osnabrueck, Germany
| | - David Dum
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246, Hamburg, Germany
| | - Till Krech
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246, Hamburg, Germany.,Institute of Pathology, Clinical Center Osnabrueck, Osnabrueck, Germany
| | - Andreas Marx
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246, Hamburg, Germany.,Department of Pathology, Academic Hospital Fuerth, Fuerth, Germany
| | - Ronald Simon
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246, Hamburg, Germany.
| |
Collapse
|
5
|
Archanjo AB, Assis ALEMD, Oliveira MMD, Mendes SO, Borçoi AR, Maia LDL, Souza RPD, Cicco RD, Saito KC, Kimura ET, Carvalho MBD, Nunes FD, Tajara EH, Santos MD, Nogueira BV, Trivilin LO, Pinheiro CJG, Álvares-da-Silva AM. Elemental characterization of oral cavity squamous cell carcinoma and its relationship with smoking, prognosis and survival. Sci Rep 2020; 10:10382. [PMID: 32587307 PMCID: PMC7316707 DOI: 10.1038/s41598-020-67270-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Accepted: 06/03/2020] [Indexed: 11/29/2022] Open
Abstract
Oral cancer squamous cell carcinoma (OCSCC) mainly affects individuals aged between 50 and 70 years who consume tobacco and alcohol. Tobacco smoke contains hundreds of known toxic and carcinogenic molecules, and a few studies have sought to verify the relationship of such trace elements as risk or prognostic factors for head and neck cancer. We obtained 78 samples of tumor tissues from patients with OCSCC, and performed a qualitative elemental characterization using the micro X-Ray Fluorescence technique based on synchrotron radiation. We found the presence of magnesium, phosphorus, sulfur, chlorine, potassium, calcium, chromium, manganese, iron, zinc, cobalt, nickel, copper, arsenic and bromine in OCSCC samples. Magnesium, chlorine, chromium, manganese, nickel, arsenic and bromine are associated with smoking. We observed a significant association between relapse and chlorine and chromium. The presence of chlorine in the samples was an independent protective factor against relapse (OR = 0.105, CI = 0.01-0.63) and for best disease-free survival (HR = 0.194, CI = 0.04-0.87). Reporting for the first time in oral cancer, these results suggest a key relationship between smoking and the presence of certain elements. In addition, chlorine proved to be important in the context of patient prognosis and survival.
Collapse
Affiliation(s)
- Anderson Barros Archanjo
- Postgraduate Program in Biotechnology/RENORBIO, Federal University of Espirito Santo, Av. Marechal Campos, 1468, Vitoria, 29.040-090, ES, Brazil.
| | | | - Mayara Mota de Oliveira
- Postgraduate Program in Biotechnology/RENORBIO, Federal University of Espirito Santo, Av. Marechal Campos, 1468, Vitoria, 29.040-090, ES, Brazil
| | - Suzanny Oliveira Mendes
- Postgraduate Program in Biotechnology/RENORBIO, Federal University of Espirito Santo, Av. Marechal Campos, 1468, Vitoria, 29.040-090, ES, Brazil
| | - Aline Ribeiro Borçoi
- Postgraduate Program in Biotechnology/RENORBIO, Federal University of Espirito Santo, Av. Marechal Campos, 1468, Vitoria, 29.040-090, ES, Brazil
| | - Lucas de Lima Maia
- Postgraduate Program in Biotechnology/RENORBIO, Federal University of Espirito Santo, Av. Marechal Campos, 1468, Vitoria, 29.040-090, ES, Brazil
| | | | - Rafael de Cicco
- Cancer Institute Arnaldo Vieira de Carvalho, São Paulo, Brazil
| | | | - Edna Teruko Kimura
- Institute of Biomedical Science, University of São Paulo, São Paulo, Brazil
| | | | | | - Eloiza H Tajara
- Medical School of São José do Rio Preto, São José do Rio Preto, Brazil
| | - Marcelo Dos Santos
- Multicampi School of Medical Sciences of Rio Grande do Norte, Federal University of Rio Grande do Norte, Caicó, Brazil
| | - Breno Valentim Nogueira
- Postgraduate Program in Biotechnology/RENORBIO, Federal University of Espirito Santo, Av. Marechal Campos, 1468, Vitoria, 29.040-090, ES, Brazil
| | | | | | - Adriana Madeira Álvares-da-Silva
