1
|
Razavi MS, Munn LL, Padera TP. Mechanics of Lymphatic Pumping and Lymphatic Function. Cold Spring Harb Perspect Med 2025; 15:a041171. [PMID: 38692743 PMCID: PMC11875091 DOI: 10.1101/cshperspect.a041171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2024]
Abstract
The lymphatic system plays a crucial role in maintaining tissue fluid balance, immune surveillance, and the transport of lipids and macromolecules. Lymph is absorbed by initial lymphatics and then driven through lymph nodes and to the blood circulation by the contraction of collecting lymphatic vessels. Intraluminal valves in collecting lymphatic vessels ensure the unidirectional flow of lymph centrally. The lymphatic muscle cells that invest in collecting lymphatic vessels impart energy to propel lymph against hydrostatic pressure gradients and gravity. A variety of mechanical and biochemical stimuli modulate the contractile activity of lymphatic vessels. This review focuses on the recent advances in our understanding of the mechanisms involved in regulating and collecting lymphatic vessel pumping in normal tissues and the association between lymphatic pumping, infection, inflammatory disease states, and lymphedema.
Collapse
Affiliation(s)
- Mohammad S Razavi
- Steele Laboratories, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts 02114, USA
| | - Lance L Munn
- Steele Laboratories, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts 02114, USA
| | - Timothy P Padera
- Steele Laboratories, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts 02114, USA
| |
Collapse
|
2
|
Sáinz-Jaspeado M, Ring S, Proulx ST, Richards M, Martinsson P, Li X, Claesson-Welsh L, Ulvmar MH, Jin Y. VE-cadherin junction dynamics in initial lymphatic vessels promotes lymph node metastasis. Life Sci Alliance 2024; 7:e202302168. [PMID: 38148112 PMCID: PMC10751244 DOI: 10.26508/lsa.202302168] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 12/14/2023] [Accepted: 12/15/2023] [Indexed: 12/28/2023] Open
Abstract
The endothelial junction component vascular endothelial (VE)-cadherin governs junctional dynamics in the blood and lymphatic vasculature. Here, we explored how lymphatic junction stability is modulated by elevated VEGFA signaling to facilitate metastasis to sentinel lymph nodes. Zippering of VE-cadherin junctions was established in dermal initial lymphatic vessels after VEGFA injection and in tumor-proximal lymphatics in mice. Shape analysis of pan-cellular VE-cadherin fragments revealed that junctional zippering was accompanied by accumulation of small round-shaped VE-cadherin fragments in the lymphatic endothelium. In mice expressing a mutant VEGFR2 lacking the Y949 phosphosite (Vegfr2 Y949F/Y949F ) required for activation of Src family kinases, zippering of lymphatic junctions persisted, whereas accumulation of small VE-cadherin fragments was suppressed. Moreover, tumor cell entry into initial lymphatic vessels and subsequent metastatic spread to lymph nodes was reduced in mutant mice compared with WT, after challenge with B16F10 melanoma or EO771 breast cancer. We conclude that VEGFA mediates zippering of VE-cadherin junctions in initial lymphatics. Zippering is accompanied by increased VE-cadherin fragmentation through VEGFA-induced Src kinase activation, correlating with tumor dissemination to sentinel lymph nodes.
Collapse
Affiliation(s)
- Miguel Sáinz-Jaspeado
- Beijer and Science for Life Laboratories, Department Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala University, Uppsala, Sweden
| | - Sarah Ring
- Beijer and Science for Life Laboratories, Department Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala University, Uppsala, Sweden
| | - Steven T Proulx
- ETH Zürich, Institute of Pharmaceutical Sciences, Zürich, Switzerland
- Theodor Kocher Institute, University of Bern, Bern, Switzerland
| | - Mark Richards
- Beijer and Science for Life Laboratories, Department Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala University, Uppsala, Sweden
| | - Pernilla Martinsson
- Beijer and Science for Life Laboratories, Department Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala University, Uppsala, Sweden
| | - Xiujuan Li
- Cyrus Tang Hematology Center, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou, China
| | - Lena Claesson-Welsh
- Beijer and Science for Life Laboratories, Department Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala University, Uppsala, Sweden
| | - Maria H Ulvmar
- Beijer and Science for Life Laboratories, Department Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala University, Uppsala, Sweden
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Yi Jin
- Beijer and Science for Life Laboratories, Department Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala University, Uppsala, Sweden
| |
Collapse
|
3
|
Czarnowska E, Ratajska A, Jankowska-Steifer E, Flaht-Zabost A, Niderla-Bielińska J. Extracellular matrix molecules associated with lymphatic vessels in health and disease. Histol Histopathol 2024; 39:13-34. [PMID: 37350542 DOI: 10.14670/hh-18-641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/24/2023]
Abstract
Lymphatic vessels (LyVs), responsible for fluid, solute, and immune cell homeostasis in the body, are closely associated with the adjacent extracellular matrix (ECM) molecules whose structural and functional impact on LyVs is currently more appreciated, albeit not entirely elucidated. These molecules, serving as a platform for various connective tissue cell activities and affecting LyV biology should be considered also as an integral part of the lymphatic system. Any alterations and changes in ECM molecules over the course of disease impair the function and structure of the LyV network. Remodeling of LyV cells, which are components of lymphatic vessel walls, also triggers alterations in ECM molecules and interstitial tissue composition. Therefore, in this review we aimed to present the current knowledge on ECM in tissues and particularly on molecules surrounding lymphatics in normal conditions and in disease.