- Postgraduate Program in Biotechnology/RENORBIO, Federal University of Espirito Santo, Av. Marechal Campos, 1468, Vitoria, 29.040-090, ES, Brazil
| |
Collapse
|
6
|
Aguiar TFM, Rivas MP, Costa S, Maschietto M, Rodrigues T, Sobral de Barros J, Barbosa AC, Valieris R, Fernandes GR, Bertola DR, Cypriano M, Caminada de Toledo SR, Major A, Tojal I, Apezzato MLDP, Carraro DM, Rosenberg C, Lima da Costa CM, Cunha IW, Sarabia SF, Terrada DL, Krepischi ACV. Insights Into the Somatic Mutation Burden of Hepatoblastomas From Brazilian Patients. Front Oncol 2020; 10:556. [PMID: 32432034 PMCID: PMC7214543 DOI: 10.3389/fonc.2020.00556] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Accepted: 03/27/2020] [Indexed: 12/23/2022] Open
Abstract
Hepatoblastoma is a very rare embryonal liver cancer supposed to arise from the impairment of hepatocyte differentiation during embryogenesis. In this study, we investigated by exome sequencing the burden of somatic mutations in a cohort of 10 hepatoblastomas, including a congenital case. Our data disclosed a low mutational background and pointed out to a novel set of candidate genes for hepatoblastoma biology, which were shown to impact gene expression levels. Only three recurrently mutated genes were detected: CTNNB1 and two novel candidates, CX3CL1 and CEP164. A relevant finding was the identification of a recurrent mutation (A235G) in two hepatoblastomas at the CX3CL1 gene; evaluation of RNA and protein expression revealed upregulation of CX3CL1 in tumors. The analysis was replicated in two independents cohorts, substantiating that an activation of the CX3CL1/CX3CR1 pathway occurs in hepatoblastomas. In inflammatory regions of hepatoblastomas, CX3CL1/CX3CR1 were not detected in the infiltrated lymphocytes, in which they should be expressed in normal conditions, whereas necrotic regions exhibited negative labeling in tumor cells, but strongly positive infiltrated lymphocytes. Altogether, these data suggested that CX3CL1/CX3CR1 upregulation may be a common feature of hepatoblastomas, potentially related to chemotherapy response and progression. In addition, three mutational signatures were identified in hepatoblastomas, two of them with predominance of either the COSMIC signatures 1 and 6, found in all cancer types, or the COSMIC signature 29, mostly related to tobacco chewing habit; a third novel mutational signature presented an unspecific pattern with an increase of C>A mutations. Overall, we present here novel candidate genes for hepatoblastoma, with evidence that CX3CL1/CX3CR1 chemokine signaling pathway is likely involved with progression, besides reporting specific mutational signatures.
Collapse
Affiliation(s)
- Talita Ferreira Marques Aguiar
- International Center for Research, A. C. Camargo Cancer Center, São Paulo, Brazil.,Department of Genetics and Evolutionary Biology, Human Genome and Stem-Cell Research Center, Institute of Biosciences, University of São Paulo, São Paulo, Brazil
| | - Maria Prates Rivas
- Department of Genetics and Evolutionary Biology, Human Genome and Stem-Cell Research Center, Institute of Biosciences, University of São Paulo, São Paulo, Brazil
| | - Silvia Costa
- Department of Genetics and Evolutionary Biology, Human Genome and Stem-Cell Research Center, Institute of Biosciences, University of São Paulo, São Paulo, Brazil
| | | | - Tatiane Rodrigues
- Department of Genetics and Evolutionary Biology, Human Genome and Stem-Cell Research Center, Institute of Biosciences, University of São Paulo, São Paulo, Brazil
| | - Juliana Sobral de Barros
- Department of Genetics and Evolutionary Biology, Human Genome and Stem-Cell Research Center, Institute of Biosciences, University of São Paulo, São Paulo, Brazil
| | - Anne Caroline Barbosa
- Department of Genetics and Evolutionary Biology, Human Genome and Stem-Cell Research Center, Institute of Biosciences, University of São Paulo, São Paulo, Brazil
| | - Renan Valieris
- International Center for Research, A. C. Camargo Cancer Center, São Paulo, Brazil