Collapse
Affiliation(s)
| | - Anna Ratajska
- Department of Pathology, Medical University of Warsaw, Warsaw, Poland.
| | - Ewa Jankowska-Steifer
- Department of Histology and Embryology, Medical University of Warsaw, Warsaw, Poland
| | | | | |
Collapse
|
4
|
Abstract
Button-like junctions are discontinuous contacts at the border of oak-leaf-shaped endothelial cells of initial lymphatic vessels. These junctions are distinctively different from continuous zipper-like junctions that create the endothelial barrier in collecting lymphatics and blood vessels. Button junctions are point contacts, spaced about 3 µm apart, that border valve-like openings where fluid and immune cells enter lymphatics. In intestinal villi, openings between button junctions in lacteals also serve as entry routes for chylomicrons. Like zipper junctions that join endothelial cells, buttons consist of adherens junction proteins (VE-cadherin) and tight junction proteins (claudin-5, occludin, and others). Buttons in lymphatics form from zipper junctions during embryonic development, can convert into zippers in disease or after experimental genetic or pharmacological manipulation, and can revert back to buttons with treatment. Multiple signaling pathways and local microenvironmental factors have been found to contribute to button junction plasticity and could serve as therapeutic targets in pathological conditions ranging from pulmonary edema to obesity.
Collapse
Affiliation(s)
- Peter Baluk
- Department of Anatomy, Cardiovascular Research Institute, and UCSF Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, California 94143-0452, USA
| | - Donald M McDonald
- Department of Anatomy, Cardiovascular Research Institute, and UCSF Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, California 94143-0452, USA
| |
Collapse
|
5
|
Armando F, Ferrari L, Arcari ML, Azzali G, Dallatana D, Ferrari M, Lombardi G, Zanfabro M, Di Lecce R, Lunghi P, Cameron ER, Cantoni AM, Corradi A. Endocanalicular transendothelial crossing (ETC): A novel intravasation mode used by HEK-EBNA293-VEGF-D cells during the metastatic process in a xenograft model. PLoS One 2020; 15:e0239932. [PMID: 33085676 PMCID: PMC7577447 DOI: 10.1371/journal.pone.0239932] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Accepted: 09/15/2020] [Indexed: 12/15/2022] Open
Abstract
In cancer metastasis, intravasation of the invasive tumor cell (TCi) represents one of the most relevant events. During the last years, models regarding cancer cell intravasation have been proposed, such as the “endocanalicular transendothelial crossing” (ETC) theory. This theory describes the interplay between two adjacent endothelial cells and the TCi or a leukocyte during intravasation. Two endothelial cells create a channel with their cell membranes, in which the cell fits in without involving endothelial cell intercellular junctions, reaching the lumen through a transendothelial passage. In the present study, ten SCID mice were subcutaneously xenotransplanted with the HEK-EBNA293-VEGF-D cell line and euthanized after 35 days. Post-mortem examinations were performed and proper specimens from tumors were collected. Routine histology and immunohistochemistry for Ki-67, pAKT, pERK, ZEB-1, TWIST-1, F-actin, E-cadherin and LYVE-1 were performed followed by ultrastructural serial sections analysis. A novel experimental approach involving Computed Tomography (CT) combined with 3D digital model reconstruction was employed. The analysis of activated transcription factors supports that tumor cells at the periphery potentially underwent an epithelial-to-mesenchymal transition (EMT)-like process. Topographical analysis of LYVE-1 immunolabeled lymphatics revealed a peritumoral localisation. TEM investigations of the lymphatic vessels combined with 3D digital modelling enhanced the understanding of the endotheliocytes behavior during TCi intravasation, clarifying the ETC theory. Serial ultrastructural analysis performed within tumor periphery revealed numerous cells during the ETC process. Furthermore, this study demonstrates that ETC is an intravasation mode more frequently used by the TCi than by leukocytes during intravasation in the HEK-EBNA293-VEGF-D xenograft model and lays down the potential basis for promising future studies regarding intravasation blocking therapy.