| | - Gustavo R Fernandes
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, Brazil
| | - Debora R Bertola
- Department of Genetics and Evolutionary Biology, Human Genome and Stem-Cell Research Center, Institute of Biosciences, University of São Paulo, São Paulo, Brazil
| | - Monica Cypriano
- Adolescent and Child With Cancer Support Group (GRAACC), Department of Pediatric, Federal University of São Paulo, São Paulo, Brazil
| | - Silvia Regina Caminada de Toledo
- Adolescent and Child With Cancer Support Group (GRAACC), Department of Pediatric, Federal University of São Paulo, São Paulo, Brazil
| | - Angela Major
- Department of Pathology and Immunology, Texas Children's Hospital and Baylor College of Medicine, Houston, TX, United States
| | - Israel Tojal
- International Center for Research, A. C. Camargo Cancer Center, São Paulo, Brazil
| | | | - Dirce Maria Carraro
- International Center for Research, A. C. Camargo Cancer Center, São Paulo, Brazil
| | - Carla Rosenberg
- Department of Genetics and Evolutionary Biology, Human Genome and Stem-Cell Research Center, Institute of Biosciences, University of São Paulo, São Paulo, Brazil
| | | | - Isabela W Cunha
- Department of Pathology, Rede D'OR-São Luiz, São Paulo, Brazil.,Department of Pathology, A. C. Camargo Cancer Center, São Paulo, Brazil
| | - Stephen Frederick Sarabia
- Department of Pathology and Immunology, Texas Children's Hospital and Baylor College of Medicine, Houston, TX, United States
| | - Dolores-López Terrada
- Department of Pathology and Immunology, Texas Children's Hospital and Baylor College of Medicine, Houston, TX, United States.,Department of Pediatrics, Texas Children's Cancer Center, Houston, TX, United States.,Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX, United States
| | - Ana Cristina Victorino Krepischi
- Department of Genetics and Evolutionary Biology, Human Genome and Stem-Cell Research Center, Institute of Biosciences, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
7
|
Maia LDL, Peterle GT, dos Santos M, Trivilin LO, Mendes SO, de Oliveira MM, dos Santos JG, Stur E, Agostini LP, Couto CVMDS, Dalbó J, de Assis ALEM, Archanjo AB, Mercante AMDC, Lopez RVM, Nunes FD, de Carvalho MB, Tajara EH, Louro ID, Álvares-da-Silva AM. JMJD1A, H3K9me1, H3K9me2 and ADM expression as prognostic markers in oral and oropharyngeal squamous cell carcinoma. PLoS One 2018; 13:e0194884. [PMID: 29590186 PMCID: PMC5874045 DOI: 10.1371/journal.pone.0194884] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2017] [Accepted: 03/12/2018] [Indexed: 02/06/2023] Open
Abstract
Aims Jumonji Domain-Containing 1A (JMJD1A) protein promotes demethylation of histones, especially at lysin-9 of di-methylated histone H3 (H3K9me2) or mono-methylated (H3K9me1). Increased levels of H3 histone methylation at lysin-9 (H3K9) is related to tumor suppressor gene silencing. JMJD1A gene target Adrenomeduline (ADM) has shown to promote cell growth and tumorigenesis. JMJD1A and ADM expression, as well as H3K9 methylation level have been related with development risk and prognosis of several tumor types. Methods and results We aimed to evaluate JMJD1A, ADM, H3K9me1 and H3K9me2expression in paraffin-embedded tissue microarrays from 84 oral and oropharyngeal squamous cell carcinoma samples through immunohistochemistry analysis. Our results showed that nuclear JMJD1A expression was related to lymph node metastasis risk. In addition, JMJD1A cytoplasmic expression was an independent risk marker for advanced tumor stages. H3K9me1 cytoplasmic expression was associated with reduced disease-specific death risk. Furthermore, high H3K9me2 nuclear expression was associated with worse specific-disease and disease-free survival. Finally, high ADM cytoplasmic expression was an independent marker of lymph node metastasis risk. Conclusion JMJD1A, H3K9me1/2 and ADM expression may be predictor markers of progression and prognosis in oral and oropharynx cancer patients, as well as putative therapeutic targets.