Collapse
Affiliation(s)
- Federico Armando
- Department of Veterinary Science, Pathology Unit, University of Parma, Parma, Italy
- * E-mail: (AMC); (FA); (LF)
| | - Luca Ferrari
- Department of Veterinary Science, Pathology Unit, University of Parma, Parma, Italy
- * E-mail: (AMC); (FA); (LF)
| | | | - Giacomo Azzali
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Davide Dallatana
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Maura Ferrari
- Istituto Zooprofilattico Sperimentale della Lombardia e dell'Emilia Romagna “B. Ubertini”, Unit of Brescia, Brescia, Italy
| | - Guerino Lombardi
- Istituto Zooprofilattico Sperimentale della Lombardia e dell'Emilia Romagna “B. Ubertini”, Unit of Brescia, Brescia, Italy
| | - Matteo Zanfabro
- Practitioner, 3D Veterinary Printing Project, Parma, Italy
- Department of Veterinary Science, Diagnostic Imaging Unit, University of Parma, Parma, Italy
| | - Rosanna Di Lecce
- Department of Veterinary Science, Pathology Unit, University of Parma, Parma, Italy
| | - Paolo Lunghi
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma,Parma, Italy
- Centre for Molecular and Translational Oncology, University of Parma, Parma, Italy
| | - Ewan R. Cameron
- School of Veterinary Medicine, University of Glasgow, Glasgow, Scotland
| | - Anna M. Cantoni
- Department of Veterinary Science, Pathology Unit, University of Parma, Parma, Italy
- * E-mail: (AMC); (FA); (LF)
| | - Attilio Corradi
- Department of Veterinary Science, Pathology Unit, University of Parma, Parma, Italy
| |
Collapse
|
6
|
Reggiani-Bonetti L, Barresi V, Manenti A, Domati F, Farinetti A. Histology of the mesorectal lymphatics explains aspects of rectal cancer. Clin Res Hepatol Gastroenterol 2018; 42:285-287. [PMID: 29580764 DOI: 10.1016/j.clinre.2017.12.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Accepted: 12/19/2017] [Indexed: 02/04/2023]
Affiliation(s)
- Luca Reggiani-Bonetti
- Department of Pathological Anatomy, University of Modena, Polyclinic hospital, 41124 Modena, Italy
| | - Valeria Barresi
- Department of Pathological Anatomy, University of Messina, Italy
| | - Antonio Manenti
- Department of Surgery, University of Modena, Polyclinic hospital, 41124 Modena, Italy.
| | - Federica Domati
- Department of Pathological Anatomy, University of Modena, Polyclinic hospital, 41124 Modena, Italy
| | - Alberto Farinetti
- Department of Surgery, University of Modena, Polyclinic hospital, 41124 Modena, Italy
| |
Collapse
|
7
|
Tatti O, Gucciardo E, Pekkonen P, Holopainen T, Louhimo R, Repo P, Maliniemi P, Lohi J, Rantanen V, Hautaniemi S, Alitalo K, Ranki A, Ojala PM, Keski-Oja J, Lehti K. MMP16 Mediates a Proteolytic Switch to Promote Cell-Cell Adhesion, Collagen Alignment, and Lymphatic Invasion in Melanoma. Cancer Res 2015; 75:2083-94. [PMID: 25808867 DOI: 10.1158/0008-5472.can-14-1923] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Accepted: 03/16/2015] [Indexed: 12/13/2022]
Abstract
Lymphatic invasion and accumulation of continuous collagen bundles around tumor cells are associated with poor melanoma prognosis, but the underlying mechanisms and molecular determinants have remained unclear. We show here that a copy-number gain or overexpression of the membrane-type matrix metalloproteinase MMP16 (MT3-MMP) is associated with poor clinical outcome, collagen bundle assembly around tumor cell nests, and lymphatic invasion. In cultured WM852 melanoma cells derived from human melanoma metastasis, silencing of MMP16 resulted in cell-surface accumulation of the MMP16 substrate MMP14 (MT1-MMP) as well as L1CAM cell adhesion molecule, identified here as a novel MMP16 substrate. When limiting the activities of these trans-membrane protein substrates toward pericellular collagen degradation, cell junction disassembly, and blood endothelial transmigration, MMP16 supported nodular-type growth of adhesive collagen-surrounded melanoma cell nests, coincidentally steering cell collectives into lymphatic vessels. These results uncover a novel mechanism in melanoma pathogenesis, whereby restricted collagen infiltration and limited mesenchymal invasion are unexpectedly associated with the properties of the most aggressive tumors, revealing MMP16 as a putative indicator of adverse melanoma prognosis.
Collapse
Affiliation(s)
- Olga Tatti
- Research Programs Unit, Genome-Scale Biology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland. Translational Cancer Biology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland. Pathology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Erika Gucciardo
- Research Programs Unit, Genome-Scale Biology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland. Pathology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Pirita Pekkonen
- Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Tanja Holopainen
- Translational Cancer Biology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Riku Louhimo
- Research Programs Unit, Genome-Scale Biology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Pauliina Repo
- Research Programs Unit, Genome-Scale Biology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland. Pathology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Pilvi Maliniemi
- Skin and Allergy Hospital, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Jouko Lohi
- Pathology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Ville Rantanen
- Research Programs Unit, Genome-Scale Biology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Sampsa Hautaniemi
- Research Programs Unit, Genome-Scale Biology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Kari Alitalo
- Translational Cancer Biology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Annamari Ranki
- Skin and Allergy Hospital, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Päivi M Ojala
- Institute of Biotechnology, University of Helsinki, Helsinki, Finland. Finnish Cancer Institute, Helsinki, Finland
| | - Jorma Keski-Oja
- Translational Cancer Biology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland. Pathology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Kaisa Lehti
- Research Programs Unit, Genome-Scale Biology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland. Pathology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland. Finnish Cancer Institute, Helsinki, Finland.
| |
Collapse
|
8
|
Kelley LC, Lohmer LL, Hagedorn EJ, Sherwood DR. Traversing the basement membrane in vivo: a diversity of strategies. ACTA ACUST UNITED AC 2014; 204:291-302. [PMID: 24493586 PMCID: PMC3912525 DOI: 10.1083/jcb.201311112] [Citation(s) in RCA: 139] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The basement membrane is a dense, highly cross-linked, sheet-like extracellular matrix that underlies all epithelia and endothelia in multicellular animals. During development, leukocyte trafficking, and metastatic disease, cells cross the basement membrane to disperse and enter new tissues. Based largely on in vitro studies, cells have been thought to use proteases to dissolve and traverse this formidable obstacle. Surprisingly, recent in vivo studies have uncovered a remarkably diverse range of cellular- and tissue-level strategies beyond proteolysis that cells use to navigate through the basement membrane. These fascinating and unexpected mechanisms have increased our understanding of how cells cross this matrix barrier in physiological and disease settings.
Collapse
Affiliation(s)
- Laura C Kelley
- Department of Biology, Duke University, Durham, NC 27708
| | | | | | | |
Collapse
|
9
|
Tumor location and nature of lymphatic vessels are key determinants of cancer metastasis. Clin Exp Metastasis 2012; 30:345-56. [PMID: 23124573 DOI: 10.1007/s10585-012-9541-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2012] [Accepted: 09/28/2012] [Indexed: 10/27/2022]
Abstract
Tumor metastasis to lymph nodes is a key indicator of patient survival, and is enhanced by the neo-lymphatics induced by tumor-secreted VEGF-C or VEGF-D, acting via VEGFR-3 signalling. These targets constitute important avenues for anti-metastatic treatment. Despite this new understanding, clinical observations linking metastasis with tumor depth or location suggest that lymphangiogenic growth factors are not the sole determinants of metastasis. Here we explored the influence of tumor proximity to lymphatics capable of responding to growth factors on nodal metastasis in a murine VEGF-D over-expression tumor model. We found that primary tumor location profoundly influenced VEGF-D-mediated lymph node metastasis: 89 % of tumors associated with the flank skin metastasised, in contrast with only 19 % of tumors located more deeply on the body wall (p < 0.01). Lymphatics in metastatic tumors arose from small lymphatics, and displayed distinct molecular and morphological profiles compared with those found in normal lymphatics. Smaller lymphatic subtypes were more abundant in skin (2.5-fold, p < 0.01) than in body wall, providing a richer source of lymphatics for VEGF-D(+) skin tumors, a phenomenon also confirmed in human samples. This study shows that the proximity of a VEGF-D(+) primary tumor to small lymphatics is an important determinant of metastasis. These observations may explain why tumor location relative to the lymphatic network is prognostically important for some human cancers.