Collapse
Affiliation(s)
- Lucas de Lima Maia
- Programa de Pós-Graduação em Biotecnologia, Universidade Federal do Espírito Santo, Vitória, Espírito Santo, Brazil
- * E-mail:
| | - Gabriela Tonini Peterle
- Programa de Pós-Graduação em Biotecnologia, Universidade Federal do Espírito Santo, Vitória, Espírito Santo, Brazil
| | - Marcelo dos Santos
- Escola Multicampi de Ciências Médicas do Rio Grande do Norte, Universidade Federal do Rio Grande do Norte, Caicó, Rio Grande do Norte, Brazil
| | - Leonardo Oliveira Trivilin
- Programa de Pós-Graduação em Biotecnologia, Universidade Federal do Espírito Santo, Vitória, Espírito Santo, Brazil
| | - Suzanny Oliveira Mendes
- Programa de Pós-Graduação em Biotecnologia, Universidade Federal do Espírito Santo, Vitória, Espírito Santo, Brazil
| | - Mayara Mota de Oliveira
- Programa de Pós-Graduação em Biotecnologia, Universidade Federal do Espírito Santo, Vitória, Espírito Santo, Brazil
| | - Joaquim Gasparini dos Santos
- Programa de Pós-Graduação em Biotecnologia, Universidade Federal do Espírito Santo, Vitória, Espírito Santo, Brazil
| | - Elaine Stur
- Programa de Pós-Graduação em Biotecnologia, Universidade Federal do Espírito Santo, Vitória, Espírito Santo, Brazil
| | - Lidiane Pignaton Agostini
- Programa de Pós-Graduação em Biotecnologia, Universidade Federal do Espírito Santo, Vitória, Espírito Santo, Brazil
| | | | - Juliana Dalbó
- Programa de Pós-Graduação em Biotecnologia, Universidade Federal do Espírito Santo, Vitória, Espírito Santo, Brazil
| | | | - Anderson Barros Archanjo
- Programa de Pós-Graduação em Biotecnologia, Universidade Federal do Espírito Santo, Vitória, Espírito Santo, Brazil
| | | | | | - Fábio Daumas Nunes
- Departamento de Patologia Bucal, Faculdade de Odontologia, Universidade de São Paulo, São Paulo, São Paulo, Brazil
| | | | - Eloiza Helena Tajara
- Departamento de Biologia Molecular, Faculdade de Medicina, São José do Rio Preto, São Paulo, Brazil
| | - Iúri Drumond Louro
- Programa de Pós-Graduação em Biotecnologia, Universidade Federal do Espírito Santo, Vitória, Espírito Santo, Brazil
| | | |
Collapse
|
8
|
Effects of neoadjuvant chemotherapy on hepatoblastoma: a morphologic and immunohistochemical study. Am J Surg Pathol 2010; 34:287-99. [PMID: 20118773 DOI: 10.1097/pas.0b013e3181ce5f1e] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Neoadjuvant chemotherapy followed by resection has become the mainstay in the treatment of hepatoblastoma (HB). The changes after chemotherapy typically result in tumor necrosis and a fibrohistiocytic response. We have observed that treated HBs undergo additional morphologic changes that have not been described. Herein, we report a 15-year retrospective study of HBs in 22 children who received neoadjuvant chemotherapy according to the Children's Oncology Group protocols. The medical records, diagnostic imaging, and histopathology were reviewed. Besides treated HBs having characteristic necrosis and fibrohistiocytic response, two-thirds had areas of cytoarchitectural differentiation ("maturation") mimicking non-neoplastic liver, and a quarter had alterations mimicking hepatocellular carcinoma. Nuclear expression of beta-catenin and keratin profiles were useful in distinguishing residual tumor with "maturation" from non-neoplastic liver and therefore in the assessment of surgical margins. Statistical analysis revealed that larger pretreatment and posttreatment imaged tumor size, larger tumor size at pathologic examination, and vascular invasion were significant univariate predictors of metastatic disease, whereas pretreatment imaged tumor size and vascular invasion were also significant independent predictors (multivariate logistic regression analysis). Multifocality, greater posttreatment necrosis and hepatocellular carcinoma-like morphology were more often associated with metastatic disease, but did not reach statistical significance.
Collapse
|
9
|
|
10
|
Wagner LM, Garrett JK, Ballard ET, Hill DA, Perry A, Biegel JA, Collins MH. Malignant rhabdoid tumor mimicking hepatoblastoma: a case report and literature review. Pediatr Dev Pathol 2007; 10:409-15. [PMID: 17929989 DOI: 10.2350/06-08-0155.1] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2006] [Accepted: 12/15/2006] [Indexed: 12/11/2022]
Abstract
Hepatoblastoma accounts for the vast majority of malignant primary liver tumors in infancy. In contrast, rhabdoid tumors arising in the liver are extremely rare, but they can share clinical and histologic features with hepatoblastoma and can create diagnostic confusion, especially when one is dealing with small biopsies. In this case report we demonstrate that immunohistochemical and molecular techniques can identify the characteristic loss of INI1 and facilitate making the correct diagnosis of primary hepatic malignant rhabdoid tumor. Important similarities and differences between hepatoblastoma and rhabdoid tumors are reviewed, and suggestions are offered to help distinguish these 2 tumor types.
Collapse
Affiliation(s)
- Lars M Wagner
- Division of Hematology/Oncology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA.
| | | | | | | | | | | | | |
Collapse
|