Collapse
|
10
|
Witte MH, Dellinger MT, Papendieck CM, Boccardo F. Overlapping biomarkers, pathways, processes and syndromes in lymphatic development, growth and neoplasia. Clin Exp Metastasis 2012; 29:707-27. [PMID: 22798218 DOI: 10.1007/s10585-012-9493-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2012] [Accepted: 05/20/2012] [Indexed: 12/19/2022]
Abstract
Recent discoveries in molecular lymphology, developmental biology, and tumor biology in the context of long-standing concepts and observations on development, growth, and neoplasia implicate overlapping pathways, processes, and clinical manifestations in developmental disorders and cancer metastasis. Highlighted in this review are some of what is known (and speculated) about the genes, proteins, and signaling pathways and processes involved in lymphatic/blood vascular development in comparison to those involved in cancer progression and spread. Clues and conundra from clinical disorders that mix these processes and mute them, including embryonic rests, multicentric nests of displaced cells, uncontrolled/invasive "benign" proliferation and lymphogenous/hematogenous "spread", represent a fine line between normal development and growth, dysplasia, benign and malignant neoplasia, and "metastasis". Improved understanding of these normal and pathologic processes and their underlying pathomechanisms, e.g., stem cell origin and bidirectional epithelial-mesenchymal transition, could lead to more successful approaches in classification, treatment, and even prevention of cancer and a whole host of other diseases.
Collapse
Affiliation(s)
- Marlys H Witte
- Department of Surgery, University of Arizona College of Medicine, 1501 N. Campbell Avenue, Tucson, AZ 85724-5200, USA.
| | | | | | | |
Collapse
|
11
|
Anticancer activity of green tea polyphenols in prostate gland. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2012; 2012:984219. [PMID: 22666523 PMCID: PMC3362217 DOI: 10.1155/2012/984219] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/07/2012] [Accepted: 03/12/2012] [Indexed: 01/07/2023]
Abstract
Numerous evidences from prevention studies in humans, support the existence of an association between green tea polyphenols consumption and a reduced cancer risk. Prostate cancer is one of the most frequently diagnosed male neoplasia in the Western countries, which is in agreement with this gland being particularly vulnerable to oxidative stress processes, often associated with tumorigenesis. Tea polyphenols have been extensively studied in cell culture and animal models where they inhibited tumor onset and progression. Prostate cancer appears a suitable target for primary prevention care, since it grows slowly, before symptoms arise, thus offering a relatively long time period for therapeutic interventions. It is, in fact, usually diagnosed in men 50-year-old or older, when even a modest delay in progression of the disease could significantly improve the patients quality of life. Although epidemiological studies have not yet yielded conclusive results on the chemopreventive and anticancer effect of tea polyphenols, there is an increasing trend to employ these substances as conservative management for patients diagnosed with less advanced prostate cancer. Here, we intend to review the most recent observations relating tea polyphenols to human prostate cancer risk, in an attempt to outline better their potential employment for preventing prostate cancer.
Collapse
|
12
|
Simpson MA, Weigel JA, Weigel PH. Systemic blockade of the hyaluronan receptor for endocytosis prevents lymph node metastasis of prostate cancer. Int J Cancer 2012; 131:E836-40. [PMID: 22234863 DOI: 10.1002/ijc.27427] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2011] [Revised: 12/06/2011] [Accepted: 12/23/2011] [Indexed: 12/29/2022]
Abstract
Tumor progression and metastasis are promoted by the remodeling of organized tissue architecture and engagement of molecular interactions that support tumor cell passage through endothelial barriers. Prostate tumor cells that secrete and turn over excessive quantities of pericellular hyaluronan (HA) exhibit accelerated growth kinetics and spontaneous lymph node metastasis in mice. The HA receptor for endocytosis (HARE) is an endocytic clearance receptor for HA in the liver that is also highly expressed in sinusoidal endothelium of lymph nodes and bone marrow, which are frequent sites of prostate cancer metastasis. In our study, we tested the hypothesis that HARE can act as an endothelial receptor for metastatic tumor cells with pericellular HA. In an orthotopic mouse model of prostate cancer, we delivered a monoclonal antibody against HARE that specifically blocks HA binding and internalization. This treatment fully blocked the formation of metastatic tumors in lymph nodes. No effects on primary tumor growth were observed and the antibody did not induce toxic outcomes in any other tissue. Our results implicate HARE for the first time in potentiation of tumor metastasis and suggest a novel mechanism by which tumor cell-associated HA could promote tissue-specific dissemination. "Published 2012 Wiley Periodicals, Inc. This article is a US Government work, and, as such, is in the public domain in the United States of America."
Collapse
Affiliation(s)
- Melanie A Simpson
- Department of Biochemistry, University of Nebraska, Lincoln, NE 68588, USA.
| | | | | |
Collapse
|
13
|
Alitalo A, Detmar M. Interaction of tumor cells and lymphatic vessels in cancer progression. Oncogene 2011; 31:4499-508. [PMID: 22179834 DOI: 10.1038/onc.2011.602] [Citation(s) in RCA: 288] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Metastatic spread of cancer through the lymphatic system affects hundreds of thousands of patients yearly. Growth of new lymphatic vessels, lymphangiogenesis, is activated in cancer and inflammation, but is largely inactive in normal physiology, and therefore offers therapeutic potential. Key mediators of lymphangiogenesis have been identified in developmental studies. During embryonic development, lymphatic endothelial cells derive from the blood vascular endothelium and differentiate under the guidance of lymphatic-specific regulators, such as the prospero homeobox 1 transcription factor. Vascular endothelial growth factor-C (VEGF-C) and VEGF receptor 3 signaling are essential for the further development of lymphatic vessels and therefore they provide a promising target for inhibition of tumor lymphangiogenesis. Lymphangiogenesis is important for the progression of solid tumors as shown for melanoma and breast cancer. Tumor cells may use chemokine gradients as guidance cues and enter lymphatic vessels through intercellular openings between endothelial cell junctions or, possibly, by inducing larger discontinuities in the endothelial cell layer. Tumor-draining sentinel lymph nodes show enhanced lymphangiogenesis even before cancer metastasis and they may function as a permissive 'lymphovascular niche' for the survival of metastatic cells. Although our current knowledge indicates that the development of anti-lymphangiogenic therapies may be beneficial for the treatment of cancer patients, several open questions remain with regard to the frequency, mechanisms and biological importance of lymphatic metastases.
Collapse
Affiliation(s)
- A Alitalo
- Institute of Pharmaceutical Sciences, Swiss Federal Institute of Technology, ETH Zurich, Zurich, Switzerland
| | | |
Collapse
|
14
|
Witte MH, Dellinger MT, McDonald DM, Nathanson SD, Boccardo FM, Campisi CCC, Sleeman JP, Gershenwald JE. Lymphangiogenesis and hemangiogenesis: potential targets for therapy. J Surg Oncol 2011; 103:489-500. [PMID: 21480241 PMCID: PMC4422163 DOI: 10.1002/jso.21714] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
This review updates historical background from century-old observations on embryonic lymphatic system development through current understanding of the molecular basis of lymphvasculogenesis/lymphangiogenesis ("molecular lymphology"), highlighting similarities and differences with analogous blood vasculature processes. Topics covered include molecular mechanisms in lymphatic development, structural adaptations of the lymphatic vasculature to particulate and cellular transport and trafficking, lymphogenous route of clinical cancer spread, preservation of delineated lymphatic pathways during cancer operations, and anti-lymphangiogenesis in cancer therapy.
Collapse
Affiliation(s)
- Marlys H Witte
- Department of Surgery, University of Arizona College of Medicine, Tucson, Arizona 85724-5200, USA.
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Kerjaschki D, Bago-Horvath Z, Rudas M, Sexl V, Schneckenleithner C, Wolbank S, Bartel G, Krieger S, Kalt R, Hantusch B, Keller T, Nagy-Bojarszky K, Huttary N, Raab I, Lackner K, Krautgasser K, Schachner H, Kaserer K, Rezar S, Madlener S, Vonach C, Davidovits A, Nosaka H, Hämmerle M, Viola K, Dolznig H, Schreiber M, Nader A, Mikulits W, Gnant M, Hirakawa S, Detmar M, Alitalo K, Nijman S, Offner F, Maier TJ, Steinhilber D, Krupitza G. Lipoxygenase mediates invasion of intrametastatic lymphatic vessels and propagates lymph node metastasis of human mammary carcinoma xenografts in mouse. J Clin Invest 2011; 121:2000-12. [PMID: 21540548 DOI: 10.1172/jci44751] [Citation(s) in RCA: 148] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2010] [Accepted: 02/02/2011] [Indexed: 12/20/2022] Open
Abstract
In individuals with mammary carcinoma, the most relevant prognostic predictor of distant organ metastasis and clinical outcome is the status of axillary lymph node metastasis. Metastases form initially in axillary sentinel lymph nodes and progress via connecting lymphatic vessels into postsentinel lymph nodes. However, the mechanisms of consecutive lymph node colonization are unknown. Through the analysis of human mammary carcinomas and their matching axillary lymph nodes, we show here that intrametastatic lymphatic vessels and bulk tumor cell invasion into these vessels highly correlate with formation of postsentinel metastasis. In an in vitro model of tumor bulk invasion, human mammary carcinoma cells caused circular defects in lymphatic endothelial monolayers. These circular defects were highly reminiscent of defects of the lymphovascular walls at sites of tumor invasion in vivo and were primarily generated by the tumor-derived arachidonic acid metabolite 12S-HETE following 15-lipoxygenase-1 (ALOX15) catalysis. Accordingly, pharmacological inhibition and shRNA knockdown of ALOX15 each repressed formation of circular defects in vitro. Importantly, ALOX15 knockdown antagonized formation of lymph node metastasis in xenografted tumors. Furthermore, expression of lipoxygenase in human sentinel lymph node metastases correlated inversely with metastasis-free survival. These results provide evidence that lipoxygenase serves as a mediator of tumor cell invasion into lymphatic vessels and formation of lymph node metastasis in ductal mammary carcinomas.
Collapse
Affiliation(s)
- Dontscho Kerjaschki
- Clinical Institute of Pathology, Medical University of Vienna, Vienna, Austria.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Carman CV. Mechanisms for transcellular diapedesis: probing and pathfinding by 'invadosome-like protrusions'. J Cell Sci 2009; 122:3025-35. [PMID: 19692589 DOI: 10.1242/jcs.047522] [Citation(s) in RCA: 137] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Immune-system functions require that blood leukocytes continuously traffic throughout the body and repeatedly cross endothelial barriers (i.e. diapedese) as they enter (intravasate) and exit (extravasate) the circulation. The very earliest studies to characterize diapedesis directly in vivo suggested the coexistence of two distinct migratory pathways of leukocytes: between (paracellular pathway) and directly through (transcellular pathway) individual endothelial cells. In vivo studies over the past 50 years have demonstrated significant use of the transcellular diapedesis pathway in bone marrow, thymus, secondary lymphoid organs, various lymphatic structures and peripheral tissues during inflammation and across the blood-brain barrier and blood-retinal barrier during inflammatory pathology. Recently, the first in vitro reports of transcellular diapedesis have emerged. Together, these in vitro and in vivo observations suggest a model of migratory pathfinding in which dynamic 'invadosome-like protrusions' formed by leukocytes have a central role in both identifying and exploiting endothelial locations that are permissive for transcellular diapedesis. Such 'probing' activity might have additional roles in this and other settings.
Collapse
Affiliation(s)
- Christopher V Carman
- Center for Vascular Biology Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA.
| |
Collapse
|
17
|
Pflicke H, Sixt M. Preformed portals facilitate dendritic cell entry into afferent lymphatic vessels. ACTA ACUST UNITED AC 2009; 206:2925-35. [PMID: 19995949 PMCID: PMC2806476 DOI: 10.1084/jem.20091739] [Citation(s) in RCA: 269] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Although both processes occur at similar rates, leukocyte extravasation from the blood circulation is well investigated, whereas intravasation into lymphatic vessels has hardly been studied. In contrast to a common assumption-that intra- and extravasation follow similar molecular principles-we previously showed that lymphatic entry of dendritic cells (DCs) does not require integrin-mediated adhesive interactions. In this study, we demonstrate that DC-entry is also independent of pericellular proteolysis, raising the question of whether lymphatic vessels offer preexisting entry routes. We find that the perilymphatic basement membrane of initial lymphatic vessels is discontinuous and therefore leaves gaps for entering cells. Using a newly developed in situ live cell imaging approach that allows us to dynamically visualize the cells and their extracellular environment, we demonstrate that DCs enter through these discontinuities, which are transiently mechanically dilated by the passaging cells. We further show that penetration of the underlying lymphatic endothelial layer occurs through flap valves lacking continuous intercellular junctions. Together, we demonstrate free cellular communication between interstitium and lymphatic lumen.
Collapse
Affiliation(s)
- Holger Pflicke
- Max Planck Institute of Biochemistry, Hofschneider Group Leukocyte Migration, 82152 Martinsried, Germany
| | | |
Collapse
|
18
|
Shimada K, Nakamura M, De Velasco MA, Tanaka M, Ouji Y, Konishi N. Syndecan-1, a new target molecule involved in progression of androgen-independent prostate cancer. Cancer Sci 2009; 100:1248-54. [PMID: 19432893 PMCID: PMC11158805 DOI: 10.1111/j.1349-7006.2009.01174.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2009] [Revised: 03/18/2009] [Accepted: 03/18/2009] [Indexed: 01/29/2023] Open
Abstract
Heparan sulfate proteoglycan syndecan-1 (CD138) is well known to be associated with cell proliferation, adhesion and migration in various types of malignancies. In the present study, we focused on the role of syndecan-1 in human prostate cancer. Immunohistochemical analysis revealed either no or rare expression of syndecan-1 in normal secretory glands and prostate cancer cells at hormone naïve status, whereas the expression was significantly increased in viable cancer cells following neo-adjuvant hormonal therapy. Syndecan-1 expression was much higher in the androgen independent prostate cancer cell lines DU145 and PC3, rather than the androgen-dependent LNCaP, but the level in LNCaP was up-regulated in response to long-term culture under androgen deprivation. Silencing of syndecan-1 by siRNA transfection reduced endogenous production of reactive oxygen species through down-regulating NADPH oxidase 2 and induced apoptosis in DU145 and PC3 cells. Consistently, NADPH oxidase 2 knockdown induced apoptosis to a similar extent. Subcutaneous inoculation of PC3 cells in nude mice demonstrated the reduction of tumor size by localized injection of syndecan-1 siRNA in the presence of atelocollagen. Moreover, the mouse model and chorioallantoic membrane assay demonstrated significant inhibition of vascular endothelial growth factor and tumor angiogenesis by silencing of syndecan-1. In conclusion, syndecan-1 might participate in the process of androgen-dependent to -independent conversion, and be a new target molecule for hormone resistant prostate cancer therapy.
Collapse
Affiliation(s)
- Keiji Shimada
- Department of Pathology, Nara Medical University School of Medicine, Shijo-cho, Kashihara, Nara, Japan
| | | | | | | | | | | |
Collapse
|
19
|
Carman CV, Springer TA. Trans-cellular migration: cell-cell contacts get intimate. Curr Opin Cell Biol 2008; 20:533-40. [PMID: 18595683 PMCID: PMC2811962 DOI: 10.1016/j.ceb.2008.05.007] [Citation(s) in RCA: 136] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2008] [Revised: 05/12/2008] [Accepted: 05/19/2008] [Indexed: 12/31/2022]
Abstract
Trans-cellular migration, the movement of one cell directly through another, seems an unlikely, counterintuitive, and even bizarre process. Trans-cellular migration has been reported for nearly half a century in leukocyte transendothelial migration in vivo, but is not well enough accepted to widely feature in textbook accounts of diapedesis. Recently, the first in vitro and additional in vivo observations of trans-cellular diapedesis have been reported. Mechanisms by which this occurs are just beginning to be elucidated and point to podosome-like protrusive activities in leukocytes and specific fusogenic functions in endothelial cells. Emerging evidence for a quantitatively significant contribution of trans-cellular migration to leukocyte trafficking in increasingly diverse settings suggests that this phenomenon represents an important and physiologic cell biological process.
Collapse
Affiliation(s)
- Christopher V Carman
- Beth Israel Deaconess Medical Center, Department of Medicine, Harvard Medical School, Boston, MA 02215, USA.
| | | |
Collapse
|
20
|
Blei F. Literature watch. Blood and lymphatic endothelial cell-specific differentiation programs are stringently controlled by the tissue environment. Lymphat Res Biol 2007; 5:49-65. [PMID: 17508902 DOI: 10.1089/lrb.2007.5106] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|